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Abstract
We propose a multi-neighbourhood simulated annealing algorithm for the ITC-2007 version of the capacitated examination
timetabling problem. The proposed solver is based on a combination of existing as well as newly proposed neighbourhoods
that better exploit the disconnected structure of the underlying conflict graph and that explicitly deal with the assignment of
exams to rooms.We use a principled tuning procedure to determine the parameters of the algorithm and assess the contribution
of the various neighbourhoods by means of an ablation analysis. The resulting algorithm is able to compete with existing
state-of-the-art solvers and finds several new best solutions for a variety of well-known problem instances.

Keywords Capacitated examination timetabling · Room assignment · Simulated annealing · ITC-2007

1 Introduction

Examination timetabling (ETT) is a practical problem that
every university faces regularly. Each university has its own
version, so that many variations of the ETT problem exist,
each with its specific rules, resources, constraints, and objec-
tives. Given the enrolment of students to exams, the most
basic version of the problem is to assign exams to periods
in such a way that the resulting timetable is ‘conflict-free’,
meaning that no student has to take more than one exam at a
time. Finding a conflict-free timetable, however, is far from
sufficient as this ignores the spread between exams taken
by the same students. Carter et al. (1996) therefore propose
to additionally penalize a timetable with a predetermined
penalty whenever a student has to take two exams within a
given timespan. The resulting problem is commonly referred
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to as the uncapacitated examination timetabling problem
(UETT), and with only one classic problem instance solved
to proven optimality so far (see Dimitsas et al., 2022), is
known to be very challenging to solve.

In this work, we consider the capacitated examination
timetabling (CETT) problem as proposed for the Sec-
ond International Timetabling Competition (ITC-2007; see
McCollum et al., 2010). This problem is more realistic than
the UETT and consists of allocating every exam to a single
room and period, though allowing exams to share a room as
long as the total capacity of that room is respected. Another
peculiarity of this problem is that periods have a different
length, which precludes the assignment of specific exams to
some specific certain periods, given that there is not enough
time to run the exam. Other constraints relate to conflict-
ing exams (i.e. exams with at least one student in common)
assigned to the same period, roomswith insufficient capacity,
and precedence relations between exams. Themain objective
involves spreading students’ exams as much as possible over
time, while also avoiding that exams with different lengths
are scheduled together in the same room.

Over the years, numerous local search methods have been
proposed for CETT. We observe, though, that almost all of
them employ neighbourhoods that were originally designed
for UETT. Moreover, the literature provides little insights
into how different neighbourhoods contribute to the suc-
cess of current algorithms. This paper therefore presents
the following contributions. Firstly, we provide an extensive
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overview of existing neighbourhoods and their prevalence in
the literature. An efficient implementation of these neigh-
bourhoods is crucial to be competitive on the ITC-2007
benchmarks. Yet, it is not always clear how to implement
more complex neighbourhoods like Kempe chains, espe-
cially since current state-of-the-art results have all been
obtained using source code that has either become inacces-
sible or has been lost over time. Hence, this paper’s first
contribution lies in reconstructing the state-of-the-art and
making the code for the existing neighbourhoods openly
available.1 Secondly, we introduce two innovative neigh-
bourhoods that make better use of the underlying structure of
CETT. One of them explicitly focusses on the assignment of
exams to rooms and the other one exploits the decomposed
structure of the underlying conflict graph. We combine the
newly proposed neighbourhoods and those from the literature
within the framework of a multi-neighbourhood simulated
annealing (SA) metaheuristic and show how to use a princi-
pled procedure to tune its parameters. This approach resulted
in several new best found solutions. The starting point for
our algorithm is the work by Battistutta et al. (2017), who
apply SA to this problem but consider only the two most
basic neighbourhoods. A considerably larger set of neigh-
bourhoods has been considered by Bellio et al. (2021), who,
however, applied them only to the uncapacitated version of
the problem. Finally, to assess the contribution of the indi-
vidual neighbourhoods, we perform an ablation analysis.

The remainder of this paper is as follows. First, Sect. 2
describes CETT and the problem instances that are available
in the literature. Section3 then provides an overview of exist-
ing heuristics, the neighbourhoods employed, and their use
in the literature. Next, Sect. 4 introduces the new set of neigh-
bourhoods, and Sect. 5 explains how to integrate them into
the framework of SA. Parameters of the algorithm are tuned
in Sect. 6, which also contains the ablation analysis. Finally,
Sect. 7 presents the computational results, and Sect. 8 con-
cludes the paper with a summary of our findings.

2 Problem description

In this section, we provide a more detailed problem descrip-
tion of CETT, and we introduce the notation used in the
remainder of this paper. The planning horizon is divided into
a set of non-overlapping periods P , and each period has a
certain length, belongs to a day, and possibly has a penalty
for scheduling exams in it. Given is also a set of rooms R,
with for each room a given capacity in terms of the number
of seats available for students (assumed to be the same for all
periods), and possibly a penalty for scheduling exams in it.

1 See https://github.com/davidvanbulck/ITC-2007-CETT.git.

The third and last entity consists of exams E , with for each
exam its duration and the set of students that take the exam.

A feasible examination timetable is one which assigns
each exam in E to exactly one period in P and exactly one
room in R such that the following hard constraints are satis-
fied.

Conflict free Exams with at least one student in com-
mon are scheduled in different periods.
In other words, no student takes more
than one exam at a time.

Room capacity Multiple exams can be assigned to the
same period and room, as long as the
total number of students enrolled for
those exams does not exceed the capac-
ity of the room.

Period length Exams are only assigned to periods with
length greater than or equal to the dura-
tion of the exam.

Exam sequence For some pairs of exams e1, e2 ∈
E , e1 �= e2, sequence relations are
given. In particular, precedence con-
straints require that e1 comes before e2,
coincidence constraints that e1 and e2
are assigned to the same period, and
exclusiveness constraints that e1 and e2
are assigned to different periods.

Theobjective function inCETT is composedof the follow-
ing six soft constraints, such that each has a penalty weight
depending on the problem instance being solved.

Two in a row For eachpair of exams scheduled in con-
secutive periods, a penalty equal to the
number of students in common.

Two in a day For each pair of exams scheduled in
non-consecutive periods of the same
day, a penalty equal to the number of
students in common.

Period spread For each pair of exams scheduledwithin
a given number of periods, a penalty
equal to the number of students in com-
mon. This spread limit is fixed at global
level in the instance.

Front load For each exam with more than a prede-
termined number of students scheduled
later than a given period in time, a
penalty of one.

Exam durations For each room and period, a penalty
equal to the number of distinct exam
durations assigned to that period and
room more than one.
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Fig. 1 Relation between
examination timetabling, graph
colouring, and a conflict free
timetable. Periods p1, p2, and
p3 correspond to solid, dashed,
and double circles, respectively

Period penalty For each exam scheduled in an undesir-
able period, a penalty of one.

Room penalty For each exam scheduled in an undesir-
able room, a penalty of one.

Notice that when the period spread limit is equal to two
or more, the presence of two consecutive exams is penalized
twice, namely as a ‘Two in a row’ violation and a ‘Period
spread’ violation.

CETT comes along with a dataset of 12 real-life prob-
lem instances (mostly from British universities), which were
used in the track on examination timetabling of the Inter-
national Timetabling Competition 2007 (ITC-2007)2. Apart
from these problem instances, Özcan and Ersoy (2005) pro-
pose a set of 8 real-life problem instances from Yeditepe
University; these instances have been translated into the ITC-
2007 format by Parkes and Özcan (2010). The Yeditepe
instances, however, are somewhat smaller in size and ignore
some of the constraints from the ITC-2007 formulation (for
a discussion and a detailed overview of instance characteris-
tics, (see Ceschia et al., 2022). All of the previous problem
instances plus an additional set of 50 artificial ones fromBat-
tistutta et al. (2017) together with the best known solutions,
are available from OptHub.3

3 Existing heuristics

The field of examination timetabling is relatively young, with
pioneering papers dating back to the late 1970s and early ’80s
(for an overview, see e.g. Carter 1986; Schaerf 1999; Laporte
andDesroches 1984). Ever since, the field has conceived con-
siderable attention, which can perhaps be explained by the
fact that examination timetabling was one of the first practi-
cal applications of graph colouring. Indeed, it is well known
that finding a conflict-free timetable is equivalent to colour-
ing the vertices of the associated conflict graph where nodes
correspond to exams, colours to periods, and any two exams

2 See also the official competitionwebsite at https://www.cs.qub.ac.uk/
itc2007/.
3 See https://opthub.uniud.it/problem/timetabling/edutt/ett/itc-2007-
ett.

with at least one student in common need to receive differ-
ent colours (see Fig. 1). We refer to Aldeeb et al. (2019) for
a comprehensive review on recent advancements in unca-
pacitated timetabling, and focus in the remainder of this
section on CETT. In particular, Sect. 3.1 discusses popular
techniques to construct an initial solution, whereas Sect. 3.2
discusses commonly employed neighbourhoods as used in
metaheuristics for CETT.

3.1 Constructive heuristics

Most of the initialization procedures in the literature on
CETT focus on generating a conflict-free timetable by using
heuristics from graph colouring (see also Carter et al., 1996)
and subsequently consider the assignment of rooms in each
period. In particular, the exams are typically listed in some
order, and each time using a different random permutation of
the periods, the examsof the list are repeatedly assigned to the
first feasible period. The following rules have been proposed
to sort the exams: (i) largest degree in the conflict graph, (i i)
weighted degree in the conflict graph (edge weights corre-
spond to the number of students in common), (i i i) saturation
degree counting the number of periods in which an exam
can be assigned without violating any of the hard constraints
(SD, dynamically updated after each assignment), (iv) num-
ber of students enrolments, and (v) random order. The rooms
are subsequently sorted in increasing order of their residual
capacity, and exams are repeatedly assigned to the first feasi-
ble room in the list. In the event that the scheduling process
is unsuccessful, it is common to simply repeat the procedure
or to use some sort of backtracking procedure. Numerous
studies have demonstrated the effectiveness of the saturation
degree sorting rule (see e.g. Carter et al. 1996; Alsuwaylimi
and Fieldsend 2019), and as a result, most heuristics pro-
posed in the literature generate an initial solution using this
rule (see e.g. Bykov and Petrovic 2016; Leite et al. 2019).
An interesting study that combines the various sorting rules
into a hyperheuristic is presented by Pillay (2010).

In an effort to generate initial solutions of higher quality,
Alsuwaylimi and Fieldsend (2019) propose the ordering-
based scheduling initialization (OBSI). This algorithm pri-
oritizes the scheduling of exams with a substantial number
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Fig. 2 Illustration of
Move(e1, p3, r1)

Table 1 Overview of improvement heuristics and their neighbourhoods in the context of CETT

Algorithm Move Swap Kempe Shake Path Rel

McCollum et al. (2009) Great deluge ✓ ✓

Müller (2009) Hybrid local search ✓ ✓

Gogos et al. (2010) Scatter search ✓ ✓ ✓

Gogos et al. (2012) GRASP ✓ ✓

Burke et al. (2014) Hyperheuristics ✓ ✓ ✓ ✓

Alzaqebah and Abdullah (2014, 2015) Bee colony optimization ✓ ✓

Burke and Bykov (2016) Adaptive Flex-deluge ✓ ✓ ✓

Bykov and Petrovic (2016) Step-counting hill-climbing ✓ ✓ ✓ ✓

Burke and Bykov (2017) Late-acceptance hill-climbing ✓ ✓ ✓ ✓

Battistutta et al. (2017) Simulated annealing ✓ ✓

Leite et al. (2019, 2021) Simulated annealing & Threshold Acceptance ✓ ✓

Rajah and Pillay (2023) Partial Solution Search ✓ ✓ ✓ ✓

of conflicts in the early and later portions of the examination
timetable, referred to as the front section and the back section,
respectively. Subsequently, it tries to schedule the remaining
exams into themiddle section of the timetable, thereby trying
to satisfy the period spread constraints as much as possible
(for more details, see Alsuwaylimi and Fieldsend 2019).

3.2 Improvement heuristics

The literature on CETT almost exclusively focusses on the
design of metaheuristics based on local search (see Ceschia
et al. 2022). The proposed methods range from simulated
annealing (e.g. Battistutta et al. 2017; Leite et al. 2019), over
Great Deluge (e.g. McCollum et al. 2009) and Scatter Search
(e.g. Gogos et al. 2010), to Late-Acceptance Hill-Climbing
(e.g. Burke and Bykov 2017). While the list of applied algo-
rithms is too long to enumerate in this paper, someof themore
common local search techniques togetherwith theneighbour-
hoods they use are summarized in Table 1. In the remainder
of this section, we explain each of these neighbourhoods in
more detail.

3.2.1 Move

Perhaps the most common of all is the neighbourhood
Move(e, p, r), which simply reallocates exam e ∈ E to
period p ∈ P and room r ∈ R (see Fig. 2). In case only
the room changes, the operator is often described in the liter-

ature as the ‘room move’. Table 1 shows that all considered
heuristics from the literature implement this neighbourhood.

3.2.2 Swap

Moving a given exam to a certain period does not always
result in another feasible timetable, typically because there is
a conflicting exam in that period or there is no roomwith suf-
ficient residual capacity. The neighbourhood Swap(e1, e2)
tries to circumvent this by considering two exams e1, e2 ∈ E ,
e1 �= e2, and swapping the room and period currently
assigned to e1 and e2 (see Fig. 3). Perhaps thanks to its sim-
plicity to implement, Table 1 again shows that Swap is very
popular in the literature.

3.2.3 Kempe

To the best of our knowledge, the K empe(e, p, r) operator
was proposed for the first time in the context of examination
timetabling by Thompson and Dowsland (1998). Similar to
Move, it starts by reallocating exam e ∈ E to a new room
r ∈ R and new period p ∈ P . However, this time it is
assumed that there is at least one conflicting exam in p and
that any newly introduced conflict is repaired by using a so-
called Kempe chain. To this purpose, it first moves all exams
in conflict with exam e, denote them byC1 ⊆ E , from period
p to the period originally assigned to exam e (denote this
period with s). In turn, all exams in conflict with the exams
in C1 (denote them with C2) are moved from period s to
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Fig. 3 Illustration of
Swap(e4, e7)

Fig. 4 Illustration of the Kempe chain associated with K empe(e5, p2, r). The neighbourhood starts from the timetable in Fig. 1 Recall that periods
p1, p2, and p3 correspond to solid, dashed, and double circles, respectively

Fig. 5 Illustration of
Shake(p1, p2)

period p, and so on until all newly introduced conflicts are
solved (see Fig. 4).

The Kempe operator has proven very effective in the con-
text of CETT, but it is not always clear how to deal with the
room assignment for exams in C1 and C2. Burke and Bykov
(2016) propose to use the following simple rule based on the
best fit algorithm for bin packing: (i) sort exams in C1 and
C2 in decreasing size of students, and (i i) for each exam
in the list, assign the exam to the smallest room with suffi-
cient residual capacity (or the room with the largest residual
capacity if no such room exists).

3.2.4 Shake

The neighbourhood Shake(p1, p2) was originally proposed
by Di Gaspero (2002), and moves all exams currently
assigned to period p1 ∈ P to period p2 ∈ P , p1 �= p2,
and the other way around. The assignment of rooms remains
unaffected by the operator. Figure5 illustrates the move.

3.2.5 PathRelinking

Different from the previous operators, the Path Relinking
(A, B) operator proposed by Gogos et al. (2010) takes as
argument two ‘reference’ timetables A and B. Assuming

that A is the better of the two solutions, the operator gradu-
ally transforms solution A into solution B by using the Move
operator to repeatedly assign a randomly chosen exam in
solution A to the period and room assigned to the exam in
solution B (see Fig. 6). During this transformation process,
all feasible solutions are stored and at the end ‘promising’
intermediate solutions are returned. The fact that improve-
ment heuristics typically store only one solution at a time
perhaps explains why the operator is not often used in the
literature (see Table 1).

3.2.6 Kick

The K ick(e1, e2, p) operator was proposed by Di Gaspero
(2002) in the context of the UETT and is a generalization of
the Swap(e1, e2) operator. It starts by assigning exam e1 to
the period currently assigned to exam e2 after which it ‘kicks
out’ e2 to given period p ∈ P . Its simplicity and use in UETT
notwithstanding (see e.g. Bellio et al. 2021), the Kick opera-
tor has, to the best of our knowledge, not yet been applied in
the context of CETT (and is therefore not included in Table
1). We propose to generalize it to K ick(e1, e2, p, r) by not
only moving e1 to the period but also the room currently
assigned to e2, and by kicking out e2 to the given period p
and a given room r ∈ R (Fig. 7).
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Fig. 6 Illustration of the first
iteration of
Path Relinking(A, B). The
operator creates a new solution
by starting from solution A and
moving the randomly chosen
exam e2 to the period and room
currently assigned in solution B

Fig. 7 Illustration of
K ick Exams(e1, e6, p1, r2)

4 A new set of neighbourhoods

This section proposes two novel neighbourhoods that try to
better exploit the underlying problem structure of CETT.
More in particular, Sect. 4.1 proposes a beam search operator
to assign exams to rooms, and Sect. 4.2 exploits the fact that
the underlying conflict graph of a CETT problem instance
often contains multiple disconnected components.

4.1 Beam search for the assignment of exams to
rooms

It is striking that all neighbourhoods from Sect. 3.2 but
Path Relinking were originally proposed in the context of
UETT, where the focus is on period-related constraints and
penalizations. They have been straightforwardly adapted to
deal with the assignment of exams to rooms. Neighbour-
hoods focussing solely on room-related violations therefore
remain relatively unexplored. In fact, apart from the special
cases of Move and Swap operating on exams within the
same period (see Müller 2009), the only research that we
are aware of is by Gogos et al. (2012). They propose as a
last step in their heuristic to further optimize a timetable by
solving for each period an integer programming formulation
(IP) that optimally reassigns the exams to rooms. A similar
idea has been used in the context of course timetabling (see
e.g. Chiarandini et al. 2006). While the idea of optimizing
the room assignment per period is promising, it seems ineffi-
cient to directly use such IP as part of a new neighbourhood
as it is likely too time consuming within the context of a local
search frameworkwhere a neighbourhood is typically visited
thousands if not millions of times. Instead, we consider the
roomassignment of only a subset of the exams assigned to the

Fig. 8 Illustration of Beam(2, 3, 2). Edge weights represent fictive
room assignment costs

same period, and further speed up the calculations by using
beam search on the full enumeration tree (thus eliminating
the use of IP solvers). In particular, the move Beam(p, α, β)

takes as arguments period p ∈ P , beam depth α, and beam
width β. The neighbourhood starts by randomly selecting α

exams currently assigned to period p, and sorts these exams
in decreasing order of the number of enrolled students. Next,
it constructs a search tree where each level in the tree corre-
sponds to an exam and nodes decide on the room assigned to
that exam. The result is a room assignment that minimizes
the costs for the subset of exams considered. In order to avoid
an explosion of the tree, only the β most promising nodes at
each level are further expanded to the next level. Moreover,
instead of using the bin-packing heuristic from Sect. 3.2.3,
we note that the Beam operator can also be used to reassign
rooms to the exams in the chains of the K empe operator.
Figure8 illustrates the move.

4.2 Disconnected component operator

When the conflict graph associated with a problem instance
of the UETT is disconnected, Dimitsas et al. (2022) observe
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Fig. 9 Visualization of the
conflict graphs for the ITC-2007
problem instances

that—without loss of optimality—the problem instance can
be split into multiple independent subproblems that each
are considerably easier to solve. Although Fig. 9 shows that
all but one of the conflict graphs associated with the ITC-
2007 problem instances are disconnected, several ‘coupling’
constraints (e.g. room capacity) cause that CETT problem
instances cannot be decomposed in a similar way. Neverthe-
less, the degree to which the graph is disconnected may still
explain how difficult a problem instance is to solve. In this

regard, we propose to include the number of disconnected
components and variants thereof (e.g. the edge-connectivity
of the conflict graph) as instance features on top of those
already proposed before in the literature (see Ceschia et al.
2022; Battistutta et al. 2017).

Moreover, the high number of disconnected components
in several conflict graphs of Fig. 9 motivated us to think
about novel neighbourhoods that specifically exploit the dis-
connected structure of the conflict graph. In particular, we
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Fig. 10 Illustration of
Component(D1, p2, 1). To
make the underlying conflict
graph disconnected, we
removed students v and y from
the enrolment matrix. The
resulting conflict graph has three
connected components:
D1 = {e5, e6, e8, e9},
D2 = {e1, e2, e4, e7}, and
D3 = {e3} with
PD1 = PD2 = {p1, p2, p3} and
PD3 = {p3}

observe that permuting the time slots of a disconnected com-
ponent affects the period spread costs in a predictable way,
without causing additional violations of the conflict-free con-
straint. To this purpose, let D be a disconnected component
in the associated conflict graph, and denote with the ordered
set PD ⊆ P the periods in which exams of D are sched-
uled. Finally, let k be a strictly negative or positive number
such that for all p ∈ PD it holds that p + k ≤ |P| if k is
positive and p − |k| ≥ 1 if k is negative. If k is positive,
the move Component(D, p, k) moves all exams from the
disconnected component D scheduled in period q ∈ PD ,
p ≤ q, to period q + k. If k is negative, it moves all exams
from D scheduled in period q, q ≤ p, to period q − |k|.
Note that this operator either increases the spread between
exams, or leaves it unchanged (see Fig. 10). To deal with the
assignment of rooms, the move makes use of the bin packing
heuristic explained in Sect. 3.2.3.

5 Multi-neighbourhood simulated annealing

In order to assess the effectiveness of the existing as well
as the new neighbourhoods, this section explains how we
combine the neighbourhoods into amulti-neighbourhood SA
algorithm. The choice for SA is motivated by its effective-
ness for this (Battistutta et al., 2017; Leite et al., 2019) and
several other timetabling problems (see e.g. Bellio et al.
2016; Ceschia et al. 2012; Rosati et al. 2022; Bellio et al.
2021). Section5.1 introduces the considered search space,
Sect. 5.2 the initial solution strategy, Sect. 5.3 the neighbour-
hood relations, and finally Sect. 5.4 the simulated annealing
framework.

5.1 Search space

In the spirit of Battistutta et al. (2017), we consider as search
space all complete assignments of exams to periods and
rooms, including infeasible ones. In order to deal with the
hard constraints, the proposed algorithm offers a parame-

ter with three different options. The first option immediately
rejects neighbours that result in an increase of the number
of violated hard constraints. Hence, when provided with an
initial feasible solution, this option explores the feasible part
of the search space only (see e.g. Bykov and Petrovic 2016).
The second option adds a penalty to the objective function
for each violated hard constraint (see e.g. Battistutta et al.
2017). Finally, the third option is a compromise between
the first two: Move, Swap, and K ick are allowed to enter
the infeasible part of the search space, whereas the other
neighbourhoods are immediately rejected in case the number
of violated hard constraints increases. As such, high-quality
solutions can still be approached from the infeasible as well
as feasible part of the search space, while still saving some
time in the evaluation of themore expensive neighbourhoods.

5.2 Initial solution generation

We consider three different approaches to construct an initial
solution. The first approach is the simplest one and constructs
an initial solution by repeatedly assigning each exam to a
period of sufficient length and a randomly selected room
(ignoring all hard constraints; see e.g. Battistutta et al. 2017).
The second and third initialization techniques are based on
the saturation degree (SD) and ordering-based scheduling
initialization (OBSI) heuristic (see also Sect. 3.1). To speed
up the generation of an initial solution, however, we do not
consider any restart or backtracking techniques but instead
assign exams that cannot be added to the partial timetable
without violating any of the hard constraints to a randomly
chosen room and period of sufficient length. Although the
initial solution is thus complete in the sense that all exams
are assigned a room and period, it may violate some of the
hard constraints. We note that this is different from several
methods in the literature that assume a feasible starting solu-
tion is given (see e.g. Burke and Bykov 2016; Bykov and
Petrovic 2016).
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5.3 Neighbourhood selection

The proposed metaheuristic makes use of the following
six neighbourhoods introduced earlier in this paper: Move,
K ick, K empe, Beam, Shake, and Component . The meta-
heuristic is parametrized with a selection probability for each
of the six operators, and in addition contains a parameter to
control the fraction of K ick moves that correspond to Swap.
Moreover, for the Move operator we additionally include a
bias parameter that controls for the fraction of moves and
kicks that leave the room assignment unchanged (the evalua-
tion of suchmoves is typically faster). Similarly, for the K ick
operator we include a bias parameter that determines the per-
centage of neighbours sampled for which exams e1 and e2
belong to the same period. At each iteration, the selection
probabilities are used to select a neighbourhood from which
we subsequently select a neighbourwith uniform probability.

5.4 Simulated annealing

After selecting a neighbour, the associated change in the
objective function (referred to as �) is computed and its
acceptance is determined by the well-known Metropolis
criterion. In other words, improving moves (i.e. � < 0)
and sideways moves (i.e. � = 0) are always accepted,
whereas deteriorating moves are accepted only with prob-
ability e−�/T where T is a temperature parameter controlled
by the algorithm. The temperature is initialized with value T0
at the beginning of the search and is subsequently reduced
by multiplying it with a cooling rate 0 < γ < 1 every m
iterations until it reaches the end temperature T f . The value
of m is automatically determined such that the total time of
the algorithm does not surpass a predefined time limit.

Our version of the simulated annealing algorithm addi-
tionally makes use of a so-called cut-off mechanism (see
Johnson et al. 1989). Based on the assumption that the num-
ber of moves accepted at early temperatures is important
rather than the number ofmoves performed, the cut-offmech-
anism speeds-up the algorithm during early iterations by
reducing the temperature until eitherm moves have been per-
formed or δ · m moves have been accepted, where 0 < δ < 1
is the cut-off factor.

6 Programming by optimization

During the development of the algorithm, we avoided pre-
mature commitment to certain design choices by including
these choices as parameters of the algorithm (a paradigm
known as programming by optimization, see Hoos 2012).
Section6.1 provides an overview of these parameters as well
as the method we used to select their final values. Next,
Sects. 6.2 and 6.3 provide more insights into which of the

parameters are most critical to achieve the final performance
of the algorithm.

6.1 Parameter tuning

An overview of all parameters can be found in Table 2. The
first group of parameters regulates the initialization method,
the restrictions on the search space, and the penalty weight
for violated hard constraints. The second group of parameters
regulates the selection and configuration of the neighbour-
hoods. Next, parameters are included for the depth and width
of the enumeration tree in the Beam neighbourhood and
for the decision whether to reassign rooms in the Kempe
chain using the beam operator (in which case an appropri-
ate beam width is selected) or the bin packing heuristic from
Sect. 3.2.3. Finally, the third group of parameters configures
the Simulated Annealingmechanisms by setting the start and
expected end temperature, and the cooling and cut-off rate.

In order to tune the parameters of the algorithm, we used
the irace package which performs an iterated F-racing
procedure consisting of the following three steps (see also
López-Ibáñez et al. 2016). First, a number of parameter
configurations are sampled from a particular distribution.
Second, the best configurations are determined by means of
racing: at each step of the race the candidate solutions are
tested on a single instance, after which the candidate config-
urations that perform statistically worse are discarded. Third,
the parameter configurations that survived after the last step
of the race are used to update the sampling distributions.

In total,iracewas providedwith a budget of 10,000 runs
of the algorithm. As training data, we used the set of 50 artifi-
cial problem instances proposed by Battistutta et al. (2017).
This resulted in six parameter configurations that, accord-
ing to irace, are statistically performing equally well on
the training data. To choose a final configuration, we ran the
algorithm ten times on each of first eight problem instances
(instance 9-12 were not available to the participants of the
competition), and selected the configuration with the best
mean performance. The last two columns of Table 2 provide
the range of possible parameter values that we considered,
and the selected values.

6.2 Sampling distributions

The use of irace provides us with a final set of parameter
configurations, but since irace acts like a black box, it
does not provide much insights into which of the algorithm
parameters are critical, let alone why.

To get a better understanding of the parameter choices,
Fig. 11 plots the frequency for each of the parameters as sam-
pled by irace during the last iteration of the tuning process.
These graphs give us a first indication of how important the
different parameters are: if a plot resembles a uniform distri-
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Table 2 Overview of the parameters of the algorithm

Parameter Considered values Selected value

Initialization method {Random, SD, OBSI} OBSI

Search space restriction {Feasible, Infeasible, Mixed} Feasible

Hard constraint penalty [50, 500] 279

Probability Move pMove = 1 − pK ick − pK empe − pShake − pBeam − pComponent 0.51

Room bias Move [0, 0.5] 0.17

Probability K ick (pK ick) [0.25, 0.5] 0.43

Swap bias kick (pSwapBias ) [0.7, 1] 0.93

Room bias K ick [0, 0.5] 0.04

Probability K empe (pK empe) [0, 0.2] 0.03

Kempe room assignment {Bin packing, Beam} Bin packing

Kempe beam width [1, 5] -

Probability Shake (pShake) [0, 0.1] 0.09

Probability Beam (pBeam ) [0, 0.1] 0.01

Beam depth (α) [3, 10] 7

Beam width (β) [2, 5] 2

Probability Component (pComponent ) [0, 0.10] 0.03

Start temperature (T0) [200, 1000] 749

Expected end temp. (T f ) [0.05, 1.5] 0.72

Cooling rate (γ ) [0.95, 0.99] 0.97

Cut-off rate (δ) [0.10, 0.20] 0.20

bution its parameter is perhaps not so important, whereas a
distribution with several ‘spikes’ may hint that some param-
eter values work better than others.

With regard to the first group of parameters, we observe
that irace has a mild preference to explore the feasible part
of the search space only. Perhaps, this can best be explained
by the fact that substantial computation time can be saved by
aborting the evaluation of moves as soon as the number of
hard constraint violations increases, thus allowing more time
to evaluate interesting moves near the end of the search. Fur-
thermore, it seems that irace prefers to start from a random
solution, although all final eight best performing configura-
tions made use of OBSI. This is interesting, since most of the
contributions in the literature make use of the SD method.

Looking at the neighbourhood selection probabilities, we
observe that irace prefers to include all neighbourhoods,
selecting Move and Swap (pK ick ∗ pSwapBias) most often.
It is interesting to see that K empe is not so often selected,
which can perhaps best be explained by the computational
cost in evaluating the associated moves and the fact that
the much simpler Swap and K ick operators may already
solve some of the conflicts. On the other hand, Shake and
Component are selected quite often, perhaps thanks to their
ability to significantly alter a solution without introducing
new conflicts thus enabling the algorithm to escape local
optima.

6.3 Ablation analysis

In order to find out which neighbourhoods are most critical
to the performance of the algorithm, we conduct an ablation
analysis (see Fawcett and Hoos 2016; Bellio et al. 2021).
This analysis transforms a source configuration into a target
configuration by iteratively assigning to the parameters of
the source configuration the values assigned in the target
configuration. During each iteration of this process, we select
the configuration that exhibits the best performance as the
starting point for the subsequent iteration.

Our source configuration includes the Move neighbour-
hood only (pMove = 1), while the target configuration
is the best found configuration by irace (i.e. the last
column of Table 2). In other words, we iteratively reacti-
vate neighbourhoods by setting their selection probabilities
to the target configuration value from irace. As such,
left-out neighbourhoods in any of the intermediate config-
urations from source to target contribute to the selection
probability of Move. In order to determine the best con-
figuration at each iteration, we compute the reduction in
the median relative gap with regard to the performance of
the source configuration using 10 repetitions for each of
the ITC-2007 problem instances. Intermediate configura-
tions are denoted by the neighbourhoods that are reactivated:
Sw, Ki , Ke, Sh, B and C stand for Swap, K ick, K empe,
Shake, Beam and Component , respectively. For example,
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Fig. 11 Frequency of
parameters as sampled by
irace

Ke Sh indicates that the moves K empe and Shake are reac-
tivated with probabilities given in Table 2, and the moves
Swap, K ick, Beam and Component are inactive. Note that
all parameters other than the neighbourhood probabilities
remain unchanged over the course of the analysis.

Starting by analysing the contribution of adding a sin-
gle neighbourhood to the source configuration, Fig. 12 shows
that the contribution of K empe is largest. Following closely
are the Shake and Swap neighbourhoods, which are reac-
tivated in iteration 2 and 3, respectively. The stand-alone
contribution for each of the three neighbourhoods in iteration
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Fig. 12 Ablation analysis.
Numbers below the boxplots
show the median reduction in
the relative gap when
reactivating the neighbourhoods
of that configuration. The box
plot of the best performing
configuration of each iteration is
shown in grey

1 is about 10%, while iteration 3 shows that the combined
inclusion yields a median improvement in solution quality of
about 25%. This suggests a strong level of complementarity
among these neighbourhoods. Especially the large contribu-
tion of Shakewas somewhat unanticipated, and is interesting
since some of the contributions from the literature do not con-
sider this neighbourhood (see Table 1) which provides an
interesting opportunity to further improve those algorithms.

In the last three iterations, the ablation analysis sequen-
tially reactivates Beam, K ick, and Component . However,
these operators do not seem to have a profound impact on the
overall performance, even though a reduction in the relative
gap of just 1% can still be quite substantial in absolute terms.
Furthermore, it is important to note that the ablation analy-
sis solely relies on the ITC-2007 problem instances, and the
contribution of the neighbourhoods could vary for different
instances. For example, considering the synthetic training
instances introduced by Battistutta et al. (2017), Fig. 11
already hinted the added value of the Component neigh-
bourhood. We also expect that the significance of Beam,
K ick, and Component will increase with an extended run-
time. Indeed, it is likely that the algorithm has not yet fully
converged within the limited runtime permitted by the ITC-
2007 competition (as discussed in Sect. 7). In such a scenario,
the algorithm has not completely exploited the potential
of the more basic operators, and hence introducing more
sophisticated neighbourhoods aimed at facilitating deeper
exploration or search diversification might not be justifiable.

7 Experimental results

All software was implemented with C++ and compiled using
g++ (v. 11.3). The experiments were run on a Red Hat Enter-
prise Linux (RHEL) 8machine equippedwith one single core

on an Intel Xeon E5-2660 CPU running at 2.60GHz. Using
the official ITC-2007 processing speed benchmarking tool
allowed to run the simulated annealing algorithmwith a time
limit of 264s. To respect the ITC time limit, for each instance
independently, we first ran the algorithm with few evalua-
tions and measured the computation time. We then adjusted
the maximum evaluations to fit within the ITC limit, pre-
venting any significant time overrun. In order to facilitate the
benchmarking and development of new neighbourhoods for
CETT, all source code used in this paper is publicly available
at https://github.com/davidvanbulck/ITC-2007-CETT.git.

Table 3 first shows a comparison between our results and
those of the algorithms that adhere to the ITC-2007 competi-
tion rules: that is, the execution time of the algorithmdoes not
exceed the time limit provided by the ITC-2007 benchmark-
ing tool (on an individual instance basis), it is not assumed
that an initial feasible solution is available, and the average
and best-out-of-ten results are reported. Had we participated
at that time, it is clear that our solver would have won the
competition (recall that the ITC benchmarking tool accounts
for the improvements in processor speed). Indeed, for all but
one of the instances, our solver outperforms others in terms of
the best as well as the average solutions found. Given that the
parameters of our solver were tuned on the artificial instances
only, thus not overfitting to the ITC-2007 instances like the
other algorithms, these results are especially encouraging.

Table 4 provides an overview of the best solutions found
by other solvers from the literature and the best known lower
bounds (column ‘LB’, retrieved from Ceschia et al. 2022).
Although these solvers do not strictly adhere to the ITC-2007
rules (e.g. they violate the ITC time limit, or start from a given
feasible solution),we note that the running time for all solvers
is more or less in the order of the ITC-2007 time limit. The
only exception to this is the solver byGogos et al. (2010)who
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do not consider any hardware or time limit, and who instead
focus on finding new best solutions. Following Gogos et al.
(2010), we also report our algorithm’s best solutions derived
from 500 runs. These runs employ time limits of one time
(ITC), ten times (ITCx10), and one hundred times (ITCx100)
the official ITC-2007 time limit. Furthermore, any improved
solutions discovered during algorithm development and tun-
ing are recorded in the last column of Table 4. Given the
increased runtime granted to our algorithm, it would be unfair
to use the last three columns of Table 4 to directly compare
the performance of our algorithm against previous state-of-
the-art work. Nevertheless, the results highlight the potential
of our solver. Notably, we’ve established new best-known
solutions for half of the problem instances (all validated and
uploaded to OptHub), while matching the best-known solu-
tion for two other instances. These results are remarkable,
given that tens of algorithms have been proposed for CETT
in the past.

Finally, the outcomes for the Yeditepe problem instances
are outlined in Table 5. As these problem instances turn out
somewhat easier to solve, we conduct a reduced number of
100 runs per problem instance, solely adhering to the original
ITC-2007 time limit. Across all examined problem instances,
our algorithm demonstrates consistent or even improved per-
formance in terms of both average and best solution quality.
Impressively, for 5 out of the 8 problem instances, we achieve
new best solutions.

8 Conclusion

This study focused on solving the capacitated examination
timetabling problem (CETT) proposed in the ITC-2007 com-
petition. An extensive overview of existing neighbourhoods
provided the foundation for the development of two new
neighbourhoods, which explicitly optimize the assignment
of exams to rooms and exploit the presence of disconnected
components in the underlying conflict graph. These neigh-
bourhoods were then integrated into a simulated annealing
framework with parameters tuned using irace. In addition,
an ablation analysis revealed the significant impact of includ-
ing an often overlooked neighbourhood from the literature.
Despite the plethora of algorithms proposed for CETT, the
proposed heuristic found new best solutions for half of the
ITC-2007 problem instances.

For futurework, variants of the neighbourhood that exploit
the presence of disconnected components, such as shuffling
instead of moving the periods in which exams are scheduled,
can be developed. Additionally, it would be interesting to
explore how this neighbourhood could be adapted to deal
with weakly connected subgraphs.

Funding David Van Bulck is a postdoctoral research fellow funded by
the Research Foundation Flanders (FWO) [12AXE24N]
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