
Journal of Scheduling (2022) 25:721–740
https://doi.org/10.1007/s10951-022-00742-w

Tight approximation bounds for the LPT rule applied to identical
parallel machines with small jobs

Myungho Lee1 · Kangbok Lee1 ·Michael Pinedo2

Accepted: 13 May 2022 / Published online: 28 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We consider a scheduling problem with m identical machines in parallel and the minimum makespan objective. The Longest
Processing Time first (LPT) rule is a well-known approximation algorithm for this problem. Although its worst-case approx-
imation ratio has been determined theoretically, it is known that the worst-case approximation ratio of LPT can be smaller
with instances of smaller processing times. We assume that each job’s processing time is not longer than 1/k times the optimal
makespan for a given integer k. We derive the worst-case approximation ratio of the LPT algorithm in terms of parameters k
and m. For that purpose, we divide the whole set of instances of the original problem into classes defined by different values
of parameters k and m. On each of those classes, we derive an exact upper bound on the worst-case performance ratio as a
function of parameters k and m. We also show that there exist classes of instances for which our worst-case approximation
ratio is better than previous bounds. Our bound can complement previous research in terms of the performance analysis of
LPT.

Keywords Identical parallel machine scheduling · Makespan minimization · LPT rule · Approximation algorithms ·
Processing time restriction

1 Introduction

Weconsider the problemof scheduling n independent jobs on
m identicalmachines in parallelwith theminimummakespan
objective. This problem is denoted by P || Cmax in the three-
field notation developed by Graham et al. (1979). Since it is a
well-knownNP-hard problem (seeGarey and Johnson 1978),
several approximation algorithms have been proposed.

Definition 1 (WilliamsonandShmoys2011)Aρ-approxima-
tion algorithm for an optimization problem is an algorithm
that for all instances of the problem produces a solution
whose value is within a factor of ρ of the value of an optimal
solution.

Note that ρ < 1 for maximization problems and ρ > 1
for minimization problems. For example, a 2-approximation

B Kangbok Lee
kblee@postech.ac.kr

1 Postech, 77, Cheongam-ro, Nam-gu, Pohang-si,
Gyeongsangbuk-do 37673, Republic of Korea

2 Stern School of Business, New York University, New York,
NY 10012, USA

algorithm implies that the corresponding problem is a min-
imization problem and the objective value of the solution
generated by the algorithm is at most twice the optimal
objective value. In this paper, we refer to ρ as an approxima-
tion bound (Ab, for short). Suppose there exists a problem
instance in which the approximation bound is met. In that
case, the approximation bound is called tight and the prob-
lem instance is referred to as a tight example. We denote
tight approximation bound as Tab and multiple approxima-
tion bounds as Abs (Tabs for multiple tight approximation
bounds).

Among those algorithms, the Longest Processing Time
(LPT) rule was introduced by Graham (1969). It is an
O(n log n) time algorithm that sorts jobs in decreasing order
of their processing times and assigns one job at a time to
the machine that has the lowest load so far. The Ab gained
by LPT is (4/3 − 1/3m), and this bound is tight (Gra-
ham 1969). Although the Tab of LPT is calculated, some
researchers argued that this result does not explain the holis-
tic performance of LPT. Several approaches have therefore
been proposed for evaluating the performance of LPT. For
example, Frenk and Rinnooy Kan (1987) claimed that under
a given mild condition on the processing time distribution,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00742-w&domain=pdf
http://orcid.org/0000-0002-3526-9865

722 Journal of Scheduling (2022) 25:721–740

LPT is asymptotically optimal. Moreover, Ibarra and Kim
(1977) considered a bound on ω

.= pmax/pmin, which is the
ratio of the maximum processing time, to the minimum pro-
cessing time to strengthen the Ab. They obtained an Ab of
1+ 2(m − 1)/n when the number of jobs n satisfies the con-
dition n ≥ 2(m − 1)ω. Thus, with a larger n LPT gets closer
to the optimum.

Several more focused analyses of LPT have been done.
Research related to the direction we are following has
appeared in the literature. Let the machine determining the
makespan of the LPT-schedule be referred to as a criti-
cal machine. Coffman and Sethi (1976) proved that when
there are N jobs on the critical machine, the Tab is (N +
1)/N−1/Nm for the case N ≥ 3. Coffman and Sethi (1976)
assumed thatLPTprovides anoptimal schedulewhen N = 2,
but Chen (1993) corrected the flaw and derived the tight
bound of 4/3− 1/3(m − 1) for the case N = 2. Blocher and
Sevastyanov (2015) considered a ‘truncated’ job set that does
not contain jobs assigned to machines after the job that deter-
mines the makespan of the LPT schedule. They improved the
Coffman–Sethi bound using the maximum number of jobs
assigned to a machine in the LPT-schedule for the truncated
job set. Della Croce and Scatamacchia (2020) introduced a
parameter N ′′ as the maximum number of jobs on a non-
critical machine in the LPT-schedule for the truncated job
set. For the case when m ≥ N ′′ + 2 they proved the Ab
(N ′′ + 1)/N ′′ − 1/N ′′(m − 1) for LPT. A detailed explana-
tion and a comparison of those Abs is presented in Sect. 4.

Moreover, there are some other approximation algorithms
for P || Cmax. For example, Della Croce et al. (2019) applied
an extended version of LPT to the P2 || Cmax problem, and
DellaCroce andScatamacchia (2020) used amodifiedLPT to
improve the bound of Graham (1969). Coffman et al. (1978),
Lee and Massey (1988), and Gupta and Ruiz-Torres (2001)
used bin-packing-based approximation algorithms. Alon et
al. (1998), Jansen (2010), and Jansen et al. (2017) used Poly-
nomial Time Approximation Schemes (PTASs). Since we
focus on LPT, we do not review these papers in detail.

It is proven that the difference between the LPTmakespan
and the optimal makespan is no greater than pmax (Graham
1969; Coffman and Sethi 1976). Thus, the smaller the pro-
cessing times of the jobs are, the better the performance of
LPT is. However, the meaning of ‘small’ processing time
needs to be defined clearly for all problem instances. Thus,
in this paper, we measure the size of the processing times
relative to the optimal makespan. For instance, in the tight
example of LPT by Graham (1969), the ratios of the process-
ing times to the optimal makespan lie in the range [1/3, 2/3)
for all jobs, which are relatively large. In our paper, we con-
sider the problem where the processing times of the jobs are
less than or equal to 1/k times the optimal makespan for an
integer k ∈ {1, 2, . . .}.

Our contribution is as follows. Given an instance I , let
C∗
max[I] denote the optimal makespan and Cmax[I] denote

themakespanobtainedwithLPT. Furthermore, let pmax[I] .=
max j p j , K [I] .= C∗

max[I]/pmax[I], and let Im denote the
set of instances of the m-machine problem P || Cmax. For
any given integral k ≥ 1 and integral m ≥ 2, we define the
class of instances Ik,m .= {I ∈ Im | K [I] ≥ k}. In this paper
we investigate the theoretical accuracy of solutions generated
using LPT, in terms of parameters k and m. Namely, for any
integral values k ≥ 2,m ≥ 2 of parameters k andm, we have
found the Tab F(k,m) of LPT when applied to the class of
instances Ik,m . Note that Tab F(1,m) was established by
Graham (1969).

Our Tab differs for the cases m < k, k ≤ m ≤ k(k + 1)/2
and m > k(k + 1)/2. For the case m < k, we consider
two subcases depending on the fulfillment of condition (k
mod m) ≤ (�k/m�m + 1) / (�k/m� + 1). For convenience,
we consider the case k = 2 separately. For each case, we
derive the Tab (which is supported by demonstrating a proper
worst-case instance). Table 1 summarizes the results for all
possible cases and provides references to the sources where
those results are obtained. Furthermore, we show that there
exist classes of instances with specific parameters where our
Tab is better (smaller) than any previous bounds.

Table 1 shows Tab found for different relations between
m and k, including the case k = 1 (without any process-
ing time restrictions) analyzed by Graham (1969). Figure 1
shows graphical representations of our Tab. The smaller the
processing times are, the lower the Tab is. When k ≥ 3, the
Tab is divided into three different shapes for the range of m.
When 2 ≤ m < k, the shape of Tab differs depending on the
remainder of k divided by m. It approaches to the Tab of 1+
(k−1)/k(k+1) asm increases. When k ≤ m ≤ k(k+1)/2,
the Tab remains constant. Finally, whenm ≥ k(k + 1)/2+ 1
the Tab increases as a hyperbola asymptotically approaching
(with m → ∞) to 1 + 1/(k + 2). Moreover, the structures
of the tight examples of our Ab show a qualitative change.
Whenm ≤ k(k+1)/2, the total number of jobs ismk+1 and
k + 1 jobs are assigned to a critical machine while k jobs are
assigned to every other machine. On the other hand, when
m ≥ k(k+1)/2+1, the total number of jobs ism(k+1)+1
and k + 2 jobs are assigned to a critical machine while k + 1
jobs are assigned to every other machine. This phenomenon
will be shown through tight examples in Sect. 3.

For each fixed k, the Tab changes smoothly in m, in the
sense that at each boundary point of parameter m (namely,
m = k and m = k(k + 1)/2) both formulas determining the
Tab in the neighboring areas have identical values (as can be
easily checked).

In Sect. 2, we introduce some necessary notations, dis-
cuss essential concepts and present some preliminary results.
Sect. 3 presents Tab for different conditions of k and m.
Section 4 compares our Tab with that of previous studies.

123

Journal of Scheduling (2022) 25:721–740 723

Table 1 Tab F(k,m) on
different cases

Condition Tab References

k m m and k

1 ≥ 2 -
4

3
− 1

3m
Graham (1969)

2 2 -
7

6
Section 3.1

≥ 3 -
5

4
− 1

4m
Section 3.1

≥ 3 ≥ 2 m < k (k mod m) ≤ �k/m�m + 1

�k/m� + 1
1 + 1

k
− �k/m� + 1

k (�k/m�m + 1)
Section 3.4

(k mod m) >
�k/m�m + 1

�k/m� + 1
1 + k − 1

k(k + 1)
− �k/m�

k(k + 1)
Section 3.4

≥ 3 k ≤ m ≤ k(k + 1)

2
1 + k − 1

k(k + 1)
Section 3.2

m >
k(k + 1)

2
1 + 1

k + 2
− 1

(k + 2)m
Section 3.3

Fig. 1 Graphical representations of Tab F(k,m)

Concluding remarks along with possible extensions are pre-
sented in Sect. 5.

2 Preliminaries

In this section, we introduce notations and present some pre-
liminary results that will be used in subsequent sections.

J The set of jobs
.= {1, . . . , n}

M The set of machines
.= {1, . . . ,m}

p j The processing time of job j for j ∈ J
σ ∗ An optimal schedule with the minimum makespan
σ A schedule generated by LPT
i(j) The machine i ∈ M where job j ∈ J is assigned by LPT
S∗
i The set of jobs scheduled on machine i in schedule

σ ∗ for i ∈ M
Cmax(σ

′) The makespan of an arbitrary schedule σ ′
u(i, t) The job on machine i in the t-th position in schedule σ

for i ∈ M and t ∈ {1, 2, . . .}

Wefirst define LPT in amore precise way. In what follows
we assume that jobs are indexed in a non-increasing order of
their processing times: p1 ≥ p2 ≥ . . . ≥ pn . Each job is
assigned to the machine among those having the lowest load
so far and when there is a tie, the machine with the minimum
index is selected. These two procedures directly imply the
uniqueness of schedule σ . When jobs are scheduled one after
another according to LPT, we may want to consider in our
analysis a partial schedule of the LPT schedule right after job
j has been scheduled. Thus, we define S j

i as the set of jobs
scheduled on machine i right after job j has been scheduled
by LPT for specific i ∈ M and j ∈ J . By definition, S j

i(j) =
S j−1
i(j) ∪ { j}, and S j

i = S j−1
i for all i �= i(j). We define the

function p(J ′) .= ∑
j∈J ′ p j for J ′ ⊆ J .

The optimal makespan Cmax(σ
∗) and the makespan

Cmax(σ) of the schedule generated by LPT will be also
denoted as (for short) C∗

max and Cmax, respectively. Using
the definition, we denote our problem as P | p j ≤
1
k C

∗
max | Cmax.Moreover, by the definition, we have:C∗

max =
maxi∈M

{
p(S∗

i)
}
andCmax = maxi∈M

{
p(Sni)

}
. The follow-

ing Proposition is a result by Chen (1993), which describes
a particular characteristic of the LPT schedule.

Proposition 1 (Chen 1993) Let hi
.= |Sni |. Then for any t =

1, . . . , hi and i ∈ M, we have:

pu(i,t) ≤ C∗
max/t

Next, we define the inequality that will be frequently used
concerning the optimal makespan and the total processing
time of jobs.

∑

j∈J

p j ≤ mC∗
max. (1)

123

724 Journal of Scheduling (2022) 25:721–740

In the procedures used in the proofs for our Ab, we often
use a classical argument leading to a contradiction (an argu-
ment first used by Graham 1969). The following is a typical
argument that we use. Suppose we want to show that an Ab
on LPT for a makespan minimization problem is less than or
equal to a certain constant ρ < ∞. To do so, we assume that
the Ab is not correct and that there exists at least one instance
for which the Ab by LPT is strictly larger than ρ. We refer
to such an instance as a counterexample. Among all possi-
ble counterexamples, we consider a counterexample with a
minimum number of jobs and refer to it as a minimum coun-
terexample. Any job placed after the makespan determining
job could be removed without changing the makespan. Thus,
in aminimumcounterexample, the last job always determines
the makespan. We state, when using this approach in our
proofs in subsequent sections, that ‘there exists a minimum
counterexample.’

Theorem 1 and Corollary 1 represent the key character-
istics of our problem setting and they will be used to derive
our Ab.

Theorem 1 For P | 1
y C

∗
max < p j ≤ 1

k C
∗
max | Cmax with

y ∈ {y′ ∈ R
+ | k < y′ ≤ 2k}, we have

max
i∈M {p(Sαm

i)} − min
i∈M{p(Sαm

i)} <

(
1

k
− 1

y

)

C∗
max

and

|Sαm
i | = α ∀i ∈ M,∀α ∈ {1, . . . ,

⌊ n

m

⌋
}

Proof It can be shown using mathematical induction. First
we consider the case α = 1. The first m jobs are scheduled
on the m machines and |Smi | = 1 for all i ∈ M . We know
that

max
i∈M {p(Smi)} = p1 ≤ 1

k
C∗
max

min
i∈M{p(Smi)} = pm ≥ pn >

1

y
C∗
max

Thus, the Theorem holds when α = 1.
Suppose that the Theorem holds when α ∈ {1, . . . , β −1}

for some β such that β ≤ �n/m� − 1. We consider a partial
schedule in which the first (β − 1)m jobs are scheduled by
LPT. By induction hypothesis, we have that

max
i∈M

{
p(S(β−1)m

i)
}

− min
i∈M

{
p(Sβ−1)m

i)
}

<

(
1

k
− 1

y

)

C∗
max.

Since

p j ≥ pn >
1

y
C∗
max ≥

(
1

k
− 1

y

)

C∗
max

for all j ∈ {(β − 1)m + 1, . . . , βm}, the next m jobs will be
scheduled by LPT on different machines and, thus, |Sβm

i | =
β for all i ∈ M .

Let job ji in {(β − 1)m + 1, . . . , βm} denote a job
scheduled on machine i for some i ∈ M in schedule σ .
In other words, Sβm

i = S(β−1)m
i ∪ { ji }. Let h be defined

as argmaxi∈M {p(Sβm
i)}. We consider two cases for some

machine i , i �= h, based on whether p(S(β−1)m
i) is greater

than p(S(β−1)m
h) or not.

For the case that p(S(β−1)m
h)− p(S(β−1)m

i) > 0, it follows
from the fact that under LPT job ji must be scheduled before
job jh that p jh − p ji ≤ 0. From the induction hypothesis

we have that p(S(β−1)m
h)− p(S(β−1)m

i) < (1/k−1/y)C∗
max.

Thus, we have

p(Sβm
h) − p(Sβm

i)

=
(
p(S(β−1)m

h) + p jh

)
−

(
p(S(β−1)m

i) + p ji

)

=
(
p(S(β−1)m

h) − p(S(β−1)m
i)

)
+ (

p jh − p ji

)

<

(
1

k
− 1

y

)

C∗
max.

For the case when p(S(β−1)m
h)− p(S(β−1)m

i) ≤ 0 and i �= h,
by the assumption of the Theorem, we have p jh − p ji <

(1/k − 1/y)C∗
max. Thus, we have

p(Sβm
h) − p(Sβm

i)

=
(
p(S(β−1)m

h) + p jh

)
−

(
p(S(β−1)m

i) + p ji

)

=
(
p(S(β−1)m

h) − p(S(β−1)m
i)

)
+ (

p jh − p ji

)

<

(
1

k
− 1

y

)

C∗
max.

Therefore, p(Sβm
h) − p(Sβm

i) < (1/k − 1/y)C∗
max for all

i ∈ M . ��
Corollary 1 For P | 1

y C
∗
max < p j ≤ 1

k C
∗
max | Cmax with y ∈

{y′ ∈ R
+ | k < y′ ≤ 2k}, and n = αm for some α ∈ Z

+,
the approximation bound on LPT is less than 1 + 1

2k
m−1
m .

Proof Let machine i∗ be the machine that determines the
makespan under schedule σ . It follows from Theorem 1 and
the definition of machine i∗, that

Cmax − p(Sni) <

(
1

k
− 1

y

)

C∗
max ∀i ∈ M \ {i∗}

123

Journal of Scheduling (2022) 25:721–740 725

Cmax − p(Sni∗) = 0.

By adding the above inequalities along with (1), we have

Cmax <

(

1 +
(
1

k
− 1

y

)
m − 1

m

)

C∗
max

≤
(

1 + 1

2k

m − 1

m

)

C∗
max.

It completes the proof. ��

3 Approximation bound results

In this section, we analyze our Tab for problem P | p j ≤
1
k C

∗
max | Cmax. We first consider in Sect. 3.1 the case k = 2

and present a Tab. For the case k ≥ 3 the Tab is determined
by the relationship between m and k. For the case m ≥ k,
we consider two subcases based on whether or not m ≤
k(k + 1)/2, and they are presented in Sects. 3.2 and 3.3.
When 2 ≤ m < k, the Tab is determined by the relationship
between m, the quotient q, and the remainder r1 when k is
divided by m; it is shown in Sect. 3.4.

3.1 The case k = 2

For the case k = 2, we consider two subcases m = 2 and
m ≥ 3. For the subcase m = 2, the tight example of Graham
(1969) satisfies the condition of P | p j ≤ 1

2C
∗
max | Cmax.

Therefore, the Tab is 7/6 which is the same as in Graham
(1969). Thus, we need to consider the subcase m ≥ 3.

Theorem 2 The approximation bound on LPT for P | p j ≤
1
k C

∗
max | Cmax with m ≥ 3 and k = 2 is 5

4 − 1
4m and it is

tight.

Proof Suppose there exists a minimum counterexample.
From inequality (1) it follows that

p(Sn−1
i) + pn >

(
5

4
− 1

4m

)

C∗
max ∀i ∈ M

mC∗
max ≥

m∑

i=1

p(Sn−1
i) + pn .

Adding the two inequalities yields

pn >
1

4
C∗
max.

This implies |S∗
i | ≤ 3 for all i ∈ M and thus n ≤ 3m. If

n ≤ 2m, by Theorem 1, everymachine has at most 2 jobs and
from the fact that p j ≤ (1/2)C∗

max, schedule σ is optimal.
Thus, we only need to consider 2m + 1 ≤ n ≤ 3m. By

Theorem 1, |S2mi | = 2 for all i ∈ M and 2 ≤ |Sni | ≤ 3 for

all i ∈ M . By Proposition 1, since job n is assigned by LPT
to the third position of a machine,

pn ≤ 1

3
C∗
max. (2)

By Theorem 1, |Sαm
i | = α for all α ∈ {1, 2} and i ∈ M . We

can assume without loss of generality that the firstm jobs are
scheduled on machines 1 tom one after another, and the next
m jobs are scheduled on machines m to 1, again one after
another. In other words,

S2mi = {i, 2m − i + 1} ∀i ∈ M .

Next, we show that the following two inequalities hold:

p2m + pn ≤ 2

3
C∗
max (3)

p2m−i(n)+1 + pn >
2

3
C∗
max. (4)

Inequality (3) can be proved as follows. If p2m + pn >

(2/3)C∗
max, then by inequality (2), p2m > (1/3)C∗

max. This
implies that p j > (1/3)C∗

max for all j = 1, . . . , 2m. Then,
in schedule σ ∗, each machine has exactly two jobs from
{1, . . . , 2m}. In schedule σ ∗, job n cannot be added to the
scheduled and completed by C∗

max, which leads to a contra-
diction. Thus, we have p2m + pn ≤ (2/3)C∗

max.
Inequality (4) can be shown as follows. Suppose that

p2m−i(n)+1 + pn ≤ 2

3
C∗
max

is satisfied. Then, since pi(n) ≤ (1/2)C∗
max,

Cmax = pi(n) + p2m−i(n)+1 + pn

≤ 7

6
C∗
max ≤

(
5

4
− 1

4m

)

C∗
max

when m ≥ 3, which leads to a contradiction. Thus, we have

p2m−i(n)+1 + pn >
2

3
C∗
max.

Now, we consider the first machine, denoted as machine î ,
that satisfies the condition.

p2m−î+2 + pn ≤ 2

3
C∗
max and

p2m−î+1 + pn >
2

3
C∗
max.

From inequalities (3) and (4) it follows that there must exist
a machine î , 2 ≤ î ≤ i(n).

See Fig. 2. For all i ∈ {1, . . . , î −1}, we have |Sn−1
i | = 3.

If there is a machine i in {1, . . . , î − 1} with |Sn−1
i | = 2,

123

726 Journal of Scheduling (2022) 25:721–740

Fig. 2 A minimum counterexample when k = 2 and m ≥ 3

then job n should have been scheduled on machine i and the
makespan would be less than (7/6)C∗

max, which is a contra-
diction.

For all i ∈ {î, . . . ,m} \ {i(n)}, we do not know whether
|Sn−1

i | = 2 or 3, but we know that |Sn−1
i | ≥ 2. Moreover,

we do know that |Si(n)| = 3. Thus, we can calculate the
following lower bound on the number of jobs:

n ≥ 3(î − 1) + 2(m − î) + 3 = 2m + î . (5)

We consider a set of jobs J ′ .= {1, . . . , 2m − î + 1}.
See Fig. 2. Since p2m−î+1 + pn > (2/3)C∗

max and pn ≤
(1/3)C∗

max by inequality (2), we know that p j > (1/3)C∗
max

for all j ∈ J ′. It implies that under schedule σ ∗ there are at
most two jobs from J ′ on each machine.

Let M ′ be the set of machines that have under schedule
σ ∗ exactly two jobs from J ′ so that |M ′| ≥ m − î + 1. For
some machine i ∈ M ′, let Si = { j1, j2}. Then, p j1 + pn >

(2/3)C∗
max and p j2 > (1/3)C∗

max. It implies that for all i ∈
M ′ there are no more additional jobs that can be scheduled
on machine i , and it implies |S∗

i | = 2 for all i ∈ M ′. Since
|S∗

i | ≤ 3 for all i ∈ M \ M ′, we have

n ≤ 2(m − î + 1) + 3(î − 1) = 2m + î − 1. (6)

Inequalities (5) and (6) contradict one another. Therefore,
there is no counterexample with a larger Ab.

The tightness can be shown through an example. Such an
example can be obtained by modifying the tight example of
LPT in Graham (1969).

We consider a problem instance with 3m + 1 jobs where

p j = 2m − � j
2 � for j ∈ {1, . . . , 2m}, and

p j = m for j ∈ {2m + 1, . . . , 3m + 1}.

In schedule σ ∗,

S∗
i = {i, 2m − i − 1} ∪ {2m + 1 + i} for i ∈ {1, . . . ,m − 1}
S∗
m = {2m − 1, 2m, 2m + 1} ∪ {3m + 1}.

In schedule σ ,

S1 = {1, 2m} ∪ {2m + 1} ∪ {3m + 1}
Si = {i, 2m − i + 1} ∪ {2m + i} for i ∈ {2, . . .m}.

Therefore, we have

Cmax(σ)

Cmax(σ ∗)
= 5m − 1

4m
= 5

4
− 1

4m
.

The proof is complete. ��

3.2 The case 3 ≤ k ≤ m ≤ k(k + 1)/2

Now consider the case k ≥ 3. Consider the following Lemma
that deals with a special problem under the additional restric-
tion that p j > (1/(k + 2))C∗

max for all j ∈ J . The Lemma
will be used in the proof of the Ab when 3 ≤ k ≤ m.

Lemma 1 TheapproximationboundonLPT for P | 1
k+2C

∗
max

< p j ≤ 1
k C

∗
max | Cmax with 3 ≤ k ≤ m is 1 + k−1

k(k+1) .

Proof Suppose there exists a minimum counterexample. If
n ≤ km, by Theorem 1, each machine has at most k jobs
and then σ is optimal since p j ≤ (1/k)C∗

max for all j ∈ J ,
implying a contradiction.

Thus, n ≥ km + 1. From Proposition 1 and by the
fact that job n is put in the (k + 1)-th position on its
machine by LPT, we have pn ≤ (1/(k + 1))C∗

max. Since
p j > (1/(k + 2))C∗

max for all j ∈ J , we have |S∗
i | ≤ k + 1

for all i ∈ M and it implies n ≤ (k + 1)m. Moreover, when
n = (k + 1)m, by Corollary 1 and the condition k ≥ 3, we
have

1 + 1

2k
≤ 1 + k − 1

k(k + 1)
.

Therefore, it is sufficient to consider the case n = km+r for
some r ∈ {1, 2, . . . ,m−1}. Since km+1 ≤ n ≤ km+(m−1)
and

1

k + 2
C∗
max < p j ≤ 1

k
C∗
max,

the number of jobs assigned to a machine is, either k or
k + 1 by Theorem 1. We consider the following two sets
of machines in schedule σ :

Mk =the set of machines that have k jobs under schedule σ.

Mk+1=the set of machines that have k + 1 jobs under

schedule σ.

It is clear that |Mk+1| = r and |Mk | = m − r .

123

Journal of Scheduling (2022) 25:721–740 727

Recall that u(i, t) denotes the job scheduled by LPT under
schedule σ on machine i in the t-th position, for all i ∈ M
and for all t ∈ {1, 2, . . .}. We know i(n) ∈ Mk+1 and

Cmax =
k∑

t=1

pu(i(n),t) + pn .

Since

Cmax >

(

1 + k − 1

k(k + 1)

)

C∗
max,

and

k−1∑

t=1

pu(i(n),t) ≤ k − 1

k
C∗
max,

we have

pu(i(n),k) + pn >

(
2

k + 1

)

C∗
max. (7)

Moreover, since job n is scheduled on machine i(n) under
schedule σ ,

k∑

t=1

pu(i(n),t) ≤
k∑

t=1

pu(i,t) ∀i ∈ Mk

and

k−1∑

t=1

pu(i,t) ≤ k − 1

k
C∗
max ∀i ∈ Mk .

Thus, we have

pu(i,t) + pn >

(
2

k + 1

)

C∗
max ∀i ∈ Mk,∀t ∈ {1, . . . , k}.

Since pn ≤ (1/(k + 1))C∗
max, we have pu(i(n),k) > (1/

(k + 1))C∗
max by inequality (7) and it also implies

pu(i,t) ≥ pu(i(n),k)

>
1

k + 1
C∗
max ∀i ∈ Mk,∀t ∈ {1, . . . , k − 1}.

Let the set of jobs J ′ be defined as follows:

J ′ .=
(

⋃

i∈M

k−1⋃

t=1

{u(i, t)}
)

∪
⎛

⎝
⋃

i∈Mk∪{i(n)}
{u(i, k)}

⎞

⎠ .

Then, p j > (1/(k + 1))C∗
max and p j + pn > (2/(k + 1))

C∗
max for all j ∈ J ′. We know that |J ′| = (k − 1)m + (m −

r + 1) = km − r + 1. Since p j > (1/(k + 1))C∗
max for all

j ∈ J ′, under schedule σ ∗ at most k jobs from J ′ can be
scheduled on the same machine.

Let M ′ be the set of machines that have in schedule
σ ∗ exactly k jobs from J ′ so that |M ′| ≥ m − r + 1.
Consider machine i ∈ M ′ in schedule σ ∗. Let S∗

i ∩
J ′ = { j1, j2, . . . , jk} for some i ∈ M ′. It is impos-
sible to add the smallest job to this machine i because
p jl > (1/(k + 1))C∗

max for all l ∈ {1, . . . , k − 1}, and
p jk + pn > (2/(k + 1))C∗

max. Thus, nomore jobs, in addition
to the current k jobs, can be scheduled on machine i ∈ M ′
under schedule σ ∗ and it implies

|S∗
i | = k ∀i ∈ M ′.

Since |S∗
i | ≤ k + 1 for all i ∈ M and |M ′| ≥ m − r + 1, we

have

n ≤ k|M ′| + (k + 1)(m − |M ′|) = (k + 1)m − |M ′|
≤ (k + 1)m − (m − r + 1) = km + r − 1.

This contradicts the fact that n = km + r . Therefore, there
is no such counterexample with a larger Ab. ��
Theorem 3 The approximation bound on LPT for P | p j ≤
1
k C

∗
max | Cmax with 3 ≤ k ≤ m ≤ k(k+1)

2 is 1+ k−1
k(k+1) and it

is tight.

Proof Suppose there exists a minimum counterexample. By
inequality (1),

p(Sn−1
i) + pn >

(

1 + k − 1

k(k + 1)

)

C∗
max ∀i ∈ M

mC∗
max ≥

∑

i∈M
p(Sn−1

i) + pn .

By adding both sides, we have

pn >
m

m − 1

k − 1

k(k + 1)
C∗
max.

When m ≤ k(k + 1)/2, we can say that pn > (1/(k + 2))
C∗
max. By Lemma 1, the Ab should be no more than 1 +

(k − 1)/k(k + 1). This results in a contradiction and it
implies that there is no counterexample with a greater Ab.

The tightness can be shown through the following instance
with km + 1 jobs of two types. See Fig. 3.

Job type Processing time The number of jobs

1 1/k k(m − 1)
2 1/(k + 1) k + 1

123

728 Journal of Scheduling (2022) 25:721–740

Fig. 3 A tight example of LPT when 3 ≤ k ≤ m ≤ k(k + 1)/2

In schedule σ ∗, there are two types of machines based on
the composition of job types and the optimal makespan is 1.

Machine type The number of
machines

The number of jobs of each type

Job type 1 Job type 2

1 m − 1 k 0
2 1 0 k + 1

In schedule σ , there are three types of machines based on
the composition of job types.

Machine type The number of
machines

The number of jobs of each type

Job type 1 Job type 2

3 m − k k 0
4 1 k − 1 2
5 k − 1 k − 1 1

Themakespan of schedule σ is determined by themachine
of type 4. Therefore, we have

Cmax(σ)

Cmax(σ ∗)
= 1

k
(k − 1) + 2

k + 2
= 1 + k − 1

k(k + 1)
.

It completes the proof. ��

3.3 The casem > k(k + 1)/2 and k ≥ 3

Theorem 4 The approximation bound on LPT for P | p j ≤
1
k C

∗
max | Cmax with m ≥ k(k+1)

2 + 1 and k ≥ 3 is 1 + 1
k+2 −

1
(k+2)m and it is tight.

Proof Suppose there exists a minimum counterexample. By
inequality (1),

p(Sn−1
i) + pn >

(

1 + 1

k + 2
− 1

(k + 2)m

)

C∗
max ∀i ∈ M

mC∗
max ≥

∑

i∈M
p(Sn−1

i) + pn .

By adding both sides, we have

pn >
1

k + 2
C∗
max.

ByLemma1, theAb shouldbenomore than1+(k−1)/k(k+1).
However, since

1 + k − 1

k(k + 1)
< 1 + 1

k + 2
− 1

(k + 2)m

when m ≥ k(k + 1)/2 + 1, it leads to a contradiction and it
implies that there is no such counterexample with a greater
Ab.

In order to show the tightness, we present examples. We
dividem by k such thatm = πk+γ withnonnegative integers
π and γ satisfying 0 ≤ γ ≤ k − 1. Because of the condition
m > k(k+1)/2,we haveπ ≥ �(k+1)/2−γ /k� ≥ (k−1)/2.
To identify the structure of the tight example, we have to
consider the following four cases specified by values ofπ and
γ . In all cases, the total number of jobs in the tight example
ism(k+1)+1, and the optimal makespan and the makespan
by LPT are m(k + 2) and m(k + 2) + m − 1, respectively.

– Case 1: γ = 0
– Case 2: γ = 1
– Case 3: γ ≥ 2 with π ≥ k − γ

– Case 4: γ ≥ 2 with π < k − γ

For Case 1, the following example gives the Tab. See Fig. 4.
job type processing time the number of jobs
1 m 2k + 1

2
m + 1 2k }

π − 1· · · · · ·
m + π − 1 2k

3 m + π (k − 1)m

For Case 2, the following example gives the Tab. See Fig. 5.
job type processing time the number of jobs
1 m k + 2

2
m + 1 2k }

π − 1· · · · · ·
m + π − 1 2k

3 m + π (k − 1)m + (k + 1)

123

Journal of Scheduling (2022) 25:721–740 729

Fig. 4 Case 1: A tight example of LPT when m > k(k + 1)/2

Fig. 5 Case 2: A tight example of LPT when m > k(k + 1)/2

For Case 3, the following example gives the Tab. See Fig. 6.
job type processing time the number of jobs
1 m (k − γ)(k − 1) + 2k + 1

2
m + 1 2k }

π − (k − γ)· · · · · ·
m + π − (k − γ) 2k

3
m + π − (k − γ) + 1 2(k − 1) }

k − γ· · · · · ·
m + π 2(k − 1)

4 m + π + 1 (k − 1)m − (k − 1)(k − γ)

Finally, for Case 4, we need an additional parameter θ
.=

(k − γ) − π ≥ 1 to provide a tight example. Even though
the example presents one problem instance when θ ≥ 1,
the optimal schedule and the LPT schedule exhibit different
shapes according to the value of θ . Since (k − 2)(m − 1) +
(2 − θ)(k − 2) ≥ (k − 3)m + (k − 1), first (k − 3) slots
on every machine are filled with only type 4 jobs. However,
when θ = 1, even the (k−2)th slot on every machine in each

123

730 Journal of Scheduling (2022) 25:721–740

Fig. 6 Case 3: A tight example of LPT when m > k(k + 1)/2

Fig. 7 Case 4 with θ = 1: A tight example of LPT when m > k(k + 1)/2

schedule is filled with a type 4 job. Thus, the shape in case
θ = 1 is different from the one in case θ ≥ 2.

job type processing time the number of jobs
1 m (k − γ)(k − 1) + 2k + 1− 2θ

2
m + 1 2(k − 1) }

π − θ + 1· · · · · ·
m + π − θ + 1 2(k − 1)

3
m + π − θ + 2 2(k − 2) }

θ − 1· · · · · ·
m + π 2(k − 2)

4 m + π + 1 (k − 2)(m − 1) + (2− θ)(k − 2)

In conclusion, we show the existence of tight examples
for every case when m > k(k + 1)/2, which completes the
proof (Figs. 7, 8). ��

3.4 The case 2 ≤ m < k

Finally, consider the case 2 ≤ m < k. Recall q and r1 be the
quotient and the remainder, respectively, when k is divided
bym. Thus, k = qm+r1 where q ∈ Z

+ and 0 ≤ r1 ≤ m−1.
In other words, q = �k/m� and r1 = k − �k/m�m.

We will show that the Ab is B = max (B1, B2) where the
value of B1 and B2 is given in the following table. Moreover,

123

Journal of Scheduling (2022) 25:721–740 731

Fig. 8 Case 4 with θ ≥ 2: A tight example of LPT when m > k(k + 1)/2

we will show that both B1 and B2 are tight. The conditions
on m, q and r1, determines the Ab for each case.

Case Conditions on m, q and r1 Ab

1 q(m − r1) ≥ r1 − 1 B1
.= 1 + m−1

m
k−r1

k(k−r1+1)

2 q(m − r1) < r1 − 1 B2
.= 1 + k−1

k(k+1) − k−r1
mk(k+1)

In this section, we consider two cases under the following
conditions:

Case 1: q(m − r1) ≥ r1 − 1 (8)

Case 2: q(m − r1) < r1 − 1 (9)

Lemma 2 If r1 = 0 then the approximation bound on LPT
for 2 ≤ m < k is 1 + m−1

m
1

(k+1) .

Proof The case with r1 = 0 belongs to Case 1 and the target
Ab is

1 + m − 1

m

1

(k + 1)
.

Suppose that the Lemma is not correct. Then there exists a
minimum counterexample. By inequality (1),

p(Sn−1
i) + pn >

(

1 + m − 1

m

1

(k + 1)

)

C∗
max ∀i ∈ M

mC∗
max ≥

∑

i∈M
p(Sn−1

i) + pn .

By adding both sides, we have

pn >
1

(k + 1)
C∗
max.

It implies that the number of jobs on each machine under
schedule σ ∗ is no more than k. From the assumption that
p j ≤ (1/k)C∗

max and by Theorem 1, it follows that under
schedule σ each machine can process at most k jobs, which
implies that σ is indeed optimal, resulting in a contradiction.
Therefore, there is no such counterexample with a greater
Ab. ��

By the result of Lemma 2, we assume that r1 ≥ 1 through-
out the remainder of this section.

Lemma 3 If there exists a minimum counterexample for the
approximation bound B, then the number of jobs on each
machine under schedule σ ∗ in the minimum counterexample
is at most k + 1. That is, |S∗

i | ≤ k + 1 for all i ∈ M.

Proof To prove the Lemma, it suffices to show that pn is
greater than (1/(k + 2))C∗

max in both cases. In Case 1, the
following inequalities hold by inequality (1),

p(Sn−1
i) + pn >

(

1 + m − 1

m

k − r1
k(k − r1 + 1)

)

C∗
max ∀i ∈ M

mC∗
max ≥

∑

i∈M
p(Sn−1

i) + pn .

By adding both sides, we have

pn >
k − r1

k(k − r1 + 1)
C∗
max. (10)

123

732 Journal of Scheduling (2022) 25:721–740

In order to compare the coefficient of inequality (10) and
1/(k + 2), we calculate the difference

k − r1
k(k − r1 + 1)

− 1

k + 2
= k − 2r1

k(k − r1 + 1)(k + 2)
.

Since k−2r1 = (qm+r1)−2r1 ≥ m−r1 ≥ 0 and k−r1+1 ≥
(m + r1) − r1 + 1 > 0, we have pn > (1/(k + 2))C∗

max.

In Case 2, the following inequalities hold by inequality (1),

p(Sn−1
i)+ pn >

(

1 + k − 1

k(k + 1)
− k − r1
mk(k + 1)

)

C∗
max ∀i ∈ M

mC∗
max ≥

∑

i∈M
p(Sn−1

i) + pn .

By adding both sides, we have

pn >
m

m − 1

(
k − 1

k(k + 1)
− k − r1

mk(k + 1)

)

C∗
max.

Using a similar procedure as in Case 1, we calculate the
difference

m

m − 1

(
k − 1

k(k + 1)
− k − r1

mk(k + 1)

)

− 1

k + 2

= r1k + 2r1 − 2m − k

(m − 1)k(k + 1)(k + 2)
.

Since the denominator is positive, it suffices to check the
numerator. By condition (9) of Case 2, 1 ≤ q(m − r1) <

r1 − 1. It implies r1 > 2 and since r1 is integer, r1 ≥ 3.
Recall that k = qm + r1. Thus, the numerator is

(r1 − 1)k + 2r1 − 2m = (r1 − 1)(qm + r1) − 2(m − r1)

≥ (r1 − 3)(m − r1) ≥ 0.

For both cases, we have

pn >
1

k + 2
C∗
max.

It implies |S∗
i | ≤ k + 1 for all i ∈ M , which completes the

proof. ��
By Lemma 3, |S∗

i | ≤ k + 1, which implies n ≤ m(k + 1).
If n ≤ mk, then schedule σ is optimal since every machine
has at most k jobs by Theorem 1 and p j ≤ 1

k for all j ∈ J .
Thus, let n = mk + r2, where 1 ≤ r2 ≤ m. Then Lemma 4
provides a proof that there is no counterexample with Ab
greater than B when r2 > 1.

Lemma 4 If there is a minimum counterexample to the
approximation bound B for 2 ≤ m < k, then r2 cannot
be greater than 1.

Proof Suppose there exists a minimum counterexample with
r2 > 1.

First we consider the case r2 = m. By Corollary 1 the Ab
is then less than 1+ ((m − 1)/m)(1/2k). Thus, we calculate
the difference between the target Ab and the bound given by
Corollary 1 for both cases.
In Case 1, since k = qm + r1, the difference is

(

1 + m − 1

m

k − r1
k(k − r1 + 1)

)

−
(

1 + m − 1

m

1

2k

)

= m − 1

m

k − r1 − 1

2k(k − r1 + 1)
≥ 0.

In Case 2, since k ≥ 3, the difference is

(

1 + k − 1

k(k + 1)
− k − r1

mk(k + 1)

)

−
(

1 + m − 1

m

1

2k

)

= (m − 1)(k − 3) + 2(r1 − 1)

2mk(k + 1)
≥ 0.

Thus, r2 cannot be m. It suffices to consider the case 1 <

r2 ≤ m − 1.
In Case 1, suppose r2 > 1.We know that k ≤ |S∗

i | ≤ k+1
for all i ∈ M . Recall that Mk and Mk+1 denote the sets
of machines with k and k + 1 jobs in schedule σ , respec-
tively. Then, |Mk+1| = r2 and |Mk | = m − r2. We know
i(n) ∈ Mk+1. For some machine i ∈ Mk , if job n is also
assigned to it, then the total processing time on the machine
exceeds the current makespan. For some machine i ∈ Mk+1,
it follows from Theorem 1 that the difference between the
total processing time and the current makespan is bounded.
Thus, by inequality (1), we have

p(Sn−1
i) + pn >

(

1 + m − 1

m

k − r1
k(k − r1 + 1)

)

C∗
max

∀i ∈ Mk ∪ {i(n)}
p(Sn−1

i)>

(

1+m − 1

m

k − r1
k(k − r1 + 1)

− 1

k(k − r1 + 1)

)

C∗
max

∀i ∈ Mk+1 \ {i(n)}
mC∗

max ≥
∑

i∈M
p(Sn−1

i) + pn .

Summing these inequalities yields the following inequality.

pn >
(m − 1)(k − r1) − r2 + 1

(m − r2)k(k − r1 + 1)
C∗
max.

Suppose the following inequality holds,

(m − 1)(k − r1) − r2 + 1

(m − r2)k(k − r1 + 1)
≥ 1

k + 1

then it leads to a contradiction since schedule σ is optimal by
the fact that p j ≤ (1/k)C∗

max for all j ∈ J and Theorem 1.

123

Journal of Scheduling (2022) 25:721–740 733

Thus, we calculate their difference

(m − 1)(k − r1) − r2 + 1

(m − r2)k(k − r1 + 1)
− 1

(k + 1)

= (r2 − 1)k2 + (r1 − r1r2)k + r1 − r2 − r1m + 1

(m − r2)k(k + 1)(k − r1 + 1)
.

By the definition of k, the denominator is positive. Moreover,
the numerator can be written as

{
(r2 − 1)k2 − r1r2k

}
+ {r1k − r1m} + {r1 − r2 + 1} .

The first part is k{(r2 − 1)k − r1r2} = k{(r2 − 1)qm −
r1} ≥ k(m − r1) ≥ m because k = qm + r1, r2 ≥ 2 and
k ≥ m. The second part is r1(k − 1) ≥ 1. The third part is
r1 − r2 + 1 ≥ −(m − 1). Thus, the numerator is positive as
well, which completes the proof for Case 1.

For Case 2, the same procedure yields:

pn >

(
m(k − 1)

k(k + 1)
− k − r1

k(k + 1)
− (2m − r1 − 1)(r2 − 1)

(m − 1)k(k + 1)

)

1

m − r2
C∗
max.

If

(
m(k − 1)

k(k + 1)
− k − r1

k(k + 1)
− (2m − r1 − 1)(r2 − 1)

(m − 1)k(k + 1)

)

1

m − r2
≥ 1

k + 1

holds, then it leads to a contradiction since schedule σ is
optimal by the same reason with Case 1. Thus, we calculate
their difference

(
m(k − 1)

k(k + 1)
− k − r1

k(k + 1)
− (2m − r1 − 1)(r2 − 1)

(m − 1)k(k + 1)

)

1

m − r2
− 1

k + 1

= (m − 1)(r2k + r1 − k − m) − (2m − r1 − 1)(r2 − 1)

(m − r2)k(k + 1)(m − 1)
.

Clearly, the denominator is positive. Since k = qm + r1, the
numerator can be written as

(m − 1)(r2k + r1 − k − m) − (2m − r1 − 1)(r2 − 1)

=
{
((r2 − 1)q − 1)m2

}
+

{
(r1 − q − 2)r2m

}

+
{
(q + 3)m + r2 − r1 − 1

}
.

The first part is ((r2 − 1)q − 1)m2 ≥ 0 since r2 > 1. For the
second part, by condition (9) of Case 2, and r1 ≤ m − 1, we
have q + 1 < r1. Since both q and r1 are integer, r1 ≥ q + 2.

Fig. 9 The structure of a minimum counterexample when r2 = 1

Thus, the second part is (r1 − q − 2)r2m ≥ 0. The last part
is (q + 3)m + r2 − r1 − 1 > 0 since m > r1. Thus, the
numerator is positive as well which completes the proof for
Case 2.

In conclusion, if r2 > 1 there is no counterexample with
an Ab greater than B. Therefore, r2 must be 1. ��

ByLemma 4, the only proof remaining is for the case r2 =
1. Figure 9 shows the allocation of jobs to machines under
schedule σ when r2 = 1. TheAbwill be shown via Lemma 5.
Job type 1 represents the jobs in schedule σ ∗ on machine i
with |S∗

i | = k and job type 2 represents the jobs in schedule
σ ∗ on machine i with |S∗

i | = k + 1. Since p j ≤ (1/k)C∗
max,

we can always assume that the processing time of a type 1
job is greater than or equal to that of a type 2 job.We can also
assume that type 1 jobs are scheduled by LPT earlier than
type 2 jobs. Define J (2) as the set of all type 2 jobs. Then,
since r2 = 1, under schedule σ ∗ only one machine has k + 1
jobs of job type 2. Thus, P(J (2)) ≤ C∗

max.

Lemma 5 If r2 = 1 the approximation bound on LPT cannot
be greater than B when 2 ≤ m < k.

Proof Suppose there exists a minimum counterexample.
For convenience, we introduce some additional notation.

Let t ′ .= (m − 1)q + r1. See Fig. 9. Let set T1 denote the
set of machines with t ′ jobs of type 1 under schedule σ and
let T2

.= M \ T1. In this case, by definition, |T1| = m − r1
and |T2| = r1. Let Ji

.= ⋃mq+r1
t=t ′ {u(i, t)}, i ∈ T2, which

represents all type 2 jobs on some machine i ∈ T2 except job
n. Finally, define

E
.=

mq+r1⋃

t=t ′+1

⋃

i∈T1
{u(i, t)},

which represents all type 2 jobs on some machine i ∈ T1
except job n.

123

734 Journal of Scheduling (2022) 25:721–740

Since p j ≤ (1/k)C∗
max for all j ∈ J ,

t ′−1∑

t=1

pu(i,t) ≤ (t ′ − 1)
1

k
C∗
max ∀i ∈ T2.

Moreover, by the counterexample assumption,

t ′−1∑

t=1

pu(i,t) + p(Ji) + pn > BC∗
max ∀i ∈ T2.

Thus,

p(Ji) + pn

>

(

B − (t ′ − 1)
1

k

)

C∗
max

=
(

B − ((m − 1)q + r1 − 1)
1

k

)

C∗
max ∀i ∈ T2. (11)

In Case 1, by condition (8), |E | ≥ r1 − 1. We consider a set
E ′ such that E ′ ⊂ E and |E ′| = r1−1 and a machine i ′ such
that i ′ ∈ T2. Define a bijective function ψ1 : T2 \ {i ′} → E ′.
By inequality (11) and q = (k − r1)/m, we have

p(Ji) + pψ1(i)

>

(

B1 − ((m − 1)q + r1 − 1)
1

k

)

C∗
max ∀i ∈ T2 \ {i ′}

=
(
1

m
+ 2mk − k − r1k + r21 − 2mr1 + m

mk(k − r1 + 1)

)

C∗
max.

(12)

Moreover,

p(Ji ′) + pn

>

(
1

m
+ 2mk − k − r1k + r21 − 2mr1 + m

mk(k − r1 + 1)

)

C∗
max.

(13)

Define

J̃
.=

⎛

⎝
⋃

i∈T2
Ji

⎞

⎠ ∪ E ′ ∪ {pn},

which is a set of all type 2 jobs used in inequalities (12) and
(13). Thus,

p
(
J̃
)

> r1

(
1

m
+ 2mk − k − r1k + r21 − 2mr1 + m

mk(k − r1 + 1)

)

C∗
max.

Moreover, J (2) \ J̃ is the set of remaining type 2 jobs which
are not used in inequalities (12) and (13). Since p(J (2)) ≤
C∗
max,

p
(
J (2) \ J̃

)

<

(

1 − r1

(
1

m
+ 2mk − k − r1k + r21 − 2mr1 + m

mk(k − r1 + 1)

))

C∗
max

=
(
m − r1

m
− r1(2m − r1 − 1)

m(k − r1 + 1)
− r1(r21 − 2mr1 + m)

mk(k − r1 + 1)

)

C∗
max.

(14)

From another perspective, J (2) \ J̃ = E \ E ′ by definition
of J̃ . Thus, |J (2) \ J̃ | = |E | − |E ′| = q(m − r1) − r1 + 1.
Moreover, p j > pn > (k − r1)/k(k − r1 + 1) by inequality
(10). Hence,

p
(
J (2) \ J̃

)

>

(

((m − r1)q − r1 + 1)
k − r1

k(k − r1 + 1)

)

C∗
max

=
(
km − kr1 + 2r21 − 3r1m + m

m(k − r1 + 1)

−r1(r21 − 2mr1 + m)

mk(k − r1 + 1)

)

C∗
max

=
(
m − r1

m
− r1(2m − r1 − 1)

m(k − r1 + 1)

−r1(r21 − 2mr1 + m)

mk(k − r1 + 1)

)

C∗
max. (15)

Inequalities (14) and (15) contradict one another. Therefore,
there is for Case 1 no such counterexample with a greater Ab.

For Case 2, by condition (9), we have |E | < |T2| − 1.
We consider T ′

2 such that T ′
2 ⊂ T2 and |T ′

2| = |E |. Define
a bijective function ψ2 : T ′

2 → E . Then, by inequality (11)
and q = (k − r1)/m, the following inequality holds.

p(Ji) + pψ2(i)

>

(

B2 − ((m − 1)q + r1 − 1)
1

k

)

C∗
max ∀i ∈ T ′

2

=
(
1

m
+ 2mk − (r1 + 1)k

mk(k + 1)

)

C∗
max. (16)

In addition, we consider i ′′ such that i ′′ ∈ T2 \ T ′
2. Then, we

have

p(Ji ′′) + pn >

(
1

m
+ 2mk − (r1 + 1)k

mk(k + 1)

)

C∗
max. (17)

123

Journal of Scheduling (2022) 25:721–740 735

Hence, we have a total of |E | + 1 inequalities. Define

≈
J

.= E ∪
⎛

⎝
⋃

i∈T ′
2∪{i ′′}

Ji

⎞

⎠ ∪ {pn},

which is a set of type 2 jobs used in inequalities (16) and
(17). Thus,

p

(≈
J

)

> (|E | + 1)

(
1

m
+ 2mk − (r1 + 1)k

mk(k + 1)

)

C∗
max.

Since p(J (2)) ≤ C∗
max, we have

p

(

J (2) \ ≈
J

)

<

(

1 − (|E | + 1)

(
1

m
+ 2mk − (r1 + 1)k

mk(k + 1)

))

C∗
max.

Then, there must exist a machine i∗ such that i∗ ∈ T2 \ (T ′
2 ∪

{i ′′}) satisfying the following condition.

p(Ji∗) <

(

1 − (|E | + 1)

(
1

m
+ 2mk − (r1 + 1)k

mk(k + 1)

))

1

r1 − (|E | + 1)
C∗
max

=
(−(q2 + q)m + r1 + q2r1 − q + 2qr1 − 1

k + 1

)

1

r1 − ((m − r1)q + 1)
C∗
max

= q + 1

k + 1
C∗
max.

Whether or not job n is assigned to machine i∗ by LPT, the
following inequality holds.

Cmax ≤ p(Ji∗) + (m − 1)q + r1 − 1

k
C∗
max + pn

<

(
q + 1

k + 1
+ (m − 1)q + r1 − 1

k
+ 1

k + 1

)

C∗
max

=
(

1 + k − 1

k(k + 1)
− k − r1

mk(k + 1)

)

C∗
max.

It leads to a contradiction. Thus, there is no counterexample
for Case 2. Therefore, there is no instance with a greater Ab
than B when r2 = 1 and the proof is complete. ��

Theorem 5 The approximation bound on LPT for P | p j ≤
1
k C

∗
max | Cmax with 2 ≤ m < k is

B
.= max

(

1 + m − 1

m

k − r1
k(k − r1 + 1)

,

1 + k − 1

k(k + 1)
− k − r1

mk(k + 1)

)

and it is tight.

Proof By Lemma 2, when r1 = 0, the Ab is proved. In addi-
tion, Lemma 4 proves the case when r2 ≥ 2 and r1 ≥ 1.
Finally, Lemma 5 proves the case when r2 = 1 and r1 ≥ 1.
By those Lemmas, we prove that the Ab cannot be greater
than B.

The tightness can be shown for each case. In Case 1, we
consider the following problem instance with km+1 jobs on
m machines. See Fig. 10. From the example, the processing
time of a type 2 job is less than the processing time of a type
1 job.

Job type Processing time The number of jobs

1 1/k (k − �k/m�)m
2 (1/k)

(�k/m�m
�k/m�m+1

)
�k/m�m + 1

In schedule σ ∗, there are two types of machines according
to the composition of job types and the optimal makespan is
1.

Machine type The number of
machines

The number of jobs of each type

Job type 1 Job type 2

1 m − 1 k 0
2 1 k − �k/m�m �k/m�m + 1

In schedule σ , there are two types of machines according
to the composition of job types.

Machine type Number of
machines

Number of jobs of each type

job type 1 job type 2

3 1 k − �k/m� �k/m� + 1
4 m − 1 k − �k/m� �k/m�

The makespan of schedule σ is determined by machine
type 4. Recall that �k/m� = q and k = qm + r1. Therefore,
the Tab is

Cmax(σ)

Cmax(σ ∗)
= 1

k
(k−�k/m�)+ 1

k

(�k/m�m
�k/m�m + 1

)

(�k/m� + 1)

= 1 + q(m − 1)

k(k − r1 + 1)
=1 + m − 1

m

k − r1
k(k − r1 + 1)

.

123

736 Journal of Scheduling (2022) 25:721–740

Fig. 10 A tight example of LPT when 2 ≤ m < k and q(m − r1) ≥ r1 − 1

Fig. 11 A tight example of LPT when 2 ≤ m < k and q(m − r1) < r1 − 1

In Case 2, we consider the following problem instance
with km + 1 jobs and m machines. See Fig. 11.

Job type Processing time The number of jobs

1 1/k k(m − 1)
2 1/(k + 1) k + 1

In schedule σ ∗, there are two types of machines, based on
the composition of the job types and the optimal makespan
is 1.

Machine type The number of
machines

The number of jobs of each type

Job type 1 Job type 2

1 m − 1 k 0
2 1 0 k + 1

In schedule σ , there are three types of machines, based on
the composition of job types.

The makespan of schedule σ is determined by machine
type 5. Therefore, we have

123

Journal of Scheduling (2022) 25:721–740 737

Machine
type

Number of
machines

Number of jobs of each type

Job type 1 Job type 2

3 m − r1 (m − 1)�k/m� + r1 �k/m�
4 r1 − 1 (m − 1)�k/m� + r1 − 1 �k/m� + 1
5 1 (m − 1)�k/m� + r1 − 1 �k/m� + 2

Cmax(σ)

Cmax(σ ∗)
= 1

k
((m − 1)q + r1 − 1) + 1

k + 1
(q + 2)

= 1 + k − 1

k(k + 1)
− k − r1

mk(k + 1)
.

This proves the tightness for Case 2. Thus, Ab B is tight. ��

4 Comparisons of approximation bounds

This section considers Abs in previous research that attempt
to improve on the bounds by Graham (1969) as mentioned
in Sect. 1; we compare our Tab to these previous bounds.
Thus, we present the previous result of Coffman and Sethi
(1976), Chen (1993), Blocher and Sevastyanov (2015) and
Della Croce and Scatamacchia (2020). The following The-
orems provide an overview of the results concerning LPT.
Each theorem uses a different parameter as a basis for eval-
uating LPT.

Theorem 6 (Coffman and Sethi 1976) Let i ′ be the critical
machine, and N

.= |Sni ′ |. Then

Cmax

C∗
max

= 1 when N = 1

Cmax

C∗
max

≤ 4

3
− 1

3(m − 1)
when N = 2

(corrected by Chen (1993))

Cmax

C∗
max

≤ N + 1

N
− 1

Nm
when N ≥ 3.

The bound by Blocher and Sevastyanov (2015) is deter-
mined as follows. Given an LPT-schedule σ , let n′ ∈ J be its
terminating job, i.e., the jobwhose completion timecoincides
with the makespan. Then, a truncated job instance is defined
as J ′ .= {1, 2, . . . , n′} ⊆ J . Blocher and Sevastyanov (2015)
showed that the Tab on LPT under schedule σ is determined
by the maximum number of jobs in J ′ on any machine.

Theorem 7 (Blocher and Sevastyanov 2015) Under sched-
ule σ , if the makespan is determined by job n′ and N ′ .=
maxi∈M |Sn′

i |, then

Cmax

C∗
max

= 1 when N ′ = 1

Cmax

C∗
max

≤ 4

3
− 1

3(m − 1)
when N ′ = 2

Cmax

C∗
max

≤ N ′ + 1

N ′ − 1

N ′m
when N ′ ≥ 3.

The Ab by Della Croce and Scatamacchia (2020) can be
expressed as follows.

Theorem 8 (Della Croce and Scatamacchia 2020) Under
scheduleσ , if themakespan is determined by job n′ scheduled
on machine i ′ and N ′′ .= maxi∈M\{i ′} |Sn′−1

i |, then

Cmax

C∗
max

≤ N ′′ + 1

N ′′ − 1

N ′′(m − 1)
when N ′′ ≤ m − 2

Each Theorem is based on a different parameter for com-
putingAbs. Theorem 6 uses the number of jobs on the critical
machine(N) for thewhole job instance (which coincideswith
that for the truncated instance). In contrast, Theorem 8 uses
the maximum number of jobs on a noncritical machine the
truncated job instance(N ′′). Theorem 7 uses the maximum
number of jobs on anymachine (regardless of critical or non-
critical) in the truncated job instance(N ′). We denote the Abs
byCoffman and Sethi (1976), Chen (1993), Blocher and Sev-
astyanov (2015), and Della Croce and Scatamacchia (2020)
as CS-bound, Ch-bound, BS-bound, and DS-bound, respec-
tively.

Before a comparison, we need to compare the features of
ourTab to the previousAbs. It should be noted that ourTab (in
contrast to previously known a priori and a posteriori bounds)
is of a purely theoretical nature. In particular, it enables one
to find classes of instances that include cases for which none
of the known bounds are exact. However, unlike known a
priori and a posteriori bounds, our Tab cannot be applied
to estimate the Tab of LPT for any given instance I , since
we have no efficient algorithm for answering the question:
‘whether a given instance I belongs to class Ik,m for a fixed
value of k?’ Thus, comparing previous Abs with our Tab for
an arbitrary instance I is not possible.

Instead, we attempt to show the existence of classes where
our Tab is better (smaller) or equal to any previous Abs for all
instances of the classes.Weconsider the relationship between
the parameters describing each Ab. Previous Abs use param-
eters N , N ′, N ′′ and m, and our Tab uses parameters k and
m. Since N ′ = max(N , N ′′), we only need to consider four
parameters N , N ′′, k and m in the comparison. We compare
our Tab with previous Abs for every feasible combination of
the parameters and show that there exist classes of instances
for which our Tab is better than any other previous Abs.

Table 2 exhibits a comprehensive comparison of our Tab
and the previous Abs among different classes of instances.

123

738 Journal of Scheduling (2022) 25:721–740

Table 2 Comparison of our Tab with previous Abs

Class index Conditions of classification Ab Comparison

Main Sub1 Sub2 Sub3

1 N = 1 LPT is optimal

2 N = 2 m = 2 or N ′′ = 1 or k = 2 LPT is optimal

3 m ≥ 3, N ′′ ≥ 2, k = 1, N ′′ = 2 BS = Ch < Ours, DS: -

4 N ′′ ≥ m − 1 N ′′ = 3 Ch < BS = Ours, DS: -

5 N ′′ = 4 m = 3 BS = Ch < Ours, DS: -

6 m = 4, 5 BS < Ch < Ours, DS: -

7 N ′′ ≥ 5 BS < Ch < Ours, DS: -

8 m ≥ 3, N ′′ ≥ 2, k = 1 N ′′ = 2 BS = Ch < Ours < DS

9 N ′′ ≤ m − 2 N ′′ = 3 Ch = DS < BS = Ours

10 N ′′ ≥ 4 DS < BS < Ch < Ours

11 N ≥ 3 N = k LPT is optimal

12 m ≥ 2, N ≥ k + 1, N ′′ ≤ N N = k + 1, Ours ≤ BS = CS, DS: -

13 N ′′ ≥ m − 1 N ≥ k + 2 BS = CS ≤ Ours, DS: -

14 N ′′ > N N = k + 1 BS ≤ Ours ≤ CS, DS: -

15 N ≥ k + 2 BS < CS ≤ Ours, DS: -

16 m ≥ 2, N ≥ k + 1, N ′′ < N N = k + 1 Ours < BS = CS < DS

17 N ′′ ≤ m − 2 N ≥ k + 2, N ′′ ≤ k + 1 BS = CS ≤ Ours < DS

18 N ≥ k + 2, N ′′ ≥ k + 2 BS = CS < DS < Ours

19 N ′′ ≥ N N = k + 1, N ′′ = k + 1 Ours < DS < BS = CS

20 N = k + 1, N ′′ ≥ k + 2 DS < BS ≤ Ours < CS

21 N ≥ k + 2 DS < BS ≤ CS ≤ Ours

For the main case, we have classes where N = 1, N = 2 and
N ≥ 3. In the first sub-case, we consider the case when LPT
is optimal, and then two cases depending on whether the DS-
bound is applicable (N ′′ ≤ m−2) or not (N ′′ ≥ m−1). Then,
we consider the range of N ′′ as the second sub-case. For the
last sub-case condition, we apply a more specific range of m
when N = 2, and we apply a range of k for the classes with
N ≥ 3. A ‘-’ in the Table means that the DS–bound is not
applicable for the corresponding class.

For any instance I , the following relationship holds.

kpmax[I] ≤ C∗
max[I] ≤ Cmax[I] ≤ Npmax[I]

and it implies, N ≥ k. On the other hand, by our problem
definition, any truncated instance contains at leastm(k−1)+
1 jobs, which implies N ′′ ≥ k − 1. Note that instances with
N ′′ = k − 1 are included in the class of instances where
N = k, where the LPT schedule is indeed optimal.

For the instanceswith N = 1, theLPT schedule is optimal.
For the instances with N = 2, the LPT schedule is optimal
whenm = 2 or N ′′ = 1 or k = 2. For the remaining instances
with N = 2 (satisfying (k = 1)&(m ≥ 3)&(N ′′ ≥ 2)),

where our Tab is the same as that of Graham (1969), there
are eight classes of instances specified by values of N ′′ and
m. For all the classes, however, our Tab is dominated by the
Ch–bound. Thus, there is no such instance for which our Tab
is the best when N ≤ 2.

For the instances with N ≥ 3, eleven classes of instances
are defined. If N = k, then LPT is optimal. Otherwise, our
bound is the best for instances of three classes satisfying rela-
tions N ′′ ≤ N = k + 1. More specifically, our Tab is better
than or equal to the previous Abs in class 12, and there exists
at least one instance such that our Tab is strictly better than
the previous Abs. On the other hand, our Tab is strictly better
than the previous Abs in classes 16 and 19 for any instance.
Considering conditions for k and m in defining our Tab, our
Tab, the previous best Ab, and the comparison between the
two are presented in Table 3.

5 Conclusion

We investigate the performance of LPT applied to P | p j ≤
1
k C

∗
max | Cmax when the processing times of the jobs are

123

Journal of Scheduling (2022) 25:721–740 739

Table 3 Classes where our Tab is the best

Class Condition for k and m our Tab previous best Ab (Algorithm) ‘=’ if

12 k = 2 5/4 − 1/4m < 4/3 − 1/3m (BS=CS)

k ≥ 3, m < k, q ≥ r1−1
m−r1

1 + (m−1)(k−r1)
mk(k−r1+1) ≤ 1 + 1

k+1 − 1
(k+1)m (BS=CS) m | k

k ≥ 3, m < k, q < r1−1
m−r1

1 + k−1
k(k+1) − k−r1

mk(k+1) < 1 + 1
k+1 − 1

(k+1)m (BS=CS)

k ≥ 3, m ≥ k, 1 + k−1
k(k+1) ≤ 1 + 1

k+1 − 1
(k+1)m (BS=CS) m = k

16 k = 2 5/4 − 1/4m < 4/3 − 1/3m (BS=CS)

k ≥ 3, m ≤ k(k + 1)/2 1 + k−1
k(k+1) < 1 + 1

k+1 − 1
(k+1)m (BS=CS)

k ≥ 3, m > k(k + 1)/2 1 + 1
k+2 − 1

(k+2)m < 1 + 1
k+1 − 1

(k+1)m (BS=CS)

19 k = 2 5/4 − 1/4m < 4/3 − 1/3(m − 1) (DS)

k ≥ 3, m ≤ k(k + 1)/2 1 + k−1
k(k+1) < 1 + 1

k+1 − 1
(k+1)(m−1) (DS)

k ≥ 3, m > k(k + 1)/2 1 + 1
k+2 − 1

(k+2)m < 1 + 1
k+1 − 1

(k+1)(m−1) (DS)

restricted and we analyze how the restrictions on the pro-
cessing times affect the Ab. It is to be expected that the Ab
in such a setting may be less than or equal to the Ab in more
general parallel machine settings. The results show the effec-
tiveness of LPT when there are many small jobs.

We consider the problem for all positive integer values of
k and show that the Ab depends on the relationship between
m and k. We discover the Abs for all cases and show that all
obtained Abs are tight. We also show that our Tabs can be
used to complement the performance analysis of LPT that
has appeared in previous research.

As an extension, we can consider a problem with only a
subset of the jobs being subject to restrictions on their pro-
cessing times. That is, some jobs may have processing times
greater than (1/k)C∗

max, but we still have a number of small
jobs. With such an extension, we may obtain a more general
form of performance guarantee for LPT. As a future research
direction, we can consider establishing Abs with k being any
real value.

We can also consider an approach utilizing the differences
in processing times as proposed by Della Croce and Scata-
macchia (2020). They divided jobs into �n/m� sets, namely
{1, 2, . . . ,m}, {m + 1,m + 2, . . . , 2m}, . . . , and calculated
the slack for each set, which means the difference between
the maximum and the minimum processing time. The jobs
in a set are iteratively scheduled on the different machines in
decreasing order of the slack of the set. Such a slack-based
approach performs verywell in practice. However, except for
the performance analysis done by Eck and Pinedo (1993) for
the two machine case, no subsequent research has appeared
in the literature with regard to this type of approach. We
expect that with our approach, i.e., imposing restrictions on
the job processing times, more results can be obtained in this
direction.

Acknowledgements The authors would like to thank anonymous ref-
erees who provided very constructive and detailed comments on a
previous version of the manuscript.

References

Alon, N., Azar, Y., Woeginger, G. J., & Yadid, T. (1998). Approxi-
mation schemes for scheduling on parallel machines. Journal of
Scheduling, 1(1), 55–66.

Blocher, J. D., & Sevastyanov, S. (2015). A note on the Coffman-Sethi
bound for LPT scheduling. Journal of Scheduling, 18(3), 325–327.

Chen, B. (1993). A note on LPT scheduling. Operations Research Let-
ters, 14(3), 139–142.

Coffman, E. G., & Sethi, R. (1976). A generalized bound on LPT
sequencing. In: Proceedings of the 1976 ACM SIGMETRICS con-
ference on Computer performance modeling measurement and
evaluation (pp. 306–310).

Coffman, E. G., Jr., Garey, M. R., & Johnson, D. S. (1978). An appli-
cation of bin-packing to multiprocessor scheduling. SIAM Journal
on Computing, 7(1), 1–17.

DellaCroce, F.,&Scatamacchia,R. (2020). The longest processing time
rule for identical parallel machines revisited. Journal of Schedul-
ing, 23(2), 163–176.

Della Croce, F., Scatamacchia, R., & T’kindt, V. (2019). A tight lin-
ear time 13

12 -approximation algorithm for the P2||Cmax problem.
Journal of Combinatorial Optimization, 38(2), 608–617.

Eck, B. T., & Pinedo, M. (1993). On the minimization of the makespan
subject to flowtime optimality. Operations Research, 41(4), 797–
801.

Frenk, J., & Rinnooy Kan, A. (1987). The asymptotic optimality of the
LPT rule. Mathematics of Operations Research, 12(2), 241–254.

Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-completeness
results: motivation, examples, and implications. Journal of the
ACM, 25(3), 499–508.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17(2), 416–429.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: a survey. In Annals of Discrete Mathematics (Vol. 5,
pp. 287–326). Elsevier.

123

740 Journal of Scheduling (2022) 25:721–740

Gupta, J. N., & Ruiz-Torres, A. J. (2001). A LISTFIT heuristic for
minimizing makespan on identical parallel machines. Production
Planning & Control, 12(1), 28–36.

Ibarra, O. H., & Kim, C. E. (1977). Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the ACM
(JACM), 24(2), 280–289.

Jansen, K. (2010). An EPTAS for scheduling jobs on uniform proces-
sors: using an MILP relaxation with a constant number of integral
variables. SIAM Journal on Discrete Mathematics, 24(2), 457–
485.

Jansen, K., Klein, K. M., & Verschae, J. (2017). Improved efficient
approximation schemes for scheduling jobs on identical and uni-
form machines. In: Proceedings of the 13th workshop on models
and algorithms for planning and scheduling problems (MAPSP
2017) (pp. 77–79).

Lee, C. Y., & Massey, J. D. (1988). Multiprocessor scheduling: com-
bining LPT andMULTIFIT.Discrete AppliedMathematics, 20(3),
233–242.

Williamson, D. P., & Shmoys, D. B. (2011). The Design of Approx-
imation Algorithms (1st ed.). Cambridge: Cambridge University
Press.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Tight approximation bounds for the LPT rule applied to identical parallel machines with small jobs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Approximation bound results
	3.1 The case k=2
	3.2 The case 3 leqk leqm leqk(k+1)/2
	3.3 The case m > k(k+1)/2 and k3
	3.4 The case 2 leqm < k

	4 Comparisons of approximation bounds
	5 Conclusion
	Acknowledgements
	References

