
Journal of Scheduling (2023) 26:497–517
https://doi.org/10.1007/s10951-022-00747-5

Simulated annealing with penalization for university course
timetabling

Kadri Sylejmani1 · Edon Gashi1 · Adrian Ymeri1

Accepted: 9 June 2022 / Published online: 20 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we present our solver for the new variant of the University Timetabling Problem, which was introduced in the
framework of Fourth International Timetabling Competition (ITC2019). This problem is defined on top of previous course
timetabling problems in the literature, but introduces several new elements, both in terms of new features like student sectioning
and new required and optional elements like distribution constraints. Our approach for solving this problem is based on the
simulated annealing metaheuristic and consists of two phases. The first phase focuses on finding a feasible solution, and the
second phase attempts to optimize the final score while keeping the solution feasible. Our solver detects local optima and
applies gradual penalization to force solutions to new neighborhoods. The solver also detects required constraints which are
difficult to satisfy and performs a specialized search on them. These adaptively applied mechanisms allow the solver to find
feasible solutions for all problem instances of the competition. Results show that our solver gives good overall results and is
competitive against other approaches presented in ITC2019.

Keywords ITC 2019 · University class timetabling · Simulated Annealing · Constraint penalization

1 Introduction

University timetabling is a well studied-problem in the
literature that aims to model the scenario for automated
scheduling of university courses by satisfying constraints like
availability of classrooms, student preferences, hierarchical
relationships between classes, and other complex constraints.
Many commercial and non-commercial tools (e.g., Prime

B Adrian Ymeri
adrian.ymeri@uni-pr.edu

Kadri Sylejmani
kadri.sylejmani@uni-pr.edu

Edon Gashi
edon.gashi@uni-pr.edu

1 University of Prishtina, Prishtina, Kosovo

Timetable,1 UniTime,2 FET,3 etc.) exist with the intention
of automating the process of generation of course schedules,
yet the problem still remains interesting and relevant. Such
systems offer a more complete user experience, including
rich presentation layers (Mall, 2018) which allow users to
tweak parameters and give a more diverse input. While the
presentation and data storage are important for any software
system, in this paperwe focus only on solving problemsgiven
a strictly defined input shape and features.

The International Series of Conferences on the Prac-
tice and Theory of Automated Timetabling (PATAT)4 is
a biyearly forum that supports many timetabling com-
petitions. One of these competitions is The International
Timetabling Competition which is devoted to university
course timetabling. This paper proposes a solution to the
problem presented in the fourth edition of the competition.
The fourth edition (ITC20195) presents the most com-
plex university timetabling problem discussed so far in the

1 https://primetimetable.com/.
2 https://www.unitime.org/.
3 https://lalescu.ro/liviu/fet/.
4 http://www.patatconference.org/.
5 https://www.itc2019.org/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00747-5&domain=pdf
https://primetimetable.com/
https://www.unitime.org/
https://lalescu.ro/liviu/fet/
http://www.patatconference.org/
https://www.itc2019.org/

498 Journal of Scheduling (2023) 26:497–517

literature, including time, room, student and many class dis-
tribution demands.

Our solution is based on the simulated annealing meta-
heuristic (Kirkpatrick, 1984)whichwe transform to a simpler
hill climbing (Lim et al., 2006) with randomwalks in specific
search phases. Our solution method has been applied on the
ITC2019 test set and managed to solve all of them, placing
us first on the first and second milestones of the competition.
Our solver also won third place on the final phase and the
first prize in the open source category.

This paper is organized into six sections: Sect. 2 describes
the University Timetabling Problem as proposed in the
ITC2019; Sect. 3 discusses similar works in the field; Sect. 4
shows the solution approach and discusses the solver; Sect. 5
presents some experimental measurements and the compar-
isons to best known results for all data sets; and, in Sect. 6
we provide conclusions and comments on the future work
for the University Timetabling Problem.

2 Problem formulation

With the aim of making the paper self-contained, in this sec-
tion, we give a brief definition of the problem entities and
accompanying constraints. We refer the reader to Müller et
al. (2018) for the complete details of the formulation.

The specific entities of the problem include the following:
TimesThe course timetabling period has a certain number

of weeks, a number of days in each week, and a number of
time slots per day. A single time slot has a certain duration
(usually 5min), and it is used to model travel times from
one room to the other, as well as model classes that meet
at irregular times. A given class can meet several times a
week; however, it may take place only in certain weeks of
the semester (e.g., in odd weeks). Two particular classes are
assumed to overlap if they share at least one week, at least
one day of the week and they overlap within this day in at
least one of their corresponding time slots.

RoomsEach room has a capacity, which denotes the num-
ber of available seats. A roommay not be available at certain
time slots during one or more days in the week over the
course of the semester. If two given rooms are not closely
collocated, a travel time between them is expressed in the
form of number of time slots needed to travel from one room
to the other. A class cannot be scheduled in a room at a time
slot when the room is not available or when there is some
other class placed in the room at an overlapping time slot. A
given room may only be suitable for a specific set of classes.

Courses Each course consists of one or more configura-
tions such that each student attends (some) classes in a given
configuration only. Each course configuration consists of one
or more teaching subparts/units (e.g., lecture, recitation or
laboratory). Each student that enrolls for a given course must

attend one class from each teaching subpart of a single course
configuration. A given course subpart may consist of sev-
eral classes, whereas a given class may have a parent class
defined, which means that a student who attends a class must
also attend its parent class. Each class has a set of possible
time slots when it can meet. Each eligible time slot has a
specified penalty when it is selected for a given class. Each
class consists of set of rooms where it can meet, although the
model allows assigning classes only to time slots andwithout
rooms. Each eligible room has a given penalty when selected
for a certain class.

Students Each student is associated with a list of courses
that she or he needs to attend. Each student, for each of her/his
courses, needs to be assigned in one class of every teaching
subpart of a single course configuration. If there is a parent–
child relation between classes of a course, the student must
attend both classes in the relation. The number of students
that can attend a given class is usually constrained to an upper
limit. A student conflict happens when a given student is
assigned in two classes that overlap in at least one time slot
or they are scheduled one after the other in rooms that are
too far apart (i.e., the travel time between the rooms is longer
than the number of time slots between the time when the first
class ends and the second class begins). Each student conflict
is associated with a specified penalty, which does not depend
on the number of actual class meetings (over the weeks of
the semester) that are in the conflict or the number of the
overlapping time slots.

In addition to the above constraints, that are applicable
for entities such as times, rooms, courses and students, there
are additional, so-called distribution constraints, that can be
employed between any two or more classes. These con-
straints can be either required, which we refer to as hard
constraints, or optional, which we refer to as soft constraints.
These constraints can enforce specific rules for either time
slots, days, weeks, rooms, or special relations between those.
In the following, we present individual distribution con-
straints:

SameStart Any set of given classes must start at the same
time slots of the day, regardless of the specific day of the
week, or specific week of the semester.

SameTime/DifferentTime Any set of given classes must
be assigned at the same/different time slots of the day, regard-
less of the specific day of the week, or specific week of the
semester. In case of the SameTime constraint, where one of
the classes is shorter, then the shorter class can start later, but
it must not end after the longer class.

SameDays/DifferentDays Any set of given classes must
be assigned in the same/different days of theweek, regardless
of their specific time slots of the day, or specific weeks of the
semester. In case of the SameDays constraint, where one of
the classes has fewer meetings during the week, then the

123

Journal of Scheduling (2023) 26:497–517 499

class with fewer meetings must be assigned to be taught on
the subset of days used by the class with more meetings.

SameWeeks/DifferentWeeks Any set of given classes
must be assigned in the same/different weeks of the semester,
regardless of their specific time slots of the day, or specific
days of theweek. In case of the SameWeeks constraint, where
one of the classes has fewer weeks during the semester, then
the class with fewer weeks must be assigned to be taught on
the subset of weeks used by the class with more weeks.

SameRoom/DifferentRoom Any set of given classes
must be taught in the same/different room/s.

Overlap/NotOverlap Any set of given classes must be
assigned to overlap (or not to overlap) in all corresponding
time slots of a given day, in all corresponding days of the
week and in all corresponding weeks of the semester.

SameAttendeesAny set of given classes with same atten-
dees cannot overlap in all corresponding time slots of a given
day, in all corresponding days of the week and in all corre-
sponding weeks of the semester. In case, such a set of given
classes are assigned in the same days, and then they must
be assigned such that the attendees have enough time to
travel between consecutive classes that are taught in different
rooms.

PrecedenceAny set of given classesmust be assigned one
after the other during the days of a given week. For classes
that have multiple meetings in a week or that are on different
weeks, this constraint is only applied for the first meeting of
the corresponding classes.

WorkDay(S) On any given day, the number of time slots
from first time slot of the first assigned class to the last time
slot of the last assigned class should not be more than S time
slots.

MinGap(G)Any twoclasses that are assignedon the same
days (i.e., that overlap on days of the week and weeks of the
semester) should have a gap of at least G time slots.

MaxDays(D)Any set of given classes cannot spreadmore
than D days during the week, regardless of whether they are
taught in the same week of the semester or not.

MaxDayLoad(S)Any set of given classes must be spread
over the days of each and every week such that the sum of
time slots of classes on every day does not exceed number S.

MaxBreaks(R, S) For any set of given classes, the maxi-
mal number of breaks during a day should not be more than
the value of parameter R. A single break appears (is formed)
when there are at least S free time slots between any two
consecutive assignments of the set of given classes.

MaxBlock(M, S) For any set of given classes, the maxi-
mal number of time slots of classes assigned consecutively
(denoted as a block of classes) should be less or equal to the
value of parameter M. A block of classes appears (is formed)
when there are no more than S free time slots in-between any
two consecutive assignments of the set of given classes.

3 Related work

The literature on University Course Timetabling is very vast,
which is why we decided to focus only on the work related
to the series of timetabling competitions as discussed below.

The topic of the First International Timetabling Com-
petition ITC2002 (Paechter et al., 2002) is related to the
University Timetabling Problem, which consists of a set of
events (classes) that have to be scheduled in a period of 45
time slots (5 days of 9h each), a set of rooms where events
take place, a set of students who attend the events, and some
features that rooms need to possess in order for the events to
take place there. There are three hard (required) constraints:
no student can participate in multiple events simultaneously,
the room size and features comply with the assigned event,
and no multiple events can take place in a room simulta-
neously. There are also three soft (optional) constraints: a
student has a class in the last slot of the day, there are mul-
tiple consecutive classes for a student during a day, and the
student has only a single class in the day. These constraints
determine the solution score.

Kostuch (2003) solves this problem by using an approach
of two stages, where at the first stage a feasible timetable is
constructed, and in the second stage a Simulated Annealing
metaheuristic is utilized to optimize the solution based on the
objective function. Further, Cordeau1 et al. (2003) tackles the
problem of university timetabling by using an efficient Tabu
Search metaheuristic, which is divided into two phases—in
the first phase the goal is to find a feasible solution, whereas
the second phase proceeds with the goal of solution improve-
ment.

Bykov (2003) proposes a Great Deluge local search algo-
rithm with a move operator that randomly moves one event
from one time slot to another one. Gaspero and Schaerf
(2003) employ a local search technique that consists of three
sequential stages, namely Hill Climbing, Tabu Search and
Multi-swap shake.An exhaustive list of approaches that solve
this variant of University Timetabling Problem can be found
in Eckersley (2004).

The second International Timetabling Competition
ITC2007 (Di Gaspero et al., 2007) is organized in three
tracks, where the second and third are about course
timetabling. The Post Enrollment-based Course Timetabling
(second track in ITC2007) models the situation where the
timetable is constructed after the student enrollment, in such
a way that all of them can attend the events in which they are
enrolled. Cambazard et al. (2012) present an approach that is
a hybridization of local search and constraint programming
techniques, where a list coloring relaxation function is also
employed. Further, the constraint programming approach
uses a problem decomposition technique, which is incorpo-
rated into a large neighborhood search scheme.Méndez-Díaz
et al. (2016) present a ILP-based heuristic for a generaliza-

123

500 Journal of Scheduling (2023) 26:497–517

tion of the post-enrollment course timetabling problem. The
proposed approach is a two-stage heuristic procedure, where
in the first stage the assignments of classes to time slots are
made by considering a subset of students and a relaxation of
the ILP model, whereas in the second phase, the ILP model
is solved by fixing some of the variables to the values of
the solution obtained in the first stage. Nagata (2018) pro-
pose a local search-based algorithm that has a mechanism for
adapting the neighborhood size with the aim of constructing
a random partial neighborhood that is used for controlling
the trade-off between search space exploration and exploita-
tion. Ceschia et al. (2012) design a metaheuristic approach
based on Simulated Annealing, which consist of a neighbor-
hood relations made of two moves, namely move events and
swap events. The former move an event from its currently
assigned time slot to another, whereas the latter swap the
time slots of two distinct events. Goh et al. (2019) present
a two-stage approach for solving the post-enrollment course
timetabling problem. In the first stage, a feasible solution
is constructed, whereas in the second stage, the solution is
further improved by considering soft constraint violations.
The presented approach is based on the Simulated Anneal-
ing metaheuristic that is empowered with a Reheating and
Learning algorithm, which is a reinforcement learning-based
methodology used to obtain a suitable neighborhood struc-
ture.

The Curriculum-based Course Timetabling (third track in
ITC2007) is about weekly scheduling of lectures for a num-
ber of university courses in a given number of rooms and time
periods, where clashes between courses are resolved accord-
ing to the teaching curricula published by the university and
not on the terms of student enrollment data. The problem’s
test set consists of real curriculum data from the university of
Udine in Italy. Müller (2009) uses a constraint-based solver
to tackle this variant of university timetabling. The solver’s
algorithm consists of three phases, namely: (1) generation of
feasible solution by using an Iterative Forward Search algo-
rithm that uses a Conflict-based Statistics approach to escape
cycles, (2) Hill Climbing to find the local optimum, and (3) a
Great Deluge technique (and optionally a Simulated Anneal-
ing metaheuristic) to escape from the local optimum.

Furthermore, Lü and Hao (2010) present an approach that
consists of three main phases, namely initialization, inten-
sification and diversification. The initialization phase uses a
fast greedy algorithm to construct a feasible solution, while
the second and the third phase use an adaptive intensification
and diversification strategy, respectively. The earlier is based
on Tabu Search by using a neighborhood structure of dou-
ble Kempe chains, whereas the latter uses the perturbation
mechanism of Iterated Local Search that is penalty based.

Geiger (2012) presents a local search strategy that is based
on the principles of Threshold Accepting, which aims to
escape local optima over the course of algorithm execution.

This approach implements a stochastic neighborhood that
randomly removes and reassigns events in the running solu-
tion. For a detailed overview of further approaches that solve
the curriculum-based course timetabling problem, the reader
is referred to Bettinelli et al. (2015). Bellio et al. (2016) pro-
pose a single-stage simulated annealing technique for the
curriculum-based course timetabling problem. The neigh-
borhood of the proposed method consists of two operators,
which either move or swap lectures from a time slot or room.
Moreover, authors employ a non-uniform probability strat-
egy for selecting one of the moves of the neighborhood,
which consists of two stages. Kalender et al. (2012) present
an improvement oriented heuristic selection strategy, which
is combined with a simulated annealing approach as a hyper-
heuristic. Furthermore, the proposed approach uses a set of
low level constraint-oriented neighborhood moves that help
in construction of a method that is able to solve state-of-
the-art instances, including a dataset generated at Yeditepe
University.

The Third International Timetabling Competition was
devoted to High School Timetabling; therefore, it is out of
the scope of this work.

The Fourth International Timetabling Competition
(ITC2019) has the topic of the University Timetabling Prob-
lem, which introduces several new hard and soft constraints
when compared to the previous problems of similar nature.
The novelty of this problem is that it enables student section-
ing along with other standard time and room assignments for
courses. This problem is modeled based on the real-world
data sets that have been obtained from UniTime,6 which is
a widely used platform by the universities around the world
when it comes to lecture timetabling. In the following, we
briefly describe all of the five approaches that have been
finalists in this competition, where the first is the winner.

Holm et al. (2021) presents aMixed Integer Programming
(MIP)-based algorithm that incorporates several different
parts. The first part makes a preprocessing of the input
instance, where several unnecessary information is removed.
Further, this approach employs two algorithms for generation
of initial solutions, and a Fix-and-Optimize metaheuristic,
which are all based on a MIP formulation. Efstratios et
al. (2021) present a mathematical programming approach,
which is a mixed integer linear programming model that
is solved using the branch-and-cut algorithm. This method
employs several elements to boost the algorithm perfor-
mance, such as preprocession of several characteristics of
the instances, the aggregation of constraints and the effi-
cient use of auxiliary variables in the problem formulation.
Er-rhaimini (2021) presents an approach where the initial
solution is created by stochastically assigning classes at
random, until all of them are assigned, or removing them

6 https://www.unitime.org/.

123

https://www.unitime.org/

Journal of Scheduling (2023) 26:497–517 501

when no more choices exist for new assignments. In the
iterative phase, the solution is improved by trying to insert
the prioritized/unassigned classes into the timetable, while
ensuring that the algorithm does not get stuck in infinite
loops. Lemos et al. (2021) presents a MaxSAT approach,
which uses the state-of-the-art solver TT-Open-WBO-Inc
(Nadel, 2019). The performance of the algorithm is improved
by preprocesing the input, whereas a neighborhood search
procedure is employed to further optimize the solution.

On our side, we have solved this problem by using a cus-
tomized simulated annealing approach (Gashi & Sylejmani,
2020), where penalization strategies have been employed in
order to make the algorithm find a feasible solution first, and
then bemore flexible in escaping local optima. Our algorithm
is able to solve all the instances, and in general it also finds
good solutions when compared to other algorithms of meta-
heuristic nature. In the following sections, we first describe
our approach in detail and then visualize the solution process
with experiments.

Furthermore, there are several applications of the sim-
ulated annealing metaheuristic for the course timetabling
problems in general. Gunawan et al. (2012) propose a solver
for the university timetabling problem, which integrates both
teacher assignment and course scheduling. The proposed
solution consists of two stages, where in the first stage, an
initial solution is obtained by a mathematical programming
approach based on Lagrangian relaxation, whereas, in the
second stage, the solution is further improved by a simulated
annealing metaheuristic. The proposed algorithm has been
tested on a real-life dataset from a university in Indonesia,
as well as on several randomly generated datasets. Zheng
et al. (2015) propose a simulated annealing metaheuristic
for the curriculum-based course timetabling problem with
extra traveling distance constraints. The proposed approach
consists of a two-stage procedure, where the first one aims
at satisfying the hard constraints violations, whereas the
second one minimizes the soft constraints violations. Fur-
thermore, the proposed simulated annealing technique uses
some search functions/memories to incorporate a variety of
space and time adjustment strategies within the neighbor-
hood exploration mechanism.

4 Solution approach

4.1 Problemmodel and preprocessing

Before starting the search, some preprocessing is performed
on the problem instances. All classes and students are nor-
malized to have sequential IDs beginning from 0. This allows
efficient storage and access in arrays. We hold a mapping to
real IDs, which is needed when outputting the solution.

4.1.1 Time and room variables

Time and room variables are collected from classes. We con-
sider a time/room assignment to be a variable if it has more
than one option. We refer to the list of possible assignments
of a variable as its domain. For each variable, we sort its
domain by smallest penalty in an ascending order. If a class
has only one room, then we remove any time assignments
which overlap with the room’s unavailable times from that
class’ time domain.

These variables are stored in their respective arrays:
TimeVariables for time, RoomVariables for rooms, and All-
ClassVariables for all of them combined. We pick a random
index from these arrays when performing a mutation. This
simplifies the process of picking candidates formutation pur-
poses since we can never pick fixed variables that have a
domain size of 1.

4.1.2 Course configuration variables

Because of parent–child relationships between classes in
course configurations, the problem of assigning infeasible
combinations arises if we mutate values randomly. For this
reason, we create a simpler model where each course config-
uration acts as a variable with a list of feasible assignments.
We find the possible assignments using a simple tree search.
We only do this once at the preprocessing stage.

In Fig. 1, we show a course configuration with 6 classes.
Parent–child relationships are described using edges which
connect parents to children. We see that by picking class B
wemust unconditionally have class A in our solution, but the
option for the next class is either C or F.

By performing a tree search, we discover 4 possible paths
to connect all configuration subparts in this tree: ABC, ABF,
DEC, DEF. We will refer to these assignment combinations
as class chains. In practice, there aren’t toomany such config-
urations because a typical course has few classeswhich could
also be further constrained in parent–child relationships.

This logic applies only for one course configuration. A
class may have more than one configuration, where each
configuration may have a different number of subparts. In

Fig. 1 A sample course configuration

123

502 Journal of Scheduling (2023) 26:497–517

such cases, we compute all paths for each configuration. In
the end, we merge the paths to a single list.

Each of these chains is assigned to an index, and moving
forward we consider a course enrollment as a variable with
a domain of n elements, where n represents the number of
class chains in the course configuration. Each class chain
holds the ID of the configuration it belongs to and also the
indexes of classes inside the subparts of that configuration.
With this approach, we can refer to any feasible combination
of a course by a simple integer value in interval 0...n − 1.

Like time and room variables, if a course happens to have
only one class chain in total, then we do not consider it as a
variable.

4.1.3 Worst penalty calculation

When evaluating a solution, we measure a penalty relative
to the worst possible case it could have. We precompute the
following worst cases.

Worst room penalty is calculated by adding up the worst
(most penalized) room assignments of all classes.

Worst time penalty is calculated by adding up the worst
(most penalized) time assignments of all classes.

Worst student penalty is calculated by assuming that all
classes of a student are in conflict with each other. We get the
number of classes cn by adding up the maximal number of
classes of each course the student is enrolled to. The number
of maximal conflicts is calculated as cn ∗ (cn − 1)/2.

Worst distribution penalty is calculated by adding up
all the non-required distribution constraints assuming their
worst possible configuration. Distribution evaluation is done
using the rules as described in the problem statement.
For some constraints it’s applicable to use a mathematical
formula with the highest input value, while for other conflict-
related constraints we assume a conflict between all pairs of
classes in the constraint cn ∗ (cn − 1)/2.

Worst solution penalty is the sum of worst room penalty,
worst time penalty, worst student penalty, and worst distri-
bution penalty.

4.2 Solutionmodel

A solution is the list of all variables and their values. We
model solutions to always be complete. This means that
variables are always assigned to some value, even if their
configuration results to an invalid solution. We consider a
solution to be infeasible (or invalid) when it has conflicts
between classes, unavailable rooms being used, or unsatis-
fied required constraints.

A variable assignment in a solution is one of the following:

1. Class time: Class ID paired with a Time Index
2. Class room: Class ID paired with a Room Index

3. Student enrollment: The tuple Student ID & Course
Index paired with Class Chain Index

Their internal data structure modeling is discussed in the
following sections.

4.3 Solution representation

4.3.1 Representation of class time and room

A state in the search space is represented by three vectors,
where, for each class (i.e., Class ID), the first vector indi-
cates the room (i.e., Room Index) where the class takes place,
whereas the secondvector stores the time schedule (i.e., Class
Index) when the class takes place, which points to the zero-
based index of an element in the class’s domain. If the domain
has only one element (meaning there is only possible time
schedule for that class), then its value is always 0. For exam-
ple, if a class has its time schedule assignment set to 2, it
means that the class’s schedule is set to the third option in
the list of possible schedules. There are cases where a class
does not require any room space. In that situation, in the
vector of room assignments, we store the value −1 in the
corresponding index. Finally, in the third vector, we store the
total number of enrolled students in each class. We need this
to evaluate the constraint of capacity overflows.

4.3.2 Student variables

We store the state of students in a vector called StudentStates.
For each element in this vector, we keep a list of Enroll-
mentStates. Elements in enrollment states vector match in
order with the courses the student is enrolled in.

An element in theEnrollmentStates vector has a ConfigIn-
dex which represents the configuration of the course that the
student is enrolled in. Further, an element inEnrollmentStates
also has an array of integers, where the index in the array
represents the position of the subpart, whereas the value rep-
resents the position of the class in that subpart. Although this
model allows for combinations which violate parent–child
relationships of classes, we always assign these states from
the precomputed chains (i.e., Class Chain Index) of their
respective courses.

4.3.3 Distribution constraints

When evaluating a given distribution constraint, we return a
tuple that contains both penalties (hardPenalty, softPenalty).
Soft constraints return values of (0, p) and required con-
straints return values of (q, 0), where p and q are calculated
according to the problem rules. For required constraints, we
use a constraint penalty factor of 1, whereas theweight of soft
constraints depends on the constants of the problem instance.

123

Journal of Scheduling (2023) 26:497–517 503

4.4 Initial solution

Initial solutions are deterministic. For each class, we set the
time and room assignment to 0 (as long as the class has a
room in its domain). We pick courses for each student i in
interval 0 . . . students_count by choosing a chain with ID
i mod number_of _chains. In other words, we attempt to
distribute students to different chains in a pseudo-random
order.

We have experimented with various greedy algorithms by
assigning low-cost pairs of rooms and times, but due to the
sheer number of constraints and combinations our attempts
were fruitless, andwe did not pursue such approaches further.
The initial solution generation is a remnant of those exper-
iments, and we never got to revisit it, mostly because we
have found that the choice of initial solution does not make
any significant difference in results. Overall, a purely random
solution would be less complex and more intuitive. One ben-
efit of starting from the same solution every time was that it
helped us better understand the effects of various parameters
and mechanisms of the algorithm during development.

4.5 Evaluation

We maintain three separate penalties to determine the qual-
ity and state of the solution: soft penalty, hard penalty, and
student overflows. Although student overflow penalty affects
the feasibility of the solution, we keep it separate because it is
easier to satisfy compared to class conflicts and distribution
constraints. The evaluation function used in the local search
depends on the phase and feasibility of the solution.

4.5.1 Hard and soft penalty

Soft penalty is calculated using the rules as specified in the
problem definition (Müller et al., 2018). Hard penalty is cal-
culated based on the following rules:

1. A conflict between a pair of classes gives 1 hard penalty
point.

2. A time assignment conflicting with a room’s unavailable
schedule gives 1 hard penalty point.

3. An unsatisfied required constraint gives hard penalty
points equal to the soft penalty the constraint would give
if it were not required (with weight 1).

4.5.2 Student overflow penalty

Student overflow penalty is calculated by adding up all over
enrollments of all classes in the solution. For example, if we
have a class with a capacity of 20 and we enroll 23 students,
another class with a capacity of 25 and we enroll 26 students,

the total overflow in this case is 4 (3 for the first class and 1
for the latter).

When evaluating (discussed later), we multiply the
counted over-enrollments with the coefficient c2 in Eq.1

c2 = over f low_ f actor · student_penalty
worst_so f t_penalty

(1)

InEq.1 student_penalty is the optimization constant that is
specified in the input problem instance, worst_soft_penalty
is the penalty calculated in problem preprocessing as dis-
cussed earlier, and overflow_factor is calculated based on
Eq.2. Further, max_classes, in Eq.2, represents the theoret-
ical maximum of classes a student can attend, or in other
words, the number of classes if the studentwould have picked
course configurationswithmost subparts for all their courses.
Multiplying by 1.01 causes this penalty to always surpass any
equivalent soft penalty points.

over f low_ f actor = 1.01 · max_classes (2)

4.5.3 Search penalty

Stern (1992) proposes a simulated annealing approach for
solving the problem of matrix permutation, where a heuristic
temperature-dependent penalty function is employed. This
has shown to constantly outperform the standard approach,
and as result, several other problems have been solved using
similar strategies as describe by Henderson et al. (2003).
In this regard, our solver applies three penalty components
that are discussed so far, which are combined to evaluate the
quality of a solution.Herewewill discuss how these penalties
are combined when evaluating a solution.

We define the search penalty in Eq.3. When a solution is
infeasible by having nonzero hard penalty, the search penalty
is the sum of its hard penalty and the 2 digit (after decimal
point) rounded sum of its class overflows and the normalized
soft penalty. In Eq.3 ph stands for hard penalty, ps for soft
penalty, and pc for class overflows penalty. Coefficient c1
is an empirically defined constant with value c1 = 0.01,
whereas c2 is calculated based on previously discussed Eq.1.

The normalized soft penalty is the actual soft penalty
divided by theworst possible penalty of the problemas shown
in Eq.4. We showed how the worst soft penalty is calculated
in the problem preprocessing section.

Rounding the soft penalty helps create a “rolling effect”
so as not to waste time in local optima, where micro-
optimization processes are not helpful in making the solution
feasible.

When a solution reaches zero hard penalty, the goal shifts
to optimize class overflows and soft penalty, as shown in the
second case of Eq.3. As discussed earlier, the constant c2

123

504 Journal of Scheduling (2023) 26:497–517

is computed to be sufficiently large in order to ensure class
overflow elimination is prioritized.

SearchPenalty(s)=
{
c1 ph+ round2(c2 pc+ normalize(ps)), ph > 0

c2 pc + normalize(ps), ph = 0

(3)

Normalize(ps) = ps
worst soft penalty of problem

(4)

4.5.4 Stochastic tunneling–Fstun

We further normalize the evaluation function based on the
technique of stochastic tunneling (Wenzel & Hamacher,
1999). The function fstun is given in Eq.5. This function nor-
malizes the evaluation function to a maximum of 1, where
0 is the best solution. Using this approach, extremely high
values of the evaluation function become flattened.

fstun(x) = 1 − exp
[−γ (f (x) − f0)

]
(5)

During the phase of the simulated annealing search
(discussed later), the energy difference between a current
solution and a candidate solution is the difference between
normalized values of the search penalty, as defined by Eq.6.
The function fsearch is the generalized case for any evaluation
function. As discussed later in Sect. 4.9, we use the normal-
ized value defined in Eq.3 and also add situational penalties
(Eq.9).

We have found that normalizing the evaluation function
to known bounds made it easier for us to define problem
agnostic constants and temperatures.

ΔE(s′, s) = fstun
(
fsearch(s

′)
)

− fstun (fsearch(s))
(6)

4.5.5 Constraint-focused evaluation

During the random walk phase of the search process (dis-
cussed in Sect. 4.10), we define the focused search evaluation
function. This modified evaluation function, as outlined by
Eq. 7, is given as the sum of the regular normalized search
penalty and the sum of the focused constraints’ hard penalty.
Parameter focus is a subset of unsatisfied hard constraints.
For a given constraint x in the set focus, constraintPenalty(x)
is the integer value calculated according to the third rule in
Sect. 4.5.1.

focusedPenalty(s, focus) =

fstun (searchPenalty(s)) +
focus∑
x

constraintPenalty(x) (7)

The goal of this search strategy is to find similarly scored
solutions that have persistently failing constraints satisfied.

4.6 Neighborhood operators

Amutation is a single operation which changes the schedule
of a class, the room of a class, or the enrollment configuration
of a student attending a particular course. In concrete terms,
it is one of the following operations:

– Change the value of a time variable to a new random
index.

– Change the value of a room variable to a new random
index.

– Change the configuration of a student’s course to a new
random index.

We do not mutate student enrollments if the solution has
nonzero hard penalty. We have found that attempting to opti-
mize non-critical components before having a feasible solu-
tion only slows down the search. These micro-optimization
elements are lost during search restarts (discussed later) any-
way.

A room or time mutation follows these steps:

1. Pick a random variable from the list of variables.
2. Assign the time/room of the variable’s class to a new

random value 0...n−1, where n is the domain size of the
variable.

An enrollment mutation follows these steps:

1. Pick a random variable from the list of student-course
variables.

2. Get a random class chain from the variable’s course.
Enroll the variable’s student to the classes correspond-
ing to that chain.

In both cases, the new solution is evaluated by calculat-
ing only the difference caused by the mutation. Using this
strategy of delta evaluation helps achieve considerable per-
formance improvements.

During simulated annealing search (discussed later),
mutations are picked randomly and uniformly from a pool
(list) of possible operators. The list of operators is differ-
ent when the solution is feasible compared to when it is
infeasible. Values of distributions are shown in Table 2 under
“MutationOccurrences” parameters, where for example Fea-
sibleTimeMutationOccurrences represents the number of
time mutations present in the operator pool when the cur-
rent solution is feasible. If a problem has no type of variable,
for example student enrollments, then no such operators are
added to the pool. As an example, suppose we have 2 time

123

Journal of Scheduling (2023) 26:497–517 505

mutation occurrences, 2 room mutation occurrences, and a
random variable occurrence. The chance for a time mutation
being picked is 2/5=40%, the chance for a room mutation
being picked is 2/5=40%, and the chance for a randomly
picked variable (room or time) mutation is 1/5=20%. It does
not necessarily mean that the chance for a time mutation
is 50%, because picking a random variable uniformly does
not mean that it has an equal chance of getting either. Some
classes have fixed time variables, and some classes have fixed
roomvariables or no rooms at all. Given this fact, the distribu-
tion of variables can vary, and the random variable mutation
attempts to reduce biases if either variable type dominates
the problem.

Because of the possible imbalance discussed above, for
infeasible solutions our operator pool consists of: 2 occur-
rences of randomvariablemutations, 1 occurrence of random
time mutation, and 1 occurrence of random room mutation.
This means that at all times (if such variable exists) we have
at least a 25% chance of mutating a time and likewise a room
variable, and 50% of mutating whatever variable is most sta-
tistically likely to occur when picked uniformly. We do not
include enrollment mutation operators at this stage because
they do not affect solution feasibility.

When the solution becomes feasible, we include student
enrollment mutations in the operator pool. Table 2 summa-
rizes the distributions used at this stage. A double enrollment
mutation means changing 2 random enrollments to new ran-
domly picked chains as a single operation. This is done in
effort to emulate “swapping” between classes. We have not
done extensive testing to whether this provides a noticeable
benefit in algorithm performance.

4.7 Cooling schedule

In our simulated annealing search, we have used the Lundy
and Mees (1986) cooling schedule, shown in Eq. 8, where t
refers to the current temperature, t ′ refers to the next temper-
ature, and β is an empirically defined constant.

t ′ = t

1 + βt
(8)

We have used β = 6 ∗ 10−3 when the solution has zero
hard penalty, otherwise we use β = 3 ∗ 10−3. In the first
iteration, the initial temperature is set to t = 10−3.

The search often reaches a stagnation point, where the
solver does not move forward in the direction of finding a
feasible solution. Hence, on time-outs (i.e., solver does cer-
tain number of iterations without improvement), we penalize
variables and restart from a slightly increased tempera-
ture to allow for some perturbation. These mechanisms are
described in the following sections.

4.8 Restart strategy

We define a search cycle as the period between the start or
restart of the search up until there are no more improvements
in the local solution. We refer to the local best solution as the
best score found so far in the cycle, starting from infinity. We
conclude that a cycle has timed out when there have passed
maxtimeout consecutive iterations where neighborhood oper-
ators have been applied and the solution does not have a lower
search penalty (as defined in Eq.9) compared to the local best
solution of that cycle.

After a cycle has timed out, we penalize features of the
current solution and restart the search from a restart tempera-
ture of trestart = 10−4. However, during cycle restarts, if the
solution is infeasible and we detect that some constraints are
unsatisfied for a repeat number of cycles, we instead enter
focused search (described in Sect. 4.10) and skip penaliza-
tion. We discuss how penalization is done next.

4.9 Penalization

When the restart condition is fulfilled, we penalize combi-
nations with the most hard penalty and gradually force the
current solution to change. The penalization combined with
the higher temperature after a restart pressures variables to
new configurations in hopes of escaping from the stagnation
point.

The modified evaluation function in Eq.9 considers the
penalization of assignments (features) in the current solution.
An assignment is a class-time or class-room combination
present in the solution. For example, if class 3 is assigned
to room 8, we have the assignment (3, 8). The sum in Eq.9
means we look up the penalty table for all assignments in the
solution and add them together. ThemodifiedPenalty function
is what is actually used during the main search. Initially all
penalties are set to 0 (line 3 in Algorithm 2). When there are
no penalties, then modifiedPenalty = searchPenalty because
the second component of Eq.9 is 0.

modifiedPenalty(s, penalties) =

searchPenalty(s) +
assignmentss∑

x

penaltiesx (9)

For each class we store 2 arrays of decimal numbers, one
for room assignments and one for time assignments. These
are what we call the penalty table or simply penalties. The
index in these arrays represents the element in the variable’s
domain, and the value represents the penalty assigned to that
variable if it is currently assigned to that element of the
domain. This table (initially all zeroes) persists during the
search and is updated according to the following description.

123

506 Journal of Scheduling (2023) 26:497–517

For each restart cycle we do the following. If the solution
is not feasible (i.e., it has ph > 0), active assignments (that
are part of the solution) that are in a conflict are penalized
according to Eq.10. A time/room assignment (hereinafter
variable) is in conflict if:

– The class of the variable conflicts with another class
– The variable is a time variable, and its class is part of
an unfulfilled hard constraint which has to do with time
distribution of classes

– The variable is a room variable, and its class is part of
an unfulfilled hard constraint which has to do with room
distribution of classes

– The class of the variable is part of an unfulfilled hard
constraint which has to do with either time or room dis-
tribution of classes

The following are considered time constraints: Dif-
ferentDays, DifferentTime, DifferentWeeks, MaxBlock,
MaxBreaks, MaxDayLoad, MaxDays, MinGap, NotOver-
lap, Overlap, Precedence.

The following are considered room constraints: Same-
Room, DifferentRoom.

The following are considered as common (time or room)
constraints: SameAttendees.

In Eq.10, p is the current penalty, ratep is a constant with
value of 1.1, conflicts is the number of conflicts the variable is
part of, and flatp is a constant with value of 0.004. Regardless
of the feasibility of the solution, we decay the penalties of
variables in non active indexes (values that are currently not
assigned) according to the formula p′ = penaltydecay ∗ p,
where we have used penaltydecay = 0.9. This allows the
variable to be used again after some time by assuming that
by then the solver has found a way out of the local optimum
caused by that variable. In the case of a new best solution
being found, all variable penalties are reset to 0.

p′ = p ∗ ratep + conflicts ∗ flatp (10)

For a summarized description of the parameters and their
values, the reader is referred to Table 2.

4.10 Randomwalks

The penalization mechanism has worked well for conflicts
between a small number of variables, such as unavailable
roomsor conflicts between classes. Someproblems have con-
straints that span over dozens of classes. For such constraints,
this style of penalization has not been able to guide the solu-
tion to a state where those constraints are satisfied.

During restarts, we keep count of unsatisfied required con-
straints. From this list we take up to maxconstraints = 3
required constraints that have not been satisfied for 3 or more

consecutive restart cycles. If such constraints exist, we enter
a random walk search phase which is focused on those con-
straints.

This search has the goal of pivoting the solution to a new
neighborhood where those constraints are satisfied. During
this phase, Eq.7 in Sect. 4.5.5 is used for evaluation.

The second component represents the sum of penalties of
the focused required constraints.With the second component
being an integer value and fstun being scaled to amaximumof
1, it means that the former dominates the evaluation function
and solutions which have satisfied the focused constraints are
always given priority.

The idea behind this is to solve the difficult and large con-
straints. To keep the solution from changing drastically and
being damaged, we use a simple hill climbing algorithm.
The neighborhood operator for this hill climbing is a random
walk that begins from the current solution. During the ran-
dom walk, up to distance (random uniform number between
1..distance) random time or roomvariablemutations are gen-
erated and accumulated in a hill climbing fashion, meaning
a mutation in the chain is accepted only if the new solution
is evaluated to be equal to or better than the current solution
according to the function inEq.7. Based on somepreliminary
experimentation, we have picked the value distance=50. A
higher value can satisfy the focused constraintsmore quickly,
but can also cause more damage to the overall solution qual-
ity. A lower value risks not exploring enough combinations
to satisfy some of the larger constraints.

Two conditions may stop the search: the solution becom-
ing feasible (hardPenalty = 0), or ntimeout = 500,000
cycles having passed without improvement of the modified
evaluated function. A summary of this search is given as
pseudocode in Algorithm 1.

Algorithm 1 Focused search on particular constraints
1: procedure ConstraintSearch(solution,

focused constraints)
2: timeout ← 0
3: while timeout < timeout limit do
4: candidate ← RandomWalk(solution, distance)
5: if focusedPenalty(candidate) <

focusedPenalty(solution) then
6: solution ← candidate
7: timeout ← 0
8: else
9: timeout ← timeout + 1
10: end if
11: end while
12: return solution
13: end procedure

The returned solution will usually have a hard penalty that
is similar to the solution before the search, but their structural
nature will be different. We have found that when creating

123

Journal of Scheduling (2023) 26:497–517 507

such disturbances in the structure of a solution, new ways to
get out of the stagnation point are opened.

After exiting the constraint search, regular search contin-
ues from the restart temperature. Penalization and constraint
search aremutually exclusive, meaning that after a cycle only
one of these can occur.

4.11 Simulated annealing

The simulated annealing (SA) algorithm relies in a search
strategy where a current solution c is mutated (denoted as
c′), based on the predefined operators, and accepted if:

– It has a better score (or lower penalty) according to Eq.9
compared to the current solution.

– It has a worse score, but the acceptance condition in
Eq.11 is fulfilled.

In our search, we also accept a candidate solution if it has
an equal score with the current one. As we’ll see later, this
allows for more exploration when the solution is infeasible.

The idea behind the random acceptance condition is to
allow for some acceptance of worse solutions during ear-
lier phases of the search process. In Eq.11, ΔE(s′, s) is
defined in Eq.6, where fsearch is the modifiedPenalty defined
in Eq.9. The variable t represents the temperature value,
which changes after every cycle based on the cooling func-
tion/schedule proposed by Lundy and Mees (1986) defined
using Eq.8. A cooling function slowly lowers the tempera-
ture value based on a decreasing curve. As the value of t gets
lower, the chance of accepting worse solutions decreases.

rand(0, 1) ≤ e
−ΔE(s′,s)

t (11)

In Algorithm 2, we show a summary of the simulated
annealing search in pseudocode form.

5 Experimental analysis

In this section, we report the computational experiments
of the algorithm by presenting parameter settings, search
method analysis and comparison to the existing approaches
for the University Timetabling Problem. The code was writ-
ten in the F# functional programming language and it was
compiled based on the.NET Core code execution process
by using the F# 4.1 compiler. All the experiments have
been conducted in a machine with 1x Server System Build-
ing Block PROnex 1029GQ-TRT, 2x Intel Xeon SKL-EP
Gold 6130 2.10GHz 16C 22MB Cache, 12x 8GB DDR4-
2666MHz ECC RAM, 2x 2TB SATA 6Gbp/s 2.5” HDD and
1x AMD Radeon Instinct MI25. Further, all the experiments

Algorithm 2 Simulated annealing with penalization
1: procedure Solve(initial solution)
2: t ← initial temperature
3: penalties ← initial penalties
4: best ← initial solution
5: local best ← ∞
6: local timeout ← 0
7: current ← best
8: while stopping criteria not met do
9: t ← cool(t)
10: candidate ← mutate(current)
11: if candidate better than best then
12: best ← candidate
13: end if
14: if searchPenalty(candidate) < local best then
15: local best ← searchPenalty(candidate)
16: local timeout ← 0
17: else
18: local timeout ← local timeout + 1
19: end if
20: if modifiedPenalty(candidate) <

modifiedPenalty(current) then
21: current ← candidate
22: else if accept(current, candidate, t) then
23: current ← candidate
24: end if
25: if local timeout > max timeout then
26: local best ← ∞
27: local timeout ← 0
28: t ← restart temperature
29: persistent constraints ←

(constraints with age > age limit)
30: if infeasible(current)∧

persistent constraints �= ∅ then
31: focused constraints ←

oldest 3 persistent constraints
32: current ←

ConstraintSearch(current, focused constraints)
33: else
34: penalties ← scale(penalties)
35: end if
36: end if
37: end while
38: return best
39: end procedure

have been done by running the instances ten times per each
configuration in 24-hour duration. The presented results have
been validated against the web validator of ITC2019 compe-
tition. The source code of the solver can be found in GitHub7

5.1 Test set

The test set consists of thirty instances that are derived
from real-word scenarios in ten different universities around
the world that include Purdue University, Masaryk Univer-
sity, AGH University of Science and Technology, Lahore
University of Management Sciences, Istanbul Kültür Uni-

7 https://github.com/edongashi/itc-2019.

123

https://github.com/edongashi/itc-2019

508 Journal of Scheduling (2023) 26:497–517

Table 1 Test set characteristics

Instance name Courses Classes Rooms Hard Dist Soft Dist Hard Class Pairs Soft Class Pairs Students Weeks

1 agh-fis-spr17 340 1239 80 820 400 3521 769 1641 16

2 agh-ggis-spr17 272 1852 44 2202 488 29,475 2046 2116 16

3 bet-fal17 353 983 62 861 390 5773 6564 3018 16

4 iku-fal17 1206 2641 214 2237 665 26,768 1117 0 14

5 mary-spr17 544 882 90 3151 796 40,242 14,903 3666 16

6 muni-fi-spr16 228 575 35 645 95 2113 1038 1543 15

7 muni-fsps-spr17 226 561 44 331 69 2284 851 865 19

8 muni-pdf-spr16c 1089 2526 70 1456 570 12,574 3214 2938 13

9 pu-llr-spr17 687 1001 75 416 218 891 622 27,018 16

10 tg-fal17 36 711 15 459 42 79,299 17,090 0 14

11 agh-ggos-spr17 406 1144 84 1181 507 6745 828 2254 16

12 agh-h-spr17 234 460 39 288 111 2366 1247 1988 16

13 lums-spr18 313 487 73 449 69 2942 651 0 20

14 muni-fi-spr17 186 516 35 639 60 1614 957 1469 14

15 muni-fsps-spr17c 116 650 29 562 147 6952 397 395 14

16 muni-pdf-spr16 881 1515 83 579 433 6836 2723 3443 13

17 nbi-spr18 404 782 67 585 11 2131 29 2293 15

18 pu-d5-spr17 212 1061 84 1262 273 2734 6268 13,497 15

19 pu-proj-fal19 2839 8813 768 6399 1398 18,171 32,031 38,437 17

20 yach-fal17 91 417 28 529 116 1977 545 821 16

21 agh-fal17 1363 5081 327 4836 2318 45,193 13,596 6925 18

22 bet-spr18 357 1083 63 1004 414 7652 8111 2921 16

23 iku-spr18 1290 2782 208 2833 655 32,505 779 0 13

24 lums-fal17 328 502 73 521 76 3938 670 0 20

25 mary-fal18 540 951 93 349 164 922 1418 5051 16

26 muni-fi-fal17 188 535 36 635 152 1805 1019 1685 13

27 muni-fspsx-fal17 515 1623 33 1070 289 17,542 2186 1152 21

28 muni-pdfx-fal17 1635 3717 86 2433 1068 42,650 7446 5651 13

29 pu-d9-fal19 1154 2798 224 2039 707 4368 5966 35,213 15

30 tg-spr18 44 676 18 376 50 72,444 1986 0 16

versity, Bethlehem University, Universidad Yachay Tech,
Turkish-German University, University of Nairobi and
Maryville University. The instances have been taken from
the UniTime8 timetabling module. The size and complexity
of instances is quite diverse,with classes from500up to 8800,
with student from 2000 to 38,000 and with rooms from 50 to
770. In some instances, it is the problem complexity that is
more critical than its size. In addition, the instances based on
European universities are simpler in terms of classes, since
they take place once aweek,whereas the instances fromUSA
universities possess classes that are taught several times a
week. During the competition, the data set was divided into
three chunks that were called early,middle and late instances,
where the last chunk of instances is more difficult to solve,
both in terms of feasibility and soft constraint optimization.

8 https://www.unitime.org/.

Table 1 presents a summary of the features of individual
instances in the test set, where the first ten belong to the
early set, the second ten to the middle set and the last ten
to the late set. For a more detailed test set description about
the complexity and the diversity of individual test instances,
the reader is referred to the official web set of ITC20199

competition.

5.2 Searchmethod analysis

All parameters are determined empirically by running all
instances and verifying that the solver found a valid solution
for all of them. The competition rules state that param-
eters/constants are not allowed to be tuned for specific
instances and the solver is not allowed to recognize a partic-

9 https://www.itc2019.org/.

123

https://www.unitime.org/
https://www.itc2019.org/

Journal of Scheduling (2023) 26:497–517 509

Table 2 Parameter settings

Parameter name Value Comment

MaxTimeout 106 Value of maxtimeout in Section 4.8 and in Algorithm 2

RollingEffect True Whether to accept solutions with equal quality during local search

FStunGamma 0.95 Parameter γ in Eq.5

FocusedSearchEnabled True Whether to enable the random walk phase in Section 4.10

FocusedSearchMaxConstraints 3 Maximum number of unsatisfied constraints to focus on. Parameter
maxconstraints in Section 4.10

FocusedSearchMinWeight 4 Number of consecutive restart cycles that a constraint needs to be
unsatisfied to be included in focused search

FocusedSearchTimeoutMax 5 ∗ 105 Number of cycles without improvement to exit focused search.
Parameter n_timeout in section 4.10

FocusedSearchDistance 50 Maximum number of consequent mutations during random walk.
Parameter distance in Algorithm 1

InfeasibleTimeMutationOccurrences 1 Distribution of probabilities for mutations when solution is infeasible.
Possible mutations are added to a list n times (parameter value). A
mutation is picked by choosing a random item from the whole list.
For example, if we have 2 time mutation occurrences and 3 room
mutation occurrences, the chance for a time mutation being picked is
2/5=40%. A “variable” means either room or time picked at random
from the list of all variables.

InfeasibleRoomMutationOccurrences 1

InfeasibleVariableMutationOccurrences 2

InfeasibleEnrollmentMutationOccurrences 0

InfeasibleDoubleEnrollmentMutationOccurrences 2

FeasibleTimeMutationOccurrences 1 Distribution of probabilities for mutations when solution is feasible.
Operations are the same as in the infeasible set.

FeasibleRoomMutationOccurrences 1

FeasibleVariableMutationOccurrences 2

FeasibleEnrollmentMutationOccurrences 2

FeasibleDoubleEnrollmentMutationOccurrences 1

TemperatureInitial 10−2 Initial temperature in Algorithm 2

TemperatureRestart 10−4 Restart temperature in Algorithm 2

TemperatureBeta 6 ∗ 10−3 Value of β in Section 4.7 when solution is feasible

TemperatureBetaUnfeasible 3 ∗ 10−3 Value of β in Section 4.7 when solution is infeasible

InfeasibleSolutionHardPenaltyFactor 10−2 Parameter c1 in Eq.3

HardPenalizationRate 1.1 Determines the factor by which existing penalties are increased.
Parameter flatp in Eq.10

HardPenalizationFlat 4 ∗ 10−3 Parameter flat_p in Eq.10

HardPenalizationDecay 0.9 Rate at which penalties of non-active assignments are reduced.
Discussed in Section 4.9

SoftPenalizationRate 1.1 Same as HardPenalizationFlat but used when the solution is feasible

SoftPenalizationFlat 10−3 Same as HardPenalizationFlat but used when the solution is feasible

SoftPenalizationDecayRate 0.9 Same as HardPenalizationDecay but used when the solution is feasible

SoftPenalizationDecayFlat 10−3 Fixed value subtracted to penalties of non-active assignment. Only
applicable to feasible solutions

123

510 Journal of Scheduling (2023) 26:497–517

ular problem instance. To adhere to this requirement, if the
solver failed to solve some particular instance, we refined the
algorithm to make it more general. After we made the algo-
rithm general enough to be able to solve all instances, we
further tuned parameters related to soft penalty optimization
and setting values which gave best overall results across all
instances.

Table 2 shows a summary of all parameters, their values
used for the competition (all instances), and the explanation
behind them. The names used in this table correspond to
the parameter names in code. In the comment column, we
reference the section or equation where they are described
within the paper.

Further, we examine solution evolution for problem
instances of varying complexity. The final outcome is rep-
resented by a graphic of each of the instances.

Figure2 shows3 runs of themuni-fsps-spr17 instance.The
graphics on the left show hard penalty evolution, whereas the
graphics on the right show the soft penalty for that particular
run (one run per row) against the total runtime. Note that

the time scale is different for these graphics because feasible
solutions are often obtained rapidly and the vast majority of
the time is invested optimizing the soft penalty of the prob-
lem. For runs 1 and 3, the hard penalty line is barely visible
owing to the fact that it drops to zero within a few seconds of
starting the solver. For run 2 it took around 10min to reach a
feasible solution. The infeasible search phase is clearly visi-
ble in the soft penalty graphic of run 2, because soft penalty
starts dropping only after hard penalty reaches 0. While the
solution is infeasible, soft penalty varies wildly because it
is ignored and the solver rolls over on equal hard penalty
(accepts a solutionwith less or equal hard penalty).Aswedis-
cussed in earlier sections, attempting to optimize soft penalty
while searching for feasible solutions slowed the solver dra-
matically without bringing any notable improvements.

Figure3 shows 3 runs of the pu-d5-spr17 instance, which
is much more difficult to solve. For the time we sampled the
solver (around 3h), only run 2 managed to find a feasible
solution at roughly 1.5h. In the soft penalty graphics of run
1 and run 3 we can see a large variation between soft penalty.

Fig. 2 Algorithm performance
for instance ’muni-fsps-spr17’

123

Journal of Scheduling (2023) 26:497–517 511

Fig. 3 Algorithm performance
for instance ’pu-d5-spr17’

The flat line represents the randomwalk phase, for which we
did not trace soft penalty. After the feasible solution is found
in run 2, the soft penalty decreases in a curve similar to that
of Fig. 2. The short flattening of soft penalty in run 2 before a
feasible solution is found indicates that the feasible solution
was found during the random walk phase.

In Fig. 4 we show 3 runs of agh-h-spr17 instance, which is
moderately difficult. Runs 2 and 3 are similar in runtime and
score. In all three cases a feasible solution was found during
random walks. Run 1 solved it during the second cycle of
random walks, whereas runs 2 and 3 found a feasible solu-
tions on the first cycle at around 20min. Nevertheless, final
soft penalty is consistent for all runs and for most instances
where feasible solutions are found.

In Tables 3 and 4, we present computational experiments
that we have obtained in ITC2019 competition when run-
ning the solver with all algorithm components (in both tables
tagged as ’Best SAP’) and within 24h limit (third and fourth
column inTable 3 tagged as ’Default configuration’). Further,
in the remaining columns in both tables, we show the results

of the algorithm when running it without utilizing specific
components. The solver has been executed 10 times, each
with a duration of 24h, for each configuration (i.e., without
using a specific algorithm component) and for each instance
it the dataset. Table 3 shows that the FStun function (i.e.,
stochastic tunneling) and the penalization strategy are both
crucial for the proposed approach, since if either of them is
not applied than none of the instances can be solved to fea-
sibility (’x’ indicates no feasible solution can be generated).
Further, Table 3 shows that the rolling effect is also essen-
tial for the algorithm, especially for the instances belonging
to the late test set of the ICT2019 competition, because no
feasible solution can be generated if the rolling effect is not
employed. In general, the ’focused search’ component seems
to be important in terms of solution quality when it comes
to soft constraint optimization, because, if this component
is not used, the quality degrades quite a lot for most of the
instances, even though for some specific instances, like pu-
d5-spr17, bet-spr18 and ums-fal17, new better solutions are
found when this exact component is not applied.

123

512 Journal of Scheduling (2023) 26:497–517

Fig. 4 Algorithm performance
for instance ’agh-h-spr17’

We have also experimented with running the algorithm
without applying specific neighborhood operators, namely
roommutation, time slot mutation and variable mutation, for
the phases when the algorithm is trying to generate a feasible
solution (tagged as infeasible search period) and when the
algorithm is looking to optimize the soft constraints (tagged
as feasible search period). These results are presented in the
last two columns of Table 3 and all columns, except the
first two, of Table 4. When the results are averaged over all
instances having been generated a feasible solution for a spe-
cific algorithm configuration, the degradation is the lowest,
standing at 17.2%, if the operator for time slot mutation is
not applied in the feasible search period, whereas the degra-
dation is the largest, specifically 37.8%, if the roommutation
operator is not applied in the infeasible search period.

Finally, it is important to note down that for four specific
instances, namely agh-ggis-spr17, pu-proj-fal19,muni-pdfx-
fal17 and tg-spr18, if at least one of the above-mentioned
components of the algorithm is not applied, then no feasible
solution can be generated.

5.3 Comparison results

In Table 5, we present the comparison results of our approach
against the best known results (as of September 2020) of four
of the other finalists, namely Holm et al. (2020), Efstratios
et al. (2021), Er-rhaimini (2021) and Lemos et al. (2021).
In addition, we have also included the results presented by
Müller (one of the organizers of the competition), who, after
the end of the competition, has published the results obtained
by the solver that is used byUniTime timetabling system.The
presented results of our approach (tagged as Sylejmani et al.)
are the best results that have been achieved when running the
solver for each instance.

The results in Table 5 show that our approach is outper-
formed, in all of the instances, by the the approaches of Holm
et al. (2020) and Müller, whereas Efstratios et al. (2021)
performs better in 23 (out of 30) instances. Our approach
performs better than the approach of Efstratios et al. (2021)
in seven instances, better than the approach Er-rahaimini Er-
rhaimini (2021) in 19 instances, and better than the approach

123

Journal of Scheduling (2023) 26:497–517 513

Ta
bl
e
3

A
na
ly
si
s
of

al
go
ri
th
m

co
m
po
ne
nt
s
(P
ar
t1

)

In
st
an
ce

na
m
e

B
es
tS

A
P

D
ef
au
lt

co
nfi

gu
ra
tio

n
(%

)
N
o
fo
cu
se
d
se
ar
ch

(%
)

N
o
FS

tu
n
G
am

m
a
(%

)
N
o
pe
na
liz

at
io
n
(%

)
N
o
ro
lli
ng

ef
fe
ct
(%

)
N
o
ro
om

m
ut
at
io
n

(f
ea
si
bl
e
se
ar
ch

pe
ri
od

)
(%

)

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

ag
h-
fis
-s
pr
17

67
99

5.
29

5.
9

20
.1
9

19
.7
4

x
x

x
x

13
.4
3

13
.3
8

4.
33

4.
15

ag
h-
gg
is
-s
pr
17

77
,9
32

x
x

x
x

x
x

x
x

x
x

x
x

be
t-
fa
l1
7

29
9,
20
5

x
x

4.
98

3.
17

x
x

x
x

2.
02

1.
33

1.
32

1.
25

ik
u-
fa
l1
7

50
,6
13

22
.7

26
.2
5

23
.5

23
.4
5

x
x

x
x

26
.1
2

25
.5
3

19
.9
1

19
.8
4

m
ar
y-
sp
r1
7

15
,8
94

10
.3
9

25
.3

28
.4
5

26
.2
6

x
x

x
x

14
.0
8

13
.6
3

24
.2
2

23
.7
6

m
un
i-
fi-
sp
r1
6

50
06

14
.3
4

21
.0
6

11
.0
3

6.
03

x
x

x
x

16
.1
1

14
.7

10
.1
1

8.
03

m
un
i-
fs
ps
-s
pr
17

19
38

13
4.
57

36
5.
82

48
6.
86

38
4.
98

x
x

x
x

95
.6
3

95
.3
6

29
.6
7

29
.6
7

m
un
i-
pd
f-
sp
r1
6c

58
,2
06

35
.9

37
.0
8

32
.4
9

23
.1
2

x
x

x
x

27
.8
4

27
.8
2

16
.4
7

16
.4
6

pu
-l
lr
-s
pr
17

16
,8
74

30
.6
6

32
.7
4

25
.8
5

23
.2
8

x
x

x
x

30
.4
9

30
.4
2

26
.7
9

26
.4
6

tg
-f
al
17

80
44

x
x

x
x

x
x

x
x

x
x

x
x

ag
h-
gg
os
-s
pr
17

93
28

58
.7
5

74
.2
7

x
72
.3
2

x
x

x
x

64
.7
7

64
.7
4

42
.8
4

42
.5
2

ag
h-
h-
sp
r1
7

25
,0
81

59
.5
6

22
.6
3

17
.6
7

12
.1
4

x
x

x
x

8.
51

8.
07

9.
77

9.
69

lu
m
s-
sp
r1
8

10
7

9.
35

11
.6
4

10
.9

9.
35

x
x

x
x

26
.1
7

12
.1
5

27
.1

12
.1
5

m
un
i-
fi-
sp
r1
7

46
92

2.
17

3.
84

7.
21

1.
68

x
x

x
x

6.
09

5.
88

4.
25

3.
96

m
un
i-
fs
ps
-s
pr
17
c

92
22

69
.5
6

74
.9
4

84
.0
1

63
x

x
x

x
69
.5
4

67
.4
7

60
.7

60
.4
7

m
un
i-
pd
f-
sp
r1
6

40
,0
74

3.
62

7.
83

4.
04

0.
54

x
x

x
x

5.
9

5.
62

−0
.2
1

−0
.2
5

nb
i-
sp
r1
8

26
,5
17

16
.6
0

17
.2
4

17
.6
1

15
.7
5

x
x

x
x

12
.0
5

10
.2
9

15
.5
6

15
.5
1

pu
-d
5-
sp
r1
7

19
,4
40

2.
89

4.
82

0.
21

−4
.5

x
x

x
x

8.
22

0.
59

2.
45

2.
26

pu
-p
ro
j-
fa
l1
9

23
7,
90
9

x
x

x
x

x
x

x
x

x
x

x
x

ya
ch
-f
al
17

17
27

6.
2

10
.3
6

21
.2
8

16
.2
7

x
x

x
x

20
.6
3

19
.6
3

31
.5
7

29
.3
6

ag
h-
fa
l1
7

18
4,
03
0

x
x

x
x

x
x

x
x

x
x

40
.8
4

40
.3
8

be
t-
sp
r1
8

36
0,
43
7

18
.4
2

6.
57

0
−0

.0
1

x
x

x
x

x
x

0.
94

0.
93

ik
u-
sp
r1
8

85
,9
69

x
x

x
6.
71

x
x

x
x

x
x

x
x

lu
m
s-
fa
l1
7

48
6

6.
58

7.
77

4.
73

−0
.4
1

x
x

x
x

x
x

20
.0
6

5.
35

m
ar
y-
fa
l1
8

71
99

31
.7
7

33
.3
1

36
.0
5

32
.8
8

x
x

x
x

x
x

18
.3
8

15
.4
7

m
un
i-
fi-
fa
l1
7

47
12

17
.5
7

28
.9
3

15
.1
9

9.
02

x
x

x
x

x
x

12
.8
1

12
.3
7

m
un
i-
fs
ps
x-
fa
l1
7

41
,9
33

17
.5
3

35
.7
8

13
.3
3

3.
94

x
x

x
x

x
x

30
.1
9

30
.0
2

m
un
i-
pd
fx
-f
al
17

15
9,
20
3

x
x

x
x

x
x

x
x

x
x

x
x

pu
-d
9-
fa
l1
9

82
,7
57

67
.8
1

91
.9
9

x
72
.5
6

x
x

x
x

x
x

98
.4
3

98
.2

tg
-s
pr
18

15
,9
92

x
x

x
x

x
x

x
x

x
x

x
x

123

514 Journal of Scheduling (2023) 26:497–517

Ta
bl
e
4

A
na
ly
si
s
of

al
go
ri
th
m

co
m
po
ne
nt
s
(P
ar
t2

)

In
st
an
ce

na
m
e

B
es
tS

A
P

N
o
ro
om

m
ut
at
io
n

(i
nf
ea
si
bl
e
se
ar
ch

pe
ri
od
)
(%

)

N
o
tim

e
sl
ot

m
ut
at
io
n
(f
ea
si
bl
e

se
ar
ch

pe
ri
od
)
(%

)

N
o
tim

e
sl
ot

m
ut
at
io
n
(i
nf
ea
si
bl
e

se
ar
ch

pe
ri
od
)
(%

)

N
o
va
ri
ab
le
m
ut
at
io
n

(f
ea
si
bl
e
se
ar
ch

pe
ri
od
)
(%

)

N
o
va
ri
ab
le
m
ut
at
io
n

(i
nf
ea
si
bl
e
se
ar
ch

pe
ri
od
)
(%

)
A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

A
ve
ra
ge

B
es
t

ag
h-
fis
-s
pr
17

67
99

4.
62

1.
72

1.
68

0.
65

10
.5
2

8.
9

17
.3
6

15
.8
7

28
.4
8

28
.2
8

ag
h-
gg
is
-s
pr
17

77
,9
32

x
x

x
x

x
x

x
x

x
x

be
t-
fa
l1
7

29
9,
20
5

2.
4

2.
4

7.
43

7.
33

1.
27

1.
2

1.
44

1.
42

1.
24

1.
23

ik
u-
fa
l1
7

50
,6
13

28
.1
2

28
.0
1

27
.0
8

26
.8
9

26
.6
8

26
.4
9

28
.3
8

28
.2
7

28
.0
2

27
.9
3

m
ar
y-
sp
r1
7

15
,8
94

14
.7
6

14
.7
6

27
.8
1

27
.5
5

32
.0
5

31
.8
1

26
.5
6

26
.2
1

24
.0
4

23
.8
5

m
un
i-
fi-
sp
r1
6

50
06

15
.7
7

15
.0
8

25
.5

24
.9
1

9.
71

8.
47

16
.3
7

14
.9
8

17
.4
1

17
.1
8

m
un
i-
fs
ps
-s
pr
17

19
38

39
2.
17

39
1.
54

50
.1
6

20
.3
8

88
.1
2

87
.1
5

90
.1
7

88
.3
9

24
0.
31

23
8.
44

m
un
i-
pd
f-
sp
r1
6c

58
,2
06

23
.0
4

23
.0
1

20
.4
6

20
.3
2

34
.4

33
.9
7

22
.6
5

22
.4
7

22
.5
2

22
.4
7

pu
-l
lr
-s
pr
17

16
,8
74

26
.3
3

25
.8
4

34
.0
2

33
.4

19
.1
4

18
.6
1

22
.1
9

21
.5
1

22
.1
5

21
.5
1

tg
-f
al
17

80
44

31
.1
8

30
.3
1

33
.0
1

32
.7
4

x
x

x
x

x
x

ag
h-
gg
os
-s
pr
17

93
28

54
.5
4

54
.0
5

51
.2
9

51
.1

67
.4
6

66
.1
8

30
.1
1

28
.4

29
.7
5

28
.4

ag
h-
h-
sp
r1
7

25
,0
81

8.
91

8.
7

10
.1
9

9.
87

18
.4
4

18
.1

14
.8
9

14
.5
7

14
.8
8

14
.5
7

lu
m
s-
sp
r1
8

10
7

14
.2
5

7.
48

17
.5
7

7.
48

31
.9
2

14
.9
5

24
.8
1

9.
35

13
.2
9

9.
35

m
un
i-
fi-
sp
r1
7

46
92

3.
28

0.
64

12
.0
1

9.
53

2.
99

1.
49

11
.3
2

9.
1

13
.4
9

9.
1

m
un
i-
fs
ps
-s
pr
17
c

92
22

51
.5
4

50
.6

51
.3
4

50
.6
2

58
.5
3

58
.2

23
.8
3

23
.3
1

23
.8
7

23
.3
1

m
un
i-
pd
f-
sp
r1
6

40
,0
74

8.
6

8.
47

4.
25

4.
02

−2
.7

−3
.1

−8
9.
07

7.
75

8.
01

7.
75

nb
i-
sp
r1
8

26
,5
17

10
.0
2

9.
85

16
.2
3

16
.0
7

8.
11

7.
52

19
.8
3

18
.9
8

19
.4
5

18
.9
8

pu
-d
5-
sp
r1
7

19
,4
40

2.
06

0.
63

9.
82

1.
17

20
.9
9

3.
87

0.
26

−1
.9
9

15
.2
5

−1
.9
9

pu
-p
ro
j-
fa
l1
9

23
7,
90
9

x
x

x
x

x
x

x
x

x
x

ya
ch
-f
al
17

17
27

23
.5
8

15
.6
9

15
.4
7

14
.2
4

25
.9
8

17
.8
3

28
.2
1

24
.1
5

29
.3
4

24
.1
5

ag
h-
fa
l1
7

18
4,
03
0

x
x

x
x

x
x

x
x

x
x

be
t-
sp
r1
8

36
0,
43
7

0.
42

0.
35

−0
.7

−0
.7
4

x
x

−0
.1
4

−0
.2

0.
5

−0
.2

ik
u-
sp
r1
8

85
,9
69

10
.6
7

10
.2
8

10
.4
3

8.
24

x
x

x
x

x
x

lu
m
s-
fa
l1
7

48
6

13
.6
3

−0
.2
1

12
.0
8

3.
7

10
.1
1

3.
91

13
.6
3

7
10
.4
2

7

m
ar
y-
fa
l1
8

71
99

33
.8
1

29
.9
2

−9
2.
61

-9
3

34
.9
4

34
.5
2

15
.5
3

14
.9
7

15
.4
8

14
.9
7

m
un
i-
fi-
fa
l1
7

47
12

12
.8

10
.0
4

14
.0
7

9.
97

2.
2

−3
.2
7

14
.0
8

11
.3
8

15
.1
4

11
.3
8

m
un
i-
fs
ps
x-
fa
l1
7

41
,9
33

7.
88

7.
33

2.
41

1.
5

30
.0
4

27
.6

11
.5

5.
69

7.
58

5.
69

m
un
i-
pd
fx
-f
al
17

15
9,
20
3

x
x

x
x

x
x

x
x

x
x

pu
-d
9-
fa
l1
9

82
,7
57

15
0.
79

15
0.
51

69
.0
9

68
.4
7

49
.2

48
.6
4

43
.5
3

38
.1
4

38
.8
4

38
.1
4

tg
-s
pr
18

15
,9
92

x
x

x
x

x
x

x
x

x
x

123

Journal of Scheduling (2023) 26:497–517 515

Ta
bl
e
5

Pr
es
en
ta
tio

n
of

th
e
ga
p
(i
n
pe
rc
en
ta
ge
)
fr
om

th
e
be
st
kn
ow

n
re
su
lts

In
st
an
ce

na
m
e

B
es
t

H
ol
m

et
al
.(
%
)

M
ül
le
r
(%

)
R
ap
po

s
et
al
.(
%
)

Sy
le
jm

an
ie
ta
l.
(%

)
E
r-
rh
ai
m
in
i(
%
)

L
em

os
et
al
.(
%
)

ag
h-
fis
-s
pr
17

30
39

0
12
.2

49
.9

12
3.
7

87
.8

N
/A

ag
h-
gg
is
-s
pr
17

34
,2
85

0
6.
2

6.
7

12
7.
3

65
.5

N
/A

be
t-
fa
l1
7

28
9,
96
5

0
0.
2

1.
8

3.
1

N
/A

2.
1

ik
u-
fa
l1
7

18
,9
68

0
24
.5

41
.5

16
6.
8

13
4.
5

57
.7

m
ar
y-
sp
r1
7

14
,9
10

0
1.
4

0.
7

6.
5

11
.9

N
/A

m
un
i-
fi-
sp
r1
6

37
56

0
7.
5

2.
3

33
.2

38
.6

N
/A

m
un
i-
fs
ps
-s
pr
17

86
8

0
1.
2

1.
7

12
3.
2

37
6.
3

N
/A

m
un
i-
pd
f-
sp
r1
6c

33
,7
24

0
18
.3

11
.1

72
.5

13
0

59
.5

pu
-l
lr
-s
pr
17

10
,0
38

0
7.
5

33
.3

68
.1

91
.5

N
/A

tg
-f
al
17

42
15

0
0

0
90
.8

74
.5

60
.7

ag
h-
gg
os
-s
pr
17

28
64

0
19
.3

12
0.
6

22
5.
6

16
9.
7

26
84
.3

ag
h-
h-
sp
r1
7

22
,1
75

0.
05

0
17
.9

13
.1

16
.1

N
/A

lu
m
s-
sp
r1
8

95
0

3.
1

20
12
.6

87
.3

47
5.
7

m
un
i-
fi-
sp
r1
7

38
25

0
3.
6

12
.1

22
.6

42
37
2.
6

m
un
i-
fs
ps
-s
pr
17
c

25
96

0
16

27
.2

25
5

80
6

23
71
4.
2

m
un
i-
pd
f-
sp
r1
6

17
,2
08

0
16
.8

41
.3

13
2.
8

12
5.
6

17
07
.2

nb
i-
sp
r1
8

18
,0
14

0
3.
7

5.
7

47
.2

68
.2

17
7.
1

pu
-d
5-
sp
r1
7

15
,2
04

4.
6

0
23
.7

27
.8

33
.1

3.
4

pu
-p
ro
j-
fa
l1
9

11
7,
42
5

25
.7

0
37
7.
9

10
2.
6

49
.9

9.
32

ya
ch
-f
al
17

10
74

15
.3

0
71
.6

60
.8

19
6.
1

N
/A

ag
h-
fa
l1
7

11
8,
03
8

24
.5

0
N
/A

20
.8

55
.9

29
.8

be
t-
sp
r1
8

34
8,
52
4

0
0.
2

3.
3

1.
5

3.
4

7

ik
u-
sp
r1
8

25
,8
68

0
39
.1

41
.9

76
23
2.
3

17
4.
2

lu
m
s-
fa
l1
7

34
9

0
5.
7

10
.6

13
2.
9

39
.2

59
.8

m
ar
y-
fa
l1
8

44
22

0
8.
8

27
.5

89
7.
2

62
.8

57

m
un
i-
fi-
fa
l1
7

29
99

0
8.
2

26
.5

38
.7

57
.1

60
.7

m
un
i-
fs
ps
x-
fa
l1
7

10
,1
23

68
.3

0
22
6

90
0.
8

31
4.
2

93
3.
5

m
un
i-
pd
fx
-f
al
17

98
,3
73

13
.7

0
53
.9

53
.9

61
.8

95
.1

pu
-d
9-
fa
l1
9

39
,9
42

0
11
.9

23
5.
5

19
10
7.
2

76
.3

tg
-s
pr
18

12
,7
04

0
14
.5

1.
2

15
1.
1

25
.8

55

123

516 Journal of Scheduling (2023) 26:497–517

of Lemos et al. (2021) in 21 instances. In addition, the solu-
tions of our solver have a gap of less than 15% from the
best-known solutions in 5 (out of 30) instances. Furthermore,
the average gap from the best known solution for early, mid-
dle and late chunks of instances is about 80%, 90%and230%,
respectively.

6 Conclusions and future work

In this paper, we have presented a Simulated Annealing
approach based on several penalization components for the
problem of University Timetabling as presented in ITC2019
competition. The presented penalization mechanisms have
a noticeable impact in making it possible for our approach
to produce feasible solutions and, in overall, make a better
university schedule optimization.

It is evident that our algorithm performs well in compari-
son to the techniques that do not relay on commercial solvers,
such as the approach presented by Er-rahaimini Er-rhaimini
(2021). Nonetheless, the techniques based on MIP formula-
tion, such as Holm et al. (2020) and Efstratios et al. (2021),
are superior against our approach, although the latter not in
all of the instances. Our approach performs better than the
MaxSat approach of Lemos et al. (2021) in more than two
thirds of instances. However, the UniTime solver, which is
also open source, produces better results than our proposed
technique for all the competition instances.

As part of our future work, we plan to develop addi-
tional local search operators for neighborhood exploration
and hybridize our SA approach with population-based
approaches such the Ant Colony Optimization (ACO). We
aim to use our SA approach as an improving techniques
within local search phase ofACO. In order to achieve this, we
will further investigate the University Timetabling Problem
with the intention of defining several alternative compo-
nents/features that can be used within the ACO algorithm.

Acknowledgements The work on this paper was partially supported
by the HERAS program within the project entitled “Automated
Curriculum-based Course Timetabling in the University of Prishtina.”
Furthermore, we would like to thank the organizers of the ITC2019,
Tomáš Müller, Hana Rudová, and Zuzana Müllerová for their collabo-
ration with us in this matter. Finally, we thank Brikena Avdyli for her
valuable proof-reading comments.

References

Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., & Urli, T.
(2016). Feature-based tuning of simulated annealing applied to
the curriculum-based course timetabling problem. Computers &
Operations Research, 65, 83–92.

Bettinelli, A., Cacchiani, V., Roberti, R., &Toth, P. (2015). An overview
of curriculum-based course timetabling. Top, 23(2), 313–349.

Bykov Y. (2003). The description of the algorithm for international
timetabling competition. International Timetable Competition,

Cambazard, H., Hebrard, E., O’Sullivan, B., & Papadopoulos, A.
(2012). Local search and constraint programming for the post
enrolment-based course timetabling problem. Annals of Opera-
tions Research, 194(1), 111–135.

Ceschia, S., Di Gaspero, L., & Schaerf, A. (2012). Design, engineer-
ing, and experimental analysis of a simulated annealing approach
to the post-enrolment course timetabling problem. Computers &
Operations Research, 39(7), 1615–1624.

Cordeau1, R. M., Cordeau, J. -F., Jaumard, B., & Morales, R. (2003).
Efficient timetabling solution with tabu search.

Di Gaspero, L. & Schaerf, A. (2003). Timetabling competition ttcomp
2002: solver description. International Timetabling Competition.

Di Gaspero, L., McCollum, B., & Schaerf, A. (2007). The second inter-
national timetabling competition (itc-2007): Curriculum-based
course timetabling (track 3). Citeseer: Technical report.

Eckersley, A. (2004). An investigation of case-based heuristic selection
for university timetabling.

Efstratios, R., Eric, i., Robert, S., & Heche, J.-F. (2021). International
timetabling competition 2019: A mixed integer programming
approach for solving university timetabling problems.

Er-rhaimini, K. (2021). Forest growth optimization for solving
timetabling problems.

Gashi, E., & Sylejmani, K. (2020). Simulated annealing with penaliza-
tion for university course timetabling.

Geiger, M. J. (2012). Applying the threshold accepting metaheuris-
tic to curriculum based course timetabling. Annals of Operations
Research, 194(1), 189–202.

Goh, S. L., Kendall, G., & Sabar, N. R. (2019). Simulated annealing
with improved reheating and learning for the post enrolment course
timetabling problem. Journal of the Operational Research Society,
70(6), 873–888.

Gunawan, A., Ng, K. M., & Poh, K. L. (2012). A hybridized
Lagrangian relaxation and simulated annealing method for the
course timetabling problem. Computers & Operations Research,
39(12), 3074–3088.

Henderson,D., Jacobson, S.H.,& Johnson,A.W. (2003). The theory and
practice of simulated annealing. In Handbook of metaheuristics,
(pp. 287–319). Springer.

Holm, D. S., Mikkelsen, R. Ø., Sørensen, M., & Stidsen, T. R. (2021).
A mip based approach for international timetabling competation
2019.

Holm,D. Sø.,Mikkelsen,R.Ø., Sørensen,M.,&Stidsen, T. J. R. (2020).
A mip formulation of the international timetabling competition
2019 problem.

Kalender, M., Kheiri, A., Özcan, E., & Burke, E. K. (2012). A greedy
gradient-simulated annealing hyper-heuristic for a curriculum-
based course timetabling problem. In 2012 12th UK workshop
on computational intelligence (UKCI), (pp. 1–8). IEEE

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quanti-
tative studies. Journal of Statistical Physics, 34(5–6), 975–986.

Kostuch, P. (2003). Timetabling competition-sa-based heuristic. Inter-
national Timetabling Competition.

Lemos, A., Monteiro, P. T., & Lynce, I. (2021). Itc-2019: A maxsat
approach to solve university timetabling problems.

Lim, A., Rodrigues, B., & Zhang, X. (2006). A simulated annealing
and hill-climbing algorithm for the traveling tournament problem.
European Journal of Operational Research, 174(3), 1459–1478.

Lü,Z.,&Hao, J.-K. (2010).Adaptive tabu search for course timetabling.
European Journal of Operational Research, 200(1), 235–244.

Lundy,M., &Mees, A. (1986). Convergence of an annealing algorithm.
Mathematical Programming, 34(1), 111–124.

Mall, R. (2018). Fundamentals of software engineering. Delhi: PHI
Learning Pvt. Ltd.

123

Journal of Scheduling (2023) 26:497–517 517

Méndez-Díaz, I., Zabala, P., & Miranda-Bront, J. J. (2016). An ilp
based heuristic for a generalization of the post-enrollment course
timetabling problem.Computers&Operations Research, 76, 195–
207.

Müller, T., Rudová, H., & Müllerová, Z. (2018). University course
timetabling and international timetabling competition 2019. In
Proceedings of 12th international conference on the practice and
theory of automated timetabling (PATAT), (p. 27).

Müller, T. (2009). Itc 2007 solver description: a hybrid approach.Annals
of Operations Research, 172(1), 429.

Nadel, A. (2019). Anytime weighted maxsat with improved polarity
selection and bit-vector optimization. In 2019 Formal methods in
computer aided design (FMCAD), (pp. 193–202). IEEE.

Nagata, Y. (2018). Random partial neighborhood search for the post-
enrollment course timetabling problem. Computers & Operations
Research,90, 84–96.

Paechter, B., Gambardella, L. M., & Rossi-Doria, O. (2002). The first
international timetabling competition. http://www.idsia.ch/Files/
ttcomp2002,

Stern, J. M. (1992). Simulated annealing with a temperature dependent
penalty function. ORSA Journal on Computing, 4(3), 311–319.

Wenzel, W., & Hamacher, K. (1999). Stochastic tunneling approach
for global minimization of complex potential energy landscapes.
Physical Review Letters, 82(15), 3003.

Zheng, S.,Wang, L., Liu, Y.,&Zhang, R. (2015). A simulated annealing
algorithm for university course timetabling considering travelling
distances. International Journal of Computing Science and Math-
ematics, 6(2), 139–151.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.idsia.ch/Files/ttcomp2002
http://www.idsia.ch/Files/ttcomp2002

	Simulated annealing with penalization for university course timetabling
	Abstract
	1 Introduction
	2 Problem formulation
	3 Related work
	4 Solution approach
	4.1 Problem model and preprocessing
	4.1.1 Time and room variables
	4.1.2 Course configuration variables
	4.1.3 Worst penalty calculation

	4.2 Solution model
	4.3 Solution representation
	4.3.1 Representation of class time and room
	4.3.2 Student variables
	4.3.3 Distribution constraints

	4.4 Initial solution
	4.5 Evaluation
	4.5.1 Hard and soft penalty
	4.5.2 Student overflow penalty
	4.5.3 Search penalty
	4.5.4 Stochastic tunneling–Fstun
	4.5.5 Constraint-focused evaluation

	4.6 Neighborhood operators
	4.7 Cooling schedule
	4.8 Restart strategy
	4.9 Penalization
	4.10 Random walks
	4.11 Simulated annealing

	5 Experimental analysis
	5.1 Test set
	5.2 Search method analysis
	5.3 Comparison results

	6 Conclusions and future work
	Acknowledgements
	References

