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Abstract
We revisit a classical scheduling model to incorporate modern trends in data center networks and cloud services. Addressing
some key challenges in the allocation of shared resources to user requests (jobs) in such settings, we consider the following
variants of the classic resource allocation problem (RAP). The input to our problems is a set J of jobs and a set M of
homogeneous hosts, each has an available amount of some resource. Assuming that time is slotted, a job is associated with a
release time, a due date, a weight and a given length, as well as its resource requirement. A feasible schedule is an allocation
of the resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource constraints. A
crucial distinction between classic RAP and our problems is that we allow preemption and migration of jobs, motivated by
virtualization techniques. We consider two natural objectives: throughput maximization (MaxT), which seeks a maximum
weight subset of the jobs that can be feasibly scheduled on the hosts in M , and resource minimization (MinR), that is finding
the minimum number of (homogeneous) hosts needed to feasibly schedule all jobs. Both problems are known to be NP-hard.
We first present an�(1)-approximation algorithm forMaxT instances where time-windows form a laminar family of intervals.
We then extend the algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for each job
to be completed. For MinR we study a more general setting with d resources and derive an O(log d)-approximation for any
fixed d ≥ 1, under the assumption that time-windows are not too small. This assumption can be removed leading to a slightly
worse ratio of O(log d log∗ T ), where T is the maximum due date of any job.

Keywords Machine scheduling · Resource allocation · Vector packing · Approximation algorithms

1 Introduction

The proliferation of virtualization and containerization tech-
nologies, along with the advent of increasingly powerful
multi-core processors, has made it possible to execute mul-
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tiple virtual machines (or jobs) simultaneously on the same
host, as well as to preempt and migrate jobs with relative
ease. We address some fundamental problems in the effi-
cient allocation of shared resources such as CPU cores,
RAM, or network bandwidth to several competing jobs.
These problems are modeled to exploit multi-job execution
and facilitate preemption and migration, while respecting
resource and timing constraints. Typically, the infrastructure
service providers are oversubscribed; therefore, the common
goals here include admission control of jobs to maximize
throughput, or minimizing the additional resource required
to process all jobs.

The broad setting considered in this paper is the follow-
ing. Suppose we are given a set of jobs J that need to be
scheduled on a set of identical hosts M , where each host
has a limited amount of one or more resources. Each job
j ∈ J has release time r j , due date d j , and length p j , along
with a required amount of the resource s j (s̄ j for multiple
resources). We assume that time is slotted. A job j can be
preempted andmigrated across hosts but cannot be processed
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simultaneously on multiple hosts, i.e., at any time slot a job
can be processed by at most one host. However, multiple
jobs can be processed by any host at any given time, as long
as their combined resource requirement does not exceed the
available resource. We consider two commonly occurring
objectives, namely, throughput maximization and resource
minimization.

In the maximum throughput (MaxT) variant, we are given
a set of homogeneous hosts M and a set of jobs J , such that
each job j has a profit w j > 0 and attributes (p j , s j , r j , d j ).
The goal is to find a subset S ⊆ J of jobs of maximum profit
∑

j∈S w j that can be feasibly scheduled on M . This problem
can be viewed as a preemptive variant of the classic resource
allocation problem (RAP) (Phillips et al., 2000; Chen et al.,
2002; Călinescu et al., 2011; Bansal et al., 2014).

In the resource minimization (MinR) variant, we assume
that each job j has a resource requirement vector s̄ j ∈ [0, 1]d
as one of the attributes, where d ≥ 1 is the number of avail-
able resources. W.l.o.g., we assume that each host has a unit
amount of each of the d resources. A schedule that assigns
a set of jobs Si,t to a host i ∈ M at time t is feasible
if

∑
j∈Si,t s̄ j ≤ 1̄d . Given a set of jobs J with attributes

(p j , s̄ j , r j , d j ), we seek a set of (homogeneous) hosts M of
minimum cardinality such that all of the jobs can be sched-
uled feasibly on M . MinR is a generalization of the classic
vector packing (VP) problem, inwhich a set of d-dimensional
items needs to be feasibly packed into a minimum number of
d-dimensional bins of unit size in each dimension, i.e., the
vector sum of all the items packed into each bin has to be
less than or equal to 1̄d . Any instance of VP can be viewed
as an instance of MinR with r j = 0, d j = 1 and p j = 1 for
job j ∈ J .

Another application of this general scheduling scenario
relates to the allocation of space and time to advertisements
by online advertisement platforms (such as Google or Face-
book). In the ad placement problem (Dawande et al., 2003;
Freund & Naor, 2004) we are given a schedule length of T
time slots and a collection of ads that need to be scheduled
within this time frame. The ads must be placed in a rectan-
gular display area. whose contents can change in different
time slots. All ads share the same height, which is the height
of the display area, but may have different widths. Several
ads may be displayed simultaneously (side by side), as long
as their combined width does not exceed the width of the
display area. In addition, each ad specifies a display count
(in the range 1, . . . , T ), which is the number of time slots
during which the ad must be displayed. The actual time slots
in which the advertisement will be displayed may be chosen
arbitrarily by the scheduler, and, in particular, need not be
consecutive. Suppose that each ad is associated with some
positive profit, and the scheduler may accept or reject any
given ad. A common objective is to schedule a maximum-
profit subset of ads within a display area of given width.

Indeed, this problem can be cast as a special case of MaxT
with a single host, where all jobs have the same release time
and due date.

1.1 Prior work

Given an algorithm A for a maximization (minimization)
problem �, let A(I ), OPT (I ) denote the value of the solu-
tion output by A and by an optimal solution for a problem
instance I , respectively. For ρ ∈ (0, 1] (ρ ≥ 1), we say
thatA is a ρ-approximation algorithm if, for any instance I ,
A(I )

OPT (I ) ≥ ρ ( A(I )
OPT (I ) ≤ ρ).

The classical problem of preemptively scheduling a set of
jobs with attributes (p j , s j = 1, r j , d j ) on a single machine
so as to maximize throughput can be cast as a special case
of MaxT with a single host, where each job requires all of
the available resource. Lawler (1990) showed that in this
special case MaxT admits a polynomial time approximation
scheme (PTAS), and the problem is polynomially solvable for
uniform job weights. For multiple hosts (i.e.,m = |M | > 1),
this special case of MaxT (s j = 1 for all j ∈ J ) admits a
1

6+ε
-approximation, for any fixed ε > 0. This follows from

a result of Kalyanasundaram and Pruhs (2001).
As mentioned earlier, another special case of MaxT was

studied in the context of advertisement placement. The ad
placement problemwas introduced byAdler et al. (2002) and
later studied in numerous papers (see, e.g., Dawande et al.
(2003, 2005), Freund and Naor (2004), Kumar et al. (2007),
Kaul et al. (2017) and the survey in Pandey et al. (2017)).
Freund andNaor (2004) presented a (1/3−ε)-approximation
for the maximum profit version, namely, for MaxT with a
single host and the same release time and due date for all
jobs.

Fox andKorupolu (2013) studied our preemptive schedul-
ing model, with job attributes (p j , s j , r j , d j ), under another
popular objective, namely, minimizing weighted flow-time.
Their work differs from ours in two ways: while they focus
on the online versions, we consider our problems in an
offline setting. Further, as they note, while the throughput and
resource minimization objectives are also commonly con-
sidered metrics, their techniques only deal with flow-time.
In fact, these objectives are fundamentally different, and we
need novel algorithms to tackle them.

The non-preemptive variant of MaxT, known as the
resource allocation problem (RAP), was introduced by
Phillips et al. (2000), and later studied by many authors
(see, e.g., Bar-Noy et al. (2001b, a); Călinescu et al. (2011);
Chakaravarthy et al. (2014); Jain et al. (2015); Chen et al.
(2002) and the references therein).1 Chakaravarthy et al.
(2014) consider a generalization of RAP and obtain a con-
stant approximation based on a primal-dual algorithm. We

1 RAP is also known as the bandwidth allocation problem.
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note that the preemptive versus non-preemptive problems
differ quite a bit in their structural properties.

As mentioned above, MinR generalizes the classic vec-
tor packing (VP) problem. The first non-trivial O(log d)-
approximation algorithm for VP was presented by Chekuri
and Khanna (2004), for any fixed d ≥ 1. This ratio was
improved by Bansal et al. (2009) to a randomized algo-
rithm with asymptotic approximation ratio arbitrarily close
to ln d + 1. Bansal et al. (2016) recently improved this ratio
further to 0.807+ ln(d + 1). A “fractional variant” of MinR
was considered by Jansen and Porkolab (2002), where time
was assumed to be continuous. For this problem, in the case of
a single host, they obtain a PTAS, by solving a configuration
linear program (rounding the LP solution is not necessary
because time is continuous in their case).

Resource minimization was considered also in the context
of the ad placement problem. In this variant, all ads must
be scheduled, and the objective is to minimize the width
of the display area required to make this possible. Freund
and Naor (2004) gave a 2-approximation algorithm for the
problem, which was later improved byDawande et al. (2005)
to 3/2. This implies a 3-approximation for MinR instances
with d = 1, where all jobs have the same release time and
due date. We believe that this ratio can be slightly improved,
using the property that s j ≤ 1 for all j ∈ J . Indeed, we
can schedule the jobs to use the resource, such that the total
resource requirements at any two time slots differ at most by
one. Thus, the total amount of resource required at any time
exceeds the optimum, OPT , at most by one unit, implying
the jobs can be feasibly scheduled on 2OPT + 1 hosts.

Another line of work relates to the non-preemptive ver-
sion of MinR, where d = 1 and the requirement of each job
is equal to 1 (see, e.g. (Chuzhoy et al., 2004; Chuzhoy &
Codenotti, 2009)); thus, at most one job can be scheduled on
each host at any time.

1.2 Contributions and techniques

Denote the time window for processing job j ∈ J by χ j =
[r j , d j ], and let |χ j | = d j − r j + 1 denote the length of
the interval. Assume that min j r j = 1. Let T = max j d j .
Without loss of generality assume that every time slot t ∈
[T ] belongs to a time window of some job. Otherwise, we
can “break” the problem into smaller sub-problems at the
time slots t ∈ [T ] that do not belong to any time window.
Let r = argmax j |χ j |. Assume also that

∑
j∈J p j > |χr |.

This assumption is valid since otherwise job r is guaranteed
to be scheduled on a single host after the rest of the jobs
are scheduled. Thus, we can remove job r and consider the
remaining jobs.

Since the output needs to specify the times each job is
executed, the output size is�(

∑
j∈J p j ), and certainly�(n).

We note that our algorithms are polynomial in T (and in

n). It follows from our assumptions that |χr | and thus also
T = O(n|χr |) are polynomial in the output size.

For summarizing our results, we need the notion of
slackness. Throughout the discussion, we assume that time
windows are large enough, i.e., there is a constant λ ∈ (0, 1),
such that p j ≤ λ|χ j | for any job j . Such an assumption is
quite reasonable in scenarios arising in our applications. We
call λ the slackness parameter of the instance.

For the MaxT problem, we present (in Sect. 3) an �(1)-
approximation algorithm. As mentioned above, the non-
preemptive version of this problem is the classic RAP. To see
the structural differences between the non-preemptive and
preemptive versions, we consider their natural linear pro-
gramming relaxations. In solving RAP it suffices to have a
variable x jt for each job j and time slot t , indicating the start
of job j at slot t . This allows to apply a natural randomized
rounding algorithm, where job j is scheduled to start at time
t with probability x jt . On the other hand, in MaxT a job can
be preempted; therefore, each job requires multiple indica-
tor variables. Further, these variables must be rounded in an
all-or-nothing fashion, i.e., either we schedule all parts of a
job or none of them. Our approach to handle this situation
is to, somewhat counter-intuitively, “dumb down” the linear
program by not committing the jobs to a particular sched-
ule; instead, we choose a subset of jobs that satisfy certain
knapsack constraints and construct the actual schedule in a
subsequent phase.

We first consider a laminar variant of the problem, where
the time windows for the jobs are chosen from a laminar
family of intervals.2 This setting includes several important
special cases, such as (i) all jobs are released at t = 0 but have
different due dates, or (ii) jobs are released at different times,
but all must be completed by a given due date. Recall that
m = |M | is the number of hosts. Our result for the laminar
case is a 1

2 −λ
( 1
2 + 1

m

)
-approximation algorithm, assuming

that the slackness parameter satisfies λ < 1 − 2
m+2 . Using a

simple transformation of an arbitrary instance to laminar, we
obtain a 1

8 −λ
( 1
2 + 1

m

)
-approximation algorithm for general

instances, assuming that λ < 1
4 − 1

2(m+2) . Our results imply

that as λ decreases, the approximation ratio approaches 1
2

and 1
8 for the laminar and the general case, respectively.

Subsequently, we tighten the slackness assumption further
to obtain an �(1)-approximation algorithm for any constant
slackness λ ∈ (0, 1) for the laminar case and any constant
λ ∈ (0, 1

4 ) for the general case. In the special case where the
weight of the job is equal to its area,3 we extend an algorithm
due to Chen et al. (2002) to obtain an �(1)-approximation
ratio for the general case with no assumption on slackness.

2 See the formal definition in Sect. 2.
3 The area of j ∈ J is the total resource requirement of j (see Sect. 2.)
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Our algorithm for the laminar case relies on a non-trivial
combination of a packing phase and a scheduling phase.
While the first phase ensures that the output solution has
high profit, the second phase guarantees its feasibility. To
facilitate a successful completion of the selected jobs, we
formulate a set of conditions that must be satisfied in the
packing phase. Both phases make use of the structural prop-
erties of a laminar family of intervals. In the packing phase,
we apply our rounding procedure (for the LP solution) to the
tree representation of the intervals.4 We further use this tree
in the scheduling phase, to feasibly assign the resource to
the selected jobs in a bottom-up fashion. Our framework for
solvingMaxT is general, and may therefore find use in other
settings of non-consecutive resource allocation.

For theMinR problem, we obtain (in Sect. 5) an O(log d)-
approximation algorithm for any constant d ≥ 1, under
a mild assumption that any job has a window of size
�(d2 log d log T ). We show that this assumption can be
removed, leading to a slight degradation in the approximation
factor to O(log d log∗ T ), where log∗ T is the smallest inte-
ger κ such that log log . . . log

︸ ︷︷ ︸
κ times

T ≤ 1. Our approach builds on

a formulation of the problem as a configuration LP, inspired
by the works of Bansal et al. (2009), Fleischer et al. (2011).
However, we quickly deviate from these prior approaches, in
order to handle the time windows and the extra constraints.
Our algorithm involves two main phases: a maximization
phase and residual phase. Roughly speaking, a configura-
tion is a subset of jobs that can be feasibly assigned to a host
at a given time slot t .

Initially, we solve a configuration LP, in which we find the
minimum number of hosts, m, needed to schedule all jobs,
and a set of configurations that are (fractionally) selected at
any time t ∈ [T ]. For each t , we then choose O(m log d)

configurations with probabilities proportional to their LP-
values. In this phase, jobs may be allocated the resource only
for part of their processing length. In the second phase, we
construct a residual instance based on the amount of time
each job has been processed. A key challenge is to show
that, for any time window χ , the total “area” of jobs left to
be scheduled is at most 1/d of the original total area. We use
this property to solve the residual instance.

2 Preliminaries

We start with some definitions and notation. For our preemp-
tive variants of RAP, we assume w.l.o.g. that each host has a
unit amount of each resource. We further assume that time
is slotted. We allow non-consecutive allocation of a resource

4 This procedure bears some similarity to the pipage rounding tech-
nique of Ageev and Sviridenko (2004).

to each job, as well as job migration. Multiple jobs can be
assigned to the same machine at a given time, but no job can
be processed by multiple machines at the same time. For-
mally, we denote the set of jobs assigned to host i ∈ M at
time t by Si,t . We say that job j is completed if there are
p j time slots t ∈ [r j , d j ] = χ j in which j is allocated its
required amount of the resource on some host. A job j is
completed if |{t ∈ χ j : ∃i ∈ M such that j ∈ Si,t }| ≥ p j .
Let T = max j∈J d j be the latest due date of any job.

In MaxT, each job j ∈ J has a resource requirement s j ∈
(0, 1]. An assignment of a subset of jobs S ⊆ J to the hosts
in M is feasible if each job j ∈ S is completed, and for any
time slot t and host i ∈ M ,

∑
j∈Si,t s j ≤ 1, i.e., the sum

of requirements of all jobs assigned to host i is at most the
available resource. For theMinR variant, we assumemultiple
resources. Thus, each job j has a resource requirement vector
s̄ j ∈ [0, 1]d , for some constant d ≥ 1. Further, each host has
a unit amount of each of the d resources. An assignment of
a set of jobs Si,t to a host i ∈ M at time t is feasible if∑

j∈Si,t s̄ j ≤ 1̄d .
Let a j = s j p j denote the total resource requirement (or,

area) of job j ∈ J and refer to the quantity w j/a j as the
density of job j . Finally, a set of intervals is laminar if for
any two intervals χ ′ and χ ′′, exactly one of the following
holds: χ ′ ⊆ χ ′′, χ ′′ ⊂ χ ′ or χ ′ ∩ χ ′′ = ∅.

3 Throughput maximization

We first consider the case where L = {χ j : j ∈ J } forms
a laminar family of intervals. In Sect. 3.1, we present an
�(1)-approximation algorithm for the laminar case when

λ ∈
(
0, 1 − 2

m+2

)
. Following this, we describe in Sect. 3.2

our constant approximation for the general case for λ ∈(
0, 1

4 − 1
2(m+2)

)
. We then show, in Sect. 3.3, how to tighten

the results to any constant slackness parameter (i) λ ∈ (0, 1)
in the laminar case (ii) λ ∈ (0, 1

4 ) in the general case. As an

interesting corollary, we obtain an �
(

1
log n

)
-approximation

algorithm for the general MaxT problem with no slackness
assumption. Later, in Sect. 4, we show that in the special case
of maximum utilization (i.e., the profit of each job equals its
“area”), we obtain an�(1) guarantee with no assumption on
the slackness.

3.1 The Laminar case

Our algorithm proceeds in two phases. While the first phase
ensures that the output solution has high profit, the second
phase guarantees its feasibility. Specifically, let ω ∈ (0, 1 −
λ
m ] be a parameter (to be determined).
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In Phase 1, we find a subset of jobs S satisfying a knap-
sack constraint for each time-window χ . Indeed, any feasible
solution guarantees that the total area of jobswithin any time-
window χ ∈ L is at most m|χ |. Our knapsack constraints
further restrict the total area of jobs in χ to some fraction of
m|χ |.We adopt anLP-rounding based approach to compute a
subset S that is optimal subject to the further restricted knap-
sack constraints. (We remark that a dynamic programming
approach would work as well. However, such an approach
would not provide us with any intuition as to how an optimal
solution for the further restricted instance compares with the
optimal solution of the original instance.)

In Phase 2 we allocate the resource to the jobs in S, by
considering separately each host i at a given time slot t ∈ [T ]
as a unit-sized bin (i, t) and iteratively assigning each job
j ∈ S to a subset of such available bins, until j has the
resource allocated for p j distinct time slots. An outline of
the two phases is given in Algorithm 1.

Input: Set of jobs J , hosts M and a parameter ω ∈ (0, 1 − λ
m ]

Output: Subset of jobs S ⊆ J and a feasible assignment of S to the
hosts in M

Phase 1: Select a subset S ⊆ J , such that for each χ ∈ L:∑
j∈S:χ j⊆χ a j ≤ (ω + λ

m )m|χ |
Phase 2: Find a feasible allocation of the resource to the jobs in S

Algorithm 1: Throughput maximization algorithm outline

Phase 1 The algorithm starts by finding a subset of jobs S ⊆
J such that for any χ ∈ L:

∑
j∈S:χ j⊆χ a j ≤ (ω + λ

m )m|χ |.
We solve the following LP relaxation, in which we impose
stricter constraint on the total area of the jobs assigned in
each time window χ .

LP : Maximize
∑

j∈J w j x j
Subject to:

∑
j :χ j⊆χ a j x j ≤ ωm|χ | ∀χ ∈ L

0 ≤ x j ≤ 1 ∀ j ∈ J

Rounding the Fractional Solution Suppose x∗ = (x∗
j : j ∈

J ) is an optimal fractional solution for the LP. Our goal is to
construct an integral solution x̂ = (x̂ j : j ∈ J ). We refer to a
job j with x∗

j ∈ (0, 1) as a fractional job, and to the quantity
a j x∗

j as its fractional area. W.l.o.g., we may assume that for
any interval χ ∈ L, there is at most one job j with χ j = χ

such that 0 < x∗
j < 1, i.e., it is fractional. Indeed, if two such

jobs exist, then the fractional value of the higher density job
(breaking ties arbitrarily) canbe increased to obtain a solution
no worse than the optimal. Note, however, that there could
be fractional jobs j ′ with χ j ′ ⊂ χ .

We start by setting x̂ j = x∗
j for all j ∈ J . Consider the tree

representation of L, which contains a node (also denoted by
χ ) for eachχ ∈ L, and an edge between nodes corresponding
to χ and χ ′, where χ ′ ⊂ χ , if there is no interval χ ′′ ∈ L

such that χ ′ ⊂ χ ′′ ⊂ χ .5 Our rounding procedure works
in a bottom-up fashion. As part of this procedure, we label
the nodes with one of two possible colors: gray and black.
Initially, all leaf nodes are colored black, and all internal
nodes are colored gray. The procedure terminates when all
nodes are colored black. A node χ is colored as black if the
following property holds:

Property 1 For any path P(χ, χl) from χ to a leaf χl there
is at most one fractional job j such that χ j lies on P(χ, χl).

We note that the property trivially holds for the leaf nodes.
Now, consider a gray intervalχ with childrenχ1, χ2, . . . , χν ,
each colored black. Note that χ is well defined because leaf
intervals are all colored black. If there is no fractional job
that has χ as its time-window, Property 1 follows by induc-
tion, and we color χ black. Assume now that j is a fractional
job that has χ as its time-window (i.e., χ j = χ ). If there
is no other fractional job that has its time-window (strictly)
contained in χ , Property 1 is trivially satisfied. Therefore,
assume that there are other fractional jobs j1, j2, . . . , jl that
have their time-windows (strictly) contained in χ . Now, we
decrease the fractional area (i.e., the quantity a j x̂ j ) of j
by � and increase the fractional area of jobs in the set
{ j1, j2, . . . , jl} by �k for job jk , such that � = ∑

k∈[l] �k .

Formally, we set x̂ j → x̂ j − �
a j

and x̂ jk → x̂ jk + �k
a jk

. We

choose these increments �k such that either x̂ j becomes 0,
or for each k ∈ [l], x̂ jk becomes 1. Clearly, in both scenarios,
Property 1 is satisfied, and we color χ black.

When all nodes are colored black, we round up the
remaining fractional jobs. Namely, for all jobs j such that
x̂ j ∈ (0, 1), we set x̂ j = 1. It is important to note that by
doing so we may violate the knapsack constraints. However,
in Theorem 1, we bound the violation.

Theorem 1 Given a slackness parameter λ ∈ (0, 1), let I =
(J , M,L) be a laminar instance of MaxT with optimal profit
W and ∀ j ∈ J : p j ≤ λ|χ j |. For any ω ∈ (0, 1 − λ

m ], the
subset S = { j ∈ J : x̂ j = 1}, obtained as above, satisfies∑

j∈S w j ≥ ωW, and for any χ ∈ L,
∑

j∈S:χ j⊆χ a j ≤
(ω + smaxλ

m )m|χ |, where smax = max j s j .

Proof We first observe that any optimal solution x∗ for the
LP satisfies:

∑
j∈J w j x∗

j ≥ ωW . Indeed, consider anoptimal
solution O for the instance I. We can construct a fractional
feasible solution x′ for the LP by setting x ′

j = ω if j ∈ O;
otherwise, x ′

j = 0. Clearly, x′ is a feasible solution for the
LP with profit ωW .

Consider an integral solution x̂, obtained by applying the
rounding procedure on x∗. We first show that

∑
j∈J w j x̂ j ≥

5 Throughout the discussion we use interchangeably the terms node
and interval when referring to a time-window χ ∈ L.
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ωW . To this end,weprove that
∑

j∈J w j x̂ j ≥ ∑
j∈J w j x∗

j ≥
ωW . Suppose we decrease the fractional area of a job j by
an amount �, i.e., we set x̂ j ← x̂ j − �

a j
. By the virtue of our

procedure, we must simultaneously increase the fractional
area of some subset of jobs Fj , where for each k ∈ Fj we
have χk ⊂ χ j . Further, the combined increase in the frac-
tional area of the jobs in Fj is the same �. Now, we observe
that the density of job j (i.e.,

w j
a j
) cannot be higher than any

of the jobs in Fj . Indeed, if j ′ ∈ Fj has density strictly
lower than j , then the optimal solution x∗ can be improved
by decreasing the fractional area of j ′ by some ε > 0 while
increasing that of j by the same amount (it is easy to see that
no constraint is violated in this process) – a contradiction.
Therefore, our rounding procedure will never result in a loss,
and

∑
j∈J w j x̂ j ≥ ∑

j∈J w j x∗
j ≥ ωW .

Let smax = max j s j . We now show that, for each χ ∈ L,∑
j∈J :χ j⊆χ a j x̂ j ≤ (ω+ λ

m )m|χ |. First, observe that for any
gray interval χ the total fractional area is conserved. This is
true because there is no positive transfer of fractional area to
the subtree rooted at χ from a node outside this subtree until
χ is colored black. Now, consider an intervalχ that is colored
black. We note that for any job j with x∗

j = 0, our algorithm
ensures that x̂ j = 0, i.e., it creates no new fractional jobs.

Consider the vector x̂ when the interval χ is converted
from gray to black. At this stage, we have that the total (frac-

tional) area packed in the subtree rooted at χ is V (χ)
de f=

∑
j∈J :χ j⊆χ a j x̂ j ≤ ωm|χ |. Let F(χ) denote the set of all

fractional jobs j ′ that have their time-windows contained inχ

(i.e., χ j ′ ⊆ χ ).We claim that the maximum increase in V (χ)

by the end of the rounding procedure is at most
∑

j ′∈F(χ) a j ′ .
This holds since our procedure does not change the variables
x̂ j ∈ {0, 1}. Thus, the maximum increase in the total area
occurs due to rounding all fractional jobs into complete ones,
after all nodes are colored black.

To complete the proof, we now show that the total area of

the fractional jobs in the subtree rooted atχ satisfiesA[χ ] de f=∑
j ′∈F(χ) a j ′ ≤ smaxλ|χ |. We prove this by induction on the

level of node χ . Clearly, if χ is a leaf then the claim holds,
since there can exist at most one fractional job j in χ , and
a j = s j p j ≤ smaxλ|χ |. Suppose that {χ1, χ2, . . . χl} are the
children of χ . If there is a fractional job j with χ j = χ then,
by Property 1, there are no other fractional jobs with time-
windows contained in χ . Hence, A[χ ] = a j ≤ smaxλ|χ |.
Suppose there is no fractional job with χ j = χ ; then, by
the induction hypothesis: A[χk] ≤ smaxλ|χk | for all k ∈ [l].
Further,

∑
k∈[l] |χk | ≤ |χ | and A[χ ] = ∑

k∈[l] A[χk] ≤∑
k∈[l] smaxλ|χk | ≤ smaxλ|χ |. ��

Let O be an optimal solution for I satisfying: ∀χ ∈
L : ∑

j∈O:χ j⊆χ a j ≤ cm|χ |, for some c ≥ 1. Then it
is easy to verify that any optimal solution x∗ for the LP sat-

isfies:
∑

j∈J w j x∗
j ≥ ω

c W . The next result follows from the
proof of Theorem 1.

Corollary 1 Suppose I = (J , M,L) is a laminar instance of
MaxT, such that∀ j ∈ J : p j ≤ λ|χ j |. Let S+ ⊆ J be a subset
of jobs of total profitW satisfying∀χ ∈ L:

∑
j∈S+:χ j⊆χ a j ≤

cm|χ |, for some c ≥ 1. Then, for any ω ∈ (0, 1 − λ
m ], there

exists a subset S ⊆ J satisfying
∑

j∈S w j ≥ ω
c W , such that

∀χ ∈ L,
∑

j∈S:χ j⊆χ a j ≤ (ω + λ
m )m|χ |.

Phase 2 In Phase 1 we obtained a subset S ⊆ J , such that for
each χ ∈ L:

∑
j∈S:χ j⊆χ a j ≤ (ω + λ

m )m|χ |. We now show
that it is always possible to find a feasible packing of all jobs
in S.We refer to host i at time t as a bin (i, t). In the allocation
phase we label a binwith one of three possible colors: white,
gray or black. Initially, all bins are colored white. We color
a bin (i, t) gray when some job j is assigned to host i at
time t and color it black when we decide to assign no more
jobs to this bin. Our algorithm works in a bottom-up fashion
and marks an interval χ as done when it has successfully
completed all the jobs j with χ j ⊆ χ . Consider an interval
χ such that any χ ′ ⊂ χ has already been marked done. Let
j ∈ S be a job with time-window χ j = χ , that has not been
processed yet. To complete job j , we must pick p j distinct
time slots in χ and assign it to a bin in each slot. Suppose
that we have already assigned the job to p′

j < p j slots so
far. Denote by avail( j) ⊆ χ the subset of bins in time slots
where j has not been assigned yet. We pick the next slot and
bin as shown in Algorithm 2.

1: if there exists a gray bin (i, t) in avail( j) then
2: let S(i,t) be the set of jobs assigned to this bin
3: if

∑
j ′∈S(i,t)

s j ′ + s j ≤ 1 then
4: assign j to host i at time t
5: else if there exists a white bin (i ′, t ′) in avail( j) then
6: assign j to host i ′ at time t ′.
7: color (i, t) and (i ′, t ′) black
8: pair up (i, t) ↔ (i ′, t ′)
9: else
10: report fail
11: end if
12: else if there exists a white bin (i, t) in avail( j) then
13: assign j to host i at time t
14: color the bin (i, t) gray
15: else
16: report fail
17: end if

Algorithm 2: Resource allocation to job j in a single time
slot

Theorem 2 For any λ < 1− 2
m+2 , there is a

1
2 −λ

( 1
2 + 1

m

)
-

approximation algorithm for the laminar MaxT problem,
assuming that p j ≤ λ|χ j | for all j ∈ J .
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Proof Given an instance I = (J , M,L) and a parameter
ω ∈ (0, 1 − λ

m ], let W denote the optimal profit. We apply
Theorem 1 to find a subset of jobs S ⊆ J of profit ωW , such
that for any χ ∈ L:

∑
j∈S:χ j⊆χ a j ≤ (ω + λ

m )m|χ |. We now
show that there is a feasible resource assignment to the jobs
in S for ω = 1

2 − λ
( 1
2 + 1

m

)
. Clearly, this would imply the

theorem.
We show that for the above value of ω Algorithm 2 never

reports fail, i.e., the resource is feasibly allocated to all
jobs in S. Observe that whenever bins (i, t) and (i ′, t ′) are
paired up in Algorithm 2 and colored black

∑
j∈S(i,t)

s j +∑
j ′∈S(i ′,t ′) s j ′ > 1. Thus, the total number of black bins

< 2(ω + λ
m )m|χ |. Also, a time slot t can contain at most

one gray bin (that is, at most one bin (i, t) is gray). This is
true since whenever a bin (i, t) ∈ avail( j) becomes gray
there are no existing gray bins in avail( j).

Assume towards a contradiction that Algorithm 2 reports
fail while assigning job j . We say that time slot t ∈ χ = χ j

is bad if either time slot t contains a gray bin, or j is already
assigned to some bin (i, t). We first show that the following
invariant holds. As long as no job j+ such that χ ⊂ χ j+
has been allocated the resource: the number of bad time slots
while processing job j is at most λ|χ |. To show that the
invariant holds just before job j is allocated the resource
we distinguish between two cases. (i) If job j is the first
job with time window χ that is allocated the resource, then
assuming that the invariant holds in each of the child intervals
of χ , {χ1, χ2 . . . , χl}, before any job with time window χ is
allocated the resource, implies that the number of bad time
slots just before job j is allocated the resource is at most∑

k∈[l] λ|χk | ≤ λ|χ |. (i i) Job j is not the first job with time
window χ that is allocated the resource; then, assuming the
invariant holds after the previous job with time window χ is
allocated the resource implies that it holds just before job j
is allocated the resource.

Now, consider the iteration in which Algorithm 2 assigns
j to host i at time slot t . If time slot t was bad before the
assignment, then the number of bad time slots remains the
same. Suppose that time slot t was not bad before the assign-
ment. Clearly, it becomes bad as j is assigned to bin (i, t).
In this case, bin (i, t) must have been white before job j is
assigned and it is either black or gray after the assignment.
(a) If bin (i, t) is black after the assignment thenAlgorithm 2
must have considered a gray bin (i1, t1) and failed to assign j
to host i1 at time t1. Consequently, bin (i1, t1) is paired with
(i, t) and also colored black. At this point time slot t1 which
was bad before (since it contained the gray bin (i1, t1)) is not
bad anymore. Thus, the number of bad time slots remains the
same. (b) If bin (i, t) is gray after the assignment then there
were nograybins inavail( j)before and after this assignment,
and thus the number of bad time slots is at most p j ≤ λ|χ |.

It follows that the total number of bins that are either black
or in bad time slots is < (λ + 2(ω + λ

m ))m|χ |. Now, setting
ω = 1

2 − λ
( 1
2 + 1

m

)
, there should be at least one bin (i∗, t∗)

that is neither black nor in a bad time slot. But in this case,
bin (i∗, t∗) must be white and in avail( j), and Algorithm 2
could have assigned j to host i∗ at time t∗ − a contradiction
to the assumption that the algorithm reports a fail. ��

For convenience, we restate the claim shown in the proof
of Theorem 2.

Corollary 2 Let I = (J , M,L) be a laminar instance where
p j ≤ λ|χ j | ∀ j ∈ J , for λ ∈ (0, 1 − 2

m+2 ). Let S ⊆ J be
a subset of jobs, such that for any χ ∈ L:

∑
j∈S:χ j⊆χ a j ≤

(ω + λ
m )m|χ |, where ω ≤ 1

2 − λ
( 1
2 + 1

m

)
. Then, there exists

a feasible resource assignment to the jobs in S.

3.2 The general case

We use a simple transformation of general instances of MaxT
into laminar instances and prove an �(1)-approximation
ratio. Let W denote the set of all time-windows for jobs
in J , i.e., W = {χ j : j ∈ J }. We now construct a laminar
set of intervals L and a mapping L : W → L. Recall that
T = max j∈J d j . The construction is done via a binary tree
T whose nodes correspond to intervals [l, r ] ⊆ [T ]. The
construction is described in Algorithm 3.

Input: Job set J and W = {χ j : j ∈ J }
Output: Laminar set of intervals L and a mapping L : W → L
1: let [T ] be the root node of tree T
2: while ∃ a leaf node [l, r ] in T such that r − l > 1 do
3: add to T two nodes [l, � l+r

2 �] and [� l+r
2 � + 1, r ] as the children

of [l, r ]
4: end while
5: let L be the set of intervals corresponding to the nodes of T
6: For each χ ∈ W , let L(χ) = χ ′, where χ ′ is the largest interval in

L contained in χ , breaking ties by picking the rightmost interval.

Algorithm 3: Transformation into a laminar set

Lemma 1 In Algorithm 3, the following property holds. For
χ ∈ L, let χ̃ = {t ∈ χ j : j ∈ J , L(χ j ) = χ}, i.e., the
union of all time-windows inW that are mapped to χ . Then,
|χ̃ | ≤ 4|χ |.
Proof For χ ∈ L, consider first j ∈ J such that L(χ j ) = χ .
We use in the proof the next claim. ��
Property 1 χ j cannot completely contain 3 consecutive
intervals in L that are at the same level as L(χ j ).

Proof Suppose χ j contains at least 3 such consecutive inter-
vals. Then, by the virtue of our algorithm, L(χ j ) is the
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rightmost interval. Let χ̂ be the parent of L(χ j ). Two cases
arise:
Case 1 L(χ j ) is a left child of χ̂ . Consider the two other
consecutive intervals at the same level as L(χ j ) that are con-
tained in χ j . Observe that these two intervals are siblings;
therefore, their parent (which is also in L) is also contained
in χ j . This is a contradiction to the assumption that L(χ j ) is
the largest interval in L contained in χ j .
Case 2L(χ j ) is a right child of χ̂ .We observe that the sibling
of L(χ j ) must also be contained in χ j , implying that χ̂ is
contained in χ j , a contradiction. ��

Now, for any χ = [s, d] ∈ L, let χl = [sl , dl ] ∈ W
(resp. χr = [sr , dr ]) be the leftmost (resp. rightmost) interval
in W such that L(χl) = χ (resp. L(χr ) = χ ); then, χ̃ =
[sl , dr ]. Consider the intervals χ1 = [sl , s] and χ2 = [d, dr ].
By Claim 1, χl cannot contain 3 consecutive intervals in L
at the same level as χ . Thus, |χ1| < 2|χ |. Also, |χ2| < |χ |;
otherwise, there is an interval to the right of χ of the same
size that can bemapped toχr . Thus, |χ1|+|χ2| < 3|χ |. Now,
the claim follows by observing that |χ̃ | = |χ1|+|χ |+|χ2| ≤
4|χ |. ��
Theorem 3 For any λ < 1

4 − 1
2(m+2) , there exists a 1

8 −
λ

( 1
2 + 1

m

)
-approximation algorithm for MaxT, assuming

that p j ≤ λ|χ j | for all j ∈ J .

Proof Given an instance (J , M,W) of MaxT with slack-
ness parameter λ ∈ (0, 1), we first use Algorithm 3 to
obtain a laminar set of intervals L and the corresponding
mapping L : W → L. Consider a new laminar instance
(J
 = { j
 : j ∈ J }, M
 = M,L), constructed by setting
χ j
 = L(χ j ). Note that if S
 ⊆ J
 is a feasible solution for
this new instance, the corresponding set S = { j : j
 ∈ S
} is
a feasible solution for the original instance. Let λ
 denote
the slackness parameter for the new instance. We claim
that λ
 ≤ 4λ. Assume this is not true, i.e., there exists a
job j
, such that p j
 > 4λ|χ j
 |; however, by Lemma 1,
we have p j
 = p j ≤ λ|χ j | ≤ 4λ|χ j
 |. A contradic-
tion. Now, suppose O ⊆ J is an optimal solution of total
profit W for the original (non-laminar) instance. Consider
the corresponding subset of jobs O
 = { j
 : j ∈ O}. By
Lemma 1, for any χ ∈ L, |χ̃ | ≤ 4|χ |. It follows that, for any
χ ∈ L,

∑
j
∈O
:χ j
⊆χ a j
 = ∑

j∈O:L(χ j )⊆χ a j ≤ 4m|χ |.
Now, we use Corollary 1 for the laminar instance, taking
c = 4, S+ = O
 and λ
 ∈ (0, 1 − 2

m+2 ). Then, for

any ω ∈ (0, 1 − λ


m ], there exists S
 ⊆ J
 of total profit
∑

j
∈S

w j ≥ ω

c W , such that ∀χ ∈ L,
∑

j
∈S
:χ j⊆χ a j
 ≤
(ω+ λ


m )m|χ |. By Corollary 2, there is a feasible assignment
of the resource to the jobs in S
 for ω ≤ 1

2 − λ


( 1
2 + 1

m

)
.

Taking ω = 1

2
− 4λ

(
1

2
+ 1

m

)

≤ 1

2
− λ


(
1

2
+ 1

m

)

, we

have the approximation ratio w
c = 1

8 −4λ
( 1
8 + 1

4m

)
, for any

λ < 1
4 − 1

2(m+2) . We now return to the original instance and
take for the solution the set S = { j : j
 ∈ S
}. ��

3.3 Relaxing the slackness requirements

In this section we show that the slackness requirements
in Theorems 2 and 3 can be relaxed, while maintaining a
constant approximation ratio for MaxT. In particular, for
laminar instances, we show below that Algorithm 1 can be
used to obtain a polynomial time �(1)-approximation for
any constant slackness parameter λ ∈ (0, 1). For general
MaxT instances, this leads to an �(1)-approximation for
any constant λ ∈ (0, 1

4 ). We also show a polynomial time
�( 1

log n )-approximation algorithm for general MaxT using
no assumption on slackness. We use below the next result,
for instances with ‘large’ resource requirement.

Lemma 2 For any δ ∈ (0, 1) there is an �( 1
log(1/δ) )-

approximation for any instance I = (J , M,W) of MaxT
satisfying s j ≥ δ ∀ j ∈ J .

Proof Given an instance I, we first round down the resource
requirement (or, height) of each job j ∈ J to the nearest
value of the form δ(1 + ε′)k , for some fixed ε′ ∈ (0, 1) and
integer 0 ≤ k ≤ �log1+ε′( 1δ )�. We now partition the jobs into
O(log( 1

δ
)) classes, such that the jobs in each class have the

same rounded height. For a class with job height δ(1+ ε′)k ,
let mk = m · � 1

δ(1+ε′)k �. We define for this class the instance
Ik = (Jk, Mk,W) of MaxT in which |Mk | = mk and s j = 1
for all j ∈ Jk .

Lawler (1990) gave a PTAS for MaxT on a single host,
where s j = 1 for all j ∈ J . Consider an algorithm Ak for
MaxT on Ik , which proceeds as follows. We schedule iter-
atively the jobs in J on hosts 1, . . . ,mk . Let Ji−1 be the
set of jobs scheduled on hosts 1, . . . i − 1, and J0 = ∅.
In iteration i ≥ 1, we use the PTAS of Lawler (1990) for
the set of jobs J\Ji−1. We note that the resulting sched-
ule uses no migrations. By a result of Kalyanasundaram and
Pruhs (2001), this iterative algorithm (called in Kalyanasun-
daram and Pruhs (2001) Repeat-A) yields a ratio of 1

6+ε
to

the profit of an optimal schedule for MaxT (which may use
migrations).6

Let Ak(Ik) be the profit of the solution obtained for
Ik . Then we choose the solution set for the instance
I
∗ which maximizes the profit. That is, A
∗(I
∗) =
max0≤k≤�log1+ε′ ( 1δ )� Ak(Ik). We note that since the job
heights are rounded down, transforming back to the origi-
nal job heights requires the algorithm to make changes that
we describe next. W.l.o.g., assume thatm
∗ > m (otherwise,
the rounded height of the scheduled jobs is larger than 1

2 ,
implying they can be scheduled feasibly with their original

6 See Theorem 3.1 in Kalyanasundaram and Pruhs (2001).
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heights on m hosts). Thus, among the m
∗ hosts, we select

m′

∗ = � m∗




1+ε′ � hosts on which the total weight of scheduled
jobs is maximized. It follows that the approximation ratio is
at least ( 1

1+ε′ − 1
m
∗ ) · 1

(6+ε)�log1+ε′ ( 1δ )� . ��

3.3.1 Laminar instances

Recall that m = |M | is the number of hosts. Given a fixed
λ ∈ (0, 1), let

α = α(m, λ) = λ(1 − λ)

1 − λ + λ
m

. (1)

We note that α < λ. In Phase 1 of Algorithm 1, we round
the LP solution to obtain a subset of jobs S ⊆ J . We first
prove the following.

Lemma 3 Let λ ∈ (0, 1) be a slackness parameter, and

ω = (1 − α)(1 − λ) − αλ

m
, (2)

where α is defined in (1). Then, given a laminar instance
I = (J , M,L) satisfying p j ≤ λ|χ j | and s j ≤ α, there is
a feasible allocation of the resource to the jobs in the set S
selected in Phase 1 of Algorithm 1.

Proof We generate a feasible schedule of the jobs in S pro-
ceeding bottom-up in each laminar tree. That is, we start
handling job j only once all the jobs 
 with time windows
χ
 ⊂ χ j have been scheduled. Jobs having the same time
window are scheduled in an arbitrary order. Let j be the next
job, whose time window is χ = χ j . We can view the interval
χ as a set of |χ | time slots, each consisting of m unit size
bins. We say that a time slot t ∈ χ j is ‘bad’ for job j if there
is no space for one processing unit of j (i.e., an ‘item’ of
size s j ) in any of the bins in t ; else, time slot t is ‘good’. We
claim that immediately before we start scheduling job j the

number of bad time slots for j is at most
m|χ |(1−λ)(1−α)−a j

m(1−s j )
.

Indeed, by Theorem 1, choosing for ω the value in (2), after
rounding the LP solution, the total area of jobs 
 ∈ S such
that χ
 ⊆ χ j is at most

(ω + smaxλ

m
)m|χ | ≤ ((1 − α)(1 − λ) − αλ

m
+ αλ

m
)m|χ |.

(3)

Excluding job j , we have that the total occupied area in χ

is at most m|χ |(1 − λ)(1 − α) − a j . In addition, for a time
slot t to be ‘bad’ for job j , each bin in t has to be at least
(1 − s j )-full. This shows our claim.

Hence, the number of good time slots for j is at least

|χ | − m|χ |(1 − λ)(1 − α) − a j

m(1 − s j )

= |χ |(1 − (1 − λ)(1 − α)

1 − s j
) + a j

m(1 − s j )

≥ p j

λ
(1 − (1 − λ)(1 − α)

1 − s j
) + a j

m(1 − s j )
≥ p j

The first inequality follows from the fact that p j ≤ λ|χ j | =
λ|χ |, and the second inequality holds since s j ≤ α. Hence,
job j can be feasibly scheduled, for any j ∈ S. ��

Using Lemmas 2 and 3, we prove our main result.

Theorem 4 For any m ≥ 1 and constant λ ∈ (0, 1), MaxT
admits a polynomial time �(1)-approximation on any lami-
nar instance I = (J , M,L) with slackness parameter λ.

Proof Given a laminar instance I satisfying the slackness
condition, we handle separately two subsets of jobs.
Subset 1 Jobs j satisfying s j ≤ α = α(m, λ), where α is
defined in (1). We solve MaxT for these jobs using Algo-
rithm 1, taking the value of ω as in (2). By Theorem 1, the
approximation ratio is ω = (1−α)(1−λ)− αλ

m = (1−λ)2,
i.e., we have a constant factor.
Subset 2 For jobs j satisfying s j > α, use Lemma 2 to obtain
an �( 1

log(1/α)
)-approximation.

Taking the best among the solutions for the two subsets
of jobs, we obtain an �(1)-approximation. ��

3.3.2 The general case

Recall that, given a generalMaxT instance, (J , M,W), with
a slackness parameter λ ∈ (0, 1), our transformation yields a
new laminar instance (J
 = { j
 : j ∈ J }, M
 = M,L) with
a slackness parameter λ
 ≤ 4λ (see the proof of Theorem 3).
Now, define

α
 = α
(m, λ
) = λ
(1 − λ
)

1 − λ
 + λ


m

, (4)

and set

ω = (1 − α
)(1 − λ
) − α
λ


m
. (5)

Then, by Lemma 3, we have that any job j
 ∈ J
 selected
for the solution set S can be assigned the resource (using
Algorithm 1).

Theorem 5 For any m ≥ 1 and constant λ ∈ (0, 1
4 ),

MaxT admits a polynomial time �(1)-approximation on any
instance I = (J , M,W) with slackness parameter λ.
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Proof Given such an instance I, consider the resulting lami-
nar instance. As before, we handle separately two subsets of
jobs.
Subset 1: For jobs j
 ∈ J
 satisfying s j
 ≤ α
, where α


is defined in (4), apply Algorithm 1 with ω value as in (5).
Then, the approximation ratio is ω = (1−λ
)

2 ≥ (1−4λ)2.
Subset 2 For jobs j
 where s j
 > α
, use Lemma 2 to obtain
�( 1

log(1/α
)
)-approximation.

Taking the best among the solutions for the two subsets
of jobs, we obtain an �(1)-approximation. ��

Finally, consider a general instance of MaxTḂy selecting
δ = 1

n , we can apply Lemma 2 to obtain an �( 1
log n )-

approximate solution, S1 for the jobs j ∈ J of heights
s j ≥ 1

n . Let S2 be a solution consisting of all jobs j for
which s j < 1

n . Note that this solution is feasible since
∑

j∈S2 s j < 1. Selecting the highest profit solution between
S1 and S2, we have:

Corollary 3 There is apolynomial time�( 1
log n )-approximation

algorithm for MaxT instances with arbitrary slackness
parameter λ ∈ (0, 1].

4 Maximizing utilization

In this section, we obtain an �(1)-approximation for MaxT
instances where the weight of a job is equal to its area. In
other words, the goal is to maximize resource utilization.
Our result builds on an algorithm of Chen et al. (2002).

Theorem 6 There is a polynomial time �(1)-approximation
for any instance of MaxT where w j = a j for all j ∈ J .

Proof As before, we represent a time slot t on a host i by
a bin (i, t). We partition the jobs according to their height.
Fix some constant δ ∈ (0, 1). Below, we show how to find a
constant approximation for the jobs j ∈ J of heights s j ≤ δ.
For the jobs j ∈ J of heights s j > δ, we can obtain a constant
approximation using Lemma 2. These two algorithms imply
a polynomial time �(1)-approximation for any instance.

For the rest of this section we assume that the height of
every job j ∈ J is upper bounded by δ. Fix some λ <
1
4 . Partition the jobs according to their lengths. A job j is
long if p j > λ|χ j |; otherwise, job j is short. For a given
optimal solution of the problem, let OPT
 and OPTs be the
contributions of long jobs and short jobs, respectively. We
handle the long and short jobs separately. Note that since
short jobs satisfy the requirements of Theorem 5, we can
obtain a constant approximation with respect to OPTs .

We now handle the long jobs. For this part, we adapt an
algorithm due to Chen et al. (2002). Let L be the set of long
jobs. Consider the following algorithm.
Step 1 Sort the jobs in non-increasing order of their time
window sizes |χ j |.

Step 2 For each job j in the sorted order, if there are p j time
slots that have at least one bin that is less than 1 − s j full,
schedule j in these p j time slots; otherwise, discard it.

Let A be the set of jobs scheduled by this algorithm. We
now analyze the performance of the algorithm. For each job
j , we define an augmented job j ′ as follows:

p j ′ = 3|χ j |, and s j ′ = s j
1 − δ

χ j ′ = [r j − |χ j |, d j + |χ j |] = [2r j − d j , 2d j − r j ]

Let A′ denote the set of augmented jobs for A.We note that
there may be no feasible schedule of the jobs in A′. Define
the weight of A′ as

W (A′) =
∑

t∈T

∑

j ′∈A′:t∈χ j ′
s j ′ .

It follows that the throughput of the algorithm, denoted
W (A), satisfies

W (A) =
∑

j∈A

p j s j ≥ (1 − δ)λ

3
W (A′).

To complete the proof, we simply show that W (A′) ≥
W (OPT
). To this end, it suffices to show that for every
t ∈ T

∑

j ′∈A′:t∈χ j ′
s j ′ ≥

∑

ω∈OPT
:t∈χω

sω

Fix any t ∈ T . Two cases arise:
Case 1 All jobs ω ∈ OPT
 : t ∈ χω are scheduled by our
algorithm. In this case the claim follows trivially.
Case 2 At least one long job ω ∈ OPT
 : t ∈ χω is rejected
by our algorithm.We show that in this case

∑
j ′∈A′:t∈χ j ′ s j ′ ≥

m. The proof follows since
∑

ω∈OPT
:t∈χω
sω ≤ m.

Since job ω was rejected ∃t ′ ∈ χω such that each bin
(i, t ′) is at least (1− δ) full when job ω is considered by the
algorithm. Let Aω be the set of jobs already scheduled by
the algorithm in time slot t ′ before ω is rejected, and let A′

ω

be the respective set of augmented jobs. We claim that for
every job j ′ ∈ A′

ω, we have t ∈ χ j ′ . To see this, note that
for any j ∈ Aω, we have |χ j | ≥ |χω| (because the jobs are
chosen in non-increasing order of their time window sizes).
Further, χ j ∩χω contains at least t ′ and hence χ j and χω are
intersecting. Therefore, the time window of the augmented
job j ′ ∈ A′

ω must completely contain χω, and so t ∈ χ j ′ .
Thus, we have

∑

j ′∈A′:t∈χ j ′
s j ′ ≥

∑

j ′∈A′
ω

s j ′ ≥ 1

1 − δ

∑

j∈Aω

s j ≥ m(1 − δ)

1 − δ
= m.

��
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5 Resourceminimization

In this section, we consider the MinR problem with d
resources, where d ≥ 1 is some constant. We show that
the problem admits an O(log d)-approximation algorithm
under some mild assumptions on the slack and minimum
window size. Further, we show that the latter assumption can
be removed with a slight degradation in the approximation
ratio.

Our approach builds on a formulation of the problem as a
configuration LP and involves twomain phases: a maximiza-
tion phase and residual phase.

5.1 Configuration LP

We start by describing the configuration linear program that
is at the heart of our algorithm. Let Jt ⊆ J denote the set of
all jobs j such that t ∈ χ j , i.e., j can be allocated resources at
time slot t . For any t ∈ [T ] and S ⊆ Jt , C = (S, t) is a valid
configuration on a single host if

∑
j∈S s̄ j ≤ 1̄d , i.e., the jobs

in S can be feasibly allocated their resource requirements
on a single host at time slot t . Denote the set of all valid
configurations at time t by Ct , and by C j the set of all valid
configurations (S, t), such that S contains job j . Denote by
xC the indicator variable for choosing configuration C , and
by m the number of hosts needed to schedule all jobs. The
fractional relaxation of the Integer Program formulation of
our problem is given below.

Primal : Minimize m
Subject to: m − ∑

C∈Ct xC ≥ 0, ∀t ∈ [T ]
−∑

C∈C j∩Ct xC ≥ −1, ∀ j ∈ J , t ∈ [T ]
∑

C∈C j xC ≥ p j , ∀ j ∈ J
xC ≥ 0, ∀C

The first constraint ensures that we do not pick more than
m configurations for each time slot t ∈ [T ]. The second
constraint guarantees that atmost one configuration is chosen
for each job j at a given time t . Finally, the last constraint
guarantees that each job j is allocated the resource for p j

time slots, i.e., job j is completed.
Given that the LP has an exponentially number of vari-

ables, we consider solving the dual.

Dual : Maximize
∑

j∈J (p jα j − ∑
t∈[T ] β j,t )

Subject to:
∑

j∈S(α j − β j,t ) − γt ≤ 0, ∀C = (S, t)
∑

t∈[T ] γt ≤ 1,
α j , β j,t , γt ≥ 0

The proof of the following theorem is similar to a result
due to Fleischer et al. (2011), with some differences due to
the “negative” terms in the objective of the dual program.

Theorem 7 For any ε > 0, there is a polynomial time algo-
rithm that yields a (1 + ε)-approximate solution for the
configuration LP.

Proof We first describe a separation oracle for the dual pro-
gram. Given a vector (γt : t ∈ [T ], β j,t : j ∈ J , t ∈
[T ], α j : j ∈ J ), the oracle should either report that the
solution is feasible or find a violating constraint. Clearly, the
non-trivial task is to check the exponentiallymanyconstraints
corresponding to the configurations. To this end, we compute
a configuration C = (S, t), for each t , that maximizes the
value

∑
j∈S(α j − β j,t ). Subsequently, we can compare this

value against the fixed value γt . Further, observe that such a
subset S (for a given t) can be approximately found by solv-
ing the following instance of themulti-dimensional knapsack
problem. Indeed, we have an item for each job j ∈ Jt with
size s j and profitα j−β j,t . The goal is to find a subset of items
ofmaximum total profit that canfit into thed-dimensional bin
1d . There is a well known PTAS for the multi-dimensional
knapsack problem, for any fixed d > 1 (Frieze & Clarke,
1984). Let ε′ > 0 be the error parameter for the PTAS.

We now run the ellipsoid algorithm on the dual program.
We perform a binary search over the possible values of z∗ ≤∑

j∈J (α j p j − ∑
t∈T β j,t ). For z∗, the ellipsoid algorithm

with the given separation oracle reports success.
Suppose that the ellipsoid algorithm reports failure at the

value z∗ + δ, where δ is the accuracy parameter of the binary
search, which can be made as small as desired. Clearly, the
optimal solution valuemust be lower than z∗+δ. On the other
hand, since we are using a (1+ε′)-approximation oracle, we
have that if a solution (α j , β j,t , γt ) is reported to be feasible,
then we must have that (α j/(1 + ε′), β j,t/(1 + ε′), γt ) is
feasible for the original dual program. Hence, the optimal
solution lies in the range [z∗/(1 + ε′), z∗ + δ].

Further, we look at the constraints checked by the ellip-
soid algorithm when the value is set to be z∗ + δ. There
are polynomial number of such constraints before the algo-
rithm reports a failure. We consider the dual of this restricted
LP that is equivalent to a restricted original configuration
LP obtained by setting to zero the variables corresponding
to the constraints not considered by the ellipsoid algorithm.
As noted by Fleischer et al. (2011), the cost of this LP is at
most z∗ + δ by LP duality. Thus, for appropriate selection of
ε′ ∈ (0, ε), we obtain a (1+ ε)-approximate solution for the
configuration LP. ��

5.2 The algorithm

Letm∗ denote the optimal value of the configuration LP, and
let m ≤ (1 + ε)m∗ be the objective value of the approx-
imate solution of the configuration LP, rounded up to the
nearest integer. The detailed description of the algorithm is
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Input: MinR instance (J ,W), where J is the set of jobs and W is the
set of time-windows

Output: An assignment of all jobs in J to a (approximate) minimum
number of hosts

1: Solve the configuration LP approximately using Theorem7 to obtain
a (fractional) solution {x̂C : ∀C}. Let m denote the objective value
of the solution (assume m is rounded up to the nearest integer).

2: Let c > 1 be a constant (to be determined). For each t ∈ [T ]
repeat: for m1 = cm log d iterations, choose a configuration C ∈
Ct with probability x̂C/m. If two configurations C1 = (S1, t) and
C2 = (S2, t) where S1 ∩ S2 �= ∅ are chosen in this process, replace
C2 with C ′

2 = (S2\S1, t). Continue with this replacement process
until all configuration sets corresponding to a given time-slot t are
disjoint.

3: If a configuration C = (S, t) is chosen in Step 2 in iteration i for
time t , assign the jobs in S to host i at time t .

4: Let Jres be the set of residual jobs constructed from J as follows: for
each j ∈ J , let n j denote the number of configurations containing
job j that are chosen in Step 2. Now, define a residual job j ′ with
attributes (p j ′ = max(p j − n j , 0), s j ′ = ||s̄ j ||∞, χ j ′ = χ j ). For
each job j ′ associate a set, forb( j ′), of forbidden time slots in which
a configuration containing job j is already chosen.

5: Use the construction given in Sect. 3.2 to transform W into a lam-
inar family of intervals L and obtain the corresponding mapping
L : W → L. Consider a modified instance (J ′

res = { j ′ : j ∈
Jres},L) such that χ j ′ = L(χ j ). For each j ′ ∈ J ′

res let forb( j
′) be

the forbidden time slots in χ j ′ .
6: Use Lemma 6 to compute a feasible schedule for the residual jobs

J ′
res . Let m2 be the number of additional hosts needed in this step.

7: Output the resulting assignment of the jobs in J to m1 + m2 hosts.

Algorithm 4: Algorithm for the MinR problem

given in Algorithm 4. We use the following two stage pro-
cess. In the first stage (Steps 2 and 3 of Algorithm 4), we
choose O(m log d) configurations C (with probabilities pro-
portional to their xC values in the LP solution) for each time
slot. Indeed, this random selection may lead to partial execu-
tion of some jobs j , which are allocated the resources for less
than p j time slots. The second stage (Steps 4–6 of the algo-
rithm) amends this, by considering the “residual” job parts
and assigning them to a set of m new hosts.

Our key technical result (in Lemma 5) is that, with high
probability, the total volume of the residual jobs to be sched-
uled in any time window χ is sufficiently small. Some
additional challenges arise due to the fact that the time slots
used to schedule a job in the first and second stages must be
disjoint. Thus, the time slots used for job j in the first stage
become “forbidden” for j in the second stage. We associate
with each job j a subset of “forbidden” time slots, denoted
forb( j) ⊆ χ j . Any feasible solution for the residual jobs
must ensure that job j is not scheduled at time t ∈ forb( j). To
resolve this issueweneed to refineAlgorithm2 (inLemma6).

5.3 Analysis

Towards analyzing our algorithm, we prove several technical
lemmas.

Definition 1 A real valued function f : (M1 ×M2 × · · · ×
M
) → R satisfies the bounded differences property if there
are 
 constants c1, . . . , c
 ∈ R such that ∀ μ̄, μ̄′ ∈ M1 ×
· · ·×M
, if μ̄ and μ̄′ differ in exactly the i th coordinate then
| f (μ̄) − f (μ̄′)| ≤ ci .

The following useful result is due to McDiarmid (1989).

Lemma 4 (McDiarmid) Let Y = (Y1,Y2, . . . ,Y
) be a fam-
ily of independent random variables, such that the sample
space (domain) of Y j isM j , and let f : (M1×· · ·×M
) →
R be a function whose domain is the 
-dimensional sample
space that satisfies the bounded differences property. Then,
Pr [ f (μ̄) − E( f (μ̄)) ≥ ψ] ≤ exp(−2ψ2/

∑

i=1 c

2
i ).

The next lemma gives the conditions implying that the
total volume of the residual jobs is small. This is essential
for obtaining our performance bounds.

Lemma 5 Let χ be any sub-interval of [T ]. For any ε ∈
(0, 1), ω ∈ (0, 1), and a sufficiently large value of θ that
depends on ε and ω, the following holds with probability at
least 1 − ε

∑

j∈Jres :χ j⊆χ

p′
j‖s̄ j‖∞ ≤ ωm|χ |, (6)

assuming interval χ satisfies

|χ | ≥ 1

m
θd2 log d log(ε− 1

2 T ), (7)

where d > 1 is the dimension of the vectors s̄ j , j ∈ J .
Further, if T = O(dδ), for some constant δ ≥ 0, then the
restriction on the length of χ in (7) can be dropped and (6)
holds for any interval χ .7

Proof Consider an interval χ that satisfies (7) and a job j
such that χ j ⊆ χ . Define X jt as the total (fractional) value of
configurations corresponding to job j and time t , i.e., X jt =∑

C∈C j∩Ct x̂C . Then,

∑

t∈χ j

X jt =
∑

C∈C j

x̂C ≥ p j . (8)

Further, by the LP constraints, we have that X jt ≤ 1.

For the analysis, we partition χ into p j regions R j
1 ,

R j
2 , . . . , R

j
p j , such that

∑

t∈R j
k

X jt ≥ 1/2. (9)

7 Aswe show in the proof,we implicitly use here the constant c in Step 2
of Algorithm 4, which depends on ω. For the case where T = O(dδ),
c depends on ε, ω, and δ.
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The regions are not necessarily formed of consecutive time
slots in χ . One way of doing this is as follows. Start with
singleton regions {t} for which X jt ≥ 1/2. Let q j denote
the number of regions generated. If q j ≥ p j then we are
done; otherwise, until p j regions are obtained, we do the

following, for k ∈ [q j + 1, p j ]: starting with R j
k = ∅ and

while
∑

t∈R j
k
X jt < 1/2, add a time slot t ′ that has not yet

been assigned to any region. Since any such t ′ has not been
chosen as a singleton region, we have X jt ′ < 1/2; therefore,∑

t∈R j
k
X jt ≤ 1. From Equation (8) we have that at least p j

regions are generated in this process.
Let R j

k denote the event that job j is not scheduled in a

given region R j
k in the first stage of the algorithm. We now

compute the probability P(R j
k ). Let Pr( j, t) be the proba-

bility that j is not assigned to any host at time t . Then,

Pr( j, t) =
(

1 − X jt

m

)cm log d

≤ exp(−cX jt log d), (10)

where c > 1 is the constant in Step 2 of Algorithm 4. Hence,
the probability that job j is not scheduled in region R j

k sat-
isfies

P(R j
k ) ≤ �

t∈R j
k
exp(−cX jt log d)

= exp(−c log d
∑

t∈R j
k

X jt ) (11)

≤ exp(− c

2
log d) = d− c

2 (12)

The last inequality follows from (9).
Recall that p′

j (in Algorithm 4) is the processing time
required for the residual job j . The value of p′

j is upper
bounded by the number of regions in which job j has not
been scheduled. Therefore, we have

E[p′
j ] ≤

∑

k∈[p j ]
P(R j

k ) ≤ p jd
− c

2 . (13)

By the LP constraints, we have that
∑

j :χ j⊆χ p j s̄ j ≤
m|χ |1̄d . We note that each bin (i, t) for t ∈ χ and i ≥ 1
is a cube 1̄d in which we “pack" a subset of jobs j satisfying
χ j ⊆ χ . For a job j packed in (i, t), let 1 ≤ η ≤ d be the
resource for which s̄ j,η = ‖s̄ j‖∞. Now, replace job j by a
job j ′ with a single resource requirement, given by ‖s̄ j‖∞.
Then we can replace the bin (i, t) by d unit size bins and
assign j ′ into bin η. Since 1 ≤ η ≤ d, and due to the feasi-
bility of the packing in (i, t), after this transformation, all of
the jobs packed in (i, t) can be feasibly assigned into the d
unit size bins. It follows that

∑
j :χ j⊆χ p j‖s̄ j‖∞ ≤ m|χ |d.

Hence, using (13) we obtain the following upper bound on

the expected total volume of residual jobs in χ :

E

⎡

⎣
∑

j :χ j⊆χ

p′
j‖s̄ j‖∞

⎤

⎦ ≤ m|χ |d1− c
2 (14)

To complete the proof, we need to show that, with high
probability, the total volume of residual jobs in any sub-
interval χ of [T ] is small. To this end, we apply Lemma 4
as follows. For each t ∈ χ and iteration i ∈ [cm log d],
there is an associated random variable Yt,i indicating the
configuration C chosen in iteration i at time t . Note that
since Lemma 4 requires independence between events, the
configurations considered are the ones prior to the modi-
fications applied in Step 2. This is valid as we define the
function f (·) in Lemma 4 to take into account the modi-
fications applied in Step 2. This function is defined as the
quantity Ares[χ ] = ∑

j :χ j⊆χ p′
j‖s̄ j‖∞ which is a function

of these cm|χ | log d independent random variables {Yt,i }. If
one of these variables is altered, itmight affect the choice of at
most one configuration, namely, a configuration C ′ selected
in iteration i at time t is replaced by another configuration
C ′′. Suppose A′

res(χ) and A′′
res(χ) are the two correspond-

ing realizations of the random variable Ares(χ). We now
bound the quantity |A′

res(χ)−A′′
res(χ)|: theworst scenario is

clearlywhen none of the jobs in configurationC ′ is contained
in any other configuration chosen at time t , whereas every
job in C ′′ is contained in some other configuration chosen at
time t ; or vice versa. Thus, we have |A′

res(χ) − A′′
res(χ)| ≤

max(
∑

j∈C ′ ‖s̄ j‖∞,
∑

j∈C ′′ ‖s̄ j‖∞) ≤ d.ApplyingLemma4,
we have, for any ω′ ≥ 0

Pr [Ares(χ) − E(Ares(χ)) ≥ ω′m|χ |]

≤ exp(
(−2ω′2)m2|χ |2
cm log d|χ |d2 )

= exp(−2ω′2

c
· m|χ |
d2 log d

)

Let c > 2 be a sufficiently large constant such that ω >

d1− c
2 . We set ω′ = ω − d1− c

2 , and θ = cω′−2. Then, we
have

Pr [Ares(χ) ≥ ωm|χ |] = Pr [Ares(χ) ≥ (ω′ + d1−
c
2 )m|χ |]

≤ Pr [Ares(χ) − E(Ares(χ)) ≥ ω′m|χ |]

≤ exp(−2ω′2

c
· m|χ |
d2 log d

) = exp(
−2

θ
· m|χ |
d2 log d

)

≤ exp(−2 log(ε− 1
2 T )) ≤ εT−2

The first inequality follows from (14) and the third from (7).
Since the total number of distinct intervals possible in [T ] is
at most T 2, by applying the union bound, the probability that
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some interval χ that satisfies (7) fails to satisfy (6) is at most
ε.

Now, consider the case where T = dδ , for some constant
δ ≥ 0 (independent of d). We have

Pr [Ares(χ) ≥ ωm|χ |] ≤ Pr [Ares(χ) ≥ E(Ares(χ))ω

d1− c
2

]

≤ d1− c
2

ω
.

The first inequality follows from (14) and the second from
Markov’s inequality. As before, we observe that total number
of distinct intervals possible in [T ] is at most T 2 ≤ d2δ . Now,
we choose ε′ > 0 to be a large enough constant satisfying

ω−1d− ε′
2 ≤ ε, and c ≥ 2(2δ + 1) + ε′. Hence,

Pr [Ares(χ) ≥ ωm|χ |] ≤ d1−(2δ+1)−ε′/2

ω
≤ εT−2.

Again, since the total number of distinct intervals possible in
[T ] is at most T 2, by applying the union bound, the proba-
bility that some interval χ fails to satisfy (6) is at most ε.

��
The next lemma gives the conditions that guarantee feasi-

ble schedule for the residual jobs.

Lemma 6 Let (J ,L) be a single resource laminar instance of
MinR such that for any job j , p j+|forb( j)| ≤ λ|χ j |, for some
λ ∈ (0, 1), and for any χ ∈ L:

∑
{ j∈J :χ j⊆χ} p j s j ≤ αm|χ |,

for some α ∈ (0, 1). Then, if λ + 2α ≤ 1, all jobs in J can
be assigned to m + 1 hosts.

Proof We use an algorithm similar to Algorithm 2. The
only difference is in the definition of avail( j). In our case
avail( j) ⊆ χ j\forb( j) since job j cannot be assigned to bins
in any of the time slots in forb( j). Recall that Algorithm 2
works in a bottom-up fashion and a job j is processed after
all intervals χ ′ ⊂ χ j have beenmarked done. While process-
ing job j , a bin is labelled with one of three possible colors:
white, gray or black. Initially, all bins are colored white.

Similar to the proof of Theorem 2, we prove that the
algorithm never reports fail while processing job j . Assume
towards a contradiction that the algorithm reports fail while
assigning job j . We say that time slot t ∈ χ j is unavailable if
either t ∈ forb( j) or j has been assigned to some bin (i, t) in
this time slot. Otherwise, time slot t ∈ χ j is available. Since
p j + |forb( j)| ≤ λ|χ j | the number of unavailable time slots
while processing job j is at most λ|χ j |. We say that time slot
t ∈ χ j is bad if it contains a gray bin. Similar to the proof
of Theorem 2 (although the definition of a bad time slot here
is slightly different), it can be proven that as long as no job
j+ such that χ j ⊂ χ j+ has been allocated the resource: the
number of bad time slots while processing job j is at most

λ|χ j |. The only difference in the proof is in case bin (i, t)
becomes gray after the assignment. In this case, since there
maybe bad time slots in forb( j), we need to use the inequality
p j + |forb( j)| ≤ λ|χ j | (rather than p j ≤ λ|χ j |).

Since we pair the black bins (i, t) ↔ (i ′, t ′) only if
∑

j∈S(i,t)
s j +

∑
j ′∈S(i ′,t ′) s j ′ > 1, the total number of black

bins < 2αm|χ j |. Hence, the total number of bins that are
black or in unavailable time slots is < (λ + 2α)m|χ j |. Since
a time slot t may containt at most one gray bin, the number
of gray bins in available time slots is at most λ|χ j |. Thus, if
λ+2α ≤ 1, we have (λ+2α)m|χ j |+λ|χ j | < (m+1)|χ j |,
and there should be at least one available time slot t∗ that
contains a white bin (i∗, t∗). But in this case, we could have
assigned j to host i∗ at time t∗, which is a contradiction to
the assumption that the algorithm reports a fail. ��

The above lemmas lead to an O(log d) performance guar-
antee for instances with large time windows, as formalized
in the next result.

Theorem 8 Let (J ,W) be an instance of MinR with slack-
ness parameter λ ∈ (0, 1

4 ). Fix an ε ∈ (0, 1). If |χ j | ≥
1
m θd2 log d log(T ε− 1

2 ) ∀ j ∈ J , for sufficiently large con-
stant θ = θ(ε), then Algorithm 4 yields an Oε(log d)

approximation ratio8 with probability at least 1 − ε.

Proof The optimal objective value of the configuration LP,
denotedm∗ is a lower bound on the number of hosts required
for the instance (J ,W). By Theorem 7, m ≤ (1 + ε)m∗,
where m is the (rounded) objective value of the approx-
imate solution for the configuration LP. Now, assuming
Algorithm 4 is correct, the number of hosts used is at most
m(c log d) + m, implying an O(log d) approximation ratio.
Below, we prove correctness of Algorithm 4, i.e., we show
that it feasibly schedules all the jobs in J .

It suffices to show that the residual set of jobs Jres can
be successfully scheduled. Recall that Algorithm 4 uses the
construction given in Sect. 3.2 to transformW into a laminar
set of intervals L and to obtain a mapping L : W → L.
Then, the algorithm computes a schedule of the residual set
of jobs Jres by solving the laminar instance (J ′

res = { j ′ : j ∈
Jres},L), where χ j ′ = L(χ j ). Observe that for any job j ∈
Jres we have that p′

j + |forb( j)| = p j ≤ λ|χ j | ≤ 4λ|χ j ′ |,
where the last inequality follows fromLemma 1. By the same
lemma, we also get that for any job j ∈ Jres , |χ j ′ | ≥ 1

4 |χ j |.
Now, let χ̃ j ′ be the union of all the time windows mapped
by L to time windows in χ j ′ . Also, by Lemma 1 |χ̃ j ′ | ≤
4|χ j ′ |. Clearly, |χ̃ j ′ | ≥ |χ j ′ | ≥ 1

4m θd2 log d log(T ε− 1
2 ). Let

ω ∈ (0, 1). Next, we apply Lemma 5 to the intervals χ̃ j ′
for j ∈ Jres (with appropriate value of θ ), to get that that∑

j∈Jres :χ j ′⊆χ p′
j‖s̄ j‖∞ ≤ 4ωm|χ | with probabillty at least

8 The constant in the Big-Oε depends on ε.
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1 − ε. We now apply Lemma 6, by setting α ← 4ω and
λ̂ ← 4λ. We note that there is a feasible schedule of jobs j ′
on m + 1 hosts if 4λ + 8ω = 1. Indeed, for any λ < 1

4 , there
is a positive constant ω that satisfies this equation. Finally,
it is easy to show that transforming the instance back to d
dimensions (by replacing the requirement of ‖s̄ j‖∞ by s̄ j )
the schedule remains feasible. This completes the proof. ��

We conclude our analysis with the following result.

Theorem 9 Let (J ,W) be an instance of MinR with slack-
ness parameter λ ∈ (0, 1

4 ). Fix an ε ∈ (0, 1). There is a
polynomial time algorithm that yields an Oε(log d log∗ T )

approximation ratio with probability at least 1 − ε.

Proof The key idea is the following. Starting with the maxi-
mum schedule length T , we recursively define κ + 1 ranges
for the time-window sizes in the original instance. We then
partition the set of jobs J to κ + 1 subsets, each contain-
ing jobs with time windows within the corresponding range,
where κ = O(log∗ T ). The crux of this partition is that the
resulting κ+1 instances of our problem satisfy the conditions
of Theorem 8. In particular, all jobs have ‘large’ windows.
Thus, we can obtain for each instance a log d-approximate
solution. Formally, let θ be the constant in Theorem 8. Set
γ = θd2 log d (we assume that the log is base 2). Define the
function ψ : N → R+ as follows:

ψ(i) =
{
4�γ 2� if i = 1

min{T ,
√

ε
(
21/(2γ )

)ψ(i−1)} if i > 1

It is easy to verify that, for i ≥ 1, we have ψ(i) ≤ ψ(i +
1), and ψ(i) ≥ 2γ log2

(
ψ(i + 1)ε− 1

2

)
. Also, let κ be the

smallest integer for which ψ(κ) = T . Then, we have κ =
O(log∗ T ).

We partition the set of intervals W into groups based on
their length as follows:

I0 = {χ : |χ | ∈ [1, ψ(1)]},
Iw = {χ : |χ | ∈ (ψ(w),ψ(w + 1)]} for all w ∈ [1, κ].

Next, we define κ +1 instances of our problem, where the
wth instance, for w ∈ [0, κ] is given by:

(Jw = { j ∈ J : χ j ∈ Iw}, Iw).

Since each of the above instances requires to schedule a
subset of jobs in the original instance, they optimally need at
mostm hosts to complete all jobs. Consider thewth instance,
forw ≥ 0. The largest window size here is at mostψ(w+1).
We further partition this instance as follows. Let

I i
w,Odd = [(2i + 1)ψ(w + 1) + 1,

min{(2i + 3)ψ(w + 1), T }],

where i ≥ 0 and (2i + 1)ψ(w + 1) < T . Similarly, let

I i
w,Even = [(2i)ψ(w + 1) + 1,min{(2i + 2)ψ(w + 1), T }],

where i ≥ 0 and (2i)ψ(w + 1) < T . Now, we define

J iw,Odd = { j ∈ Jw : χ j ⊆ I i
w,Odd}

and

J iw,Even = { j ∈ Jw : χ j ⊆ I i
w,Even}.

Let Jw,Odd = ∪i J iw,Odd and Jw,Even = ∪i J iw,Even . Finally,
remove each job j ∈ Jw,Odd ∩ Jw,Even from Jw,Even and the
corresponding J iw,Even . Consequently, Jw,Odd ∩ Jw,Even =
∅.

In the analysis we distinguish between the case w > 0
and w = 0. For any w > 0, fix an i ≥ 0 such that (2i +
1)ψ(w + 1) < T and consider the instance defined by the
jobs in J iw,Odd . We claim that this instance can be solved
usingTheorem8. Indeed, the total number of time slots in this
instance is 2ψ(w+1), and the time-windowof any job j in the

instance is |χ j | ≥ ψ(w) ≥ 2θd2 log d log
(
ψ(w + 1)ε− 1

2

)
.

Thus, the conditions in Theorem 8 are satisfied, and we can
obtain a feasible schedule using O(m log d) hosts.

For w = 0, fix an i ≥ 0 such that (2i + 1)ψ(1) < T and
consider the instance defined by the jobs in J i0,Odd . We claim
that this instance can also be solved using Theorem 8, since
the total number of time slots in this instance is 2ψ(1) =
O(dδ), for some constant δ ≥ 0, and d is fixed.

Note that for anyw, the odd instances J iw,Odd , J


w,Odd for

i �= 
 are mutually disjoint (jobs and time-windows). Thus,
we can solve them in parallel using the same O(m log d)

hosts. We can do the same for Jw,Even . Suppose we need
mo and me hosts to solve Jw,Odd and Jw,Even , respectively.
Since no job is shared between Jw,Odd and Jw,Even , we can
schedule all the jobs in Jw using mo + me = O(m log d)

hosts.
Now, to handle the instances corresponding to all w ∈

{0, . . . , κ}, we note that no job is shared among the instances.
Therefore, we can aggregate the hosts to obtain a feasible
schedule for all instances using O(mκ log d) hosts. ��

6 Conclusion and open problems

In this work, we address two natural variants of the classic
resource allocation problem with objectives of throughput
maximization (MaxT) and resource minimization (MinR),
respectively. For the MaxT problem, we obtain a constant
approximation algorithm assuming there is sufficient slack
in completing each job. For the MinR problem, we obtain an
algorithm with an approximation ratio that is logarithmic in
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the number of resources d, assuming that none of the time
windows is too small. While these assumptions are mild and
reasonable in practice, we were unable to remove them. The
problem of relaxing these assumptions (or proving its impos-
sibility) remains open.
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