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Abstract
In this paper, we study scheduling with step-learning, i.e., a setting where the processing times of the jobs started after their
job-dependent learning-dates are reduced. The goal is to minimize makespan on a single machine. We focus first on the case
that idle times between consecutive jobs are not allowed. We prove that the problem is NP-hard, implying that no polynomial-
time solution exists and, consequently, propose a pseudo-polynomial time dynamic programming algorithm. An extensive
numerical study is provided to examine the running time of the algorithmwith different learning-dates and job processing time
ranges. The special case of a common learning-date for all the jobs is also studied, and a (more efficient) pseudo-polynomial
dynamic programming is introduced and tested numerically. In the last part of the paper, the more complicated setting in
which idle times are allowed is studied. An appropriate dynamic programming is introduced and tested as well.
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1 Introduction

In traditional scheduling theory, the processing times of the
jobs were assumed to be constants dictated in advance. But
as scheduling theory evolved, this concept was revised and
many studies have proposed variable job processing times to
reflect real-life circumstances. As claimed by Gawiejnow-
icz (2008, p. 49): “Scheduling with variable job processing
times has numerous applications, e.g., in the modeling of
the forging process in steel plants, manufacturing of pre-
heated parts in plastic molding or in silverware production,
financemanagement and schedulingmaintenance or learning
activities.” The importance of variable job processing times
is reflected in the comprehensive review of Gawiejnowicz
(2020b) and in the recently published book of Gawiejnowicz
(2020a), both summarizing the research conducted over the
past four decades in the domain of time-dependent schedul-
ing (deterioration effect and learning effect alike), where
jobs’ processing times depend on their starting time.
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The most prevalent aspects of variable job process-
ing times are deterioration and/or learning effects. In this
study, we concentrate on learning effects. The importance
of the learning process is its implications for manufacturing
routines. Empirical research has confirmed that learning-by-
doing increases the productivity at the singleworker level and
moreover at the team level. The learning effects are mani-
fested by enhanced productivity of the production system,
decreased operational expense, and faster time-to-market,
thus improving the sustainability of the business. A very
recent paper by Azzouz et al. (2018) summarizes recent
developments in the concept of learning effects and presents
an overview of the significant learning models, a classifi-
cation scheme for scheduling under learning effects and a
mapping of the relations betweenmajor models. Recent pub-
lished studies on learning effects include Gao et al. (2018),
Wu et al. (2018), Fu et al. (2019), Geng et al. (2019), Mor
et al. (2020), Mousavi et al. (2018), Renna et al. (2019), Sun
et al. (2019), Wang et al., (2019a, 2019b), Yan et al. (2019),
Azzouz et al. (2020) and Wu et al. (2020).

An important model for time-dependent job processing
times is that of step-deterioration, which was first proposed
by Mosheiov (1995), and suggested that the processing time
of a job follows a step function of its starting time. More
specifically, the actual processing times of the jobs that start
after their deterioration-dates experience a step increase. The
author focused on minimizing makespan with a single step-
deterioration in a single- and multi-machine settings, pre-
sented NP-completeness justification, integer programming
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formulation and provided a heuristic procedure. An abun-
dance of studies was published subsequently, assuming com-
mon deterioration-date or job-specific deterioration-dates,
various step-functions andmachine settings; seeGawiejnow-
icz (2008) and Strusevich and Rustogi (2017). Recent papers
addressing step-deterioration and other deterioration models
include Cheng et al. (2018), Rostami (2018), Woo (2018),
Ding et al. (2019), Liu et al. (2019), Miao and Zhang (2019),
Pei et al. (2019), Sun and Geng (2019), Wang et al., (2019a,
2019b),Wu et al. (2019), Gawiejnowicz and Kurc (2020) and
Soper and Strusevich (2020). Considering this wide research
on step-deterioration, it is surprising that the complementary
phenomenon, i.e., that of step-learning has yet to be dis-
cussed, let alone studied. Step-learning can be encountered
in many real-life situations, e.g., when improved routines are
assimilated in the production process, enhanced raw materi-
als are utilized, faster equipment replaces outdated models,
and, ultimately,when disruptive technology emerges and rev-
olutionizes industry. We note that in many cases, there are no
predicted times for the improvement procedures. However,
the classical solid-state electronics based on the transistor
technology which was introduced during the sixties of the
previous century is a good example. This new technology
replaced the vacuum tubes at predicted times and with pre-
dicted outcomes. Another example is flash memory, i.e., a
non-volatile computer medium that can be electrically erased
and reprogrammed anywhere and anytime, vs. ROMmemory
which was used previously and could only be programmed
once and only at the original manufacturer facilities. Thus,
the significance of incorporating step-learning into schedul-
ing theory is two-fold, both theoretical and practical.

In the context of scheduling theory, there are two
main approaches to formulating learning-effects, i.e., time-
dependent or position-dependent job processing times. In this
paper, we focus on a single-machine scheduling setting with
both time-dependent and job-dependent step-learning effect.
The assumption is that each job has its own Learning-Date
(LD), such that if the starting time of a job is equal to or
greater than this value, its actual processing time is reduced
by a job-dependent factor. In the first model studied here, no
idle time between consecutive jobs is permitted, an assump-
tion which is justified in numerous manufacturing systems,
due to the cost of stopping and renewing the production
process. The objective function is minimum makespan. The
problem is proved to be NP-Hard, and a pseudo-polynomial
dynamic programming (DP) algorithm is introduced and
tested. Our numerical tests indicate that medium-size and
large problems (of up to 175 jobs) are solved in reasonable
running time. We also study the special case in which all the
jobs share a Common Learning-Date, denoted CONLD. This
problem is NP-Hard as well, and a more efficient dynamic
programming is proposed, as reflected in our numerical tests.
In the last model we study, idle times between consecutive

jobs are permitted. For this more complex setting (which can
clearly lead to smallermakespan values), amore complicated
pseudo-polynomial dynamic programming algorithm is pro-
posed. In this case, the computational effort is much larger,
and the running time required for solving smaller problems
(of up to 70 jobs) increases significantly.

The paper is organized as follows. In Sect. 2, we present
the notation and formulation. Section 3 is dedicated to
the case of job-dependent learning-dates with no idle time
between consecutive jobs. First, we prove that the problem
is NP-hard, and then we introduce the DP algorithm. The
special case of a common learning-date is studied in Sect. 4.
In Sect. 5, we introduce the DP for the setting that idle times
are permitted. In Sect. 6, we report the results of our numer-
ical tests for all three DPs. Section 7 contains concluding
remarks and topics for challenging future research.

1.1 Notations and formulation

Formally, a set J containing n jobs is to be processed on a
single machine, with the jobs ready for processing at time
zero and no idle times and no preemption allowed. The basic
(maximal) processing time of job j : j ∈ J , is denoted by
u j and the reduced (minimal) processing time is denoted by
v j , such that u j ≥ v j and u j , v j ∈ Z+. We also denote by
umax = max

j∈J
{
u j

}
, the maximal basic processing time among

all jobs.
For a given schedule, the starting time of job j : j ∈ J , is

denoted by S j and the completion time of job j : j ∈ J , is
denoted by C j . In this study, we focus on the makespan, i.e.,
the completion time of the last job to leave the production
line, defined as Cmax = max

j∈J
{
C j

}
.

We denote by LDj ∈ Z+ the learning-date of job j : j ∈
J , and by LDmin = min

j∈J
{
LD j

}
, the minimal learning-date

in set J . If the starting time of job j is strictly less than
LDj , then its processing time is u j , whereas if the starting
time is equal to or greater than LDj , its processing time is
v j . Eventually, the actual processing time of job j is defined
as.

p j =
{
u j , S j < LDj

v j , S j ≥ LDj
, j ∈ J

If the processing of job j starts before its job-dependent
learning-date, LDj , it is regarded as an early job, and oth-
erwise if the processing starts at or after the LDj , it is
considered a late job. Consequently, we denote by J E and
J L , the subsets of early and late jobs, respectively, such that
J = J E ∪J L andJ E ∩J L = ∅. In the first setting studied
here no idle time between consecutive jobs is permitted (and
this constraint is denoted by No-Idle).
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Utilizing the standard 3-field formulation of scheduling
problems (Graham et al., 1979), the problem studied here,
denoted by Q1, is:

Q1 : 1
∣∣LDj , p j ∈ {

u j , v j : u j ≥ v j
}
, No − I dle

∣∣Cmax.

We then focus on the special case of a common learning-
date (CONLD), i.e., LDj = LD, j ∈ J . For this setting,
the subset of jobs that start their production before LD are
regarded as early jobs, whereas the subset of jobs that start
their production exactly at or after LD are considered as late
jobs. The CONLD problem, denoted Q2, is the following:

Q2 : 1
∣∣LD j = LD, p j ∈ {

u j , v j : u j ≥ v j
}
, No − I dle

∣∣Cmax.

In the last setting studied here, all the features of problem
Q1 are relevant excluding theNo-Idle time constraint.Hence,
the problem, denoted Q3 is the following:

Q3 :1∣∣LDj , p j ∈ {
u j , v j : u j ≥ v j

}∣∣Cmax

1.2 Minimizingmakespan with job-dependent
learning-dates and no idle-time

We first prove that ProblemQ1 is NP-Hard. In fact, we prove
that even the special case of a common learning date (i.e.,
Problem Q2) is NP-hard.

Theorem 1 Problem Q1 is NP-Hard even for a common
learning-date.

Proof Assume that all the jobs share a common learning-
date denoted by LD. �

We formulate the problem as an integer linear program
(ILP). Let X j be a binary variable: X j = 1 if job j starts
processing at or after LD; X j = 0 otherwise.

u j − v j is the reduction in the processing time of job j
due to learning (i.e., if job j starts processing at or after LD;
j = 1, . . . , n).
The objective function is minimum makespan, given by:∑n
j=1u j − ∑n

j=1X j
(
u j − v j

)
, or, equivalently, maximum

reduction in processing time:
∑n

j=1X j
(
u j − v j

)
.

Thus, the ILP for minimizing makespan on a single
machine with step-learning and a common learning-date is:

max
∑n

j=1
X j

(
u j − v j

)

s.t .
∑n

j=1
(1 − X j )u j ≥ LD

X j binary; j = 1, . . . , n.

Job i

LDi Timet

Job j

LDj
Schedule 

LDi Timet

Job j

LDj

Job i

Schedule ′

Fig. 1 Schedules π and π ′ in the proof of property 1

This formulation is equivalent to:

max
∑n

j=1
X j

(
u j − v j

)

s.t .
∑n

j=1
u j

∑n

j=1
X ju j ≥ LD

X j binary; j = 1, . . . , n.

Define W = ∑n
j=1u j − LD and Pj = u j − v j

We obtain:

max
∑n

j=1
X j Pj

s.t .
∑n

j=1
X ju j ≤ W

X j binary; j = 1, . . . , n.

The latter formulation is that of the well-known NP-Hard
knapsack problem. �

In this sectionwe introduce a pseudo-polynomialDP algo-
rithm (denoted DP1), thus establishing that Q1 is NP-hard
in the ordinary sense. In order to do this, we prove in the
following a number of properties of an optimal schedule by
performing adjacent pairwise interchange.

Property 1 Anoptimal schedule exists such that all the early
jobs are scheduled prior to the late jobs.

Proof Consider an optimal schedule π in which job j fol-
lows job i , job i is late and job j is early. (If job i in π starts at
time t , it follows that LDi < t < S j = t + vi < LDj .) We
create a schedule π ′ by swapping these two jobs; see Fig. 1.
It is clear that in π ′ job i (which is scheduled later) remains
late, and job j (which is scheduled earlier) remains early.
Hence, the total processing time of job i and j is unchanged,
implying that π ′ is optimal as well. �
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LDi Timet

Job i

LDj

Job j

Schedule 

LDi Timet LDj

Job j Job i

Schedule ′

Fig. 2 Schedules π and π ′ in the proof of property 2

Property 2 Anoptimal schedule exists such that all the early
jobs are scheduled according to the Earliest Learning-Date
first (ELD) rule.

Proof Consider an optimal schedule π in which job j fol-
lows job i , both jobs are early, and LDj < LDi . (If job i in π

starts at time t , it follows that S j = t + ui < LDj < LDi .)
We create a schedule π ′ by swapping these two jobs; see
Fig. 2. It is clear that in π ′ job j (which is scheduled later in
π ) remains early. Job i is scheduled later in π ′, and there are
two options: (i) job i becomes a late job and its processing is
reduced to vi , (i i) job i remains an early job. In case (i) the
total processing time of jobs i and j is reduced and therefore
the makespan of π ′ is strictly smaller than that of π . (Note
however that in π ′, job j is early and i is late). In case (i i) the
total processing time of jobs i and j is unchanged, implying
that π ′ is optimal as well. �

Property 3 An optimal schedule exists such that all the late
jobs are scheduled according to the Earliest Learning-Date
first (ELD) rule.

Proof Consider an optimal schedule π in which job j fol-
lows job i , both jobs are late, and LDj < LDi . (If job i in π

starts at time t , it follows that LDj < LDi ≤ t .) We create
a schedule π ′ by swapping these two jobs; see Fig. 3. It is
clear that in π ′ both jobs i and j remain late. Hence, in π ′
their total processing time is unchanged, implying that π ′ is
optimal as well. �

Based on the above properties, an optimal schedule exists
such that all the early jobs are scheduled prior to all the
late jobs, and both sets are ordered according to ELD.
Hence, we begin by sorting the jobs in an ELD order. At
a superficial glance, ProblemQ1 is similar to 0/1 Knapsack,
but this is true only if the last early job is guaranteed to
be completed at a specific learning-date (equivalent to the

LDi Timet

Job i

LDj

Job j

Schedule 

LDi Timet

Job j

LDj

Job i

Schedule ′

Fig. 3 Schedules π and π ′ in the proof of property 3

knapsack size). Unfortunately, this is not guaranteed in our
case. The last early job may be a crossover job, i.e., it may
start strictly before its learning-date and completes after it.
This phenomenonadds considerably to the complexity ofQ1,
since each feasible completion time of the early set results
in a different set of late jobs and therefore diverse values
of makespan can be obtained. Consequently, as potentially
each job can be the crossover job, we have to check all fea-
sible schedules, where the last early job is completed not
earlier than LDmin (recall that LDmin = min

j∈J
{
LD j

}
), and

not later than T E
max ≡ max

j∈J
{
LDj + u j − 1

}
, i.e., in the inter-

val
[
LDmin, T E

max

]
.

Let T E ∈ [
LDmin, T E

max

]
denote the plausible completion

time of all feasible early subsets. Since all feasible values
need to be checked, we set T E to an integer value in this
interval and execute DP1 for this T E value. In each iteration
of DP1, a single job is handled and the updated makespan
is computed accordingly. If job j , j ∈ J , is early, then the
makespan remains unchanged (since this job is completed not
later than T E ), whereas if job j is late, the updatedmakespan
is increased by v j (job j is scheduled after T E ). The opti-
mal solution is achieved by DP1 that obtains the minimal
makespan among all executions.

We define the following state variables:
j-the number of jobs already handled in the partial set

J = {1, . . . , j}, 1 ≤ j ≤ n.
t-the completion time of the last early job contained in the

partial subset J E : J E ⊆ J , 0 ≤ t ≤ T E .
Let fT E ( j , t) denote the optimal makespan of the partial

schedule of jobs 1, . . . , j , given that the current completion
time of the last early job is t . In each execution of DP1, we
set f (0, 0) = T E , and in each iteration of DP1, we have
to decide between the above-mentioned two complementary
options:
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• If job j is early, i.e., S j (= t−u j ) < LDj and t ≤ T E , then
job j can be either appended to subset J E , i.e., assigned
to the last position in this subset with actual processing
time p j = u j , or assigned to the last position in subset
J L with p j = v j . If we decide that the job is early, the
makespan is not updated and otherwise, the makespan is
incremented by v j .

• Otherwise (if job j is late, i.e., S j ≥ LDj ), it can only
be added to set J L with p j = v j and the makespan is
incremented accordingly.

Based on the above,wepresent the following formal recur-
sion:

Algorithm DP1

fT E ( j , t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

{
fT E

(
j − 1, t − u j

)

fT E ( j − 1, t) + v j
, t ≥ u j and S j < LDj and t ≤ T E

fT E ( j − 1, t) + v j , t < u j or S j ≥ LDj

∞, t > T E or
(
j = n and t �= T E

)

In the first line, i.e., if S j < LDj and t ≤ T E , then job
j is early and can be added either to the set J E or to the
set J L . The second line reflects the case that job j is late
and therefore must be added to set J L . The infinite cost in
the third line reflects two infeasible cases: (i) the completion
time of job j exceeds T E , and (i i) the completion time of
the last early job is not equal to T E . The latter condition
guarantees no idle time between the last early job and the
first late job.

The boundary conditions are:
fT E (0, 0) = T E ; The initial makespan value is the com-

pletion time of the last early job, T E .
fT E (0, t) = ∞, 1 ≤ t ≤ T E ; For j = 0, a positive t

value is infeasible.
fT E ( j , 0) = fT E ( j − 1, 0) + v j , j = 1, . . . , n; There

are no early jobs, and therefore job j is late.
The optimal solution (for a given T E value) is given by

fT E (n, T E ).
Comment: Note that if at the end of the process, t < T E

(i.e., the final value of t is strictly smaller than T E ), then it
is clear that this solution is never optimal since there is a gap
between the actual completion time of the last early job (t),
and the starting time of the first late job (T E ), and the same
schedule with no such gap is always better. Moreover, this
schedule is not feasible due to the no-idle-time constraint.

The global optimum is: f ∗ = min{ fT E

(
n, T E

)
;

LDmin ≤ T E ≤ T E
max}.

Theorem 2 Problem Q1 is solved in O
(
n
(
T E
max

)2)
time.

Proof The recursive function in DP1 is calculated for
every job j : 1 ≤ j ≤ n, and t : 0 ≤ t ≤ T E ,
LDmin ≤ T E ≤ T E

max resulting in maximal running time
of O

(
nT E

max

)
. DP1 is executed for every integer value in

the interval
[
LDmin, T E

max

]
, implying that the total computa-

tional effort is O
(
n
(
T E
max

)2)
. �

Numerical Example 1 Consider an 8-job problem, where
jobs are already sequenced in ELD order.

The job-dependent learning-dates are: LDj =
(130, 132, 135, 137, 147, 155, 176, 218), thus LDmax =
max
j∈J

{
LD j

} = 218.

The maximal (u j ) and minimal (v j ) processing times
were generated uniformly in the intervals [25, 50] and [1,
25], respectively.

The generated processing times are: u j = (31, 33, 33,
47, 30, 47, 29, 32) and v j = (11, 21, 18, 15, 6, 19, 4,
5), implying that umax = max

j∈J
{
u j

} = 47 and T E
max =

max
j∈J

{
LDj + u j − 1

} = 249.

Executing DP1, we achieved the following optimal solu-
tion with

(
T E

)∗ = 145 < 249 = T E
max.

The resulting ordered set of early jobs is J E = (2, 3, 6,
8), implying that (one) optimal sequence is J ∗ = (2, 3, 6,
8, 1, 4, 5, 7).

With regard to set J ∗, the actual job processing times are
p j = (33, 33, 47, 32, 11, 15, 6, 4).

We note that in this case there is no crossover job as the
completion time of the last early job is C8 = 145 = (

T E
)∗
,

and the optimal makespan is C∗
max = 181.

1.3 Minimizingmakespan with a common
learning-date

As proven in Sect. 3, ProblemQ1 is NP-hard even if LDj =
LD, j : j ∈ J , thusQ2 isNP-hard.We introduce aDP algo-
rithm (denoted DP2), implying thatQ2 is likewise ordinary
NP-hard. Unlike DP1, in this special case there is no need
for an initial sorting and we only have to check the com-
pletion time of the last early job in a much smaller interval
around the learning-date, i.e., [LD − 1, LD − 1 + umax].
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As above, let T E
max = LD + umax − 1 denote the max-

imal completion time of all early subsets, and let T E ∈[
LD − 1, T E

max

]
denote the possible completion time of all

feasible early subsets. Again, we have to check all feasible
values in the interval [LD − 1, LD + umax − 1], and there-
fore set T E to an integer value in this interval, and execute
DP2 for each such value. Similar to DP1, in each iteration
of DP2, a single job is handled and the updated makespan
is computed accordingly. If job j : j ∈ J is early then the
makespan remains unchanged, whereas if job j is late, the
updatedmakespan is increased by v j . The optimal solution is
achieved by DP2 that obtains the minimal makespan among
all umax + 1 iterations.

While DP2 ismuchmore efficient than DP1 (see below),
the definitions of the state variables, the return function and
the recursion are almost identical. For DP2, we define the
same state variables:

j-the number of jobs already handled in the partial set
J = {1, . . . , j}, 1 ≤ j ≤ n.

t-the completion time of the last early job contained in the
partial subset J E : J E ⊆ J , 0 ≤ t ≤ T E .

The definition of the return function, f ( j , t) is identical
to that given in Sect. 3: it denotes the optimal makespan of
the partial schedule of jobs 1, . . . , j , given that the current
completion time of the last early job is t . In each execution
of DP2, we set f (0, 0) = T E and in each iteration of the
algorithm, we have to decide between two options:

• If job j is early, then job j can be either appended to subset
J E , or assigned to any position in subset J L . If job j is
added to J E , the makespan is not updated and otherwise,
it increases by v j .

• If job j is late, it can only be added to set J L , and the
makespan increases by v j .

The options in the recursion are based on the starting time
of the current job (S j ), the completion time of the last early
job (T E ), and the common learning-date (LD):

Algorithm DP2

fT E ( j , t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

{
fT E

(
j − 1, t − u j

)

fT E ( j − 1, t) + v j
, t ≥ u j and S j < LDj and t ≤ T E

fT E ( j − 1, t) + v j , t < u j or S j ≥ LD
∞, t > T E or

(
j = n and t �= T E

)

As inDP1, Option 1 reflects the case of an early job (which
can either be added to the set J E or to the set J L ), Option 2

reflects the case that the job is late (and is added to set J L ),
and the ∞ value in Option 3 avoids the infeasible cases.

The boundary conditions (similar to the above) are:

f(T E )(0, 0) = T E ,

f(T E )(0, t) = ∞, 1 ≤ t ≤ T E ,

f(T E )( j , 0) = f(T E )( j − 1, 0) + v j , j = 1, . . . , n;

The optimal solution (for a given T E value) is given
by fT E (n, T E ), and the global optimum is: f ∗ =
min{ fT E

(
n, T E

)
; LD − 1 ≤ T E ≤ T E

max}.
Theorem 3 Problem Q2 is solved in O

(
numaxT E

max

)
time.

Proof The recursive function of DP2 is calculated for
every job j : 1 ≤ j ≤ n, and t : 0 ≤ t ≤ T E ,
LD − 1 ≤ T E ≤ T E

max resulting in maximal running time
of O

(
nT E

max

)
. DP2 is executed for every integer value in

the interval [1, umax], implying that the total computational
effort is O

(
numaxT E

max

)
. �

Numerical Example 2 Consider an 8-job problem, where
LD = 121 and the maximal (u j ) and minimal (v j ) process-
ing times were generated uniformly in the intervals [25, 50]
and [1, 25], respectively.

The generated processing times are u j = (30, 25, 48,
41, 37, 33, 50, 44) and v j = (8, 15, 9, 10, 18, 14, 2, 15),
implying that umax = max

j∈J
{
u j

} = 50 and T E
max = LD +

umax = 171.
DP2was executed 50 times, and the optimal solution was

achieved when T E was set to
(
T E

)∗ = 125 < 171 = T E
max.

The resulting ordered set of early jobs is J E = (1, 2, 5,
6), implying that (one) optimal sequence is J ∗ = (1, 2, 5,
6, 3, 4, 7, 8).

With regard to set J ∗, the actual job processing times are
p j = (30, 25, 37, 33, 9, 10, 2, 15).

The crossover job is j = 6, with starting time S6 = 92 <

121 = LD and completion time.

C6 =
(
T E

)∗ = 125.

We conclude that the optimal makespan is C∗
max = 161.
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1.4 Minimizingmakespan with job-dependent
learning-dates allowing idle-times

In this section we introduce a pseudo-polynomial dynamic
programming algorithm for problem Q3, i.e., for the setting
in which idle times between consecutive jobs are allowed.

Note that Property 1 (an optimal schedule exists such
that all the early jobs are scheduled prior to the late jobs),
as well as Properties 2 and 3 (an optimal schedule exists
such that all the early jobs and all the late jobs are sched-
uled according to ELD) remain valid. Hence, the jobs are
initially sorted in a non-decreasing order of LDj and are
renumbered accordingly. In each iteration of the proposed
DP (denoted DP3), as in the previous algorithms, a single
job is handled, and it is either scheduled to be early (if pos-
sible), or late. In the former case (earliness is feasible), the
job will be scheduled either as early as possible (i.e., with
no idle time), or the job is delayed and is processed after
some idle time to start exactly at its learning date. We use
again the definition of T E

max = max
j∈J

{
LDj + u j − 1

}
, and

denote by T E ∈ [
0, T E

max

]
, the completion time of all feasi-

ble early subsets. Then, we execute DP3 for any T E in this
interval, and select the solution with the minimal makespan
value. Note that unlike the previous DPs, DP3 is a backward
procedure.

The state variables are:
j-The index of the next job to handle (i.e., the remaining

jobs are { j , j + 1, . . . , n}), 1 ≤ j ≤ n.
t1-The current completion time of the jobs scheduled to

be early (clearly, t1 ≤ min
{∑ j−1

i=1 ui , T
E
}
),

t2-The current completion time of the jobs scheduled to
be late. [T E ≤ t2 ≤ max

1≤i≤ j−1

{
LDj

} + ∑ j−1
i=1 vi , because (i)

T E is the completion time of the early jobs, and the late jobs
are executed only after the early jobs, and (i i) the completion
time of the late jobs cannot be larger than max

1≤i≤ j−1

{
LDj

} +
∑ j−1

i=1 vi , because this implies a solution which is not optimal
due to unnecessary idle times.]

The return function fT E ( j , t1, t2) is the minimal
makespan for scheduling jobs j , j + 1, . . . , n, given that
the current completion time of the early jobs is t1, the cur-
rent completion time of the late jobs is t2, and the maximal
completion time of the early jobs is T E .

The recursive function is the following:

Algorithm DP3

fT E ( j , t1, t2) =
{
h( j , t1, t2), i f t1 + u j > T E or t1 > LDj

min
{
fT E

(
j , t1 + u j , t2

)
, h( j , t1, t2)

}
, otherwise

where:

h( j , t1, t2) =
{

fT E

(
j + 1, t1, LDj + v j

) + LDj + v j − t2, if LDj ≥ t2
fT E

(
j + 1, t1, t2 + v j

) + v j , otherwise

h( j , t1, t2) reflects the contribution of job j to the
makespan value, when it is scheduled to be late: the first
line relates to the case with idle time (i.e., job j is delayed
to start at time LDj , and in this case the makespan increases
by LDj + v j − t2), and the second line relates to the case
without idle time (i.e., job j is already late, it starts as early
as possible, and the makespan increases by v j ).

The recursive function reflects the following cases: (i)
job j cannot be scheduled early, either because it exceeds
the upper bound T E on the completion time of the early
jobs, or because its learning date has passed; (i i) job j can
be scheduled early or late, and the minimal of the above two
options is chosen. Note that if job j is scheduled early, it is
better to schedule it without idle time.

The boundary conditions are:

fT E (n, t1, t2) =
{
h(n, t1, t2), if t1 + un > T E or t1 > LDn

0, otherwise

h(n, t1, t2) =
{
LDn + vn − t2, if LDn ≥ t2
vn , otherwise

The boundary conditions relate to the case where the last
job is handled, and then it is better to schedule it to be early
if possible, or late otherwise.

The optimal solution for a specific value of T E is obtained
by f ∗

T E = fT E

(
1, 0, T E

) + T E , which is the optimal
makespan for scheduling jobs 1, . . . , n with an initial zero
value for the completion time of the early jobs (which is
bounded by T E ) and an initial value of T E for the comple-
tion time of the late jobs.

The optimal solution for problem Q3 is therefore:
min

T E∈[0, T E
max]

f ∗
T E .
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Theorem 4 ProblemQ3 is solved in O(n
(
T E
max

)2
(LDmax +∑

v j )) time.

Proof j is bounded by n, t1 is bounded by T E , and t2 is
bounded by LDmax + ∑

v j . In addition, T E is bounded by
T E
max and DP3 is executed T E

max times. It follows that the

total running time is O
(
n
(
T E
max

)2(
LDmax + ∑

v j
))
. �

Numerical Example 3 Consider an 8-job prob-
lem, where jobs are sequenced in ELD order.
The job-dependent learning-dates are: LDj =
(44, 47, 60, 86, 90, 137, 185, 211), implying that
LDmax = max

j∈J
{
LD j

} = 211.

As in Example 1, the maximal (u j ) and minimal (v j )

processing times were generated uniformly in the intervals
[25, 50] and [1, 25], respectively.

The resulting processing times are: u j = (40, 49, 37,
45, 40, 31, 46, 44) and v j = (34, 32, 24, 22, 22, 21, 34,
20). It follows that umax = max

j∈J
{
u j

} = 49 and T E
max =

max
j∈J

{
LDj + u j − 1

} = 254.

In the optimal solution achieved by DP3,
(
T E

)∗ = 86 <

254 = T E
max.

The ordered set of the early jobs isJ E = (1, 7), implying
that (one) optimal sequence is J ∗ = (1, 7, 2, 3, 4, 5, 6, 8).

The actual job processing times in this optimal sequence
are p j = (40, 46, 32, 24, 22, 22, 21, 20), and the optimal
makespan is C∗

max = 231.
Note that this optimal solution contains an idle time

between job 6 (in position 7) and job 8 (in position 8). Job 6
is completed at C6 = 207, and if job 8 starts at this point, it
is an early job and its processing time isu8 = 44. It is clearly
better to create idle time and delay the starting time of job 8
to its learning date:LD8 = 211. In this case its processing
time is reduced to v8 = 20, which reduces the makespan
value to C∗

max = 231.
[For the sake of complete exposition, we provide below

the optimal solution achieved by DP1 for the same input:

(
T E

)∗ = 77 < 254 = T E
max , J E = (6, 7),

J ∗ = (6, 7, 1, 2, 3, 4, 5, 8),

p j = (31, 46, 34, 32, 24, 22, 22, 20).

The optimal makespan (when idle times are not allowed)
is C∗

max = 231, i.e., the same makespan value which was
achieved by DP3.]

1.5 Numerical study

Weperformed numerical tests in order to evaluate the running
time of algorithms DP1, DP2 and DP3, as a function of
the input parameters.

For DP1, random instances were generated with n = 50,
75, 100, 125, 150 and 175 jobs. The maximal processing
times

(
u j

)
were generated uniformly in the intervals [10, 20]

and [20, 30], and the minimal processing times
(
v j

)
were

generated uniformly in the intervals [1, 10] and [10, 20],
respectively. For each instance, the sum of the maximal
processing times was computed, i.e., P = ∑

j∈J u j . The
job-dependent learning-dates

(
LDj

)
were generated uni-

formly in the interval [0, ωP�], where ω is a tightness
factor. We considered ω = 0.05, 0.15 and 0.25, to produce
various ranges of learning dates. For each combination of n,
intervals of u j and v j , and ω, 20 instances were generated
and solved. (Thus, a total of 720 instanceswere generated and
solved byDP1.) [The programswere implemented in Python,
and were executed on a Lenovo 2.00 GHz, Intel Core i7 with
16 GB RAM Memory].

The average and worst case running times of DP1 are
reported in Table 1 (for u j ∈ [10, 20] and v j ∈ [1, 10]), and
Table 2 (for u j ∈ [20, 30] and v j ∈ [10, 20]). As expected,
the running times increase as the actual processing times
increase. Also, the running times increase as a function of
the ω values, since larger tightness factors lead to a larger
proportion of early jobs. The results validate that the pro-
posed DP performs well in solving medium and even large
instances. We note that the worst case running time of DP1
with n = 175, u j ∈ [20, 30], v j ∈ [10, 20] and ω = 0.25
did not exceed 200 s (see Table 2).

The same input parameters were used for the evaluation
of DP2. Again, 720 instances were generated and solved (as
20 instances were generated for each combination of n, the
intervals of u j and v j , and ω). The average and worst case
running times obtained by DP2 are reported inTable 3 (when
u j ∈ [10, 20] and v j ∈ [1, 10]) and Table 4 (when u j ∈ [20,
30] and v j ∈ [20, 10]). The running times are much smaller
for this special case of a common learning date. The worst
case running time of DP2 with n = 175 did not exceed 11 s
(see Table 4).

The complexity of DP3 is significantly larger than those
of DP1 and DP2. Therefore, much smaller instances were
solved in our numerical tests. The numbers of jobs considered
were: n = 10, 20, . . . , 70. As above, the maximal pro-
cessing times

(
u j

)
were generated uniformly in the interval

[10, 20] and [20, 30], and the minimal processing times
(
v j

)

were generated uniformly in the interval [1, 10] and [10, 20],
respectively, and the tightness factors were: ω = 0.05 and
0.15. As above, for each combination of n, intervals of u j and
v j , and ω, 20 instances were generated and solved. Thus, a
total of 560 instances were solved by DP3, and the results are
reported in Table 5 (where u j ∈ [10, 20] and v j ∈ [1, 10])
and Table 6 (when u j ∈ [20, 30] and v j ∈ [10, 20]). The
tables reflect the very high complexity of DP3 (see Theo-
rem 4): the running times increase dramatically as a function
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Table 1 Results of DP1 for
u j ∈ [10, 20], v j ∈ [1, 10]
Average and worst case running
times (seconds)

n u j v j ω = 0.05 ω = 0.15 ω = 0.25

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

50 [10, 20] [1, 10] 0.1 0.1 0.6 0.7 1.6 1.7

75 0.3 0.3 1.9 2.2 5.3 5.9

100 0.7 0.7 4.8 5.5 12.5 13.5

125 1.2 1.3 9.2 10.0 25.3 27.3

150 2.0 2.2 15.7 17.0 42.8 45.2

175 3.2 3.5 25.3 27.1 68.2 72.6

Table 2 Results of DP1 for
u j ∈ [20, 30], v j ∈ [10, 20].
Average and worst case running
times (seconds)

n u j v j ω = 0.05 ω = 0.15 ω = 0.25

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

50 [20, 30] [10, 20] 0.3 0.3 1.7 1.8 4.5 5.1

75 0.8 0.9 5.7 6.0 15.4 18.4

100 1.8 2.0 13.4 14.4 35.8 37.1

125 3.4 3.5 25.9 27.6 71.0 74.9

150 5.7 6.0 44.9 46.5 122.1 127.0

175 8.9 9.4 71.6 74.2 191.6 198.3

Table 3 Results of DP2 for
u j ∈ [10, 20], v j ∈ [1, 10].
Average and worst case running
times (seconds)

n u j v j ω = 0.05 ω = 0.15 ω = 0.25

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

50 [10, 20] [1, 10] 0.0 0.1 0.1 0.2 0.2 0.4

75 0.1 0.2 0.3 0.5 0.3 0.7

100 0.1 0.2 0.3 0.7 0.8 1.4

125 0.2 0.5 0.8 1.3 0.9 2.0

150 0.3 0.6 0.9 1.9 1.4 3.1

175 0.5 0.8 1.2 2.3 2.0 4.4

Table 4 Results of DP2 for
u j ∈ [20, 30], v j ∈ [10, 20].
Average and worst case running
times (seconds)

n u j v j ω = 0.05 ω = 0.15 ω = 0.25

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

Average
run time
[s]

Worst
case run
time [s]

50 [20, 30] [10, 20] 0.1 0.2 0.3 0.5 0.4 0.8

75 0.2 0.3 0.6 1.1 1.1 2.1

100 0.3 0.6 1.2 2.0 1.9 3.3

125 0.5 1.0 1.3 3.2 3.5 6.4

150 0.8 1.6 3.0 4.8 4.8 8.3

175 1.1 2.2 4.6 6.5 6.8 11.0
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Table 5 Results of DP3 for
u j ∈ [10, 20], v j ∈ [1, 10].
Average and worst case running
times (seconds)

n u j v j ω = 0.05 ω = 0.15

Average run
time [s]

Worst case run
time [s]

Average run
time [s]

Worst case run
time [s]

10 [10, 20] [1, 10] 0.1 0.1 0.2 0.4

20 0.7 1.0 3.0 4.0

30 2.6 3.5 12.5 16.3

40 7.0 8.2 38.7 48.8

50 15.7 18.6 95.2 117.0

60 29.0 32.6 194.6 237.3

70 48.2 56.8 347.6 404.0

Table 6 Results of DP3 for
u j ∈ [20, 30], v j ∈ [10, 20].
Average and worst case running
times (seconds)

n u j v j ω = 0.05 ω = 0.15

Average run
time [s]

Worst case run
time [s]

Average run
time [s]

Worst case run
time [s]

10 [20, 30] [10, 20] 0.7 0.9 1.9 2.6

20 5.2 5.8 22.1 26.5

30 18.8 22.2 103.2 121.2

40 50.7 57.5 309.3 364.8

50 120.5 133.4 772.1 856.1

60 235.4 267.4 1534.3 1745.5

70 399.3 435.5 2819.5 3264.4

of the intervals from which the processing times were gen-
erated, and as a function of the tightness factor. Note that the
average running time required for solving a 70-job problem
with u j ∈ [20, 30], v j ∈ [10, 20] and ω = 0.15 exceeds
2800 s.

2 Conclusions

This study focused on step-learning, i.e., the very realistic
phenomenon that the processing times of the jobs start-
ing after their (job-dependent) learning-dates, are reduced.
We concentrated first on minimizing makespan on a single
machine for the setting that idle times between consec-
utive jobs are not allowed, proved that the problem is
NP-hard, and, subsequently, proposed a pseudo-polynomial
time dynamic programming algorithm. The special case of a
common learning-date for all the jobs was also studied, and
an appropriate (more efficient) DP was introduced. Then, we
introduced a more complicated pseudo-polynomial dynamic
programming for the case that idle times between consecutive
jobs are allowed. Our extensive numerical tests on all algo-
rithms validated that the first two proposed DPs are efficient
for solving real-life instances comprised of hundreds of jobs,
whereas the third DP is limited to much smaller instances.

A challenging question for future research—is there a
more efficient exact solution algorithm for problem Q3
(allowing idle times between jobs)? Other interesting and
challenging topics might be dedicated to the extensions:
either to multi-step-learning, or to multi-machine settings.
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