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Abstract
This work addresses a home health care scheduling problem faced by home care agencies. In home health care scheduling,
there is a desire to retain consistency with respect to the home health aide servicing each patient; this consistency is referred
to as continuity of care. To address this preference for continuity of care, we propose a rolling horizon approach to the
scheduling problem and introduce the consistent home health care scheduling problem (Con-HHCSP). The goal is to be able
to quantify and control the deviation of the new schedule suggested each day from the existing schedule in place, so that some
of the existing assignments may be retained in the new schedule that is produced. We present two different methods to solve
Con-HHCSP on a daily basis: an integer programming-based method with approximations and a variant of a petal heuristic.
We discuss the performance and computational efficiency of these methods.

Keywords Home health care services · Continuity of care · Nurse assignment · Scheduling · Consistency

1 Introduction

Due to the increasing average age of the population, espe-
cially in developed countries, there is a growing need for
long-term medical care and assistance for elderly people. It
is advantageous—both to providers and to patients—to pro-
vide this care in the patient’s home as long as possible. For
providers, a long-term stay in hospitals or nursing homes is
more costly than providing care and assistance to patients
in their homes. Meanwhile, patients feel more comfortable
in their own homes, resulting in improved quality of life.
Therefore, programs for aging in place, which include an
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individual’s freedom to choose the place to live regardless
of age or level of ability, are widely endorsed by social and
health services providers. The corresponding growth in home
care services, i.e., services delivered outside of a structured
setting, motivates the study of the scheduling of aides who
visit patient homes.

Home care services vary with respect to the scope and
structure of the care they provide. In this work, we con-
sider hospice care, which is aimed at relieving terminally
ill patients from pain, stress, and suffering. In the USA, in
order for a patient to be hospice-eligible their physician must
certify that their expected remaining lifetime is less than six
months if their condition were to run its normal course. Hos-
pice care focuses on pain management and improved patient
quality of life during this time period rather than focusing
on curative care. We address a real-world home health care
scheduling problem (HHCSP) faced by a home care agency
in the USA. The agency has operated for more than two
decades and has branches in over twenty states. To lay out the
details of the problem and provide effective solutions using
real-world data, we collaborated with one of the agency’s
branches. The branch provides a number of different ser-
vices in accordance with the patients’ needs and plan of care
including social work, nursing, and chaplain visits. Patients
are located in settings including their home, skilled nursing
facilities, and assisted living facilities, among others. The
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service most commonly provided is patient personal care;
this service is performed by home health aides (HHAs) who
are trained and certified health care workers.

Any proposed solution method to the scheduling prob-
lem must consider the unique characteristics of home care
service. One of the most critical characteristics is that over-
time aides develop a personal relationship with the patients
and families they are servicing. As such, there is a desire to
retain consistency with respect to the HHA servicing each
patient. This consistency in care, referred to as continuity of
care, serves to increase the overall patient quality of care and
patient and family satisfaction. Continuity of care allows a
HHA to better monitor patient status without loss of infor-
mation, so that patients perceive a better quality of service
with greater predictability and coherence (Haggerty, 2003).
Patients also get comfortable with their aides over time and
prefer to be served by the same aide due to the private and
sensitive nature of the service they get. It is therefore desir-
able to maintain consistency in the patient–aide assignments.

Continuity of care policy has usually been addressed in the
literature by developing models for a long planning period
and keeping the aide–patient assignments consistent over
time. However, the goal in a long-term plan is to keep the
assignments consistent, with an assumption that there is no
change in the data set. However, in real applications, the
patient data set changes over time. Here, we acknowledge
this and aim for continuity of care in a changing environ-
ment. In the hospice care setting, there is a frequent need
to change the schedules due to unpredictable changes in the
patient set. This is due to the nature of the hospice care envi-
ronment, where a patient’s expected remaining lifetime is
less than six months. In fact, according to 2014 data, aver-
age patient length of stay in hospice is approximately 70
days with a median of around 23 days and often is as short
as seven days or less (NHPCO, 2016). Moreover, 28.2% of
the patients leave the service within 7 days, 26.5% of them
leave after 7 but within 30 days, and only 13.1% of them stay
longer than 180 days (NHPCO, 2016). The patients leaving
the service or entering the service are not predictable. Thus,
it is not possible to schedule for future periods, where the
set of patients is unknown. This reveals the need for adopt-
ing a rolling horizon approach in the solution method, where
we solve a daily HHCSP problem when there is a change
in the data set and keep the new patient–aide assignments
consistent with the previous schedule.

The need for frequent schedule changes coupled with the
desire to maintain continuity of care motivates us to develop
a solution method that updates an existing schedule rather
than creating a new schedule from scratch. In this work, we
present two different constructive methods to solve HHCSP
on a daily basis: an integer programming-based method with
approximations and a variant of a petal heuristic. We also
implement various improvement heuristics, such as single

swap, double swap, combined single and double swap, and
large neighborhood search (LNS) heuristic.Using our heuris-
tic methods for HHCSP, we observed that the daily cost of
operations is decreased by $3,268, which constitutes around
43% improvement over the current schedule in operation,
with 76%decrease in labor cost (cost of idle time for full-time
aides and working hours for part-time aides), 40% decrease
in travel costs, slight increase in over-time cost, and 33%
increase in preference violation cost.We present adjustments
on these methods to address the schedule updating problem,
where the goal is to be able to quantify and control the devi-
ation from the existing schedule in place, so that some of the
existing assignmentsmaybe retained in the new schedule that
is produced. We discuss the performance and computational
efficiencies of these methods.

The contributions of this paper are threefold. First,
we introduce the consistent home health care scheduling
problem (Con-HHCSP) with multiple features including
patient preference, assignment consistency, and heteroge-
neous employee working time. Second, to the best of our
knowledge, this work is the first to present solution meth-
ods and analysis for Con-HHCSP for a multi-aide problem
using a rolling horizon approach. Although continuity of care
has been taken into consideration in the literature, the vast
majority of the proposed methods aim to create a long-term
schedule with a consistency in the aide–patient assignments
without considering a dynamic approach. Finally, quantify-
ing the deviation from theprior period’s schedulewill provide
business decision-makers with a quantifiable measure of the
actual cost of the continuity of care policy and allow for relax-
ations or limitations in the policy based on this cost analysis.

2 Literature review

The home health care scheduling problem (HHCSP) can
be seen as a variant of a multi-depot, multi-vehicle routing
problem (VRP) with various labor-related and time-related
constraints. However, HHCSP has some aspects that are
unique to scheduling such as a desire to retain consistency in
the HHA–patient assignments, a need to assign HHAs with
preferred skills, and a need to consider specific labor-related
constraints.

The uniqueness of the HHCSP problem, coupled with
the growth in home health services, has resulted in a grow-
ing body of HHCSP literature. Comprehensive literature
reviews of home health care logistics problems and work-
force scheduling problems can be found in (Fathollahi-Fard
et al., 2020; Grieco et al., 2020; Gutiérrez & Vidal, 2013;
Castillo-Salazar et al., 2014; Fikar&Hirsch, 2017;Yalçındag
et al., 2011; Hulshof et al., 2012). Many variants of HHCSP
have also been studied. Some of the key differences between
the problems are whether HHAs are heterogeneous or homo-
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geneous (e.g., with respect to skills, availability), length of
the planning horizon (e.g., daily or weekly planning hori-
zon), whether or not to consider time windows, and the
need to model simultaneous/interdependent visits. More-
over, the objective functions may differ among the problems.
Although most studies consider minimizing travel cost as a
part of the objective, some studies also consider maximizing
HHA utilization, maximizing patient satisfaction, or simul-
taneously optimizing multiple objectives.

The main characteristic of our work that differentiates it
from the existing literature is its focus on ensuring continu-
ity of care using a rolling horizon approach. In addition, our
problem includes complexities such as having part-time and
full-time aides with different constraints, and patient pref-
erences that are handled as soft constraints. We explain the
similarities and differences of the most relevant papers with
similar key features and complexities below, and summarize
some key features in Table 8 in the Appendix. We include
a group of papers which study consistency requirements, as
well as some papers which do not have consistency require-
ments, but may have other similarities in our review.

To the best of our knowledge, Bennett & Erera’s (2011)
paper is the first to consider a rolling horizon myopic plan-
ning approach to handle continuity of care in a home health
care context. However, ourwork differs from theirs in the fol-
lowing important aspects. First, they consider a single-nurse
case of the problem, while we propose solution methods for
a multiple-nurse case as the service areas of the nurses over-
lap in our problem setting. Second, they consider a weekly
schedule with a very strict requirement of consistency in the
visit times, by forcing the visit times occurring on the same
weekdays to be at the same time from week to week. On
the other hand, we focus on the consistency in nurse assign-
ments, since, based on the information we obtained from
the home health care agency, we concluded that consistency
in nurse assignments is critical in the hospice care context.
Third, they propose various heuristic methods to handle the
problem, while we propose both a MIP model and related
heuristics, which means we can benchmark the performance
of one with the other. Lastly, we were able to use a real data
set and had an opportunity to see the performance and cost
effectiveness of our methods in a real-world situation.

Our rolling horizon approach to handling continuity of
care is conceptually similar to the idea of generating a mas-
ter plan and updating it to generate daily operational plans.
In this approach of master and operational schedules, the
goal is to generate a master schedule which is used in the
long-run and to create daily schedules to account for the
daily changes in the data sets or operations. However, our
approach differs in that our primary objective is to maintain
consistency with the previous schedule, rather than adher-
ing strictly to a predefined master schedule. By utilizing a
rolling horizon approach, we address the challenge of conti-

nuity of care while incorporating flexibility and adaptability.
Instead of developing a fixed master schedule that may not
fully account for dynamic factors and unforeseen changes,
we employ a continuously updating process that considers
the existing schedule as a baseline. (Nickel et al., 2012) and
(Jensen, 2012) study master plan and daily operational plans
for the home health care scheduling problem. Although our
problems are similar, there are some key differences. They
assume that the daily changes that are handled via the opera-
tional plan are usually insignificant. However, in our context,
the change may be significant so that a new master plan is
needed.Moreover, theymainly focus on consistency in terms
of visit times—since it is more critical in their context. In our
setting, consistency of patient–aide assignments is more crit-
ical and we therefore ensure that our methodology handles
this requirement.

Cappanera and Scutellà (2014) have made an important
contribution to the home health care literature by creating a
joint model to handle assignment, and scheduling aspects of
the home health care problem. Although both our mathemat-
ical model for HHCSP and the model they propose consist
of similar components, there are several aspects that differ-
entiate our work from theirs. First, they do not consider the
consistency requirement in their work whereas we place sig-
nificant emphasis on this requirement in the current work.
Although they aim to create a weekly schedule where the
continuity of care is ensured by keeping the nurse assign-
ments the same throughout the week, they do not consider
preserving the consistency in the next period when they need
to reoptimize the schedule.Moreover, theirMIP-basedmodel
is not able to solve some of the instances, or may take a sig-
nificant amount of time to solve some instances due to the
complex nature of the problem. We propose both a MIP-
based model and heuristics to enable fast and high-quality
solutions for a variety of instances. Therefore, our work has
unique contributions in the context of home health care prob-
lems as well as in a wider context of VRP where consistency
may be present as an important component of the problem.

The continuity of care has mostly been handled via solv-
ing the problem in a long planning horizon, rather than using
a rolling horizon approach, as in the work of (Carello & Lan-
zarone, 2014) and (Yalçındağ et al., 2016). As mentioned
earlier, this approach is not applicable in all settings such
as hospice care. There are also some papers which account
for patient preferences when solving the daily home care
scheduling problem, but they do not consider continuity of
care or updating the schedule with consistency concerns
(Braekers et al., 2016; Rasmussen et al., 2012). Thus, our
work differs from these papers in terms of the main focus on
updating the schedules in case of significant changes in the
dataset.

Besides the home health care setting, consistency con-
cerns appear in many different fields. In the vehicle routing
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problem (VRP) studied in transportation literature, consis-
tency concerns became important after a shift in practice
from cost-oriented operations to customer-oriented opera-
tions (Groër et al., 2009). Many companies prefer drivers
to visit the same customers roughly at the same time when
the customers need service, since this helps drivers develop
relationshipswith customers, resulting in better customer ser-
vice (Wong, 2008). Groër et al. (2009), Kovacs et al. (2014),
and Coelho et al. (2012) studied variants of VRP, where
the consistency constraints are combined with the traditional
VRP constraints. Moreover, consistency has been addressed
in the traveling salesman problem (TSP) (Subramanyam &
Gounaris, 2017) and the dynamic scheduling problem for
aircraft landings (Beasley et al., 2004).

3 Problem description andmodel: consistent
home health care scheduling problem
(Con-HHCSP)

Home health care scheduling problem (HHCSP) is a variant
of a multi-depot, multi-vehicle routing problem with labor-
related and time-related constraints. We begin by describing
the problem. Each day, eachHHA is assigned a set of patients
to be visited at scheduled times. The HHA travels from his
home to deliver care to his assigned patients in accordance
with the assigned schedule. The HHA travels from patient to
patient; following completion of his daily assignments, the
HHA returns home. We consider deterministic travel times
and distances between patient locations (as well as between
aide and patient locations); these distancesmay be calculated
using a geographic information system tool. Service times are
also considered to be deterministic, having a value roughly
estimated based on prior experience. In our problem setting,
we assume common service times across all patients.

Time-related constraints enforce regular working hours,
i.e., these constraints enforce that all visits begin no earlier
than a specified start time and end no later than a speci-
fied end time. Labor-related constraints are specific to the
employee type: the workforce is comprised of part-time
(PT) and full-time (FT) HHAs and each is bound by dif-
ferent rules. FT-HHAs are scheduled to work a fixed number
of hours per week; a FT-HHA who works more than his
regular scheduled hours is paid for his excess hours at an
hourly overtime rate. However, the sum of regular hours
and overtime hours may not exceed a maximum allow-
able number of working hours. PT-HHAs are paid at an
hourly rate and may work up to a specified weekly reg-
ular number of hours with this hourly rate. If a PT-HHA
works beyond the maximum number of permissible hours
per week, then the PT-HHA must receive additional bene-
fits such as insurance; the cost of these benefits is covered by
the employer. Our labor-related constraints are different from

similar home health care scheduling problems discussed in
the literature. Although most studies consider heterogeneous
aides (e.g., skilled nurses), this heterogeneity mostly affects
the assignment decisions. In our case, the heterogeneity in
cost calculations and time restrictions introduces additional
complexity to the problem.

In addition to the labor-related constraints, we consider
patient preferences when assigning patients to the PT-
HHAand FT-HHAs. Namely, patients may specify one or
more HHAs that they prefer and/or characteristics of HHAs
that they prefer (e.g., gender, languages spoken). These pref-
erences are treated as soft constraints where a penalty is
introduced to the objective function for each preference vio-
lation.

Similar to the labor-related constraints, having soft con-
straints for the assignment decisions is not common in the
literature. In most cases, staff assignments are restricted due
to hard constraints such as skills requirements. Modeling
preferences as a soft constraint and introducing a penalty
for preference violation introduces the challenge of appro-
priately selecting a penalty. Based on discussions with the
company, we note that patient preferences are seriously con-
sidered (as these may directly impact customer satisfaction)
but are balanced against costs incurred in meeting these pref-
erences. We therefore introduced these preferences as a soft
constraint and impose a violation penalty equal to an average
cost of visiting a patient.

The consistent home health care scheduling problem
(Con-HHCSP) arises when there is a need to solve HHCSP
to create a new schedule due to a change in the dataset (e.g.,
change in available HHAs, change in patients requiring care)
and there is a desire to retain consistency between the patient–
aide assignments in the new schedule and the patient–aide
assignments in the prior period schedule. Here, consistency
is measured by the ratio of the patient–aide assignments that
remain consistent across the current and prior period sched-
ules. When calculating this ratio, note that we only consider
the patients requiring service in both the prior period and the
current period. Based on the problem setting, the consistency
preference may be very strict—such that all of the patients
requiring service in both periods must be served by the same
aide in the current period (as the aide who provided service
in the prior period)—or it may be loose, such that only some
of the patient–aide assignments must be retained between the
prior period and current period schedules. In other words, the
cost associated with changing the patient–aide assignments
affects the scheduling decisions made.

In addition to the consistency preference, this problem
has a dynamic nature. If all data parameters remained con-
stant over time, then decisions could be made for a long-term
planning horizon. However, frequent changes in the dataset
do not allow for long-term planning; for example, changes
in aide availability (due to high staff turnover that character-
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izes the industry) as well as changes in the patients requiring
care (due to the nature of the hospice industry) are both com-
mon. Thus, a method for dynamically updating schedules is
required. In this study, we only consider changes in the set of
patients requiring care and assume that the set of aides and
other data parameters remain constant.

In an effort to further decrease the size of the feasible
region, we analyze the structure of our problem and observe
that the maximum number of patients that may be visited by
an HHA each day is M = �H/min j∈J {u j }�, where H is
the maximum number of working hours and u j is the service
time for patient j belonging to the set of patients J . Since
service time is the main component of the total time and
service times are assumed constant over all patients in our
problem setting, this upper bound is very useful. In fact, when
we solve the model without this bound we observe that most
good quality solutions have all HHAs visiting at most M
patients. (In rare cases, we observed HHAs visiting M + 1
patients; these cases involved overtime costs.) In addition, in
considering the agency’s current practice we observe that to
establish fairness in workload among the HHAs, the agency
assigns at most M patients to each HHA. Thus, we add this
cut to the model (constraint (1c)) as a useful tool for cutting
the feasible region as well as to balance workload and limit
overtime costs.

We don’t consider break and rest rules explicitly in our
problem, but we believe that they can be easily incorporated
into the schedule. We create the schedules in a way that the
total number of working hours do not exceed the limit. If
there is a lunch break, or other rest rules, they can be added
into the schedule. Since we don’t have time windows in this
problem, addition of the breaks does not make the schedule
infeasible, or affect the overall costs. If the part-time aides
have other restrictions in terms of the working hours or days,
these requirements can be handled by changing the available
aide set for the specific day, or changing the maximum num-
ber of hours allowed for that particular aide. For example, if
a set of aides cannot work on Wednesdays, then they can be
removed from the aide set for that day. Similarly, if an aide
can only work in the afternoon for 2h on a certain day, the
maximum time limit can be set to 2h in the constraint which
ensures that, and the resulting schedule can be shifted to the
appropriate time window for that aide.

We nowdescribe themathematicalmodel of Con-HHCSP,
which we refer to as Con-MIP, using the notation presented
in Table 1. The key model assumptions are: (i) patients do
not have timewindows, (ii) patients require only one HHA to
be present in a service visit, (iii) all visits to the same patient
have the same average duration, (iv) an HHA’s day begins
when he arrives at his first patient and ends when he leaves
his last patient, and (v) part-time HHAs and full-time HHAs
have different associated time (availability) restrictions and
labor costs. The objective is to minimize the sum of the travel

costs (from the patient homes to the homes of the aides), idle
time cost which is the time that is not spent on duty for full-
time aides, labor cost for part-time aides, overtime costs for
all aides, overuse cost for part-time aides when their daily
workload exceeds a specified amount, the costs associated
with patient preferences, and the penalty for inconsistency.
The objective function includes all of these seven compo-
nents in their explained order below. Note that labor cost for
full-time aides is not part of the equation as it is fixed.

min
∑

g∈G
(a,b)∈Loc

cT ygabDab +
∑

f ∈F
cFγ f +

∑

p∈P

cPwp

∑

f ∈F
cOF O f +

∑

p∈P

cOPθp +
∑

j∈J

λP Pj +
∑

j∈J 0
g∈G

λdgj (1a)

s.t.
∑

g∈G
xgj =

∑

g∈G j

xg j + Pj = 1 ∀ j ∈ J (1b)

∑

j∈J

xg j ≤ M ∀g ∈ G (1c)

wg =
∑

j∈J

(
s j xg j +

∑

i∈J

Ti j ygi j

)
∀g ∈ G (1d)

wg ≤ αH ∀g ∈ G (1e)

γ f ≥ max(0, H − w f ) ∀ f ∈ F (1f)

O f ≥ max(0, w f − H) ∀ f ∈ F (1g)

(αH − Bd)θp ≥ Op ≥ max(0, wp − Bd) ∀p ∈ P (1h)
∑

b∈J∪{g}
yggb =

∑

a∈J∪{g}
ygag = 1 ∀g ∈ G (1i)

∑

a∈J∪{g}
ygaj =

∑

b∈J∪{g}
ygjb = xgj ∀g ∈ G,∀ j ∈ J (1j)

∑

a∈S,b∈S
ygab ≤ |S| − 1 ∀g ∈ G,∀S ⊆ J (1k)

x0g j − xgj ≤ dgj ∀g ∈ G,∀ j ∈ J 0 (1l)

dgj ∈ {0, 1} ∀g ∈ G,∀ j ∈ J 0 (1m)

xgj ∈ {0, 1} ∀g ∈ G,∀ j ∈ J (1n)

ygab ∈ {0, 1} ∀g ∈ G,∀(a, b) ∈ Loc (1o)

θp ∈ {0, 1} ∀p ∈ P (1p)

Constraints (1b) ensure that every patient is visited once.
They also assign the value of the preference violation vari-
able Pj . Constraints (1c) establish an upper bound on the
number of patients that may be visited by an aide, based on
the service time and the total working hours. Constraints
(1d) calculate the actual working time in a day, which
is equal to the sum of travel times between patients plus
visit durations. Constraints (1e) define an upper bound for
the total working hours. Constraints (1f) define idle time
for full-time aides and restrict the idle time to be non-
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Table 1 Notation for the
Con-MIP model of Con-HHCSP

Index sets

J Set of patients requiring service in the current period

J 0 Patients who require care in both the prior period and the current period.
(Intersectionof the current set of patients and the prior period set of patients.)

F Full-time home health aides (FT-HHAs)

P Part-time home health aides (PT-HHAs)

G All HHAs. G = F ∪ P

G j HHAs preferred and available to serve patient j ∈ J . G j ⊆ G

Loc The set of all pairs of nodes that can be sequentially visited by any aide in a
tour, including from one patient to another J × J , the starting leg of the trip
for all aides G × J from their homes and the ending leg of the trip J × G
Loc = {J × J ∪ G × J ∪ J × G}

Data parameters

H Length of regular workday, in hours

Bd Maximum number of daily hours a part-time employee may be scheduled
before changing to full-time status, where Bd = B/5, given that the limit
on the number of weekly working hours is B.

M The upper bound on the maximum number of patients an aide can visit on
a day, as explained in Sect. 4.1

α Maximum ratio between a journey with overtime hours and the regular
workday length H . E.g.: α = 1.25, H = 8 implies that HHAs may not
work more than 10 hours a day, including overtime

s j Average duration of visit time at patient j ∈ J

s Minimum duration of visit times at patients s = min j∈J s j

Dab distance from location a to location b, for (a, b) ∈ Loc

Tab travel time from location a to location b, for (a, b) ∈ Loc

cT Cost of transportation per mile driven

cF Cost of labor per hour worked for full-time HHA

cP Cost of labor per hour worked for part-time HHA

cOP Associated cost increase if a part-time HHA works over 5B hrs/wk (B
hrs/day) and is converted to a full-time HHA (health insurance, etc.)

cOF Hourly penalty associated with overtime work for full-time HHAs

λP Penalty associated with violating aide–patient assignment preferences

λ Inconsistency penalty associatedwith changing the aide–patient assignment
when updating the schedule

x0gj Indicator data equal to 1 if and only if aide g ∈ G visits patient j ∈ J 0 in
the previous period

Variables

xgj Binary variable equal to 1 if and only if HHA g ∈ G j visits patient j ∈ J

ygab Binary variable equal to 1 if and only if HHA g ∈ G traverses the arc
(a, b) ∈ Loc. Note that, yggg = 1 if the aide g ∈ G does not work on that
day.

wg Total working hours for HHA g ∈ G

θp Binary variable equal to 1 if and only if wp > B for p ∈ P .

Og Total daily overtime hours for HHA g ∈ G

γ f Idle time for FT-HHA f ∈ F (γ f = max(0, H − w f ))

Pj Binary variable equal to 1 if and only if patient j ∈ J is assigned a non-
preferred HHA

dgj Inconsistency variable, binary variable equal to 1 if and only if patient
j ∈ J 0 was assigned to aide g ∈ G in the prior period and is reassigned to
a different aide in the current period.
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negative. Constraints (1g) define extra working hours for
full-time HHAs as total hours worked by the HHA minus
the number of hours FT-HHAs are scheduled to work and
restricts this value to be nonnegative. Constraints (1h) sets
the overuse indicator equal to one if working hours of a PT-
HHA exceeds the maximum permissible number of hours
per week. Constraints (1i) and (1j) are the routing con-
straints for travel between patients. Each HHA will begin
from home and return to home as the start point and end
point of his daily work “route". Routing flows will be bal-
anced. Constraints (1k) are used to eliminate subtours. Note
that there are exponentially many subtour elimination con-
straints, so that a cutting plane algorithm is implemented to
iteratively identify violated inequalities, and to add them to
the model to improve the solution quality and eliminate sub-
tours..

To calculate the value of the inconsistency variables
dgj,∀ j ∈ J ,∀g ∈ G, we add the following set of constraints
(1l) to the model. dgj takes a value of 1 if and only if HHA g
was assigned to patient j in the prior periodbut is not assigned
in the current period (and patient j ∈ J 0). The inconsistency
penalty is applied for each positive dgj variable. Note that
we write these constraints only for the patients who are in
both the prior period dataset and in the current period dataset.
Moreover, the variable dgj is not set equal to 1 if HHA g was
not assigned to patient j in the prior period but is assigned in
the current period, since this would result in double counting
the changes in assignments.

In order to improve the formulation, we add some cuts
to the model. Constraints (2a) ensure that the variable yggg
becomes 1 when an aide g ∈ G does not visit anyone, and
becomes 0 when he visits at least one patient. Constraints
(2b) set the overuse variable θp for part-time aide p to 1 if
the aide makes more visits than the maximum number of
visits that can be assigned to a part-time aide, which is found
by Bd/s–a maximum time that a part-time aide can work,
divided by the minimum service time.

1

M

∑

j∈J

xgj ≤ 1 − yggg ≤
∑

j∈J

xgj ∀g ∈ G (2a)

∑

j∈J

x pj − Bd

s
≤ (M − Bd

s
)θp ∀p ∈ P (2b)

4 Methodology

As HHCSP is a variant of VRP, it is NP-hard. Solving to
optimality is possible only for very small size instances.
This motivates the development of approximate or heuris-
tic methods. We develop two main constructive methods
to generate high-quality solutions. The first method is a
mixed-integer programming model with approximations.

The second method is a petal-based heuristic adapted for
this specific problem. We also use various improvement
heuristics, such as swap and LNS heuristics. These meth-
ods, described in this section, are computationally tested,
with results outlined in Sect. 5.

4.1 Mixed integer programmingmodel with
approximations

As the original Con-HHCSP is intractable, we reformulate
the problem by integrating some approximations in order to
simplify it. Our aim is to be able to solve the problem for
larger instances while obtaining a high-quality solution. We
impose threemain approximations: clustering,within-cluster
travels, and maximum number of visits. These approxima-
tions are explained below.

ClusteringTheoriginal arc-based formulationof aHHCSP
requires all combinations of edges to be considered as a pos-
sible route. However, most good solutions are less likely
to include routes going back and forth between the farthest
points. For example, suppose A and B are two nodes in City
1 and C is a node in City 2, which is far away from City 1. If
an aide is scheduled to visit locations A, B, and C on a given
day, one would not expect the visit order to be A-C-B, or
B-C-A (since it would be more reasonable to visit two nodes
in City 1 and to then travel to City 2). Since we don’t have
time windows, this assumption is reasonable in our problem
setting—considering both time and travel cost. We therefore
restructure our graph as a set of clusters of patients and con-
sider routing constraints to be between clusters and within
each cluster rather than between all patients. In other words,
an HHA travels between the clusters by visiting each cluster
at most once. When an HHA visits a cluster, he may travel
within the cluster (between the patients). Note that an aide
may or may not visit all patients within a cluster he is visit-
ing. The clusters are generated based on the location of the
patients only, whereas the decision of assigning an aide to
a patient includes not only the location associated costs but
also the consideration of patient preferences, and continuity
of care. Therefore, we adopt a flexible clustering approach,
which is used to divide the network into large or small neigh-
borhoods and not necessarily into a group of patients to be
visited by the same aide. This reformulation enables us to
decrease the number of routing variables and constraints in
our model.

Within-cluster visitsWe cluster the patients using a hierar-
chical clustering with a “complete" (or “maximum") linkage
method. In this method, the distance between two clusters u
and v is calculated as follows: d(u, v) = max(d(u[i], v[ j]))
for all points i in cluster u and j in cluster v. In our model,
we choose a small distance as a clustering criterion (i.e., 3
miles where the average distance between all patients is 32.5
miles), so that the distance between all nodes in a cluster
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Table 2 Notation to be used in
Con-MIP-A in addition to the
notation presented in Table 1

Index sets

K Clusters of patients

Jk Patients in cluster k ∈ K

Kg Clusters that HHA g ∈ G can visit (i.e., there are patients in that cluster
who prefer HHA g ∈ G)

Loc The set of all pairs of nodes that can be sequentially visited by any aide
in a tour, including from one cluster to another K × K , from a patient
within a cluster to another in the same cluster J [k] × J [k], the starting
leg of the trip for all aides from their homes to a cluster G × K , and the
ending leg of the trip K × G Loc = {K × K ∪ G × K ∪ K × G} ∪
{K × J [k] ∪ J [k] × J [k] ∪ J [k] × K }

Data parameters

Dab distance from location a to location b, for (a, b) ∈ Loc

Tab travel time from location a to location b, for (a, b) ∈ Loc

O( j) The predetermined visiting order of the patient j ∈ J in its cluster as
explained in Sect. 4.1.

Variables

xgk Binary variable equal to 1 if and only if aide g ∈ G j visits cluster k ∈ K

is very small. Consequently, a travel distance between two
routes within the same cluster is very small. The result is
many symmetric solutions in our model; we add an integer
cut (constraint (3n)) to eliminate some of these symmetric
solutions and to obtain a smaller feasible region. To decide
which symmetric solution to promote, we solve a TSP for
patientswithin each cluster and save the optimalTSP solution
as a preferred order. In the mathematical model we set equal
to zero all arcs that violate the preferred order. This method
is inspired from Cappanera & Scutellà’s work (2014).

Based on the approximations explained above, we modify
the originalMIPmodel to obtainmixed-integer programming
model with approximations (Con-MIP-A). The changes in
the notation, index sets, data parameters, and the variables
are explained in Table 2.

min
∑

g∈G
(a,b)∈Loc

cT ygabDab +
∑

f ∈F
cFγ f +

∑

p∈P

cPwp

+
∑

f ∈F
cOF O f +

∑

p∈P

cOPθp +
∑

j∈J

λP Pj +
∑

j∈J 0
g∈G

λdgj (3a)

s.t.
∑

g∈G
xgj =

∑

g∈G j

xgj + Pj = 1 ∀ j ∈ J (3b)

∑

j∈J

xgj ≤ M ∀g ∈ G (3c)

wg =
∑

k,l∈K
Tlk yglk +

∑

k∈K

∑

i, j∈Jk

Ti j ygi j

+
∑

j∈J

s j xgj ∀g ∈ G (3d)

wg ≤ αH ∀g ∈ G (3e)

γ f ≥ max(0, H − w f ) ∀ f ∈ F (3f)

O f ≥ max(0, w f − H) ∀ f ∈ F (3g)

(αH − Bd )θp ≥ Op ≥ max(0, wp − Bd ) ∀p ∈ P (3h)

xgj ≤ xgk ≤
∑

j∈Jk

xgj ∀g ∈ G, ∀k ∈ K ,∀ j ∈ Jk (3i)

∑

b∈K⋃{g}
yggb =

∑

a∈K⋃{g}
ygag = 1 ∀g ∈ G (3j)

∑

b∈Jk
⋃{k}

ygkb =
∑

a∈Jk
⋃{k}

ygak = 1 ∀g ∈ G, ∀k ∈ K (3k)

∑

a∈K⋃{g}
ygak =

∑

b∈K⋃{g}
ygkb = xgk ∀g ∈ G, ∀k ∈ K (3l)

∑

a∈Jk
⋃{k}

ygaj =
∑

b∈Jk
⋃{k}

yg jb = xgj

∀g ∈ G, ∀k ∈ K ,∀ j ∈ Jk (3m)

ygab = 0 ∀g ∈ G, ∀(a, b) ∈ Loc : O(a) > O(b) (3n)
∑

a∈S,b∈S
ygabx ≤ |S| − 1 ∀g ∈ G, ∀S ⊆ K (3o)

x0gj − xgj ≤ dgj ∀g ∈ G,∀ j ∈ J0 (3p)

dgj ∈ {0, 1} ∀g ∈ G,∀ j ∈ J0 (3q)

xgj ∈ {0, 1} ∀g ∈ G,∀ j ∈ J (3r)

ygab ∈ {0, 1} ∀g ∈ G, ∀(a, b) ∈ Loc (3s)

θp ∈ {0, 1} ∀p ∈ P (3t)

xgk ∈ {0, 1} ∀g ∈ G, ∀ j ∈ J , ∀k ∈ K (3u)

The objective function (3a) of Con-MIP-A remains the same
as inCon-MIP.Note, however, that the routing variable ygab is
defined on different arcs Loc set as defined in Table 2. Since
we cluster patients and consider routing between clusters and
between patients within each cluster, the routing constraints
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and time constraints aremodified as follows. Constraints (3d)
calculate the actual work done by aides, by adding the travel
times between the visited clusters / patients and the service
time for each patient visited. Constraints (3i) ensure that a
cluster assignment variable is set to one if at least one patient
in that cluster is visited by an aide, and that no patients in that
cluster are visited if the cluster assignment variable is zero.
Like patient assignment variables, cluster assignment vari-
ables are also binary variables as indicated by constraints
(3r). Constraints (3j)–(3m) ensure the connectivity in the
between-cluster and within-cluster routes. Constraints (3n)
are used to eliminate symmetric solutions in within-cluster
routing as explained in Sect. 4.1. Constraints (3o) are used
to eliminate subtours between the clusters. As mentioned
before, a cutting plane algorithm is implemented to handle
the exponential number of subtour elimination constraints.

As in Con-MIP model, we add some cuts to Con-MIP-
A as follows. As in Con-MIP, constraints (4a) ensure that
the variable yggg becomes 1 when an aide g ∈ G does
not visit anyone and becomes 0 when he visits at least one
patient. Similarly, constraints (4b) ensure that the variable
ygkk becomes 1 when an aide g ∈ G does not visit anyone in
a cluster k ∈ K , and becomes 0 when he visits at least one
patient in that cluster. Constraints (4c) set the overuse vari-
able θp for part-time aide p to 1 if the aide makes more visits
than the maximum number of visits that can be assigned to
a part-time aide.

1

M

∑

j∈J

xgj ≤ 1 − yggg ≤
∑

j∈J

xgj ∀g ∈ G

(4a)

1

M

∑

j∈Jk

xgj ≤ 1 − ygkk ≤
∑

j∈Jk

xgjgj ∀g ∈ G,∀k ∈ K

(4b)

∑

j∈J

x pj − Bd

s
≤ (M − Bd

s
)θp ∀p ∈ P

(4c)

Con-MIP-A remains intractable despite these approx-
imations. We therefore impose a computing time limit
and obtain a potentially sub-optimal solution. We apply a
post-processing approach to the solution obtained usingCon-
MIP-A to arrange the schedule and minimize costs. We
obtain the HHA–patient assignment information from the
Con-MIP-A solution and solve a TSP to recreate the routes
for each HHA. Since the number of patients in an HHA’s
route is limited, solving this TSP can be achieved efficiently.
In other problem settings, where routes may be larger, a TSP
heuristic may be utilized. In addition to further minimizing
costs, this post-processing step also supports more accurate

comparisons among different schedules by eliminating any
idle times in the schedules and revealing the actual costs.

4.2 Petal-based heuristic for Con-HHCSP

The petal heuristic was first proposed by (Foster & Ryan,
1976) to address the vehicle scheduling problem. This solu-
tion approach involves two stages. In the first stage, a set
of possible “good" routes is created. In the second stage, the
assignment of the routes is made by solving a set partitioning
problem. This approach is appropriate for our problem set-
ting, as the number of daily visits is limited. In our instances,
a single HHA can visit at most five patients each day so rout-
ing is simplified once the visit assignment is determined. We
therefore develop a variant of this heuristic, denotedCon-PH,
to address Con-HHCSP.

We first develop an algorithm to create a“good" set of
clusters. Here,“good" clusters refer to groups of patients
who are highly likely to be visited by the same aide (due
to the patients’ similarities with respect to location and pref-
erences). When creating the clusters of patients, we exclude
infeasible sets, i.e., sets of patients who cannot be visited by
the same HHA on a single day within regular working hours.
Algorithm 1 is used to generate a “good" set of clusters of
patients who can be visited by the same HHA on a single
day. Here, we aim to group patients into clusters without
considering the order in which they are visited. The routes
are created after the clusters are formed.

The pseudo-code of our cluster generation algorithm is
written in Algorithm 1. Steps 1-5 are used to generate all
possible singletons and pairs of patients; steps 6-16 are used
to generate clusters of 3, 4, and 5 patients. Note that in our
instance an HHA may visit at most five patients each day,
so we limit the size of the clusters to equal five. In other
instances, the size of the clusters may be set to a larger value
in step 7 of the algorithm. In step 10, we generateCx number
of clusters of size x . Note that this value is predetermined
based on preliminary experiments. In general, Cx should be
large enough to provide a wide variety of options to choose
from but small enough to be computationally feasible. Given
a set of patients, the number of clusters of size x increases as
x gets larger. Therefore,Cx should be larger for larger values
of x in order to include more samples from the larger set of
clusters. We repeat the second part of the algorithm (steps
7-16) twice for modified and unmodified distance matrices.
The unmodified distance matrix is a location based distance
matrix obtained from Google Maps.

We modify this distance matrix based on patient pref-
erences and continuity of care. Namely, for each pair of
patients, we add the preference cost to the distance between
them if all of their preferred aides are different. In this way,
we aim to cluster patients with similar aide preferences. This
also introduces more flexibility in options when we assign
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Algorithm 1: Algorithm for Cluster Generation

1 Initial Solution: C = ∅ (set of clusters), Ignore=NULL ;
2 (Create all possible clusters of one and two patients) forall the
i ∈ Patients do

3 C = C ∪ {(i)} ∪ ∅ /; forall the j ∈ Patients \{i} do
4 if {(i, j)} /∈ C then
5 C = C ∪ {i, j}

6 for modified and unmodified distance matrices do
7 forall the x ∈ [3, 4, 5] do
8 Create clusters of x patients forall the i1 ∈ Patients do
9 Ignore=i1 ;

10 while There are less than Cx clusters including
patient i1 do

11 Cx : the number of clusters of size x that each
patient belongs to while The size of the cluster is
less than x (|c| < x) do

12 Use Nearest Insertion to find c = {i2, ..., ix } ∈
Patients \ Ignore. ;

13 Ignore=Ignore ∪{i2, ..., ix } ;
14 if {i1, i2, ..., ix } /∈ C is a feasible route then
15 C = C ∪ {i1, i2, ..., ix }
16 c = {i1, i2, ..., ix− j }
17 Keep the first j elements of the cluster the

same, and create more clusters, where
j ∈ {2, ..., x − 1}. Do this twice for each j ,
starting with j = x − 1.

the clusters to HHAs using a set partitioning formulation.
To account for the deviations from the previous schedule,
we modify the distance matrix as follows. For each pair of
patients, we add the deviation cost to the distance between
them if any of them is visited by a different aide in the pre-
vious assignment. This way, we aim to cluster patients who
have been visited by the same aide in the previous assign-
ment. This approach to modify the distance matrix is novel.
These modifications to the distance matrix help to create
clusters based on location, preferences, and previous assign-
ments.

We further create clusters that guarantee highest consis-
tency. That is, we cannot guarantee that the clusters generated
using these modified and unmodified distance matrices will
provide an option of retaining the previous schedule. There-
fore, in addition to the clusters generated by Algorithm 1, we
generate clusters that focus on consistency using the regret-
based repair operators as follows. First, we take the routes of
the previous schedule as an initial set of clusters and remove
patients who are not in the current data set. Then, we use
the regret operator to insert each new patient into an aide’s
daily route by considering the regret cost of postponing an
insertion to later iterations (Potvin & Rousseau, 1993). In
this way, we generate a route for each aide that retains all of
the previous assignments.

The regret operator calculates the cost for several insertion
positions for each patient and finds the difference between
the cost of the best insertion position and the cost of the
alternative insertion positions as follows:

�i =
min(r ,m)∑

k=2

(cki − c1i ).

Here, r is the regret operator parameter that refers to the num-
ber of routes to be considered in comparison and m is the
total number of possible routes; cki refers to the k

th cheapest
insertion cost for patient i . Based on this cost calculation, the
regret operator inserts the patient with the largest difference
between the cost of the best insertion position and alterna-
tive insertion positions. Namely, i∗ = argmaxi∈I\{i} �i is
inserted to its cheapest position. The process is repeated until
all new patients are inserted. In our implementation, we set
the regret parameter equal to half the size of the new patients.

After the clusters are created, we calculate the “assign-
ment costs" of each HHA to each cluster. The assignment
cost includes travel cost (total distance within the cluster plus
distance to / fromHHA’s home from / to the nearest patient in
the cluster), overtime cost, idle time cost for FT-HHA, hourly
labor cost for PT-HHA, and the penalty for any preference
violations (penalty for one preference violation, multiplied
by the number of patients in the corresponding cluster who
do not prefer that HHA). The main steps involved in creat-
ing the routes and calculating the costs of each cluster-HHA
assignment are: (i) For each cluster, create a route using TSP
and calculate theminimum travel distance and the travel time
for the route. (ii) If the total travel time for the route exceeds
the daily time limit then delete this route. Otherwise, add this
route to the set of "good" routes. (iii) For each HHA, record
the cost of visiting each route if the total travel time of the
route is within the daily time limits.

The assignment cost for each aide and each route includes
travel, labor (work time and idle time), overtime, prefer-
ence penalty, and inconsistency penalty costs. As mentioned
above, we first create a TSP tour with the set of patients
within each cluster generated with Algorithm 1. Next, using
the cheapest insertion algorithm, we create a route for each
aide by determining the first and last patients to visit on the
TSP tour of patients, based on the home locations of the aide
and the patients. Once all possible routes are created, total
travel costs, labor costs, and preference penalty costs are
calculated as in the objective function described in Sect. 3.
We further add inconsistency cost to the overall assignment
cost between each cluster and aide. For a given cluster–aide
pair, if there are patients in the cluster who were visited by
another aide in the previous schedule, then the unit cost of
inconsistency is multiplied by the number of patients in this
situation and added to the assignment cost. This encourages
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the set partitioning model solution to be consistent with the
previous schedule.

After the assignment costs are calculated, a variant of a Set
Partitioning Problem is solved to assign the routes to aides
such that the cost of the resulting schedule is minimized.
The notation used in the set partitioning model is explained
in Table 6 and the model is presented in Appendix 1. Once
the route–aide assignments are made, the schedules are cre-
ated by calculating the arrival time for each patient in the
predetermined routes.

To improve the solutions we obtain via Con-PH or Con-
MIP-A,we also develop fast and simple improvement heuris-
tics. Specifically, we implemented various swap heuristics
and a Large Neighborhood Search heuristic adapted from
Bent & Van Hentenryck’s work (2004). Since its original
version did not perform well due to the special characteris-
tics of our problem, we adjusted Bent and Van Hentenryck’s
heuristic for our problem. The detailed explanation and the
algorithmsof our adjusted versions of swapheuristics, aswell
as the LNS heuristic, can be found in the Online Appendix.

4.3 Extensions

Since the home health care research has been motivated by
practice, the problems addressed in the literature possess dif-
ferent needs and requirements (Fikar & Hirsch, 2017). Since
real-world data has mostly been used to test the methods,
the proposed methods were tailored to a particular problem
setting. Some main differences considered in various stud-
ies are homogeneous vs. heterogeneous aides, and daily vs.
weekly schedules. In terms of the consistency aspect of the
problem we study here, consistency in visit times could also
be desired in some settings. The petal-based heuristic we
present is flexible to handle a wider range of problem fea-
tures. In this section, we present possible extensions to the
methodology to handle different requirements.

In many home health care problems, there are heteroge-
neous sets of aides with different skill set which make them
eligible or ineligible for some visits. In some cases, hierar-
chy between these skills are considered. For example, an aide
who can take care of the medications can also take care of the
household duties, while the opposite is not true. The concept
of skilled aides is similar to the “preferred aides" concept we
presented in our problem setting, except that assigning based
on skills needs to be a hard constraint while assigning based
on preferences can be a soft constraint. To handle this use
case, we can set the preference penalties high enough such
that the cost of accepting a mismatch of skills in an assign-
ment is higher than the total cost of any other schedule.

In some health care scheduling problems, patients do
require visits less than 5 days a week, so that creating a
weekly schedule is needed. There could be different use cases
of this situation. If the patients specify the days they want to

be visited, then daily solution methods can be applied. How-
ever, if the patients only specify the number of days they need
to be visited in a week, then the visit days is also a decision
to be made and a weekly schedule is needed. We can adjust
our heuristic to handle such use cases. The patients in the
network can be defined multiple times to represent the num-
ber of visits they need. Namely, if they need to be visited 2
days a week, then the patient node is doubled. The cluster
generation algorithm can be adjusted to generate larger clus-
ters with enough patients to be covered in 5 working days
of an aide. Since the duplicate nodes have the same address,
they would be chosen to be on the same cluster and visited
by the same aide throughout the week. After the clusters are
assigned to the aides, then TSP routes can be generated to
find the sequence of the visits. Rearranging the sequence of
the nodes in each cluster is needed to make sure that a patient
is not visited twice on the same day, but rather visited by the
same aide on different days.

In this work, we emphasize the consistency in the patient–
aide assignments, but visit time consistency may also be
desired in some settings. In this case, the regret operators
explained in Sect. 4.2 can be used to create a schedule where
the routes are kept mostly the same, and the new patients are
inserted into the schedule. Since the travel times between the
patients are different, simple insertion of the new patients to
the empty spots may not generate a feasible solution. Thus,
the routeswould need to be recreated to achieve feasibility. To
minimize the visit time deviation from previous visit times,
a time consistency penalty would need to be applied. This
way, consistency in both patient–aide assignments and visit
times could be obtained. Moreover, we consider consistency
between two consecutive periods in this study, but consis-
tency over multiple periods can also be explicitly modeled
if it is desired. In this case, the consistency constraint in the
MIP model, or the consistency costs handled in the heuristic
can be adjusted to consider the multiple periods in the past
instead of only the last period.

5 Computational experiments

In this section, we describe the results of a computational
study aimed at comparing the performance of the methods
described in Sect. 4 and exploring the effect of the continuity
of care requirement on scheduling decisions. For the pur-
poses of this study, we obtained data from a real-world home
health care agency operating in the USA. The experiments
have been performed on an Intel(R) Core(TM) Processor i7-
4785T (CPU 2.20 GHz) with 16 GB of memory, using the
solver Gurobi 7.0.1 with a maximum time limit of 12h for
mixed-integer programming models. In the results, the com-
putational times are expressed in seconds of CPU time.
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Fig. 1 Map of the real-world data. Circled area represents the dataset
from which the “intense" data instances are sampled. Small markers
represent patient locations; larger markers represent aide locations

5.1 Data

We address a real-world home health care scheduling prob-
lem faced by a hospice agency that operates in the USA.
This hospice agency has operated for more than two decades
and has branches in more than 20 states. We collaborated
with one of the agency’s branches and used their data as
the basis for our computational experiments. This dataset,
associatedwith one city-branch of the agency, contains infor-
mation on 98 patients and 24 aides. All data has beenmasked
in accordance with HIPAA requirements. The approximate
locations of the patients and the aides are shown on the
map in Fig. 1. The dataset is available at https://github.com/
seymagk/HomeHealthcareScheduling.

Per government eligibility requirements, a patient is
deemed hospice-eligible if he has an expected remaining
lifetime of six months or less if his disease were to run
its normal course. The objective of hospice care is not to
provide curative care, but rather, to increase patient quality
of life and provide the patient with end-of-life comfort and
reduced pain. To increase patient and family comfort during
this final phase in life, the agency asks the patients if they have
any preferences regarding the aide who provides care. In our
dataset, 18 of the 98 patients expressed preferences. These
preferences yielded a list of aides that match the preferred
characteristics expressed by the patients. Of the 18 patients
with a list of preferred aides, 16 patients have a resulting
preference list containing only a single aide; the remaining
two patients have multiple aides in their preference list. 80
patients do not have any preferences. The agency wishes to
respect patient preferences, to the extent possible.

The main operational costs include travel costs and the
labor costs. Aides drive to the patients’ homes and receive
reimbursement from the company on a per-mile basis. Full-
time aides receivewages in accordancewith a 40hworkweek
as well as additional benefits; part-time aides receive hourly

wages. The costs and time parameters are listed in Table 7 in
the Appendix. Travel distance and travel time between each
location is calculated using Google Maps.

5.2 Instance generation

We generate smaller size instances from our full dataset, as
described below. We consider three different geographical
structures to be included in our computational experiments:
(i) urban area, characterized by dense data points in the city
center and sparse data points in the suburbs, (ii) city cen-
ter, the center of the urban area with dense data points, and
(iii) rural area, characterized by sparse data points. The small
instances are characterized approximately by two fifths and
three fifths of the number of patients in the full data set; these
resulting datasets are similar in size to instances considered in
the literature (see, for example, Cappanera andScutellà 2014,
Jensen 2012, Nickel et al. 2012). In addition to the full size
instance, we generate 10 medium and 10 large size instances
for each of these three network structures. In total, we gener-
ate 63 instances to test. The performance of the methods on
medium size and large size instances is measured by taking
the average performance over 10 instances in each category.
We also create one set of small size instances with urban
area structure to solve our Con-MIP models to optimality
and compare the optimal solutions. Using this experimental
setup, we aim to analyze the differences between the per-
formance of our methods in different settings representing
different geographical structures. Namely, we analyze how
the sparsity of the network and the deviation of the distances
between the nodes affect the performances of the methods.

The patients for the urban area instances are sampled uni-
formly at random from the full set of patients. If any of the
randomly selected patients have aide preferences, these pre-
ferred aides are added to the dataset. The remaining aides are
sampled uniformly at random from the full set of aides. In
order to obtain a city center structure, we first identify a dense
area including 74 patients and 18 aides in our full dataset
(depicted in Fig. 1). Tomake this datasetmore dense—so that
it is representative of a city center—we halve the distances
between all data points. The smaller instances are sampled
uniformly at random from this set of 74 patients. After pre-
ferred aides are added to the dataset, the remaining aides
are sampled uniformly at random from the set of 18 aides
in the dense dataset. The rural area instances include data
points that are far from each other. To obtain a rural area of
n patients, we first cluster the full dataset using a hierarchical
clustering (Jones et al., 2001) algorithm and obtain n clusters.
In the hierarchical clustering algorithm, we used the maxi-
mum distance criteria (i.e., the maximum absolute value of
the distances between points in different clusters). Then, one
patient is chosen uniformly at random from each cluster and
added to the dataset. The aides are selected as before, i.e.,

123

https://github.com/seymagk/HomeHealthcareScheduling
https://github.com/seymagk/HomeHealthcareScheduling


Journal of Scheduling (2024) 27:375–392 387

Table 3 Instances used in the computational experiments

# Instances # Patients # Aides Instance name
Type 1: (Urban area, 32, 40) ∗
1 98 24 u-98-24

10 60 15 u-60-15

10 40 10 u-40-10

20 16 4 u-16-4

20 18 5 u-18-5

Type 2: (City center, 16, 20)

1 74 18 c-74-18

10 60 15 c-60-15

10 40 10 c-40-10

Type 3: (Rural area, 48, 60)

1 98 24 r-98-24

10 60 15 r-60-15

10 40 10 r-40-10

∗ (Geometry, Average distance between two points (miles),Average
time between two points (mins))

after the preferred aides are added, the remaining aides are
sampled uniformly at random from the full set of aides. We
also double the distances between all data points, to increase
the sparsity. As a result, the full data set of 98 patients that
is used as an urban area instance is also used as a rural area
instance with an adjusted pairwise distances. The instances
are listed in Table 3.

5.3 Results

We compare the performance of our Con-MIP formulation
with Con-MIP-A and with the petal-based heuristic solution.
In this computational study, our heuristic solution consists
of the schedule obtained using the petal-based heuristic and
improved using the combined single and double swap heuris-
tic. We denote this solution as H throughout the paper. This
section presents the results of both Con-MIP formulation
and heuristics for Con-HHCSP, as well as consistency and
cost trade-off analysis over shorter and longer time periods.
Before presenting the detailed results of the computational
study, we also compared the schedule generated by our
heuristic methods for HHCSP with the schedule that is used
by the agency in order to see the value of ourmethods in prac-
tice. In this comparison, we observed that the daily cost of
operations is decreased by $3,250, which constitutes around
42% improvement over the current schedule in operation.

In this section, we present our results for Con-HHCSP
methods. For this analysis, we generate an updated set of
instances from our original instances (presented in Table 3).
The updated dataset represents the data of the next period
of the original dataset. To generate the updated datasets, we
assume that 10% of the patients in the original dataset change

in the next period while the set of aides and data parameters
in Table 7 remain the same. We sample uniformly at ran-
dom from the existing set of patients to identify the patients
that leave the dataset. The patients added to the dataset are
sampled uniformly at random from the set of patients in the
full dataset; patients are only added to the updated instance
set if one of their preferred aides is in the existing set of
aides. The total number of patients does not change when we
update the instance set. We first update the schedules based
on the updated dataset, using both Con-H and Con-MIP-A,
and compare the cost of the schedules and the solution times
of both methods.

We test the methods on 60 sets of medium and large
instances having different network structures, as explained
in Sect. 5.2. Further, we present our analysis of the impact
of the inconsistency penalty on the cost of the schedule; this
analysis sheds insight on the cost and consistency trade-off in
this problem. Finally, we analyze the long-term cost effect of
the consistency policy on the cost, by generating 50 updated
dataset instances and updating the schedules over 50 periods.
The results are presented below.
Comparing Con-MIP and the heuristic

We first compare the results of Con-MIP and the heuris-
tics. The heuristic method, denoted by Con-H, consists of
solving the problem using Con-PH and then applying the
combined single and double swap heuristic to improve the
schedule. Note that we didn’t apply LNS heuristic here, as
we observed a small gap in the results obtained after the swap
heuristics.Also, since the solution time forCon-MIP is small,
we wanted to keep it comparable for the heuristic as well.We
present the gap of the heuristic method compared to the MIP
model, whichwe quantify as�HD = vCon−H−vCon−MIP

vCon−MIP
×100.

Let vCon−MIP be the cost of the schedule obtained with Con-
MIP, and vCon−H be the cost of the schedule obtained via
the heuristic method. We define �HD as the percentage
gap of heuristic method compared to the MIP model. For
each instance set, we take the average of the �HD values
of 10 instances within the instance set. Note that here we set
the inconsistency penalty (λ) equal to half of the preference
penalty, i.e., λ = λP/2.

Table 4 presents the comparison between the heuristic
(Con-H) and the MIP formulation (Con-MIP). We observe
that the heuristic performs well compared to the MIP for-
mulation on average in all instances, with gaps of less than
4.2% in all instances. One interesting observation is the solu-
tion times. Although we would usually expect a MIP model
take more time, it is different in the consistent version of
the problem. In half of the instances, Con-MIP is faster than
the heuristic due to the consistency requirement,which elimi-
natesmany symmetric solutions.Wepresent themean and the
median solution times for Con-MIP. Average solution time
is significantly higher due to a couple of outlier instances,
where Con-MIP is not able to achieve an optimal solution
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Table 4 Results: The heuristic
Con-H (petal-based heuristic
and combined single and double
swap heuristics) vs. Con-MIP

Con-MIP-A (1h)
Instance �HD (%) (avg,min,max) Gap (%) Mean tCon-MIP Median tCon-MIP Median tCon-H

c-40-10 (0.67,0.0,2.6) 12 729 9 199

c-60-15 (1.22,0.2,3.7) 0 48 20 548

r-40-10 (0.72,0.0,4.1) 2 412 65 214

r-60-15 (0.75,0.0,3.6) 0 377 250 625

u-40-10 (0.63,0.1,2.3) 0 15 15 203

u-60-15 (1.08,0.0,3.0) 0 72 61 552

Run times are reported in seconds. tCon-MIP: Con-MIP Solution Time, tCon-H: Con-H Solution Time

even after 1h. Depending on the instance, Con-MIP solution
time can be significantly high, while the heuristic solution
times are more consistent. Another observation is that the
center instances have the smallest solution time, and the rural
instances have the largest. This can be explained by the dis-
tance matrix, where the center instances have the smallest
distances between the nodes. Recall that in these instances,
only 10% of the patients in the data set are replaced with new
set of patients, so that themajority of the schedule can remain
the same. This fact decreases the solution time for Con-MIP.
The results for patient set changes which are higher than 10%
are presented in Table 5. Since the solution time for Con-MIP
is small, we don’t report the results for Con-MIP-A. How-
ever, for certain instances or for different parameters (e.g.,
smaller inconsistency penalty or higher rate of change in the
dataset), where the performance of Con-MIP may be lower,
Con-MIP-A can be utilized.

Sensitivity analysis for the change in the dataset
We analyze the effect of the percentage change in the

dataset on the performances of Con-H and Con-MIP-A.
Based on the information given by the home health care com-
pany, the percentage change in the dataset ranges between 10
to 60%. We design an experiment accordingly, with instance
sets of u-40-10 and u-60-15, where we generate 10 instances
for each of the different change percentages. The results
are presented in Table 5. We observe that Con-H outper-
forms Con-MIP-A on average in all of the instance sets, and
has a reliable performance with positive improvement over
Con-MIP-A in majority of the instances. We also observe
less variability in terms of the solution time for Con-H. As
expected, the solution time for Con-MIP-A increases as the
change percentage increases. This is due to the fact that a
larger part of the schedule needs to be recreated as the change
percentage increases.

Sensitivity analysis for the cost vs. consistency trade-off
Next,we analyze how the consistency and cost are affected

by the use of different inconsistency penalties in Con-PH.
Here, consistency is measured by the number of patients
assigned to a different aide in the new schedule as a per-
centage of the total number of patients who are included
both in the previous and the new datasets. Here, we assume

Fig. 2 The consistency–cost trade-off, as the inconsistency penalty
increases (average over all instances)

that 20% of the patients in the original dataset are different
in the new dataset. The inconsistency penalty (λ) is obtained
by multiplying the inconsistency penalty coefficient (cλ) and
the penalty for the preference violation (λP ), i.e. λ = cλλ

P ,
where the preference penalty is determined based on the
average distance (avg(D)) and average travel time (avg(T ))
between all the points: λP = 2 ∗ (cT ∗ avg(D) + cOF ∗
avg(T )). When we set cλ = 0, we obtain a schedule without
consistency restriction.We compare the cost of the schedules
we obtain with positive cλ = λ values (defined as vλ

Con−PH )
to the cost of the schedule we obtain with cλ = 0 (defined as
v0Con−PH ) as follows:

�Cλ = vλ
Con−PH − v0Con−PH

v0Con−PH

× 100

We present a summary of the results in Fig. 2 for the per-
centage change in the costs of the schedules as well the
percentage change in the consistency of the schedules, where
the x-axis represents different λ penalty values and the y-axis
represents the percentage change. For each instance set, we
take the average of the�Cλ values of 10 instances within the
instance set, in order to find the average percentage change
in the cost of the schedules for each penalty. Similarly, we
present the average consistency change, which is defined as
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Table 5 Results: The
comparison of heuristic Con-H
(petal-based heuristic) and
Con-MIP-A for different
percentage changes in the
patients dataset

Change (%) �H A(%) (avg, min, max) Gap (%) Mean tCon-MIP Mean tCon-H
urban-40-10

10 (4.36, 18.79, 6.03) 0.00 15 202

20 (5.22, 1.37, 9.24) 0.00 243 210

30 (4.49, 1.90, 9.01) 0.41 406 236

40 (5.85, 1.06, 11.52) 0.28 960 263

50 (3.80, −1.76, 8.79) 1.46 2037 308

60 (3.40, −2.02, 8.37) 2.44 2481 334

urban-60-15

10 (3.37,−1.71, 10.57) 0.00 72 546

20 (4.60,2.88, 5.85) 0.99 1267 586

30 (5.65,1.54, 8.86) 1.98 2134 680

40 (3.24,0.45, 6.87) 2.15 2850 761

50 (4.95,−0.49, 12.38) 6.31 3602 883

60 (4.79,2.83, 9.53) 6.47 3049 980

All run times are reported in seconds. tCon-MIP: Con-MIP Solution Time, tCon-H: Con-H Solution Time

the average percentage change in the number of patients
assigned to a different aide as a function of the λ penalty.
As observed, both the consistency and the cost increase as
the inconsistency penalty coefficient is increased, illustrating
the trade-off between cost and consistency. We also present
the percentage difference between consistency and cost, and
choose the value, among the values we try, that maximizes
this difference, which is cλ = 0.5. This means that for a
given cost, the gain from the consistency is maximized, i.e.,
the consistency and the cost trade-off is experienced less,
at cλ = 0.5. This result highlights the importance of the
selection of the inconsistency penalty. Note that, in differ-
ent settings, with different time and cost parameters, this
value might differ. Our results indicate that the best inconsis-
tency penalty needs to be found for each setting. The detailed
results of this analysis are presented in the Online Appendix.

For an inconsistency penalty of 0.5, the percentage differ-
ence between the consistency and the cost for all instances
are shown on Fig. 3. As we observe, the percentage differ-
ence between the consistency and the cost is above 80% for
93.33% of the instances. Also, we see a balanced distribution
of difference values among all instances. Therefore, for our
long-term analysis presented below,we use the inconsistency
penalty value of 0.5.

Long-term effect of the consistency policy:
Finally, we analyze the long-term effect of the consistency

policy. In other words, we analyze how the cost is affected
if we continue updating the schedule with the consistency
constraints over the long term. For each instance, we gen-
erate 25 updated instances by changing the set of patients
by 10% at each period. In the analysis presented above, we
found that cλ = 0.5 is the best inconsistency penalty coeffi-
cient to choose in order to decrease the cost and consistency

Fig. 3 The percentage difference between the consistency and the cost
(excluding the inconsistency penalty), for the inconsistency penalty
coefficient of 0.5

trade-off. Therefore, in this long-term study, we set cλ = 0.5,
and update the schedule 25 times. At each period t , we com-
pare the cost of the updated schedules with the cost of the
schedules obtained when cλ = 0 as follows:

�Ct = v
0.5,t
Con−PH − v

0,t
Con−PH

v
0,t
Con−PH

× 100

Figure 4 displays the change in overall cost over time
when we update the schedule with the consistency prefer-
ences (which keeps the schedule of period t similar to the
schedule of the previous period, t − 1). We observe that the
cost difference, (�Ct ), increases in the first eight updates;
after eight updates, the cost difference appears to stabilize
with some positive or negative deviations around an average
percentage value. We note that on average, the cost trade-
off is experienced less in areas with a city center structure.
This trend may be explained by the fact that in city cen-
ter structures all locations are relatively close to each other
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Fig. 4 The cost trade-off (�Ct ) over 50 periods

(as compared with the other structures we studied). There-
fore, the cost difference between assigning the optimal aide
and assigning the aide imposed by the consistency policy is
smaller since aides’ locations are closer to each other. Small
distances between the locations affect both the travel cost as
well as time-related costs, resulting in a smaller total cost.
According to the results, we conclude that the cost of updat-
ing the schedule increases for a while, peaks at a certain
period and remains at the peak value for the remainder of the
periods. Therefore, depending on this percentage increase in
cost, it may be a better strategy to update the schedule for
a few periods and then create a new schedule from scratch.
When to create a new schedule may be determined based
on the company’s ability and willingness to absorb this cost
increase.

6 Conclusions

In this paper we have addressed a daily home health care
planning problem; we proposed solution methods for Con-
HHCSP: a daily scheduling problemwhere the new schedule
to be created needs to be consistent with the current schedule
in use. We presented the computational results of the pro-
posed solution methods for Con-HHCSP. To the best of our
knowledge, this work is the first to introduce Con-HHCSP
and propose solution methods and analysis to dynamically
handle a consistency policy.

Our computational results reveal the potential of the pro-
posedCon-MIP-A and heuristicmethods in addressing home
health care problems. While Con-MIP can achieve optimal-
ity in a reasonable time for some of the parameters (e.g.,
inconsistency penalty, the rate of change in patient dataset),
MIPmodel can get intractable for mid to large size instances,
or for different parameters of Con-HHCSP. In those cases,
it is possible to find good feasible solutions by solving the
approximate MIP model. Further, better solutions may be
foundwith the heuristics in amuch shorter time. The effect of

swap heuristics was not negligible and they provided a very
quick way to further improve our solutions. Although we
observe an improvement in the solution when LNS heuristic
is applied as the final improvement heuristic, a non-negligible
increase in the computation time should be noted. We com-
pared the schedule created by our heuristic methods with the
schedule that is used by the home care agency with whomwe
are collaborating. With our methods, the daily cost of opera-
tions is decreased by $3,268, which constitutes around 43%
improvement over the current schedule in operation.

Based on our analysis of the continuity of care policy in
Con-HHCSP, we observed that there is a significant trade-off
that must be considered between cost and continuity of care.
As the continuity of care policy is applied more strictly, the
resulting cost increases. Therefore, the selection of the incon-
sistency penalty coefficient, which determines the strictness
of the continuity of care policy, is critical. Moreover, the
effect of the continuity of care policy on the cost may grow
large in the long-term. Our long-term analysis revealed a
rapidly increasing trend in the cost trade-off over time in the
first eight periods, and then a stabilized trend for the remain-
der of the periods. This analysis should be used as a basis
for deciding how many times to update the existing schedule
and when to solve it from scratch.

One interesting result obtained in this study is that the
computation time for the MIP models of Con-HHCSP is
lower when the change in the dataset is small. This is
expected, since most of the schedule remains the same. This
introduces another research question: would it be a good
approximation to solve Con-HHCSP repetitively instead of
solving a MIP model to create a new schedule from scratch
for a longer planning horizon? The complexity of the prob-
lem increases as the planning horizon increases, so that
obtaining a good quality solutions becomes more difficult.
These results suggest that, in order to handle continuity of
care requirements, solving Con-HHCSPmay provide a good
approximation to an exact solution for amore complexmulti-
period problem. We plan to analyze this further in our future
studies. Other directions for future research are different vari-
ants of the problem, such as skilled nurses, time windows,
and interdependent visits. We believe that the methodology
we propose in this paper is adaptable to different use cases
of the problem.

Acknowledgements This research has been supported in part by the
Center for Health and Humanitarian Systems, the William W. George
endowment, and the following benefactors at Georgia Tech: Andrea
Laliberte, Richard Rick E. and Charlene Zalesky, and Claudia and Paul
Raines. The authors thank the anonymous referees for their valuable
suggestions which helped improve this manuscript.

Appendix A: Set partitioningmodel

See Table 6
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Table 6 Notation for the set partitioning model

Index sets

P Patients

A Aides

C Clusters

Data parameters

wac The cost of assigning cluster c ∈ C to aide a ∈ A

Variables

xap Assigning patient p ∈ P to aide a ∈ A

xac Assigning cluster c ∈ C to aide a ∈ A

min
∑

a∈A

∑

c∈C
wacxac

s.t.
∑

a∈A

xap = 1 ∀p ∈ P

∑

c∈C
xac = 1 ∀a ∈ A

∑

a∈A

xac ≤ 1 ∀c ∈ C

∑

c�p

xac = xap ∀p ∈ P; ∀a ∈ A

xap, xac ∈ {0, 1} ∀a ∈ A; ∀p ∈ P; ∀c ∈ C

Appendix B: Data

See Table 7

Table 7 Cost & Time parameters

Item Value

Cost of transportation per mile driven (cT ) $3

Full-time hourly labor cost (cF ) $20

Part-time hourly labor cost (cP ) $15

Penalty cost for exceeding B hours in a week for
PRNs (cOP )

$ 2000

Hourly penalty associated with overtime work
for full-time aides (cOF )

$5

Weekly overuse threshold forPT-HHA (OPp) 30h

Daily overuse threshold forFT-HHA (OFf ) 8h

Length of regular workday (H ) 8h

Maximum weekly total hours of PTs before
penalty (B)

30h

Workday length factor with overtime (α) 1.25

Maximum length of workday with overtime 10h

Appendix C: Literature review

See Table 8

Table 8 Summary of the relevant papers in the literature

Planning horizonPatient–aide
assignment
preferences

Continuity of
care

Schedule
updating with
consistency

Bennett and Erera (2011)

Weekly Single nurse
assignment

N/A (there is a
single nurse)

Consistency in
visit times

Cappanera and Scutellà (2014)

Weekly Skilled nurses
(hard
constraints)

Limited number
of aides for a
patient

N/A

Nickel et al. (2012)

Weekly and dailySkilled nurses
(hard
constraints)

Limited number
of aides for a
patient

Consistency in
visit times

Jensen (2012)

Several weeks Skilled nurses
(hard
constraints),
preferred nurses
(soft constraints)

Limited number
of aides for a
patient

Consistency in
visit times

Carello and Lanzarone (2014)

Daily Skilled nurses
(hard
constraints)

Limited number
of aides for a
patient

N/A

Yalçındağ et al. (2016)

Daily Skilled nurses
(hard
constraints)

The same aide
for a patient

N/A

Braekers et al. (2016)

Daily Skilled nurses
(hard
constraints),
preferred nurses
(soft constraints)

N/A N/A

Rasmussen et al. (2012)

Daily Preferred nurses
(soft constraints)

N/A N/A

Heching et al. (2019)

Weekly Skilled nurses
(hard
constraints)

Same aide for a
patient

Fixed variables

Our study

Daily Part-time and
full-time nurses
(hard constraints
on work hours),
preferred nurses
(soft constraints)

The same aide
for a patient:
Handled via a
rolling horizon
approach

Consistency in
patient–aide
assignments
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