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Abstract
Personnel rescheduling problems have typically been studied from a static perspective, assuming a single rescheduling
decision to be taken for which all disruption information is known. However, companies operate in a dynamic environment
and new disruptions arise at different moments in time during the course of the execution of the schedule. In response, the
personnel planner resides to (multiple) rerostering and/or allocation decisions to reinstate the workability of the schedule.
In this paper, we investigate the dynamic personnel shift and task rescheduling problem and propose different recovery
strategies to efficiently restore the personnel schedule. To that purpose, we simulate the operational variability based on
input probability distributions for different sources of uncertainty and conduct timely recourse actions whenever indicated
by the studied recovery strategies. Insights are provided into the recourse actions with respect to the number and timing of
rescheduling decisions, the type of rescheduling decision and the rescheduling time horizon. We assess the trade-off between
the rescheduling quality and effort, mapping the efficient recovery strategies using a Pareto front. Based upon these insights,
we devise well-performing rules-of-thumb, defining efficient recovery decision strategies that lead to reconstructed personnel
schedules of high quality. In addition, we investigate the impact of the timeline uncertainty on the outcome of the recovery
strategies.

Keywords Personnel scheduling · Dynamic rescheduling · Recovery policies

1 Introduction

As personnel resources embody typically one of the largest
operating costs in an organisation, proper personnel planning
is indispensable to managing these resources in an efficient
and effectivemanner. Companies, however, operate typically
in a dynamic environment such that unexpected events may
disrupt the activity schedules and an appropriate schedule
recovery mechanism should be installed. The planning of
personnel resources is divided, because of its complexity,
into different hierarchical decision stages, i.e. the strategic
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staffing phase, the tactical scheduling phase and the opera-
tional allocation phase (Burke et al., 2004). Each of these
stages is usually treated separately as they involve different
types of decisions with a different time horizon, taking stage-
specific expected or more accurate information into account.
The stages are organised in a hierarchical manner such that
the decisions taken in each phase constrain the decision free-
dom in the subsequent phase(s). The strategic staffing phase
considers long-term capacity decisions to determine the per-
sonnel mix and budget required to meet service demand. In
the tactical scheduling phase, decisions entail constructing
a baseline personnel schedule for a medium-term horizon.
Typical objectives are tomeet the desired service level atmin-
imal personnel cost andmaximal personnel satisfaction. This
baseline schedule is constructed given a number of assump-
tions relative to service demand and employee availability
based on expected information. However, in the operational
allocation phase, from the moment the schedule has been
published to the day of operations, the personnel planner
receives up-to-date and accurate information. Certain input
schedule parameters may change and take a different actual
value. According to Van den Bergh et al. (2013), three types
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of variability can be distinguished in personnel planning, i.e.
uncertainty of demand, uncertainty of arrival and uncertainty
of capacity. Uncertainty of demand may cause expected
demand to differ from actual demand for staff. Uncertainty
of capacity is due to potential absenteeism, such that employ-
ees are unavailable to work a planned duty. Uncertainty of
arrival influences start times and/or the duration of sched-
uled tasks. These unexpected events may lead to schedule
disruptions, i.e. employee shortages or violations of certain
scheduling rules, that render the current personnel sched-
ule infeasible. Consequently, the published schedule cannot
be executed as planned and needs to be adapted by either a
rerostering or an allocation decision. A rerostering decision
is taken with a short-to-medium horizon of multiple days
that reinstates schedule feasibility and minimises the num-
ber of deviations compared to the original personnel schedule
(Maenhout & Vanhoucke, 2013). Imbalances between sup-
ply and demand can also be (partially) recovered by adjusting
the personnel schedule ad hoc via allocation decisions that
consider only the short-term horizon of the single, upcoming
day, for which the parameter data is known with certainty
(Bard & Purnomo, 2005b). A rerostering decision entails
larger scheduling flexibility but requires more effort whereas
future schedule parameters may be only partially up-to-date
and still subject to change. The interplay between reroster-
ing decisions and allocation decisions in response to schedule
disruptions has not been the subject of research before.

The problem under study is a dynamic rescheduling
problem that considers the reactive recovery of personnel
schedules at different time points. Operational variability
accidentally changes parameter input values regarding task
information and worker availability at different moments in
time during the course of execution of the schedule, defined
by the timeline uncertainty. The decision-making embodies
both rerostering and allocation decisions to revise and restore
the feasibility of the baseline personnel schedule relative to
both shift and task assignments. In this paper, we evaluate
the outcome of various dynamic recovery policies in order to
deduce best practices and managerial guidelines. We primar-
ily focus on the time dimension where a personnel planner
faces typically two contingent decisions, i.e.
(i) When is schedule recovery desired? Depending on the
characteristics of disruptions incurred, the rescheduling
decision to restore disruptions can be taken ’ad hoc’ or
using a long-sighted approach. The former implies that the
rescheduling decision is delayed to the day the disruptions
actually occur when the decision-maker has more accurate
information on all sources of uncertainty, whereas the latter
entails the rescheduling decision is taken a couple of days
in advance, possibly on the moment disruptions have arisen,
on a somewhat larger time horizon. The timing of reschedul-
ing decisions over the horizon is indicated by the recovery
decision timeline.

(ii)What is the optimal length of the rescheduling time hori-
zon? If a recovery decision is undertaken, the ideal length
of the rescheduling time horizon has to be determined and,
correspondingly, whether allocation or rerostering decisions
should be undertaken. If the rescheduling time horizon is too
short and/or allocation decisions are considered, the feasi-
bility of the schedule can often only be (partially) restored
by calling upon very costly personnel resources. If the
rescheduling horizon is too large, it is not unimaginable
that conducted changes will have to be changed again in a
dynamic setting, leading to an excessive number of (unnec-
essary) changes.

In order to evaluate dynamic recovery strategies, we sim-
ulate the operational variability based on input probability
distributions for the different types of uncertainty and apply
recourse actionswhenever indicated by the recovery decision
timeline. The reactive rerostering and allocation decisions
are solved via integer programming in order to retrieve
exact solutions such that managerial guidelines can be iden-
tified in an unbiased manner. The research objective is to
devise well-performing rules-of-thumb that define efficient
recovery decision strategies leading to restored personnel
schedules of high quality. As the problem has not been
studied before, we acquire insight into (1) the evaluation
of recovery decision strategies with particular interest in
the recovery decision timeline, the type of recovery deci-
sion and the rescheduling horizon; (2) the trade-off between
rescheduling quality and rescheduling effort, mapping effec-
tive and efficient solutions using a Pareto front; (3) the impact
of timeline uncertainty on the outcome of recovery decision
strategies. In addition, we benchmark a recovery strategy
devised upon the best-performing rule to different individual
recovery strategies known from the literature.

Dynamic rescheduling related to integrated personnel
and task scheduling is relevant for different application
domains, for example, healthcare, production and transporta-
tion (Brucker et al., 2011; Van den Bergh et al., 2013).
Personnel is in most of those application domains auxiliary
resources to process relevant tasks. For all these applica-
tions, the planning and scheduling of resources follow the
same hierarchical decision stages. Different assumptions
have been taken about the service demand and employee
availability based on expected information to construct a
baseline schedule. Approaching the moment of execution,
certain input schedule parameters may change at differ-
ent moments in time, invoking the need for a dynamic
(re-)scheduling approach. In the following, we discuss in
detail one application of the problem under study related
to the nurse-patient assignment problem in the operating
room (OR) department of a hospital (e.g. Di Martinelly &
Meskens, 2017; Akbarzadeh et al., 2020). In an OR depart-
ment, theORmanager coordinates the surgical teams in order
to perform surgical operations. In order to meet the patients’
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needs, nurses are assigned directly to specific surgical cases
in accordance with their availability and qualifications. The
nurse shift schedule is communicated to the nurses at the
start of each month specifying the days and shifts nurses
are required to be on duty. Based on the advance patient
schedule for the next upcoming week, nurses are assigned
to specific patients, i.e. the shift schedule is integrated with
the task planning in order to get a more accurate estimation
of the nurse staffing requirements. However, when the date
of surgery is approaching, usually somewhere in the week
before the surgery, the attending physicians carefully revise
their patient schedules independently from each other on a
moment that suits them best. Hence, new information may
reach the OR manager at any point in time, involving one
or multiple surgery sessions for the upcoming week. In prac-
tice, the exact OR schedule, indicating the specific start times
of the surgeries, is composed the day before operations by
the OR manager who has an overview of the requests of the
different physicians. On the day of operations, this schedule
can further change due to the emergence of urgent patients.
In this way, the nurse schedule can be impaired because
of (1) nurse-specific disruptions that are mainly caused by
the illness of personnel, personnel training days and leave
requests of personnel (uncertainty of capacity); (2) attend-
ing physicians who may postpone specific surgical cases to a
later period or even append add-on cases with a high priority
(uncertainty of demand); and (3) attending physicians recon-
sidering their surgical case planning, i.e. the sequencing of
these cases and the provision of a more accurate estimation
of the duration of surgeries to the OR manager (uncertainty
of arrival).

The paper is organised as follows. Section2 reviews the
relevant literature on dynamic (re-)scheduling and person-
nel rerostering and allocation decisions. In Sect. 3, we give a
detailed description of the baseline scheduling problem, the
different sources of uncertainty and the dynamic reschedul-
ing problem. In Sect. 4, we discuss the solution methodology
used to devise and analyse recovery decision strategies. The
computational experiments and derived managerial findings
are discussed in Sect. 5. Section6 provides final notes and
contributions made.

2 Literature review

2.1 Dynamic (re-)scheduling

Most operating systems are managed in a dynamic environ-
ment due to the arising of unpredictable events. Dynamic
scheduling problems have been foremost studied in the areas
of production, project and transportation scheduling. For an
overview, we refer to Herroelen and Leus (2005), Ouel-
hadj and Petrovic (2009) and Larsen and Pranzo (2019). To

consider operational uncertainty that arises accidentally at
different moments in time, dynamic scheduling approaches
typically apply a scheduling and rescheduling process in
which schedules are revised in response to incurred disrup-
tions. In the literature, different types of multi-stage decision
methodologies have been proposed. In this respect, solution
approaches have been developed relying on stochastic pro-
gramming or (adjustable) robust optimisation to incorporate
some of the uncertainty information upfront when construct-
ing the baseline schedule (Yanikoglu et al., 2019). However,
when the number of stages, the number of possible scenar-
ios and/or the number of (binary) recourse variables is (too)
large, the computational performance of these approaches
is hampered (Larsen & Pranzo, 2019). Apart from these
proactive methods, dynamic rescheduling approaches study
to resolve disruptions solely in a reactive manner, which
is the focus of this literature review. These solution proce-
dures treat the problem in a deterministic manner and apply
a rescheduling method whenever specific conditions are
met. The invoked reactive mechanisms embody a schedule
repair, adjusting the current schedule locally, or a com-
plete rescheduling that devises a new schedule from scratch
(Cowling& Johansson, 2002). The schedule repair heuristics
typically focus upon either a limited period to match up with
the baseline schedule, a partial schedule consisting only of
a limited set of tasks (e.g. operations in failure) or a combi-
nation of both. Corresponding to complete rescheduling or
schedule repair, different objectives have been proposed to
restore the workability of the schedule considering efficiency
measures, robustness measures minimising the effect of dis-
ruptions on the performance of the realised schedule (e.g.Wu
et al., 1993), and/or stability measures minimising deviation
from the baseline schedule (e.g. Ariano et al., 2007).

In a dynamic rescheduling algorithm, the disruptions are
generated viaMonteCarlo simulation or are direct input from
real-world applications (known as trace-driven simulation),
whereas the schedule repair is effectuated using single-pass
heuristics (e.g. the right-shift repair strategy, activity crash-
ing (Bowman, 2006)), meta-heuristics (Nguyen et al., 2014)
or exact optimisation approaches (Zhu & Goverde, 2020).
These optimisation methods are guided by the set of allowed
recovery actions, which are problem-specific mechanisms
instigating changes to the allocation of resources [e.g. swap-
ping of tasks, overtime (Ingels & Maenhout, 2017)] and/or
the execution of the jobs (e.g. task cancellation, retiming
tasks sks Borgonjon & Maenhout, 2021). In contrast to the
static rescheduling problem, dynamic rescheduling problems
are discerned based on their multi-stage character, requiring
the definition of the point(s) in time to perform the reschedul-
ing. To this end, periodic, event-driven and hybrid policies
have been formulated in the literature (Sabuncuoglu&Bayiz,
2000; Vieira et al., 2003). In the periodic policy, schedules
are reviewed at regular intervals. The periodic policy yields
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larger schedule stability and less schedule nervousness but
is not very responsive to unexpected schedule disruptions.
In this regard, different authors studied the rescheduling fre-
quency and indicated that performance deteriorates when the
frequency is lowered (e.g. Sabuncuoglu & Karabuk, 1999).
In an event-driven policy, rescheduling is triggered when-
ever an unexpected event arises, which has been recognised
to outperform periodic rescheduling policies (Vieira et al.,
2000). A hybrid policy combines both policies by invoking
a rescheduling decision periodically and also when a disrup-
tion occurs. In this framework, low-impact disruptions are
typically handled on a periodic basis, whereas high-impact
disruptions are resolved via an event-driven rescheduling
mechanism (Church&Uzsoy, 1992). In general, determining
the rescheduling horizon has been found to be a non-trivial
task (Ouelhadj & Petrovic, 2009).

2.2 Personnel rerostering and allocation decisions

The problemof dynamic (re-)scheduling has not been studied
before in the domain of personnel scheduling. In contrast to
personnel rostering problems, rescheduling decisions have
received limited attention in the staff scheduling literature
(Van den Bergh et al., 2013; Clarke et al., 2015). The few
relevant studies focus on the design of an efficient method to
restore the feasibility of a personnel roster in a static envi-
ronment considering a single decision moment, on which
all disruption information is known, whereas the system
dynamics of personnel scheduling applications are neglected.
Only Wolbeck et al. (2020) consider multiple reschedul-
ing decisions that revise the nurse roster from the moment
only one single capacity disruption arises and installs a fair
shift penalisation scheme over time. However, in their study,
no attention is given to the definition of a suitable length
of the time horizon, frequency and timing of rescheduling
decisions, nor to the impact of timeline uncertainty. Most
studies that consider the rerostering problem, are related to
the nurse shift rerostering problem, for which Clarke et al.
(2015) provide an overview of the literature. Wolbeck et al.
(2020) presents a generic formulation of the nurse reros-
tering problem that can be adjusted to various cases with
different characteristics. Bäumelt et al. (2016), Chiaramonte
and Caswell (2016) and Wickert et al. (2019), amongst oth-
ers, propose different meta-heuristic algorithms as a solution
methodology for the nurse rerostering problem, which is
basically a personnel shift scheduling problem. The previous
studies dealing with the nurse rerostering problem consider
only disruptions that are the result of staff absenteeism as
pointed out by the review of Clarke et al. (2015). More
recently, Maenhout and Vanhoucke (2018) study the static

personnel shift and task rescheduling problem considering
the uncertainty of demand, arrival and capacity. They pro-
pose a local search-based heuristic that combines a variable
neighbourhood search and a perturbation method based on
mathematical programming in order to restore the feasibility
of personnel rosters. Rather than devising an efficient solu-
tion methodology to solve the static rescheduling problem as
done by Maenhout and Vanhoucke (2018), the focus in this
paper is on the development of efficient and effective recov-
ery decision strategies for the dynamic reschedulingproblem,
giving insight into the timing, frequency and horizon of
rescheduling decisions so that disruptions arising dynami-
cally over the scheduling horizon are adequately dealt with.

Short-term allocation recovery decisions have been
researched primarily for task scheduling problems rela-
tive to the transportation industry, for which the causes of
disruptions are more of a technical or external nature result-
ing from uncertainty of arrival (see Clausen et al., 2010;
Cacchiani et al., 2014 for a survey). Bard and Purnomo
(2005a, b) study allocation decisions in the healthcare sector
to recover nurse schedules in the short term that are pri-
marily impacted by uncertainty of demand. Similarly, Gross
et al. (2018) propose a model for rescheduling physicians
as a response to unplanned absenteeism in a hospital. The
preferredmethodology to solve allocationmodels in the liter-
ature is mixed-integer programming. Apart from these static
reactive allocation methods, a limited number of studies pro-
posed a two-stage proactive method to construct a robust
personnel schedule considering uncertainty upfront, com-
bining scheduling and allocation decisions (e.g. Ingels &
Maenhout, 2017; Parisio& Jones, 2015).However, to the best
of our knowledge, there is no study that combines rerostering
and allocation decisions together to improve the decision-
making and design a suitable dynamic recovery strategy.

Different studies in the literature [e.g. (Rezanov & Ryan,
2010; Clausen et al., 2010; Maenhout & Vanhoucke, 2013;
Wickert et al., 2019)] show the importance and (compu-
tational) benefits of reducing the time horizon and/or the
number of employees, i.e. the so-calledwindow technique, to
solve personnel rerostering and/or allocation problems. The
proper definition of the rescheduling time horizon and the
(number of) employees included in the recovery problem is
crucial to ensure high-quality solutions. Maenhout and Van-
houcke (2013) evaluate different strategies regarding the lead
time or pre-period and after-period, i.e. the considered hori-
zon before or after the schedule disruptions, assuming that
all disruptions causing a rescheduling are known. They con-
clude that considering a pre-period of a single day and an
after-period of one or two days significantly improves solu-
tion quality and is sufficient to restore the personnel roster
efficiently.
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3 Problem description and formulation

In this paper, we study the dynamic personnel shift and task
rescheduling problem. We assume that a baseline personnel
roster has been composed based on expected information
(Sect. 3.1). Changes to the schedule parameters, potentially
disrupting the schedule, arise in a dynamic manner over the
time horizon as a result of operational variability (Sect. 3.2).
To reinstate the workability of the schedule, the personnel
planner can decide to conduct a rescheduling decision, which
embodies either a rerostering decision or an allocation deci-
sion, at different moments in time following a particular
recovery decision strategy (Sect. 3.3).

3.1 The integrated personnel shift and task
scheduling problem

Shift scheduling and task assignment are two related opti-
misation problems. The personnel shift scheduling problem
assigns shifts and days off to create a line-of-work for each
worker. The task assignment problem assigns tasks to work-
ers to compose duties based on worker availability, which
is determined by their line-of-work. The integration of both
problems leads to an improved personnel roster (Ernst et al.,
2004). The integrated personnel shift and task scheduling
problem involves a medium-term planning horizon consist-
ing of a set of days D (index d). A set of tasks Jd (index j)
needs to be performed on every day d. A task j on a particu-
lar day d, designated by (d, j), has a start time (std j ), finish
time ( f td j ) and duration (td j ). These tasks are assigned to
a set of homogeneous workers W (index w), who are able
to carry out all tasks. These workers are organised to work
following a set of shifts I (index i), which comprehends par-
ticular shift duties i ∈ I \ i∗ to carry out the allocated tasks
and a free shift or day off i∗. Each shift i ∈ I is determined
by a start time Si , end time Fi and duration Ti . The tasks and
shifts allocated to an individual worker over the planning
horizon compose a line-of-work. The set of individual lines-
of-work for all workers yields the baseline personnel roster.
The following constraints are imposed on this schedule, i.e.

• Staffing requirements stipulate that a task j on day d must
be carried out by a specific number of individual work-
ers, i.e., Rd j . Tasks with a staffing requirement higher
than one are broken down into (sub-)tasks with staffing
requirements equal to one, for which the characteristics
(duration, start and finish time) are identical.

• Time-related or calendar constraints are imposed on the
scheduling of shifts for an individual worker. These con-
straints embody both counter and sequence constraints. A
workerw can carry out a single shift duty i (i ∈ I \ i∗) or
a day off i∗ per day. The planning horizon is divided into

different periods p ∈ P (e.g. a calendarweek) and in each
period a worker should work between a minimum (gmin)
and maximum (gmax) number of shift duties. Further-
more, a minimum rest time of 11h between shift duties
is imposed, establishing a forward rotation of shifts over
consecutive days. The set of shifts Bi lists the shift duties
that cannot be assigned on day d+1 after shift i has been
assigned on day d. Additional sequence restrictions are
imposed on the minimum (hmin) and maximum (hmax)
consecutive work days and on the minimum (wmin) and
maximum (wmax) consecutive days off.

• Task assignment constraints prohibit overlap between
allocated tasks. Based on the start and finish times of
the tasks, a set of task cliques C (index c) can be defined.
Each clique consists of a set of tasks Kc out ofwhich only
one task can be carried out by a specific worker. When a
worker is assigned to a task, the worker is assigned to the
associated shift ensuring the link between task and shift
assignments. The pre-emption of tasks is forbidden.

The objective is to construct an efficient baseline schedule,
minimising the number of hired workers and the number of
planned shift duties. Aworker is hired from themoment (s)he
performs a shift duty in the planning horizon. The problem
relies on three types of decision variables, i.e. (1) variable
x jwdi is equal to 1 if worker w is allocated to task j related
to shift i and day d, and 0 otherwise; (2) variable ywdi equals
1 if workerw performs shift i on day d, and 0 otherwise; and
(3) variable zw is equal to 1 if workerw is hired, carrying out
a line-of-work, and 0 otherwise. Note that the baseline per-
sonnel schedule is made public a couple of days (or weeks)
before the day of operations and scheduling decisions are
taken based upon deterministic, expected information related
to task staffing requirements, start times and durations of
tasks and worker availability. A formulation of the baseline
scheduling problem can be found in Maenhout and Van-
houcke (2018). The set of selected workers in the baseline
schedule, i.e. W = {w ∈ W |zw = 1} stipulates the set of
workers that is input to the dynamic rescheduling problem,
which implies that any disruption in the operational phase
should be resolved by the workers assigned in the tactical
decision phase as no additional workers can be deployed.

3.2 Operational variability

Certain schedule parameter values, input to construct the
baseline schedule, may emerge differently than expected
when new or more accurate information is obtained at dif-
ferent points in time between the moment the schedule has
been announced and the day of operations. These unex-
pected parameter values may embody schedule disruptions,
making the baseline roster infeasible. This operational vari-
ability encountered during the execution of a personnel roster
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is determined by (1) timeline uncertainty and (2) schedule
parameter uncertainty, which are explained below.

3.2.1 Timeline uncertainty

In contrast to the static rescheduling variant, disruptions are
not all known at a particular point in time (e.g. the beginning
of the time horizon) but arise in a gradual manner over the
time horizon according to the disruption information profile.
The associated degree of timeline uncertainty is dependent
on the specific application as some environments are more
volatile than others, characterised by two factors, i.e.

(i) The frequency of disruption information points: A dis-
ruption information point defined on day d is a point
in time the personnel planner is notified about newly
available disruption information, indicated by the exoge-
nous parameter DI Pd with a value equal to 1. A day d
on which no additional information is revealed, is indi-
cated as DI Pd = 0. The disruption information points
are predefined depending on the problem setting and can
occur on a regular basis, e.g. on a daily or weekly basis,
the latter assuming that the disruption information for
the upcoming week is gathered and provided to the per-
sonnel planner, e.g. at the beginning of the week. The
basic scenario under study is that a personnel planner
considers new information every day of the planning
horizon, conform to the discussed real-life application.
However, in order to assess the impact of timeline uncer-
tainty, we consider different scenarios related to the
frequency of disruption information points. The larger
the number of disruption information points, indicated
by #DI P = ∑

d DI Pd , the larger the uncertainty as dis-
ruption information becomes gradually known in a more
fragmented manner.

(ii) The information horizon (IH): The number of days
for which new disruption information becomes avail-
able starting from the disruption information point. The
smaller the information horizon, the larger the uncer-
tainty, as less future disruption information is known.

3.2.2 Schedule parameter uncertainty

Similar as in the research of Maenhout and Vanhoucke
(2018), we consider three sources of parameter uncer-
tainty, characterised by different probability distributions and
parameters, i.e.

(i) Personnel may become unavailable for one or more days
in the planning horizon due to uncertainty of capacity
(e.g. illness, holiday). Based on this absenteeism, the set
of shift disruptions L and the set of task disruptions M
can be defined, comprising the relevant duties and tasks

the associated workers are assigned to in the baseline
roster. The availability of worker w on day d is mod-
elled via a Bernoulli distribution with probability Pr(χ)

(with χ as a binary stochastic variable, assuming a value
of 1 if the worker is available, and 0 otherwise). The
majority of studies, comprising a wide variety of appli-
cation domains, employ independent Bernoulli trials to
model the absenteeism of workers on a particular day
(e.g. Maass et al.,2017; Mac-Vicar et al., 2017; Gross et
al., 2018; Wickert et al., 2021) . However, there are some
rare cases in which the absenteeism probability takes
some dependency into account. Relevant is the research
of Wolbeck et al. (2020), who model worker absen-
teeism considering both single-day and consecutive-day
absences, such that there is some dependency between
capacity disruptions for a single worker on subsequent
days. Notification of worker absences is determined in
an independent manner using the Bernoulli distribution,
whereas the number of days of absence is generated
according to a discrete distribution.

(ii) The actual demand for staff, represented by the actual
set of tasks Jd , may deviate from the expected staffing
requirements, indicated by the original set of tasks Jd ,
requiring changes to the personnel shift and task sched-
ule due to uncertainty of demand (Bard & Purnomo,
2005a; Ingels & Maenhout, 2017). The demand for staff
is assumed to be uncertain over a particular shift i on day
d. The staffing requirements

∑
j∈Jdi

Rd j of shift duty

i ∈ I\i∗ (with Jdi ={(d, j) | std j ≥ Si∧ f td j ≤ Fi , j ∈
Jd , d ∈ D}) can be modelled by a Poisson distribution
with the expected staffing requirements

∑
j∈Jdi

Rd j as
the mean value. A change in the staffing requirements of
a particular shift impacts the set of tasks Jd as tasks may
either be removed or added (Maenhout & Vanhoucke,
2018).

(iii) Due to uncertainty of arrival, the original parameters
(std j , f td j and td j ) of task j on day d can be changed
and a new actual start time std j , finish time f td j and
duration td j may be postulated (eg., Sadjadi et al., 2011).
Uncertainty related to durations of tasks is modelled by a
triangular distribution with an expected duration equal to
td j . The lower and upper limits are equal to β1 × td j and
β2 × td j , respectively, with β1 ≤ 1 and β2 ≥ 1 as vari-
ability measures. Furthermore, variation in start time of
task (d, j) is modelled by a uniform distribution within
interval [std j − stdev; std j + stdev].

3.3 The dynamic rescheduling problem

In response to the incurred disruptions gradually arising over
the planninghorizon, the personnel planner undertakes one or
multiple (static) rescheduling decisions in a reactive manner
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following a particular recovery decision strategy to restore
schedule feasibility. Each rescheduling decision, taken at
a certain point in time, considers a particular rescheduling
horizon for which the—at that moment in time—known dis-
ruptions are tried to be resolved by adapting the personnel
shift and task schedule, while keeping the number of changes
to the baseline schedule to a minimum.

3.3.1 Recovery decision strategy

A recovery decision strategy is defined by the following char-
acteristics, i.e.

(i) The timing and frequency of rescheduling decision
points: The personnel planner can undertake a reschedul-
ing decision at any day d of the planning horizon, which
can be either a rerostering decision or an allocation
decision, determined by the rescheduling horizon. The
personnel planner can select the points in time, at which
(s)he actually tries to restore the personnel schedule by
adapting the schedule, i.e. the so-called rerostering deci-
sion points (RDPd = 1) or allocation decision points
(ADPd = 1). When such a recovery or allocation deci-
sion is not taken, the respective variables RDPd and
ADPd are set to 0.

(ii) The rescheduling horizon (RH ): This horizon corre-
sponds to the number of days subject to rescheduling,
starting from the day of the rescheduling decision point
considered. Hence, in contrast to typical reschedul-
ing decisions defined in the literature that consider the
remaining horizon, starting from the rescheduling deci-
sion point under consideration towards the end of the
planning horizon, the recovery methodology applies the
time-window technique such that a rescheduling decision
on day d considers only a limited set of days Dv

d ⊆ D.
The other days in the planning horizon are not considered
for rescheduling, which implies that these assignments
are fixed to the assignments made via an earlier (re-
)scheduling decision. The rescheduling decision may
comprehend either an allocation decision or a reroster-
ing decision, between which a distinction is made based
on RH , i.e.

• An allocation decision makes short-term ad hoc
adjustments to both shift and task assignments. Allo-
cation decisions adopt a wait-and-see approach and
are modelled as a recovery decision with a horizon of
only a single day, i.e. the day of operation d (RH = 1,
Dv
d = {d}), for which all schedule (disruption) infor-

mation is known with certainty. With such short lead
times, the rescheduling effort is limited but there is
little flexibility to adjust personnel shift assignments,
which should be conform to the (hard) time-related

constraints given the (fixed) assignments on previous
and later days.

• A rerostering decision considers a medium-term
horizon of a couple of days starting from the day
of operation d (RH > 1, Dv

d = {d, . . . , d∗} with
d∗ = min{d + RH − 1, |D|}) to adapt the schedule,
taking the relevant schedule (disruption) informa-
tion into account. As the recovery horizon comprises
multiple days, a rerostering decision considers the
personnel shift and task allocations on multiple con-
tiguous days, taking the task assignment constraints,
the staffing requirements and especially the time-
related constraints explicitly into account. In this
way, rerostering decisions allow to anticipate to some
future schedule disruptions and are characterised by
a larger scheduling flexibility and effort compared to
allocation decisions.

During the planninghorizon, the personnel plannermay carry
out one or multiple rescheduling decisions, possibly invok-
ing both types of recovery decisions at different moment in
time, depending on the type of disruptions arisen on a partic-
ular day. In this way, the strengths of both types of decisions
can be combined to compose an efficient recovery decision
strategy. Note that it is not useful to consider a rerostering
decision and an allocation at the same point in time (day d),
i.e. RDPd + ADPd ≤ 1. Implementing an allocation deci-
sion on the same day when undertaken a rerostering decision
would unnecessarily increase the rescheduling effort while
the quality of the restored roster will not further improve.

3.3.2 The (static) rescheduling decision

At every rescheduling decision point (RDPd = 1 or
ADPd = 1), a (static) recovery decision is taken considering
a limited horizon with length RH , a set of shift disruptions
L and a set of task disruptions M . The embedded recovery
mechanisms to adjust the personnel shift and task schedule
rely on

(i) The cancellation of a task when the staffing requirement
of the task is not fulfilled. This is explicitly stated in
the model by decision variable nud j , which equals 1 if
the corresponding task j on day d is cancelled and is 0
otherwise.

(ii) The overstaffing of a task such that the task can be
assigned to more workers than defined by the staffing
requirement. The variable nod j indicates the excess num-
ber of workers assigned to task j on day d.

(iii) The swapping of tasks and shifts between workers is per-
formed when workers are assigned to new tasks or shifts
during their line-of-work and take over tasks and shift
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duties that were originally assigned to other personnel
members.

To restore the personnel shift and task schedule, twoobjec-
tives are considered, i.e.

(i) The maximisation of the feasibility of the personnel shift
and task schedule, considering both the scheduling of the
shift duties for an individual worker, respecting the time-
related constraints, and the task staffing requirements.

(ii) The minimisation of the number of schedule devia-
tions of the restored schedule compared to the originally
announced schedule as a result of the swapping of
shift duties and tasks between workers. This objective
considers schedule stability over multiple rescheduling
decisions, in line with previous research on dynamic
(re-)scheduling (Ouelhadj & Petrovic, 2009), advocat-
ing schedule adherence to the baseline schedule. In this
way, we consider not only the personnel satisfaction as
personnel dislike schedule changes, but also account for
efficiency considerations as the baseline schedule is con-
structed minimising the number of workers and planned
shift duties.

The mathematical formulation for the (static) reschedul-
ing problem, which is provided below, encompasses a
modified version of the model proposed by Maenhout and
Vanhoucke (2018) to account for the (restricted) rescheduling
horizon and the fixing of variables outside this time window
via constraints (13) and (14), making the model relevant in
the context of dynamic rescheduling.

Sets

I The set of shifts (index i)

W The set of workers (index w)

D The set of days in the planning horizon (index d)

Dv
d The set of days in the planninghorizon subject to recovery

P The set of periods in the planning horizon (index p)

Jd The set of tasks on day d (index j)

C The set of cliques (index c)

Kc The set of tasks incorporated in clique c

Bi The set of shifts forbidden on day d + 1 after shift i has
been scheduled on day d

L The set of disrupted shift assignments
with L = {(w, d, i) | ywdi = 0 ∧ ywdi = 1, w ∈ W , d ∈
D, i ∈ I} (index l)

M The set of disrupted task assignments
with M = {( j, w, d, i) | x jwdi = 0 ∧ x jwdi = 1, w ∈
W , d ∈ D, j ∈ Jd , i ∈ I} (index m)

Parameters

std j The start time of task j on day d

f td j The finish time of task j on day d

td j The duration of task j on day d

Rd j The staffing requirement of task j on day d

Si The start time of shift i

Fi The finish time of shift i

Ti The duration of shift i

gmin The minimum number of shift duties in one period
for an individual worker

gmax The maximum number of shift duties in one period
for an individual worker

hmin The minimum number of consecutive days on for an
individual worker

hmax Themaximum number of consecutive days on for an
individual worker

wmin The minimum number of consecutive days off for an
individual worker

wmax The maximum number of consecutive days off for
an individual worker

x jwdi 1, if task j is allocated to worker w, shift i and day
d in the baseline schedule, 0 otherwise

ywdi 1, if worker w is scheduled to shift i on day d in the
baseline schedule, 0 otherwise

zw 1, if worker w is hired according to the baseline
schedule, 0 otherwise
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x ′
jwdi 1, if task j is allocated to worker w, shift i and day

d in the previous schedule, 0 otherwise

y′
wdi 1, if shift i on day d has been scheduled for worker

w in the previous schedule, 0 otherwise

c1w The cost for changing the staffing of workerw in the
operational phase

c2,1wdi The cost for scheduling worker w to the disrupted
shift duty i on day d

c2,2wdi The cost for scheduling worker w to shift i on day
d, different to the baseline schedule

c3,1jwdi The cost for allocating worker w to the disrupted
task assignment j , day d, shift i

c3,2jwdi The cost for allocating worker w to task j , day d,
shift i , different to the baseline schedule

co The cost per worker overstaffing of a task

cu The cost for cancelling a task

Decision variables

x jwdi 1, if worker w is allocated to task j , shift i on day d,
0 otherwise

ywdi 1, if worker w is scheduled to shift i on day d, 0
otherwise

zw 1, if workerw is assigned to perform a line-of-work,
0 otherwise

Auxiliary variables

nud j 1, if task j on day d is cancelled, 0 otherwise

nod j The excess number of workers for task j on day d

Mathematical formulation

Min
∑

d∈D

∑

j∈Jd

(co nod j + cu nud j ) +
∑

(w,d,i)∈M
c2,1wdi ywdi

+
∑

( j,w,d,i)∈L
c3,1jwdi x jwdi+

∑

w∈W
c1w |zw − zw| +

∑

w∈W

∑

d∈D

∑

i∈I
c2,2wdi |ywdi − ywdi |

+
∑

j∈Jd

∑

w∈W

∑

d∈D

∑

i∈I
c3,2jwdi |x jwdi − x jwdi | (1)

∑

i∈I

∑

w∈W
x jwdi + nud j − nod j = Rdj ∀d ∈ D,∀ j ∈ Jd (2)

∑

(d, j)∈Kc

x jwdi ≤ ywdi ∀w ∈ W ,∀c ∈ C (3)

∑

d∈D

∑

i∈I\i∗
ywdi ≤ M zw ∀w ∈ W (4)

∑

i∈I
ywdi = 1 ∀w ∈ W ,∀d ∈ D (5)

7p+6∑

d=7p

∑

i∈I\i∗
ywdi ≥ gmin ∀w ∈ W ,∀p ∈ P (6)

7p+6∑

d=7p

∑

i∈I\i∗
ywdi ≤ gmax ∀w ∈ W ,∀p ∈ P (7)

d+hmin−1∑

d

∑

i∈I\i∗
ywdi − hmin

∑

i∈I\i∗
ywdi (1 −

∑

i∈I\i∗
yw(d−1)i ) ≥ 0

∀w ∈ W ,∀d ∈ {2, . . . , |D| − (hmin − 1)} (8)
d+hmax
∑

d ′=d

∑

i∈I\i∗
ywd ′i ≤ hmax ∀w ∈ W ,∀d ∈ {1, . . . , |D| − hmax}

(9)

d+wmin−1∑

d

ywdi∗ − wminywdi∗ (1 − yw(d−1)i∗ ) ≥ 0 ∀w ∈ W ,

∀d ∈ {2, . . . , |D| − (wmin − 1)} (10)
d+wmax
∑

d ′=d

ywd ′i∗ ≤ wmax ∀w ∈ W ,∀d ∈ {1, . . . , |D| − wmax}

(11)

ywdi +
∑

i ′∈Bi
yw(d+1)i ′ ≤ 1 ∀w ∈ W ,∀d ∈ {1, . . . , |D| − 1},∀i ∈ I

(12)

ywdi = y′
wdi ∀w ∈ W ,∀d ∈ D \ Dv

d ,∀i ∈ I (13)
x jwdi = x ′

jwdi ∀ j ∈ Jd ,∀w ∈ W ,∀d ∈ D \ Dv
d ,∀i ∈ I (14)

x jwdi binary ∀ j ∈ Jd ,∀w ∈ W ,∀d ∈ D,∀i ∈ I

ywdi binary ∀w ∈ W ,∀d ∈ D,∀i ∈ I

zw binary ∀w ∈ W

nud j binary ∀ j ∈ Jd ,∀d ∈ D

nod j ≥ 0 and integer ∀ j ∈ Jd ,∀d ∈ D (15)

Equation (1) formulates the objective function, which
consists of two components. The first objective component
minimises the total sum of feasibility penalties involving
the staffing requirements and assignment to disrupted shifts
and/or tasks. In order to restore feasibility as best as possible,
we include variables nud j and n

o
d j in the staffing requirements

(Eq.2), allowing respectively under- and over-coverage of
staffing requirements at the expense of a penalty cost. In
order to prevent violation of (hard) time-related constraints,
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the variables related to sets L andM of disrupted assignments
are still eligible at the expense of a very large penalty cost
when selected. The assignment of a worker to a disrupted
shift or task is further denoted as an infeasible shift or task
assignment. The second component minimises the differ-
ences between parameters zw, x jwdi and ywdi related to the
baseline schedule and decision variables zw, ywdi and x jwdi

in order to optimise the personnel satisfaction and avoid dete-
riorating the schedule efficiency. Note that via the definition
of appropriate penalty costs, the objective (Eq. 1) can be lin-
earised as stated in Maenhout and Vanhoucke (2018).
Equation (2) formulates the staffing requirements. This con-
straint imposes that each task is executed by the required
number of workers, but allows deviations from the stipulated
task demand for staff. Constraint (3) embodies the relation
between task and shift assignment variables, i.e. if a worker
is allocated to a task, (s)he has to carry out the corresponding
shift duty.Additionally, the constraint stipulates that aworker
can be allocated to at most one task out of a set of over-
lapping tasks Kc, forming the maximal clique c. Constraint
(4) models the relation between the shift assignment vari-
ables and worker hiring variables, i.e. a worker is hired when
(s)he performs a shift in the planning horizon. Constraints
(5)–(12) represent the time-related requirements imposed on
the line-of-work of an individual worker, determining the
scheduling of shift duties over the planning horizon. Equa-
tion (5) assigns a worker to one shift duty per day or to a day
off. Constraints (6) and (7) restrict minimum and maximum
number of shift duties per calendar week. Constraints (8) and
(9) limit minimum and maximum number of shift duties on
consecutive days. Constraints (10) and (11) impose restric-
tions onminimumandmaximumnumber of consecutive days
off. Equation (12) forbids the consecutive assignment of par-
ticular shift duties to allow only forward rotation of shifts.
Equations (13) and (14) implement the time-window tech-
nique, ensuring that only task and shift assignments related
to the set of days Dv

d can be changed. Other assignments, out-
side this time window, are fixed to the assignments made in
the previous personnel schedule, which is either the baseline
schedule or the schedule constructed at a previous reschedul-
ing decision point. Note that the values for x ′

jwds and y
′
wds are

updated after every (re-)scheduling decision. Equation (15)
state the domains of the decision variables.

4 Methodology

The dynamic rescheduling problem under study can be mod-
elled as amulti-stage stochastic optimisation problem, which
implements a recourse decision stage for every potential deci-
sion moment and implicitly considers the decisions related
to timing of rescheduling decision points, type of recov-
ery decisions and rescheduling horizon. However, due to the

large number of stochastic variables, the exponential num-
ber of possible scenarios and the large number of binary
decision variables, a stochastic approach is computationally
intractable. In this paper, we utilise a two-step method-
ology to investigate the dynamic rescheduling problem.
This methodology first stipulates the values for the relevant
recovery decisions to be taken and subsequently assesses
empirically roster quality after simulation and reschedul-
ing. In this way, we present heuristic rules-of-thumb defining
recovery strategies leading to restored personnel schedules
of high quality. In addition, we study the sensitivity in per-
formance of the (proposed) scheduling rules for different
timeline uncertainty profiles. In this section, we discuss the
methodology and conducted experimental design to derive
relevant findings. Algorithm 1 provides an overview of the
functioning of the dynamic rescheduling algorithm given a
timeline uncertainty profile and a stipulated recovery deci-
sion strategy. Taking these inputs into account, we mimic the
dynamic progress of the personnel shift and task schedule and
conduct the arising of operational variability and reschedul-
ing decisions in a chronological order until the end of the
planning horizon. The disruption information is generated
over a particular information horizon at respective disruption
information points using Monte Carlo simulation. The latter
relies on the characteristics of the schedule parameter uncer-
tainty, which is defined by hypothesised distributions and
parameters. The static rescheduling problems (Eqs. 1–15),
encounteredwhen taking a rerostering decision (RDPd = 1)
or an allocation decision (ADPd = 1), are solved exactly
using mathematical programming. In this way, the devised
recovery strategies are evaluated in an unambiguous manner
thriving on empirical experimentation. Section4.1 gives an
overview of the relevant outputmetrics. Section4.2 discusses
relevant decision values for recovery strategies and presents
rules-of-thumb to define dynamic recovery strategies.

4.1 Output metrics and performance evaluation

In order to discern suitable recovery strategies, the analysis
is based on multiple metrics and performance is evaluated
against objective benchmark recovery strategies.

4.1.1 Output metrics

As one of the primary research objectives is to devise
effective and efficient recovery decision strategies in an
unambiguous manner, we conduct a multi-objective eval-
uation considering rescheduling quality and rescheduling
effort, i.e.

Rescheduling quality (Z )
The performance of recovery decision strategies is mea-
sured via evaluation of attained roster feasibility and
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Algorithm 1 The dynamic rescheduling algorithm
1: Define input timeline uncertainty profile (DI Pd , I H )
2: Define input recovery decision strategy (RDPd , ADPd , RH )
3: for d ∈ D do
4: If (DI Pd = 1) then
5: d∗ = min{d + I H − 1, |D|}
6: for d ′ ∈ {d, . . . , d∗} do
7: Generate disruptions for day d ′ via Monte Carlo simulation of

schedule parameter uncertainty
8: If (RDPd = 1) then
9: d∗ = min{d + RH − 1, |D|}
10: Conduct rerostering decision (Dv

d = {d, . . . , d∗}) via optimi-
sation of model (1)–(15) using mathematical

programming
11: Update personnel shift and task schedule
12: Else If (ADPd = 1) then
13: Conduct allocation decision (Dv

d = {d}) via optimisation of
model (1)–(15) using mathematical programming

14: Update personnel shift and task schedule
15: Evaluate performance of input recovery decision strategy

(Rescheduling quality, Rescheduling effort)

number of schedule deviations of the final personnel
schedule, obtained at the end of the planning horizon after
recovery, in comparison to the baseline schedule. The
objective function of the rescheduling model, i.e. Eq. (1),
provides a mathematical representation of this perfor-
mance measure. In our analysis of rescheduling quality,
we account for two main objectives, i.e. (1) the maximi-
sation of the schedule feasibility and (2) theminimisation
of the number of deviations between the original and final
roster (cf. Section3.3.2), which encompass the following
components:

• Coverage: This component accounts for the feasibil-
ity related to the staffing requirements, expressed by
the number of cancelled or understaffed tasks (#UST
= ∑

d∈D
∑

j∈Jd n
u
d j ) and the amount of task over-

staffing (#OST = ∑
d∈D

∑
j∈Jd n

o
d j ).

• Infeasible assignments: This component measures
the feasibility related to the hard time-related con-
straints, reflected by the number of infeasible assign-
ments, i.e.

∑
(w,d,i)∈M ywdi (#Shi f ts) and

∑
( j,w,d,i)∈L x jwdi (#Tasks), respectively.

• Deviations: This component measures the stabil-
ity relative to the baseline roster, which is mea-
sured via the number of worker, shift and task
deviations between the baseline and the final ros-
ter, formalised as

∑
w∈W |zw − zw| (#Workers),∑

w∈W
∑

d∈D
∑

i∈I |ywdi − ywdi | (#Shi f ts) and∑
j∈Jd

∑
w∈W

∑
d∈D

∑
i∈I |x jwdi−x jwdi | (#Tasks),

respectively.

There is a clear trade-off between these two compo-
nents, i.e. increasing the number of deviations improves
the schedule feasibility and vice versa. As a result,

these objective components are entangled and cannot be
viewed in a separatemanner when evaluating the attained
roster quality after rescheduling, which necessitates the
representation of the rescheduling quality as a compound
of these components. To attain an adequate and balanced
trade-off, however, suitable weights need to be devised,
which is discussed in Sect. 5.1.
Apart from the quality evaluation based on the compari-
son between the final and baseline schedule, we also take
the dynamic roster changes into account in our analysis,
i.e. the total number of shift and task changes conducted
over the course of the planning horizon aggregated over
all rescheduling decisions. These dynamic roster changes
are evaluated by counting the number of changes between
successive (intermediate) schedules. In order to break ties
between recovery decision strategies that lead to similar
performance in terms of Z , we consider the unnecessary
shift and task changes resulting from conducting mul-
tiple rescheduling decisions. An unnecessary change is
a change performed at a particular rescheduling deci-
sion point that is made undone or changed again at a
later decision point due to the dynamic character of the
problem, taking into account new disruption informa-
tion. These unnecessary changes can be derived as the
difference between the total number of dynamic roster
changes and the number of changes between the base-
line and final roster. These unnecessary task and shift
changes entangle the organisation of resources and com-
munication. (Unnecessary) shift changes, in particular,
are detrimental to personnel satisfaction.
Rescheduling effort (RE)
In the context of (dynamic) re-scheduling, constructing a
new schedule in an efficient manner has been a relevant
topic of research (see e.g. Ouelhadj & Petrovic, 2009).
We rely on RE to reflect the efficiency of a recovery
decision strategy. RE is a function of the number of days
considered for rescheduling and is a main determinant of
the instance size. This metric is most relevant for prac-
titioners to define efficiency as it gives an unambiguous
idea—not related to the solution methodology—of the
required manual interventions or computational efforts
relative to automated solution procedures. Limiting the
rescheduling effort can realise substantial efficiency sav-
ings.
The rescheduling effort (Eq.16) is equal to the summa-
tion of the considered rescheduling horizons relative to
the days on which rescheduling decisions are taken. In
other words, we sum the number of days considered in
every rerosteringdecision,which is equal to theminimum
of RH and the remaining number of days in the planning
horizon starting with the day the rerostering decision is
taken included (i.e. |D| − d + 1), and add the number
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of allocation decisions, which per definition consider a
horizon of only a single day.

RE =
∑

d∈D
(RDPd · min(RH, |D| − d + 1) + ADPd)

(16)

When relating Z and RE of all possible recovery deci-
sion strategies, a set of efficient non-dominated solutions
can be constructed, which can be shown using a Pareto front
(Emmerich & Deutz, 2018). As we aim to identify a limited
set of recovery decision strategies leading to high-quality
personnel schedules, amongwhich the personnel planner can
choose based on both Z and RE , we try to find characteris-
tics of recovery decision strategies that (1) lie on (or close to)
the Pareto front and (2) show a stable performance over all
identified decision strategies. In order to represent resulting
quality of a particular set of recovery strategies, we calculate
the convergence of the selected set of recovery strategies,
represented by a point cloud of solution points, to the Pareto
front. This measure refers to the closeness of the set to the
Pareto front, which is most frequently evaluated in the lit-
erature by the mean generational distance (GD) (Li & Yao,
2019), calculating the Euclidian distance for each solution
point in the solution set to the closest point in the Pareto
set based on absolute values in performance (eq. (17)). The
lower GD, the closer the solution set is to the Pareto front.

GD = 1

|N |
∑

n∈N

√
(Z(n) − Z∗(n))2 + (RE(n) − RE∗(n))2

(17)

with

N Set of recovery decision strategies considered (index
n)

Z(n) Rescheduling quality associated with recovery deci-
sion strategy n

Z∗(n) Rescheduling quality associated with closest point
on Pareto front for recovery decision strategy n

RE(n) Rescheduling effort associated with recovery deci-
sion strategy n

RE∗(n) Rescheduling effort associated with closest point on
Pareto front for recovery decision strategy n

Note that this metric, as presented, is based on the abso-
lute values in performance related to Z and RE . As the

scales of both criteria are different, the calculated GD is
biased towards Z . This is because the term related to Z
has a higher contribution to the distance formula. To solve
this issue, studies in the domain of multi-objective optimi-
sation have proposed several methodologies [e.g. TOPSIS
(Hwang & Yoon, 1981), VIKOR (Opricovic, 1998)], which
apply some type of unity-based normalisation (e.g. min–max
feature scaling). When normalising the coordinates to some
degree, the drawback is that the ranges of the metrics Z and
RE are significantly different and points are not uniformly
distributed over the solution space (cf. Section5.2) so that
many points have very small normalised coordinate values
for Z . As a consequence, the GD with normalised coordi-
nates shows small and meaningless values, which are very
difficult to interpret and utilise for comparison of recovery
strategy characteristics.
The purpose of GD, however, is primarily to give the reader
insight into the degradation in Z associated with a set of
recovery decision strategies resulting from the application
of a specific rule-of-thumb versus the solutions lying on the
Pareto front. RE operates merely as a tiebreaker to distin-
guish efficient from inefficient recovery decision strategies
and to identify the Pareto front solutions. In this way, when
using the absolute coordinates for calculating GD, GD pro-
vides valuable information relative to the proximity of the
considered set of strategies to the Pareto front and differ-
ences can mainly be attributed to the difference in Z .

4.1.2 Benchmark recovery strategies

Apart from the comparison with the Pareto front, we bench-
mark performance of the visited recovery decision strategies
to following strategies, i.e.

(i) No rerostering/No allocation: This strategy does not
conduct any rerostering nor allocation decision, i.e.
RDPd = 0∧ ADPd = 0 (∀d ∈ D). A benchmark with
this strategy reveals the degree according to which the
proposed recovery strategy improves the roster quality
after rescheduling as a result from recovery decisions.

(ii) Allocation: This strategy assumes only allocation deci-
sions, resolving only those schedule disruptions on the
day of operations, i.e. RDPd = 0 ∧ ADPd = 1
(∀d ∈ D). This benchmark reveals to which degree
rerostering decisions are beneficial to improve roster
quality.

(iii) RerosteringwithPerfect Information (PI): This strat-
egy assumes that all disruption information is known
at the beginning of the planning horizon and conducts
a single rerostering decision with a horizon spanning
the entire planning horizon D. This benchmark allows
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an objective comparison of recovery strategies with a
lower bound solution.

4.2 Analysis and experimental design

In order to obtain insight into the dynamic rescheduling prob-
lem under study and to identify characteristics of suitable
recovery decision strategies leading to restored personnel
schedules of high quality, we conduct several computational
experiments. An overview of main experiments is provided
in Fig. 1, which is described in the following subsections.

4.2.1 Analysis of recovery decision strategies

Step 1. An analysis of recovery decision strategies is per-
formed via a multi-objective evaluation of rescheduling
quality versus rescheduling effort, constructing the Pareto
front of efficient recovery strategies given the base case
timeline uncertainty scenario, which conforms tomost appli-
cation domains. In this base scenario, we assume that new
information becomes known every day (#DI P = |D|)
and the information horizon starts from the relevant disrup-
tion information point until the end of the planning horizon
(I H = |D|). In this first step, we consider all recovery deci-
sion strategies related to the timing of rescheduling decisions,
the type of recovery decision and the rescheduling horizon
via complete enumeration.Overall,we consider 2×|D|×2|D|
different recovery decision strategies for which the dynamic
rescheduling algorithm is applied and the performance is
analysed, i.e.

• We consider all possible recovery decision timelines or
combinations of alternative timings for conducting a
rerostering decision over the planning horizon, leading
to 2|D| alternatives giving insight in the binary value for
RDPd (∀d ∈ D). These rerostering decision timelines
are potentially complemented or not by an allocation
decision whenever RDPd = 0, leading to 2 times 2|D|
recovery decision timelines in total, with and without
allocation decisions.

• The rescheduling horizon is varied between 1 and the
length of the planning horizon (|D|). Note that when
RDPd = 1 and RH = 1, the rerostering decision coin-
cides with an allocation decision on day d.

In the initial analysis, only rerostering decisions are con-
sidered to investigate the course of the Pareto front and
the characteristics of efficient recovery strategies, compar-
ing non-dominated versus dominated recovery strategies, in
a qualitative manner.

Step 2. An in-depth study is conducted in order to gain
insight in the characteristics of suitable recovery strategies,
exploring impact of length of rescheduling horizon, number

of rescheduling decision points and timing of rescheduling
points. The RH and the number of rerostering decision points
(#RDP = ∑

d RDPd ) are decision variables with a value
ranging between 1 and the length of the planning period
(|D|). For timing of rescheduling points, preliminary analy-
sis pointed to different interesting patterns that need further
investigation, i.e. (1) recovery decisions can be conducted
on a regular basis over the time horizon; (2) recovery deci-
sions can be linked to the disruption information points, i.e.
the timeline uncertainty; and (3) recovery decisions can be
linked to the (type of) disruptions incurred, i.e. the schedule
parameter uncertainty.

Step 3. Based upon these characteristics, different heuris-
tic rules-of-thumb are devised and evaluated, guided by GD
as performance metric, to identify a limited set of well-
performing recovery strategies amongst which the personnel
planner can make a choice, making the trade-off between Z
and RE , i.e.

• Rule 0. No rule: No specific characteristic is discerned
such that this rule considers all recovery strategies visited.
This rule is applied for benchmark purposes.

• Rule 1. Always rerostering: These recovery strategies
ensure that new disruption information is always consid-
ered in one of the rescheduling decisions taken. In this
way, we conduct a rerostering decision at least every time
new information becomes available (RDPd ≥ DI Pd ,
∀d ∈ D) with a minimum RH up to the next (prede-
fined) rerostering point (RH ≥ maxq(d × RDP(q+1)

d −
d ′ × RDP(q)

d ′ ), ∀d, d ′ ∈ D, with RDP(q)
d is the qth

rerostering decision in the planning horizon). Note that
the timeline uncertainty and associated disruption infor-
mation points are assumed to be known in advance.
This rescheduling policy can be considered as a hybrid
rescheduling policy. This policy is, on the one hand,
event-driven as a rescheduling decision is applied every
time new disruption information arises and allows, on
the other hand, to increase frequency of rescheduling
decisions, invoking a rescheduling decision also on other
moments in time.

• Rule 2. Regular rerostering decisions: This reschedul-
ing strategy embodies a periodic policy to restore the
personnel schedule at least at regular intervals, ensur-
ing rerostering decision points are balanced and equally
distributed over the planning horizon. A RH of at least
two days is applied. The number of time periods or dis-
tance between consecutive rerostering decisions can be
computed as d × RDP(q+1)

d − d ′ × RDP(q)

d ′ = (|D| −
1)/

∑
d RDPd . This implies that when #RDP = 2 and

|D| = 7, the distance between decision points should be
equal to 3 (e.g. decision points are positioned at time
points 2 and 5) or, when #RDP = 3, the distance
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between consecutive decision points is equal to 2 (e.g.
decision points are positioned at time points 2, 4 and 6),
etc. Hence, the smaller #RDP , the larger the average
distance is between consecutive decision points.

• Rule 3. Regular rerostering decisions with overlap:
This periodic policy ensures rerostering decision points
are not only balanced and equally distributed over the
planning horizon (cf. rule 2), but also an overlap of at least
a single day is installed between rescheduling horizons
of consecutive rerostering decision points, i.e. RH ≥
d × RDP(q+1)

d − d ′ × RDP(q)

d ′ + 1.
• Rule 4. Rerostering linked to disruption information
point: This hybrid policy stipulates that, similar to rule 1,
a rerostering decision is required whenever new disrup-
tion information is available (RDPd ≥ DI Pd , ∀d ∈ D)
but does not specify a particular RH .

• Rule 5. Rerostering linked to information horizon:
RH is set longer than I H when I H does not compre-
hend the entire planning horizon such that an after-period
is created when rerostering (RH > I H |I H < |D|).
Only when the information horizon is equal to the length
of the planning horizon, RH and I H are equal (RH =
I H |I H = |D|). This policy does not postulate any spe-
cific timing for the rescheduling decision points.

• Rule 6. Rerostering linked to disruptions: This event-
driven policy ensures that a rerostering decision (RH ≥
2) is invoked if there is an infeasible shift assignment that
needs to be resolved on day d or d + 1, i.e. ∀d ∈ D :
RDPd = 1 | ∃l ∈ L : ywdi = 1 ∨ yw(d+1)i = 1. In this
way, possibly a pre-period and after-period are installed
to solve capacity disruptions and improve rescheduling
quality.

We further sophisticate recovery strategies following these
rules by combining rerostering and allocation decisions.
This implies that an allocation decision is conducted when
no rerostering decision is applied (∀d ∈ D : ADPd =
1|RDPd = 0). The alternation between rerostering and allo-
cation decisions may be induced because disruptions related
to task information require a significantly lower rescheduling
effort to achieve a feasible schedule compared to disrup-
tions related to personnel-shift assignments, violating the
shift-scheduling rules. Combining rerostering and allocation
decisions reduces the required RE to attain a particular level
of schedule feasibility.

4.2.2 Sensitivity analysis

The sensitivity in the performance of recovery decision
strategies is explored by evaluating the impact of (1) depen-
dency between capacity disruptions on consecutive days for

individual workers and (2) the timeline uncertainty. Regard-
ing the latter, the following steps are taken:
Step 1. In order to obtain insights into the sensitivity of
timeline uncertainty on the performance of dynamic recov-
ery strategies, we consider alternative timeline uncertainty
scenarios, denoted as [#DI P , I H ], and apply the dynamic
rescheduling algorithm for all recovery decision strategies
(cf. Section4.2.1) to conduct a multi-objective evaluation
involving both Z and RE . In order to investigate the impact
of timeline uncertainty on resulting value for Z and perfor-
mance of proposed dynamic rescheduling rules, we vary the
(input) timeline uncertainty characteristics as follows, i.e.

• The frequency of the occurrence of disruption infor-
mation points is varied and three different settings are
considered, i.e. disruption information points occur on a
daily basis (#DI P = |D|), onceper three days (#DI P =
�|D|/3) and once per week (#DI P = |D|/7).

• The length of the information horizon is varied and three
different settings are considered, i.e. 1 day, 3 days and
|D| days.

• In order to generate disruption information timelines
with suitable characteristics, we only consider those
combinations [#DI P , I H ] that allow the simulation of
disruptions on every day of the planning horizon for rea-
sons of comparability between uncertainty scenarios. For
example, the combination [#DI P , I H ] = [3,1] are not
considered as disruptions can only be generated on day
d (DI Pd = 1), day d + 3 (DI Pd+3 = 1), etc and not on
intermediate days (e.g. days d + 1 and d + 2).

Based on these settings, we consider in total six alternative
timeline uncertainty scenarios [#DI P , I H ], i.e. [1,7], [3,3],
[3,7], [7,1], [7,3] and [7,7]. In order to evaluate unambigu-
ously the impact of timeline uncertainty,we use the technique
of common random numbers. This implies that the same dis-
ruptions stipulated by the schedule parameter uncertainty are
generated but that the occurrence of these (future) disruptions
may arise at a different information disruption point. For
example, when #DI P = 1, all disruptions are generated for
the entire planning horizon at this point. When #DI P = 7
and I H = 1, daily information points are defined and the
same disruptions arise but all disruption information is gen-
erated only for the day of the disruption information point
and disruption information on future days is uncharted.
Step 2. Comparing results for different timeline uncertainty
profiles allows analysing the impact of timeline uncertainty
characteristics #DI P and I H . Via changing the input time-
line disruption profile, we study (1) impact on the average
value for Z ; (2) impact on the course of the convex Pareto
front, for which multiple phases are existent with a differ-
ent slope indicating the improvement in quality as a function
of RE ; and (3) the divergence in quality between different
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recovery strategies, which is measured via metric GD. A
larger variation in quality increases the importance of prop-
erly selecting a suitable recovery strategy to restore schedule
feasibility.
Step 3. The sensitivity of timeline uncertainty is explored
relative to the defining characteristics of recovery strategies,
i.e. RH , #RDP , RDPd and ADPd , and performance of
proposed heuristic rules-of-thumb.

5 Computational experiments

In this section, we provide insight into the recovery of
disrupted personnel rosters in a dynamic environment. In
Sect. 5.1, we describe test instances and parameter set-
tings used in the experimental analysis. In Sect. 5.2, we
demonstrate how the recovery decision timeline and the
rescheduling horizon relate to the rescheduling quality and
discern a Pareto front of efficient solutions mapping Z versus
RE . In Sect. 5.3,we explore the sensitivity of obtained results
to characteristics modelling the encountered uncertainty.
Section5.4 benchmarks individual recovery decision strate-
gies known from literature to the best-performing heuristic
rule devised in this study. Online Appendix C provides an
overview of themost important managerial findings. All tests
are carried out on an Intel Core i5 processor 2.6 Ghz and 8
Gb RAM.

5.1 Experimental dataset design

As a result of the variety of applications for the problemunder
study, we study a generic personnel shift and task schedul-
ing problem. The design of the considered test instances is
discussed in Maenhout and Vanhoucke (2018) and relies on
the generation of synthetic data for which many settings
are inspired by real-life or are derived from well-devised
experiments in the literature. Online Appendix A section
gives a summary of considered task characteristics, person-
nel scheduling characteristics, characterisationof uncertainty
and objective function structure.

5.2 Analysis of recovery decision strategies

In this section, we analyse resulting rescheduling quality as a
function of rescheduling effort and characteristics of recov-
ery strategies. To conduct this analysis properly, all recovery
decision alternatives are considered butwe foremost focus on
recovery strategies implementing only rerostering decisions,
not complemented by allocation decisions, unless otherwise
stated. In this way, we assess 7 · 27 = 896 recovery deci-
sion strategies, resulting from the combination of 27 timeline
decisions, indicating the rerostering decision points, and 7

possible rescheduling horizons, ranging between 1 and the
length of the planning horizon (|D| = 7).

5.2.1 Multi-objective evaluation: rescheduling quality
versus rescheduling effort

Figure2 shows the scatter plot for recovery strategies not
complemented by allocation decisions (indicated by light
grey dots (•)), displaying performance metrics Z and RE on
y-axis and x-axis, respectively. The horizontal lines display
the value for Z associated with the benchmarks, i.e. (1) qual-
ity without rerostering and without allocation decisions, (2)
quality with solely allocation decisions and (3) quality result-
ing from rerostering with PI. In addition, we identified the
Pareto front or non-dominated recovery strategies (indicated
by black dots (•) and connected via a line). Table 1 dis-
plays the (average) detailed performance (cf. Section4.1.1)
of the benchmark strategies and recovery decision strate-
gies categorised based on RE . The percentage of dynamic
roster changes on top of the deviations is shown between
brackets, which resembles the absolute number of unneces-
sary changes versus the number of deviations between the
baseline and final schedule. Table A in Online Appendix
B shows a detailed comparison of objective components
between Pareto and non-Pareto recovery decision strategies
supporting qualitative findings discussed below.

Figure2 and Table 1 reveal that, in general, a larger effort
improves the quality of the resulting personnel roster, i.e.
the number of infeasible assignments and understaffed tasks
decrease at the expense of a larger number of deviations
to the original roster. However, the rate of improvement
decreases when effort increases. The Pareto front reveals a
steep improvement in Z when RE is limited and increases
from 1 to 7 days. Note that with RE = 7 days, the vari-
ance in Z between different recovery strategies is large. For
the most efficient strategies, almost all infeasible assign-
ments are resolved and a significant amount of understaffed
tasks are re-assigned to other workers (cf. Table A in Online
Appendix B). A well-designed rescheduling strategy with a
limited RE , possibly including days for which not all dis-
ruptions are known, outperforms the ‘Allocation’ benchmark
that only restores the roster for the day of operation, for
which all disruptions are known with certainty. Enlarging
RE to more than 7 days significantly improves quality, pri-
marily reducing the number of understaffed tasks. At some
point, further enlarging RE is no longer useful as no efficient
combinations are discerned as the value for Z stagnates. Con-
sequently, although some disruptions may already be known
in the further future, it is not necessary to consider the entire
(remaining) period as RH , starting from the day under con-
sideration until the end of the planning horizon. When RE is
large, a smaller variance in Z , shown by the values for GD,
is observed as nearly all recovery decision strategies lead to a
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Fig. 2 Computational results
for all recovery strategies
without allocation decisions: Z
versus RE ([#DIP, IH] = [7, 7])

Table 1 Detailed computational results for recovery decision strategies ([#DIP, IH] = [7, 7]) and benchmark solutions

RE General metrics Coverage Infeasible assignments Deviations Dynamic changes
Z GD CPU (s) #UST #OST #Shifts #Tasks #Shifts #Tasks #Shifts #Tasks

0–3 18,643 1350.2 0.2 24.2 31.6 4.9 11.2 3.3 26.1 3.3 (0%) 32.2 (23%)

4–7 11,004 714.1 1.1 18.9 18.8 3.4 5.5 9.4 40.6 9.9 (5%) 54.3 (34%)

8–11 5625 556.9 3.9 17.1 12.2 1.5 2.1 16.1 50.7 18.7 (16%) 77.6 (53%)

12–15 3835 320.2 9.4 15.9 8.8 0.9 1.1 19.4 55.1 24.9 (28%) 96.1 (74%)

16–19 2695 127.6 18.9 14.9 6.0 0.4 0.5 21.6 57.9 30.3 (40%) 111.7 (93%)

20–23 2005 65.4 28.7 14.1 3.5 0.2 0.1 22.7 59.5 34.7 (53%) 126.6 (113%)

24–28 1618 18.7 40.2 13.2 1.2 0.0 0.0 23.6 60.4 40.0 (70%) 145.0 (140%)

0–28 7692 566.9 7.3 17.7 14.3 2.1 3.6 14.5 47.3 18.1 (25%) 76.9 (62%)

Benchmark recovery strategies

(i) 26,928 – 0.0 45.5 45.1 5.6 16.7 0.0 0.0 0.0 (0%) 0.0 (0%)

(ii) 5661 – 0.8 12.4 0.0 4.3 0.0 8.4 48.7 8.4 (0%) 48.7 (0%)

(iii) 1203 – 16.6 8.4 0.0 0.0 0.0 29.8 67.8 29.8 (0%) 67.8 (0%)

Legend (i) No rerostering/No allocation; (ii) Allocation; (iii) Rerostering with PI

restored solution of high quality. Compared to the benchmark
‘Rerostering with PI’, however, we observe a larger number
of understaffed tasks due to the timeline uncertainty where
new disruptions can arise daily on every future day.
Efficient strategies, lying on the Pareto front, show a com-
promise between #RDP and RH . Foremost, the days in
the planning horizon that are subject to rerostering need to
be concentrated around the days that are impacted by (the
largest number of) capacity disruptions (cf. the performance
of Rule 6 indicated in Sect. 5.2.3, which counts 9 of the
21 Pareto solutions). To resolve these quandaries in a sat-
isfactory manner, changes to the original roster on multiple
consecutive days are required. As a result, when possible,

it is good practice to install multiple rescheduling decision
points with a limited horizon of two to preferably four con-
secutive days, for which most of the disruptions are known.
Inefficient strategies suffer from poor timing as they do not
consider the days with the largest number of (capacity) dis-
ruptions or utilise the RE inefficiently, which is shown by
the larger number of infeasible shift and task assignments for
non-Pareto solutions. The latter is caused by (1) a too large
number of rerostering decisions with a smaller RH such that
either the disruptions are not entirely restored or a larger
number of deviations is required due to the smaller degree of
freedom to change the roster; or (2) a too small number of
rerostering decisions with a longer RH , e.g., a single reros-
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tering decision with a relatively longer RH undertaken at
the beginning of the horizon, not taking into account that
disruptions may arise in a dynamic manner every day of the
planning horizon.

In following sections, we aim to identify suitable charac-
teristics of recovery strategies, lying close to the Pareto front
presented in Fig. 2 by making use of GD, together with per-
formance metrics Z and RE . The value for Z averaged over
all recovery decision strategies is 7692 and the average RE
is 10.0 days. TheGD for the 896 recovery decision strategies
amounts to 566.9, which is employed as a benchmark. For a
single recovery decision strategy, the required computational
effort, measured via the CPU time (in seconds), averages
7.3 s and ranges between 0.004s and 61.9 s, which depends
upon the recovery decision strategy and the instance charac-
teristics. Note that these times are limited resulting from the
considered planning horizon of 7 days and the many strate-
gies characterised by a low RE . In search for proper recovery
strategies, we enumerated and executed all possible strate-
gies, leading to a total required CPU of 13577.4 s ([#DI P ,
I H ] = [7,7]) for a single instance.

5.2.2 Rescheduling horizon and number of rescheduling
decisions

Tables 2 and 3 display impact of RH and #RDP on the per-
formance metrics. In addition, details are provided related to
the objective component values, averaged over all 896 con-
sidered recovery strategies without allocation decisions. The
percentage of dynamic roster changes on top of the devi-
ations is shown between brackets. The results reveal that
both RH as well as #RDP have a significant impact. A
longer RH or a larger #RDP improves the value for Z
at the expense of a larger RE . Increasing RH or #RDP
reduces the number of understaffed tasks and the number
of infeasible shift and task assignments in an incremental
manner at the expense of a larger number of deviations to
the original roster. In addition, the number of unnecessary
changes increases as well, as schedule disruptions on later
days may be anticipated and possibly considered again at a
later decision pointwith additional information.Unnecessary
(shift) changes are undesirable from the workers’ perspec-
tive. The results for GD reveal that the decision strategies
with a RH of four or more days are well-performing and
lead to high-quality solutions, lying close to the Pareto front.
Recovery strategies with RH = 4 have significantly more
solutions on the Pareto front than strategies considering a
shorter or longer RH . A larger RH unnecessarily increases
RE from 11.0 to 14.0 and the unnecessary dynamic shift
changes from 21% to 36%, whereas Z does not significantly
improve. Similarly, strategies with five or more reschedul-
ing decisions perform significantly better than strategies with
fewer decisions. The appropriated timing of these reschedul-

ing decisions is discussed in the following sections. Based
on all these metrics together, we conclude that suitable, well-
performing recovery strategies should limit both RH and
#RDP to a certain extent. Comparing RH and #RDP , we
observe that an increase of #RDP has the largest impact
resulting in a better value for Z but also a larger number of
(unnecessary) dynamic roster changes, which is due to the
specific timeline uncertainty characteristics of the base case
scenario, i.e. disruptions may arise on each day.

5.2.3 Timing of rescheduling decision points

Additional understanding inwell-performing recovery strate-
gies can be gained by analysing the timingof the rescheduling
decision points. Relevant heuristic rules-of-thumb have been
proposed in Sect. 4.2. Figure3 has been composed similarly
to Fig. 2. The set of recovery strategies following these rules
is indicated by black dots (•). Table B in Online Appendix B
provides details related to the objective function components
of solutions yielded via the rules-of-thumb. Note that the per-
formance of rules 4 and 5 are not discussed for the base case
timeline uncertainty scenario as for this timeline uncertainty
profile, rule 4 coincides with rule 1 and rule 5 is highlighted
in the previous section (RH = 7). Other observations are as
follows:

Rule 1. Always rerostering
A natural decision strategy is to conduct rescheduling

decisions such that all changed schedule parameters are con-
sidered in at least one of the rescheduling decisions. Since in
the base case timeline uncertainty scenario new information
may arise on every day of the horizon, a rescheduling deci-
sion is required every day. Figure3a shows the performance
(RE , Z ) of those decision strategies. The results reveal that
these recovery decision strategies lead to high-quality per-
sonnel rosters with an average value for Z of 2303 and RE is
large, i.e. 20 days (CPU = 14.5 s). Compared to the entire set
of explored decision strategies (Rule 0), GD is significantly
lower and decreases from 566.9 to 268.9. Hence, exploiting
this characteristic enables the identification of a set of recov-
ery strategies that are closer to the Pareto front but require a
large effort. The resulting schedules denote a large degree of
feasibility at the expense of a large number of deviations and
unnecessary changes (e.g. when RH = 4, unnecessary task
and shift changes amount to 137% and 48%, respectively).

Rule 2. Regular rerostering decisions
In order to reduce RE and number of deviations and

unnecessary changes, the average distance between con-
secutive rescheduling decision points is a relevant timeline
characteristic to define decision points in a balanced man-
ner over the planning horizon. Figure3b reveals that these
strategies lead to personnel rosters with an average value for
Z of 3827 while RE is moderate, equal to 13.2 days (CPU
= 9.0 s). Compared to the entire set of 896 explored decision
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Table 2 Computational results as a function of RH

RH General metrics Coverage Infeasible assignments Deviations Dynamic changes
Z RE GD CPU(s) #UST #OST #Shifts #Tasks #Shifts #Tasks #Shifts #Tasks

1 15,346 3.5 1097.9 0.4 19.5 22.7 4.9 8.4 4.3 33.1 4.3 (0%) 42.5 (28%)

2 9232 6.5 815.2 0.5 18.3 15.5 3.0 4.2 10.1 43.2 11.3 (12%) 62.2 (44%)

3 6608 9.0 598.1 0.5 18.4 13.1 1.8 2.8 14.1 48.2 16.7 (18%) 75.1 (56%)

4 5740 11.0 366.2 0.7 17.3 12.4 1.3 2.5 17.6 50.9 21.3 (21%) 85.5 (68%)

5 5613 12.5 361.9 7.7 16.9 12.2 1.2 2.4 18.4 51.8 23.9 (30%) 90.1 (74%)

6 5646 13.5 360.7 10.1 16.9 12.2 1.2 2.5 18.4 51.9 24.2 (32%) 90.5 (74%)

7 5662 14.0 368.5 31.0 16.9 12.2 1.2 2.5 18.5 52.2 25.2 (36%) 92.1 (77%)

Table 3 Computational results as a function of #RDP

#RDP General metrics Coverage Infeasible assignments Deviations Dynamic changes
Z RE GD CPU(s) #UST #OST #Shifts #Tasks #Shifts #Tasks #Shifts #Tasks

0 26,932 0.0 0.0 0.003 45.6 45.1 5.6 16.7 0.0 0.0 0.0 (0%) 0.0 (0%)

1 17,602 2.9 1305.5 2.1 26.0 31.9 4.2 10.7 6.3 27.4 6.3 (0%) 32.7 (19%)

2 11,904 5.7 881.6 4.2 20.5 22.7 3.1 6.6 10.8 39.4 11.8 (9%) 52.5 (33%)

3 8099 8.6 600.1 6.2 17.9 15.9 2.2 3.9 14.0 46.7 16.5 (18%) 70.0 (50%)

4 5577 11.4 468.6 8.3 16.2 10.7 1.6 2.1 16.3 51.5 20.6 (27%) 85.9 (67%)

5 3952 14.3 288.0 10.3 14.8 6.5 1.2 1.0 17.8 54.6 24.2 (36%) 100.8 (84%)

6 2938 17.1 169.8 12.5 13.7 3.0 1.0 0.3 18.9 56.7 27.4 (45%) 114.8 (103%)

7 2303 20.0 268.9 14.5 12.7 0.0 0.8 0.0 19.7 57.9 30.4 (54%) 128.0 (121%)

strategies, GD is significantly lower and amounts to 341.0.
When RH = 4, this rule lowers the unnecessary task and
shift changes to 80% and 25%, respectively.

Rule 3. Regular rerostering decisions with overlap
Figure3c reveals that installing some overlap of at least

a single day between the rescheduling horizons of consecu-
tive rescheduling decisions, balanced over the time horizon,
significantly improves the value for Z compared to rule 2
from 3827 to 3208. In addition, GD improves from 341.0 to
271.1. This can be explained as (capacity) disruptions that
may already have arisen and are known, are better restored a
couple of days in advance via an earlier rerostering decision
rather than restoring the disruption on the day of operation.
The downside of defining overlap is that RE increases to
14.5 days (CPU = 10.9 s), whereas the unnecessary task and
shift changes are similar to Rule 2. Defining no overlap, i.e.
the RH is ended (just) before the day of the next rerostering
decision point, leads to an inferior quality. Decision strate-
gies with limited or no overlap (< 1 day) involve a smaller
RE (average 5.8 days) and lead to personnel rosters with
an inferior value for Z (equal to 10,046) and a GD value
of 773.6, which is worse than the average GD of the 896
decision strategies.

Rule 6. Rerostering linked to (capacity) disruptions
An analysis of the timing of decision points reveals that

rescheduling decisions can be connected to the arising of

capacity disruptions. A rerostering decision is taken prefer-
ably on the day before or on the day of the disruption with a
limited RH ≥ 2. In this way, primarily the numbers of infea-
sible shift and task assignments are reduced. Figure3d shows
that applying these rules lead to high-quality schedules that
are lying close to the Pareto front. The average value for Z
equals 1742 and RE amounts to 19.5 days (CPU = 21.0 s),
whereas there is only a slight increase regarding the unneces-
sary task and shift changes (i.e. 88% and 27%, respectively,
when RH = 4). Compared to the entire set of explored deci-
sion strategies, GD has significantly decreased to 41.0.

5.2.4 Value of appending allocation decisions

Fig. 4 displays the resulting rescheduling quality and effort
and compares the strategies that conduct additional allocation
decisions when no rerostering decision is applied (indicated
by grey triangles (�)), to recovery strategies without alloca-
tion decisions (indicated by light grey dots (•)). The Pareto
front of recovery strategies with and without allocation deci-
sions are represented by black triangles (�) and black dots
(•), respectively. Note that as a result of appending alloca-
tion decisions, the average required CPU only marginally
increases.

The results reveal that, in general, combining allocation
decisions with rerostering decisions does not outperform
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Fig. 3 Computational results for the heuristic rules-of-thumb

Fig. 4 Computational results
for combining rerostering and
allocation decisions: Z versus
RE ([#DIP, IH] = [7, 7])
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suitably devised recovery strategies without allocation deci-
sions. The Pareto front with allocation decisions is domi-
nated by the Pareto front when considering only rerostering
decisions. However, as a result of included allocation deci-
sions, recovery strategies are consistent and always lead
to high-quality solutions having a better performance than
the ‘Allocation’ benchmark. Appending allocation decisions
improves the value for Z yielded by individual recovery
strategies that do not apply a rerostering decision on every
day of the planning horizon to ensure the latest disruption
information is considered via a rescheduling decision. For
example, when appending allocation decisions to rule 6, a
rerostering decision (RH ≥ 2) is conducted to resolve capac-
ity disruptions on day d or d + 1 and allocation decisions
are taken on other days to resolve disruptions resulting from
uncertainty of demand or arrival. This combined recovery
strategy improves the average value for Z from 1742 to 1568
and decreases GD to 16.7, leading to high-quality schedules
that are lying very close to the Pareto front. The drawback of
appending allocation decisions is that the number of unnec-
essary task and shift changes significantly increase to 217%
and 105% (RH = 4), respectively, as days are subject to
rescheduling more frequently.

5.3 Sensitivity analysis

In this section, we investigate the sensitivity of results for the
recovery decision strategies to the encountered uncertainty.
More precisely, we study the impact of dependency between
capacity disruptions (Sect. 5.3.1) and the timeline uncertainty
characteristics (Sect. 5.3.2).

5.3.1 Impact of dependency between capacity disruptions

In this experiment, we consider the modelling of both single-
day and consecutive-day absences for individual workers.
Inspired by the research ofWolbeck et al. (2020),we set prob-
abilities of 1, 2, 3, 4 and 5 days of absence equal to 55%, 20%,
20%, 5% and 1% respectively. Table 4 compares the obtained
results with dependent capacity disruptions to the case for
which the number of absent workers is determined day-by-
day in an independent manner. The results are presented for
rules 1, 2, 3 and 6, in combination or not with allocation
decisions (‘with alloc’ vs. ‘w/o alloc’) for [#DI P , I H ] =
[7,7]. The table shows that results are very similar when
considering only single-day capacity disruptions versus the
case of considering both single-day and multi-day absences
and confirms the analysis done for independent capacity dis-
ruptions in previous section. Note that solution quality is
worse for instances for which dependent capacity disrup-
tions are generated, which is due to the larger number of
disruptions simulated for these instances. Results reveal that
rule 6 with allocation decisions appended (a hybrid policy)

Table 4 Computational comparison (Z , RE, GD) for dependent versus
independent capacity disruptions ([#DIP, IH] = [7,7])

Dependent Independent
Z RE GD Z RE GD

Rule 0. w/o alloc 12,224 10.0 788.6 7692 10.0 566.9

With alloc 4571 13.5 506.7 3277 13.5 469.4

Rule 1. w/o alloc 3613 20.0 45.1 2303 20.0 268.9

With alloc 3615 20.0 43.1 2304 20.0 269.0

Rule 2. w/o alloc 8789 13.2 499.0 3827 13.2 341.0

With alloc 4090 16.1 209.1 2483 16.1 214.5

Rule 3. w/o alloc 8109 14.5 454.7 3208 14.5 271.1

With alloc 3837 17.3 164.0 2151 17.3 147.9

Rule 6. w/o alloc 3112 20.1 125.9 1742 19.5 41.0

With alloc 3005 21.6 66.3 1568 21.4 16.7

still performs best in terms of rescheduling quality, followed
by rule 1, which is an event-driven policy for the base case
scenario. Periodic rules 2 and 3 perform relatively worse
because periodic recovery is not very responsive to the aris-
ing of dependent capacity disruptions on subsequent days.
Appending allocation decisions leads to steep performance
improvements formost recovery strategies. In addition, other
findings related to RH , #RDP , and Pareto front are identical
when encountering either dependent or independent capacity
disruptions.

5.3.2 Impact of timeline uncertainty characteristics

In this section, we investigate the impact of timeline uncer-
tainty characteristics, i.e. #DI P and IH, on the quality after
rescheduling and the performance of the proposed rules-of-
thumb. For that purpose, we vary the timeline uncertainty
characteristics as discussed in Sect. 4.2.2. All possible com-
binations of rerostering decision points and rescheduling
horizons are considered. Table 5 displays the impact of
the timeline uncertainty characteristics, i.e. #DI P and I H ,
on the value for Z and related objective components. The
table displays the measures averaged over all 896 consid-
ered recovery strategies without allocation decisions. Table
6 displays the performance (Z , RE andGD) for the rules-of-
thumb identified in Sect. 4.2.1. The results are presented for
each of these recovery strategies whether or not combined
with complementary allocation decisions (‘with alloc’ vs.
‘w/o alloc’). The results related to the overall best perform-
ing rule are indicated in bold. In the analysis below, allocation
decisions are only considered when explicitly stated.

Impact on rescheduling quality and Pareto front
Table 5 reveals that both #DI P as I H have a sig-

nificant impact on the resulting performance. The results
reveal that a lower uncertainty, i.e. a larger I H or a lower
#DI P , improves the quality of restored personnel rosters.
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This results from the acquisition and accumulation of a
larger amount of disruption information a number of days
in advance, which can be taken into account at an earlier
(rerostering) point in time.When the uncertainty is lower, we
observe a smaller number of understaffed tasks and infeasible
assignments, at the expense of a larger number of devia-
tions. However, despite the improved quality of the personnel
rosters, a lower uncertainty leads to a larger absolute and rela-
tive number of unnecessary changes, especially task changes,
performed dynamically throughout the course of the entire
planning horizon.When timeline uncertainty is higher, not all
disruptions are knownwell in advance and can be anticipated.
Consequently, as disruptions may arise abruptly, not all dis-
ruptions could be resolved or changes cannot be reconsidered
at a later rescheduling decision point, possibly made undone
or changed again, for which the timeline uncertainty profile
with I H = 1 and #DI P = 7 is exemplary. Comparing aver-
age results, we observe that an increase of IH has the largest
impact, improving Z by 103% (from 14,058 (I H = 1) to
6910 (I H = 7)), whereas a reduction of #DI P amelio-
rates Z by only 67% (from 10,521 (#DI P = 7) to 6298
(#DI P = 1)). The required computational time depends
upon the disruption profile, i.e. the larger IH and #DI P is,
the larger is the required average run time per recovery deci-
sion strategy.

The timeline uncertainty impacts also the divergence in
quality between individual recovery strategies. Figure5 illus-
trates results for timeline uncertainty profiles [#DI P , I H ] =
[1,7] and [7,1] andhas been composed similar toFig. 2,which
considers profile [#DI P , I H ] = [7,7]. These figures indicate
the performance of all decision strategies (•) and the Pareto
front (•). In addition, the figures display a set of recovery
strategies leading to high-quality personnel rosters identified
according to rule 6 with allocation decisions appended, indi-
cated by dark grey triangles (�) (cf. infra). GD is displayed
both for all rerostering decision strategies (GD (•)) and the
limited set of high-quality recovery strategies (GD (�)). The
results (see also Table 6 (Rule 0 ’w/o alloc’)) reveal that when
the uncertainty is higher, i.e. I H is shorter or #DI P is larger,
GD is larger, which is illustrated by a larger point cloudmap-
ping Z and RE for the different recovery strategies. In this
respect, the uncertainty profile with the largest uncertainty
([#DI P , I H ] = [7,1]) is characterised by the largest point
cloud (GD = 852.2), implying a larger variance in resulting
quality. The profile with the smallest uncertainty ([#DI P ,
I H ] = [1,7]) shows the smallest point cloud (GD = 476.9).
The variance of the other uncertainty profiles are in-between
these two extremes (see Table 6). IH has the largest impact on
the variance in quality as GD increases from 566.9 ([#DI P ,
I H ] = [7,7]) to 852.2 ([#DI P , I H ] = [7,1]), whereas a larger
#DI P increases GD only modestly from 476.9 ([#DI P ,
I H ] = [1,7]) to 566.9 ([#DI P , I H ] = [7,7]).

In addition, the timeline uncertainty profile impacts the
curve of the Pareto front of non-dominated strategies. All
identified Pareto fronts have more or less the same form,
i.e. (Phase 1) a steep improvement of Z when RE varies
between 1 and 7 days; (Phase 2) for a larger RE the rate of
improvement in Z declines; (Phase 3) Z more or less stag-
nates and only marginal improvements are observed; and
(Phase 4) at some point, further enlarging RE is no longer
useful as no efficient combinations are discerned. The larger
the uncertainty, the larger the required RE before Z is more
or less stagnating. In this perspective, we observe that for
the disruption profile with the largest uncertainty ([#DI P ,
I H ] = [7,1]) significant improvements are obtained when
RE increases from 7 to 15 days, whereafter Z stagnates. In
contrast, the quality for the disruption profile with the small-
est uncertainty ([#DI P , I H ] = [1,7]) is already stagnating
when RE is equal to 7 days.

Impact on the performance of recovery decision strategies
In the following, we discuss the impact of rescheduling

characteristics defining efficient recovery strategies and stip-
ulated rules of thumb. In line with earlier findings related
to the rescheduling horizon and number of rerostering deci-
sions, results for different uncertainty profiles indicate that
increasing #RDP is more important than setting a longer
RH (seeTableCandTableD inOnlineAppendixB).A larger
#RDP gradually improves the values for Z and GD. When
the embedded uncertainty of the timeline disruption profile
rises, the improvements associated with installing additional
rescheduling decisions are larger. Increasing #RDP (RH )
from 1 to |D| improves Z by a percentage ranging between
84% and 88% (19% and 78%). The smaller the uncertainty
of the timeline disruption profile, the more interesting it is to
increase RH . When disruptions do not arise every day, it is
no longer necessary to invoke a rescheduling decision on a
daily basis, especially if changed information has been con-
sidered earlier via a rerostering decision. We observe that
improvements relative to Z and GD more or less stagnate
when RH ≥ 4 days. Only when the uncertainty is relatively
small ([#DI P , I H ] = [1,7] or [3,7]), a further increase of
RH leads to a substantial better value for Z .

Regarding the timing of rerostering decision points, Table
6 displays the performance (Z , RE and GD) for the dif-
ferent rules-of-thumb. The results are presented for each of
these recovery strategies whether or not combined with com-
plementary allocation decisions (’with alloc’ versus ’w/o
alloc’). The best performing rule is indicated in bold. The
table reveals that rules applying a reschedulingdecision every
day on which parameter information has been changed due
to operational variability, are preferred to restore feasibility.
This can be realised via a suitable recovery strategy defining
enough rerostering decision points and a proper, sufficiently
long RH to cope with capacity disruptions. In this respect,
rule 1 provides a very good and consistent performance in
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Table 5 Detailed computational results as a function of the timeline uncertainty characteristics

Performance measures #DIP = 1 #DIP = 3 #DIP = 7 Average

IH=1 Rescheduling quality (Z ) 14,058 14,058

Coverage (#UST; #OST) (22.1; 22.5) (22.1; 22.5)

Infeasible assignments (#Shifts, #Tasks) (3.8; 7.9) (3.8; 7.9)

Deviations (#Shifts, #Tasks) (7.6; 34.1) (7.6; 34.1)

Dynamic changes (#Shifts, #Tasks) (8.1; 38.2) (8.1; 38.2)

IH=3 Rescheduling quality (Z ) 8834 9813 9324

Coverage (#UST; #OST) (19.4; 16.2) (18.9; 16.6) (19.1; 16.4)

Infeasible assignments (#Shifts, #Tasks) (2.3; 4.4) (2.7; 5.0) (2.5; 4.7)

Deviations (#Shifts, #Tasks) (13.1; 44.1) (12.7; 44.0) (12.9; 44.0)

Dynamic changes (#Shifts, #Tasks) (14.4; 59.4) (15.9; 65.8) (15.1; 62.6)

IH=7 Rescheduling quality (Z ) 6298 6741 7692 6910

Coverage (#UST; #OST) (14.7; 9.9) (16.9; 12.9) (17.7; 14.3) (16.5; 12.4)

Infeasible assignments (#Shifts, #Tasks) (1.8; 2.8) (1.8; 3.0) (2.1; 3.6) (1.9; 3.1)

Deviations (#Shifts, #Tasks) (16.9; 51.9) (15.9; 49.6) (14.5; 47.3) (15.7; 49.6)

Dynamic changes (#Shifts, #Tasks) (18.9; 87.2) (19.2; 81.4) (18.1; 76.9) (18.7; 81.8)

Average Rescheduling quality (Z ) 6298 7787 10,521 8906

Coverage (#UST; #OST) (14.7; 9.9) (18.1; 14.5) (19.6; 17.8) (18.3; 15.4)

Infeasible assignments (#Shifts, #Tasks) (1.8; 2.8) (2.1; 3.7) (2.9; 5.5) (2.4; 4.4)

Deviations (#Shifts, #Tasks) (16.9; 51.9) (14.5; 46.8) (11.6; 41.8) (13.4; 45.2)

Dynamic changes (#Shifts, #Tasks) (18.9; 87.2) (16.8; 70.4) (14.0; 60.3) (15.8; 68.1)

Fig. 5 Computational results for different timeline uncertainty profiles

terms of the values for Z and GD for all uncertainty pro-
files. As a result, rule 1 outperforms rule 4, which defines a
rerostering decision on at least those days new information
becomes available but neglects a proper definition of RH . In
a similarmanner, rule 1 performs better than rule 5 as this rule
gives only guidance to the definition of RH and not to the
number and timing of rerostering decision points. In addition,
the results related to rule 5 indicate that setting RH larger
than I H (or equal when I H = |D|) performs better than the
average result found for all 896 decision strategies in terms
of values for Z and GD. This confirms the results found

by Maenhout and Vanhoucke (2013) that an after-period
is preferably implemented. Moreover, rule 1 also outper-
forms rule 2 that defines rerostering decision points at regular
time intervals, without connection to the disruption informa-
tion points. Even when an overlap is additionally installed
between rescheduling horizons of consecutive rerostering
decision points (rule 3), rule 1 still performs better. These
periodic rules 2 and 3 perform better when the embedded
uncertainty of the disruption profile is lower ([#DI P , I H ]
= [1,7], [3,7] and [7,7]). In contrast to previous rules, rule
6 links the rerostering decision to the incurred capacity dis-
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ruptions and not to the disruption timeline characteristics.
Results indicate that rule 6 outperforms rule 1, especially for
those disruption profiles where the uncertainty is low tomod-
est. Only when uncertainty is high ([#DI P , I H ] = [7,1]),
rule 1 performs slightly better than rule 6 without allocation
decisions appended.

When allocation decisions are executed on those days for
which no rerostering decision is applied, we observe steep
improvements in quality Z for every timeline uncertainty pro-
file whereas the additional effort RE is limited. The relative
improvements are the largest for those uncertainty profiles
with the largest degree of uncertainty, i.e. allocation deci-
sions are most useful when new information arises on a
daily basis (#DI P = 7). This trend is confirmed for all
devised rules, except for rule 1 for which appending alloca-
tion decisions does not show significant improvements as the
uncertainty has been considered entirely via the rerostering
decisions taken. Similarly, for rule 6 there are no improve-
ments resulting from appending allocation decisions when
uncertainty is low ([#DI P , I H ] = [1,7]). When uncertainty
is higher, executing allocationdecisions indeed improves per-
formance of rule 6.Moreover, rule 6with allocation decisions
appended even outperforms rule 1 for all uncertainty profiles,
demonstrating the added value of cleverly appending alloca-
tion decisions. Note that incorporating allocation decisions
may occasionally deteriorate quality after rescheduling to a
minor extent due to themyopic nature of allocation decisions.
The latter may restrict scheduling flexibility to resolve dis-
ruptions at a later point in time as a result of imposed (hard)
time-related constraints.

5.4 Benchmark of individual recovery decision
strategies

In this section,we perform a benchmark comparison between
individual recovery decision strategies known from the liter-
ature and a suitably devised dynamic recovery strategy based
on the insights yielded in previous sections. This benchmark
has been performed on 7 synthetic instances accounting for
a longer planning horizon of 28 days and 9 different timeline
uncertainty profiles. The instances have been generated in
a similar manner as described in Sect. 5.1. A time limit has
been imposed of 3600s to obtain a solution for a single static
recovery decision. Table 7 displays the performance metrics
Z , RE and CPU for the following strategies, i.e.

• Recovery strategy of Moz and Pato (2003): This event-
driven strategy conducts a rerostering decision onlywhen
new information is available, i.e. RDPd = DI Pd . Each
rerostering decision considers the entire (remaining)
planning horizon, i.e. RH starts from the day under con-
sideration until the end of the planning horizon (RH =
|D| − d + 1). Ta
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• Recovery strategy of Maenhout and Vanhoucke (2013):
This event-driven strategy conducts a recovery decision
whenever new information is available, i.e., RDPd =
DI Pd , and sets RH equal to I H + 1, considering (1)
the disruption period, i.e., the time horizon from the first
until last day disruptions occur and (2) an after-period of
1 day, i.e., the period of time that is under consideration
after the day of the last schedule disruption.

• Allocation strategy: This periodic strategy assumes only
allocation decisions, resolving only those schedule dis-
ruptions on the day of operations (cf. Section4.1.2).

• Proposed strategy: This hybrid strategy is designed
following rule 6, linking rerostering decisions to capac-
ity disruptions with allocation decisions appended. As
denoted in previous sections, the value for Z depends on
the effort the decision-maker is willing to spent to recover
the roster and is a design choice. In this benchmark com-
parison, we have set RH equal to 7.

Table 7 reveals that the proposed strategy provides a
robust performance over different timeline uncertainty pro-
files, leading to reconstructed rosters of high-quality in an
acceptable timespan. The recovery strategy of Moz and Pato
(2003) delivers the best performance in terms of the value
for Z , which results from a lower number of understaffed
tasks, but devotes a far larger RE to recover the roster. The
strategy of Maenhout and Vanhoucke (2013), which spends
a similar RE to restore the roster, performs worse than the
proposed strategy in terms of attained quality. The latter is
especially the case when I H is small to medium (= 1, 3
or 7 days), i.e., when uncertainty is larger. This is not the
case for I H = 28, as the strategy of Maenhout and Van-
houcke (2013) then coincides with the effortful strategy of
Moz and Pato (2003). Both these latter recovery strategies,
known from literature, require a far larger amount of CPU
time, especially for the timeline uncertainty profiles charac-
terised by a large I H (= 28 days), and do not denote a stable
behaviour. In addition, these strategies record a larger number
of dynamic roster changes. For example, for [#DI P , I H ] =
[28,28], the strategies ofMoz and Pato (2003) andMaenhout
and Vanhoucke (2013) accumulate a total of 2395 and 580
dynamic task and shift changes, compared to, respectively,
1040 and 203 conducted dynamic changes by the proposed
strategy. The allocation strategy delivers a detrimental per-
formance in terms of the value for Z as a large number of
shift disruptions cannot be resolved given the small recovery
period.

6 Conclusions

In this paper, we studied a dynamic personnel rescheduling
problem, where disruptions arise gradually over the planning

horizon. The contribution of this paper is fourfold. First, we
defined the dynamic rescheduling problem for the integrated
personnel shift and task scheduling problem introducing dif-
ferent concepts to characterise the timeline uncertainty and
dynamic recovery strategies. Second, we gave insight into
the performance of recovery decision strategies and relevant
characteristics. The decision strategy at hand should be deter-
mined by making the trade-off between quality and the effort
one is willing to spend to recover the roster. Maximising the
rescheduling effort does not lead to an efficient recovery strat-
egy as (1) the incumbent solution is reached with a smaller
rescheduling effort, advocating the definition of efficient
recovery strategies, and (2) blindly adopting a large number
of rescheduling decisions and/or a large rescheduling horizon
leads to a significant number of unnecessary task and shift
changes,which is detrimental to the organisation of resources
and communication. The number of recovery decisions is
preferably linked to the number of disruption information
points as it is not necessary to invoke a rescheduling decision
if changed schedule parameters have been considered earlier
via a rerostering decision. The larger the timeline uncertainty,
the more important to conduct a larger number of recov-
ery decisions, which is more predominant than increasing
the rescheduling horizon. Only when the embedded timeline
uncertainty is low, it is interesting to consider a relatively
large rescheduling horizon. Third, we developed different
rules-of-thumb to define suitable recovery strategies leading
to reconstructed personnel schedules of high quality. Insights
in these rules stipulate that rescheduling decisions are prefer-
ably conducted on all days on which schedule parameters
have been changed due to operational variability. The timing
of rerostering decisions that consider a rescheduling hori-
zon of multiple days, should be linked to the occurrence
of capacity disruptions to facilitate effective recovery. Allo-
cation decisions, which consider only a single day of the
planning horizon, should be applied to resolve disruptions
originating from the uncertainty of arrival and uncertainty
of demand. Combining allocation and rerostering decisions
in this way defines individual recovery strategies that con-
sistently provide high-quality solutions. Fourth, insight into
the impact of timeline uncertainty is delivered and linked
to the design of suitable recovery strategies. A larger uncer-
tainty, characterised by a shorter information horizon and a
larger number of disruption information points, impacts the
(variance in) quality of individual recovery strategies and
requires more rescheduling effort to adequately restore the
roster. In that case, appending allocation decisions to reroster-
ing decisions becomes more important to define an effective
but efficient recovery strategy.

There are different ways to extend this study in future
research. First, the insights identified in this paper related
to timing of rescheduling decision points and rescheduling
horizon can be exploited to develop a tractable multi-stage
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Table 7 Benchmark results for individual recovery strategies

Moz and Pato (2003) Maenhout and Allocation Proposed
[#DIP, IH] Vanhoucke (2013)

Z RE CPU Z RE CPU Z RE CPU Z RE CPU

[28,1] 8289 406.0 300.9 9908 55.0 19.8 16,250 28.0 19.8 8845 126.0 68.3

[10,3] 5366 145.0 252.0 5423 37.0 8.1 16,250 28.0 19.5 5300 147.0 101.2

[28,3] 6111 406.0 919.9 6458 106.0 22.7 16,092 28.0 19.4 6267 159.0 145.1

[4,7] 3865 70.0 653.6 4163 31.0 41.2 16,250 28.0 19.3 4018 159.0 94.9

[10,7] 4092 145.0 1208.6 4290 68.0 120.3 16,113 28.0 19.5 4298 159.0 144.8

[28,7] 5241 406.0 2056.5 5461 196.0 280.4 16,035 28.0 19.9 5403 141.0 138.5

[4,28] 3650 70.0 6122.6 3650 70.0 6122.6 16,111 28.0 19.7 3921 165.0 158.9

[10,28] 3889 245.0 25668.6 3889 245.0 25668.6 16,114 28.0 19.7 4255 145.0 114.4

[28,28] 3889 406.0 29755.5 3889 406.0 29755.5 16,737 28.0 19.7 4582 127.0 91.3

Average 4938 255.4 7482.1 5243 134.9 6938.1 16,217 28.0 19.6 5208 147.6 117.5

procedure to construct a tactical personnel roster that embeds
uncertainty in a proactive manner, following a predictive-
reactive approach. Every potential decision moment corre-
sponds to a recourse decision stage and decisions need to be
taken related to the timing of rescheduling decisions, length
of rescheduling horizon and adjustment of the schedule to
restore feasibility/quality of the personnel schedule. Accord-
ingly, the current research may contribute to improving the
efficiency of a stochastic or (adjustable) robust optimisa-
tion approach by reducing the number of decision stages
in advance and restricting the rescheduling horizon, which
decreases the number of decision variables that need to be
considered. Second, the choice in this study of setting the
(efficient) baseline schedule as a reference schedule is a
research design choice. The problem definition can be altered
to investigate the impact of setting the last created schedule
as the reference schedule since personnel may adapt rather
quickly to their new duty roster. However, this requires the
optimisation of new objectives in the (static) rescheduling
decision model considering the efficiency of the newly con-
structed rosters. In this way, we will no longer optimise the
deviation compared to the baseline schedule, i.e. the sched-
ule stability, but we focus on constructing a new roster that
shows robust performance in terms of solution quality, i.e.
yielding a similar efficiency as was postulated by the base-
line schedule.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10951-023-00785-
7.
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