
Journal of Scheduling (2023) 26:425–442
https://doi.org/10.1007/s10951-022-00733-x

Malleable scheduling beyond identical machines

Dimitris Fotakis1 · Jannik Matuschke2 ·Orestis Papadigenopoulos3

Accepted: 9 March 2022 / Published online: 11 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the processing time depending
on the number of allocated machines. In this setting, jobs are required to be executed non-preemptively and in unison, in the
sense that they occupy, during their execution, the same time interval over all the machines of the allocated set. In this work,
we study generalizations of malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically,
we introduce a general model of malleable job scheduling, where each machine has a (possibly different) speed for each job,
and the processing time of a job j on a set of allocated machines S depends on the total speed of S with respect to j . For
machines with unrelated speeds, we show that the optimal makespan cannot be approximated within a factor less than e

e−1 ,

unless P = N P . On the positive side, we present polynomial-time algorithms with approximation ratios 2e
e−1 for machines

with unrelated speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines. Our
algorithms are based on deterministic LP rounding. They result in sparse schedules, in the sense that each machine shares
at most one job with other machines. We also prove lower bounds on the integrality gap of 1 + ϕ for unrelated speeds (ϕ is
the golden ratio) and 2 for uniform speeds and restricted assignments. To indicate the generality of our approach, we show
that it also yields constant factor approximation algorithms for a variant where we determine the effective speed of a set of
allocated machines based on the L p norm of their speeds.

Keywords Malleable · Scheduling · Packing · Jobs · Machines · Parallel · Makespan · Unrelated · Uniform · Restricted ·
Moldable · Rounding · Approximation

1 Introduction

Since the late 1960s, various models have been proposed by
researchers (Garey&Graham, 1975; Graham, 1969) in order
to capture the real-world aspects and particularities of mul-
tiprocessor task scheduling systems, i.e., large collections of
identical processors able to process tasks in parallel. High-
performance computing, parallel architectures, and cloud

B Orestis Papadigenopoulos
papadig@cs.utexas.edu

Dimitris Fotakis
fotakis@cs.ntua.gr

Jannik Matuschke
jannik.matuschke@kuleuven.be

1 School of Electrical and Computer Engineering, National
Technical University of Athens, Athens, Greece

2 Research Center for Operations Management, KU Leuven,
Leuven, Belgium

3 Department of Computer Science, The University of Texas at
Austin, Austin, USA

services are typical applications that motivate the study of
multiprocessor scheduling, both theoretical and practical. An
influential model is Rayward–Smith’s unit execution time
and unit communication time (UET-UCT) model (Rayward-
Smith, 1987), where each parallel job is partitioned into a set
of tasks of unit execution time and these tasks are subject to
precedence constraints modeled by a task graph. The UET-
UCTmodel and its generalizations have beenwidely studied,
and a large number of (approximation) algorithms and com-
plexity results have been proposed (Hanen & Munier, 2001;
Papadimitriou & Yannakakis, 1990).

However, the UET-UCT model mostly focuses on task
scheduling and sequencing, and does not account for the
amount of resources allocated to each job, thus failing to
capture an important aspect of real-world parallel systems.
Specifically, in the UET-UCT model, the level of granularity
of a job (that is, the number of smaller tasks that a job is
partitioned into) is decided a priori and is given as part of the
input. However, it is common ground in the field of parallel
processing that the unconditional allocation of resources for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00733-x&domain=pdf
http://orcid.org/0000-0001-6864-8960
http://orcid.org/0000-0002-7463-3279
http://orcid.org/0000-0003-2164-0202

426 Journal of Scheduling (2023) 26:425–442

the execution of a job may jeopardize the overall efficiency
of a multiprocessor system. A theoretical explanation is pro-
vided by Amdahl’s law Amdahl (2007), which suggests that
the speedup of a job’s execution can be estimated by the for-
mula 1

(1−p)+ p
s
, where p is the fraction of the job that can be

parallelized and s is the speedup due to parallelization (i.e.,
s can be thought of as the number of processors).
Malleable Scheduling An interesting alternative to the UET-
UCT model is that of malleable1 job scheduling (Du &
Leung, 1989; Turek et al., 1992). In this setting, a set J
of jobs is scheduled on a set M of parallel machines, while
every job can be processed by more than one machine at
the same time. In order to quantify the effect of paralleliza-
tion, the processing time of a job j ∈ J is determined
by a function f j : N → R+ depending on the number of
allocated machines.2 Moreover, every job must be executed
non-preemptively and in unison, i.e., having the same start-
ing and completion time on each of the allocated machines.
Thus, if a job j is assigned to a set of machines S starting
at time τ , all machines in S are occupied with job j during
the interval [τ, τ + f j (|S|)]. It is commonly assumed that
the processing time function of a job exhibits two useful and
well-motivated properties:

– For every job j ∈ J , the processing time f j (s) is non-
increasing in the number of machines.3

– The total work of the execution of a job j on s machines,
that is, the product s · f j (s), is non-decreasing in the
number of machines.

The latter property, knownasmonotonicityof amalleable job,
is justified by Brent’s law Brent (1974): One cannot expect
superlinear speedup by increasing the level of parallelism.
A great deal of theoretical results have been published on
schedulingmalleable jobs according to the abovemodel (and
its variants) for the objective of minimizing the makespan,
i.e., the completion time of the last finishing job, or other
standard objectives (see e.g., Dutot et al. (2004) and the ref-
erences therein).

Although malleable job scheduling represents a valiant
attempt to capture real-world aspects of massively paral-
lel processing, the latter exhibits even more complicated
characteristics. Machine heterogeneity, data locality, and
hardware interconnection are just a few aspects of real-life
systems that make the generalization of the aforemen-
tioned model necessary. In modern multiprocessor systems,

1 Malleable scheduling also appears as moldable, while sometimes the
two terms refer to slightly different models.
2 We denote by R+ (resp. Z+) the set of non-negative reals (resp. inte-
gers).
3 This property holds w.l.o.g., as the system always has the choice not
to use some of the allocated machines.

machines are not all identical and the processing time of
a job not only depends on the quantity, but also on the
quality of the set of allocated machines. Indeed, different
physical machines may have different capabilities in terms
of faster CPUs or more efficient cache hierarchies. More-
over, the above heterogeneity may be job-dependent, in
the sense that a specific machine may be faster when exe-
cuting a certain type of jobs than another (e.g., memory-
vs. arithmetic-intensive applications (Patterson & Hennessy,
2013)). Finally, the execution of a job on specific com-
binations of machines may also yield additional benefit
(e.g., machines that are local in terms of memory hierar-
chy).
Our Model: Malleable Scheduling on Unrelated Machines
Quite surprisingly, no results exist on scheduling malleable
jobs beyond the case of identical machines, to the best of our
knowledge, despite the significant theoretical and practical
interest in the model. In this work, we extend the model of
malleable job scheduling to capture more delicate aspects
of parallel job scheduling. In this direction, while we still
require our jobs to be executed non-preemptively and in
unison, the processing time of a job j ∈ J becomes a
set function f j (S), where S ⊆ M is the set of allocated
machines. We require that processing times are given by a
non-increasing function, in the set function context, while
additional assumptions on the scalability of f j are made, in
order to capture the diminishing utility property implied by
Brent’s law.

These assumptions naturally lead to a generalized mal-
leable job setting, where processing times are given by
non-increasing supermodular set functions f j (S), accessed
by value queries. We show that makespan minimization in
this general setting is inapproximable within O(|J |1−ε)

factors (unless P = N P , see Sect. 6). The general mes-
sage of the proof is that unless we make some relatively
strong assumptions on processing times (in the form e.g.,
of a relatively smooth gradual decrease in the processing
time, asmoremachines are allocated),malleable job schedul-
ing (even with monotone supermodular processing times)
can encode combinatorial problems as hard as graph color-
ing.

Thus, inspired by (standard non-malleable) scheduling
models on uniformly related and unrelated machines, we
introduce the notion of speed-implementable processing
time functions. For each machine i and each job j there
is a speed si, j ∈ Z+ that quantifies the contribution of
machine i to the execution of job j , if i is included in the
set allocated to j . For most of this work, we assume that
the total speed of an allocated set is given by an additive
function σ j (S) = ∑

i∈S si, j (but see also Sect. 4, where
we discuss more general speed functions based on L p-
norms). A function is speed-implementable if we can write

123

Journal of Scheduling (2023) 26:425–442 427

f j (S) = f j (σ j (S)) for some function f j : R+ → R+.4
Again, we assume oracle access to the processing time func-
tions.

The notion of speed-implementable processing times
allows us to quantify the fundamental assumptions of mono-
tonicity and diminishing utility in a clean and natural way.
More specifically, we make the following two assumptions
on speed-implementable functions:

1. Non-increasing processing time For every job j ∈ J ,
the processing time f j (s) is non-increasing in the total
allocated speed s ∈ R+.

2. Non-decreasing work For every job j ∈ J , the work
f j (s) · s is non-decreasing in the total allocated speed
s ∈ R+.

The first assumption ensures that allocating more speed can-
not increase the processing time. The second assumption is
justified by Brent’s law, when the increase in speed coin-
cides with an increase in the physical number of machines,
or by similar arguments for the increase in the total speed
of a single physical machine (e.g., memory access, I/O bot-
tleneck (Patterson & Hennessy, 2013) etc.). We remark that
speed-implementable functionswith non-increasingprocess-
ing times and non-decreasing work do not need to be convex,
and thus, do not belong to the class of supermodular func-
tions.

In order to avoid unnecessary technicalities, we addition-
ally assume that for any job j ∈ J , f j (0) = +∞, namely, no
job can be executed on a set of machines of zero cumulative
speed.

In this work, we focus on the objective of minimizing
the makespan Cmax = max j∈J C j , where C j the comple-
tion time of job j . We refer to this setting as the problem of
scheduling malleable jobs on unrelated machines. To further
justify this term, we present a pseudopolynomial transfor-
mation of standard scheduling on unrelated machines to
malleable scheduling with speed-implementable processing
times (see Sect. 5). The reduction can be rendered polynomial
by standard techniques, preserving approximation factors
with a loss of 1 + ε.

1.1 Contribution and techniques

At the conceptual level, we introduce the notion of malleable
jobs with speed-implementable processing times. Hence, we
generalize the standard and well-studied setting of malleable
job scheduling, in a direct analogy to fundamental models in
scheduling theory (e.g., scheduling on uniformly related and

4 For convenience, we use the identifier f j for both functions. Since
their arguments come from disjoint domains, it is always clear from the
context which one is meant.

unrelated machines). This new and much richer model gives
rise to a large family of unexplored packing problems that
may be of independent interest.

From a technical viewpoint, we investigate the computa-
tional complexity and the approximability of this new setting.
To the best of our understanding, standard techniques used
for makespan minimization in the setting of malleable job
scheduling on identical machines, such as the two-shelve
approach (as used inMounie et al. (2007), Turek et al. (1992)
and area charging arguments, fail to yield any reasonable
approximation guarantees in our more general setting. This
intuition is supported by the following hardness of approxi-
mation result (see Sect. 5 for the proof).

Theorem 1 For any ε > 0, there is no (e
e−1 − ε)-

approximation algorithm for the problem of scheduling
malleable jobs with speed-implementable processing time
functions on unrelated machines, unless P = N P.

Note that the lower bound of e
e−1 is strictly larger than the

currently best known lower bound of 1.5 for classic (non-
malleable) scheduling on unrelated machines.

Our positive results are based on a linear programming
relaxation, denoted by [LP(C)] and described in Sect. 2. This
LP resembles the assignment LP for the standard setting of
non-malleable scheduling (Lenstra et al., 1990). However,
in order to obtain a constant integrality gap we distinguish
between “small” jobs that can be processed on a single
machine (within a given target makespan), and “large” jobs
that have to be processed on multiple machines. For the large
jobs, we carefully estimate their contribution to the load
of their allocated machines. Specifically, we introduce the
notion of critical speed and use the critical speed to define
the load coefficients incurred by large jobs onmachines in the
LP relaxation by proportionally distributing thework volume
according tomachine speeds. For the rounding,weexploit the
sparsity of our relaxation’s extreme points (as in Lenstra et al.
(1990)) and generalize the approach of Correa et al. (2015),
in order to carefully distinguish between jobs assigned to a
single machine and jobs shared by multiple machines.

Theorem 2 There exists a polynomial-time 2e
e−1 -approxi-

mation algorithm for the problem of scheduling malleable
jobs on unrelated machines.

An interesting corollary is that for malleable job scheduling
on unrelated machines, there always exists an approximate
solution where each machine shares at most one job with
some other machines.

In addition, we consider the interesting special case of
restricted assignmentmachines, namely, the case where each
job is associated with subset Mj ⊆ M of machines such
that si, j = 1 for all j ∈ J and i ∈ Mj and si, j = 0 other-
wise. Finally, we consider the case of uniform speeds, where
si, j = si for all i ∈ M and j ∈ J . For the above special

123

428 Journal of Scheduling (2023) 26:425–442

cases of our problem, we are able to get improved approxi-
mation guarantees by exploiting the special structure of the
processing time functions, as summarized in the following
two theorems.

Theorem 3 There exists a polynomial-time 7
3 -approximation

algorithm for the problem of scheduling malleable jobs on
restricted identical machines.

Theorem 4 There exists a polynomial-time 3-approximation
algorithm for the problem of scheduling malleable jobs on
uniform machines.

All our approximation results imply corresponding upper
bounds on the integrality gap of the linear programming
relaxation [LP(C)]. Based on an adaptation of a construc-
tion in Correa et al. (2015), we show a lower bound of
1 + ϕ ≈ 2.618 on the integrality gap of [LP(C)] for mal-
leable job scheduling on unrelated machines, where ϕ is the
golden ratio (see Sect. 5). For the cases of restricted assign-
ment and uniformly relatedmachines, respectively,we obtain
an integrality gap of 2.

Moreover, we extend our model and approach in the fol-
lowing direction. We consider a setting where the effective
speed according to which a set S of allocated machines
processing a job j is given by the L p-norm σ

(p)
j (S) =

(∑
i∈S(si, j)p

)1/p of the corresponding speed vector. In prac-
tical settings, we tend to prefer assignments to relatively
small sets of physical machines, so as to avoid delays related
to communication, memory access, and I/O (see e.g., Patter-
son and Hennessy (2013)). By replacing the total speed (i.e.,
the L1-norm) with the L p-norm of the speed vector for some
p ≥ 1, we discount the contribution of additional machines
(especially of smaller speeds) toward processing a job j .
Thus, as p increases, we give stronger preference to sparse
schedules,where the number of jobs shared betweendifferent
machines (and the number ofmachines sharing a job) are kept
small. Interestingly, our general approach is robust to this
generalization and it results in constant approximation fac-
tors for any p ≥ 1. Asymptotically, the approximation factor

is bounded by p
p−ln p + p

√
p

ln p and our algorithm smoothly

converges to the classic 2-approximation algorithm for unre-
lated machine scheduling (Lenstra et al., 1990) as p tends to
infinity (note that for the L∞-norm, our setting is identical
to standard scheduling on unrelated machines). These results
are discussed in Sect. 4.

Trying to generalize malleable job scheduling beyond the
simple setting of identical machines, as much as possible, we
believe that our settingwith speed-implementable processing
times lies on the frontier of the constant-factor approximabil-
ity regime.We show a strong inapproximability lower bound
of O(|J |1−ε) for the (far more general) setting where the
processing times are given by a non-increasing supermodu-
lar set functions. These results are discussed in Sect. 6. An

interesting open question is to characterize the class of pro-
cessing time functions for which malleable job scheduling
admits constant factor (and/or logarithmic) approximation
guarantees.

1.2 Related work

The problem of malleable job scheduling on identical
machines has been studied thoroughly for more than three
decades. For the case of non-monotonic jobs, i.e., jobs that
do not satisfy the monotonic work condition, Du and Leung
(1989) show that the problem is strongly NP-hard for more
than 5 machines, while in terms of approximation, Turek
et al. (1992) provided the first 2-approximation algorithm
for the same version of the problem. Jansen and Porkolab
(2002) devised a PTAS for instances with a constant number
of machines, which was later extended by Jansen and Thöle
(2010) to a PTAS for the case that the number of machines
is polynomial in the number of jobs.

For the case of monotonic jobs, Mounie et al. (2007)
propose a 3

2 -approximation algorithm, improving on the
√
3-

approximation provided by the same authors Mounié et al.
(1999). Recently, Jansen and Land (2018) gave an FPTAS for
the case that |M | ≥ 8|J |/ε. Together with the approxima-
tion scheme for polynomial number of machines in Jansen
and Land (2018), this implies a PTAS for scheduling mono-
tonic malleable jobs on identical machines.

Several papers also consider the problem of scheduling
malleable jobs with preemption and/or under precedence
constraints ((Blazewicz et al., 2006; Jansen & Zhang, 2006;
Makarychev & Panigrahi, 2014)). An interesting alterna-
tive approach to the general problem is that of Srinivasa
Prasanna and Musicus (1991), who consider a continuous
version of malleable tasks and develop an exact algorithm
based on optimal control theory under certain assumptions
on the processing time functions. While the problem of
malleable scheduling on identical machines is very well
understood, this is not true for malleable extensions of other
standard scheduling models, such as unrelated machines or
the restricted assignment model.

A scheduling model similar to malleable tasks is that of
splittable jobs. In this regime, jobs can be split arbitrarily
and the resulting parts can be distributed arbitrarily on dif-
ferent machines. For each pair of job j and machine i , there
is a setup time si j and a processing time pi j . If a fraction
xi j ∈ (0, 1] of job j is to be scheduled on machine i , the
load that is incurred on the machine is si j + pi j xi j . Correa
et al. (2015) provide an (1+ϕ)-approximation algorithm for
this setting (where ϕ is the golden ratio), which is based on
an adaptation of the classic LP rounding result by Lenstra
et al. (1990) for the traditional unrelated machine scheduling
problem. We remark that the generalized malleable setting
considered in this paper also induces a natural generalization

123

Journal of Scheduling (2023) 26:425–442 429

of the splittable setting beyond setup times, when dropping
the requirement that jobs need to be executed in unison. As in
Correa et al. (2015), we provide a rounding framework based
on a variant of the assignment LP from Lenstra et al. (1990).
However, the fact that processing times are only given implic-
itly as functions in our setting makes it necessary to carefully
choose the coefficients of the assignment LP, in order to
ensure a constant integrality gap. Furthermore, because jobs
have to be executed in unison, we employ a more sophisti-
cated rounding scheme in order to better utilize free capacity
on different machines.

2 The general rounding framework

In this section, we provide a high-level description of our
algorithm. We construct a polynomial-time ρ-relaxed deci-
sion procedure for malleable job scheduling problems. This
procedure takes as input an instance of the problem as well
as a target makespan C and either asserts correctly that there
is no feasible schedule of makespan at most C , or returns a
feasible schedule of makespan at most ρC . It is well known
that a ρ-relaxed decision procedure can be transformed into a
polynomial-time ρ-approximation algorithm (Hochbaum &
Shmoys, 1985) provided that one can compute proper lower
and upper bounds to the optimal value of size polynomial in
the size of the input.

Given a target makespan C , let

γ j (C) := min{q ∈ Z+ | f j (q) ≤ C}

be the critical speed of job j ∈ J . Moreover, we define for
every i ∈ M the sets J+

i (C) := { j | f (si, j) ≤ C} and
J−
i (C) := J\J+

i (C) to be the set of jobs that can or cannot
be processed by i alonewithin timeC , respectively. Note that
γ j (C) can be computed in polynomial time by performing
binary searchwhen given oracle access to f j .WhenC is clear
from the context, we use the short-hand notation γ j , J

+
i , and

J−
i instead. The following technical fact is equivalent to the

non-decreasing work property and is used throughout the
proofs of this paper:

Fact 5 Let f be a speed-implementable processing time func-
tion satisfying the properties of our problem. Then for every
speed q ∈ R+ we have that:

1. f (αq) ≤ 1
α
f (q) for every α ∈ (0, 1), and

2. f (q ′) ≤ q
q ′ f (q) for every q ′ ≤ q.

Proof For thefirst inequality, sinceα ∈ (0, 1), it immediately
follows that αq ≤ q. By the non-decreasing work property
of f , we have that αq f (αq) ≤ q f (q), which implies that

f (αq) ≤ 1
α
f (q). The second inequality is just an application

of the first by setting α = q ′
q ∈ (0, 1). ��

For every target makespan C , let ri, j := max{si, j , γ j (C)}.
The following feasibility LP is the starting point of the
relaxed decision procedures we construct in this work:

[LP(C)]:
∑

i∈M
xi, j = 1 ,∀ j ∈ J (1)

∑

j∈J

f j (ri, j)ri, j
si, j

xi, j ≤ C ,∀i ∈ M (2)

xi, j ≥ 0 ,∀ j ∈ J , i ∈ M . (3)

In the above LP, each variable xi, j can be thought of as the
fraction of job j that is assigned to machine i . The equality
constraints (1) ensure that each job is fully assigned to a
subset of machines, while constraints (2) impose an upper
bound to the load of every machine. Notice that for any job j
andmachine i such that j ∈ J+

i (C), it has to be that si, j ≥ γ j

and, thus, for the corresponding coefficient of constraints (2),

we have
f j (ri, j)ri, j

si, j
= f j (si, j). Similarly, for any machine i

and job j such that j ∈ J−
i , we have that si, j ≤ γ j and, thus,

f j (ri, j)ri, j
si, j

= f j (γ j)γ j
si, j

.

As we prove in the following proposition, the above for-
mulation is feasible for any C that is greater than the optimal
makespan.

Proposition 1 For every C ≥ OPT, where OPT is the
makespan of an optimal schedule, [LP(C)] has a feasible
solution.

Proof Fix any feasible schedule of makespan OPT and let
S j ⊆ M be the set of machines allocated to a job j in

that schedule. For every i ∈ M, j ∈ J set xi, j = si, j
σ j (S j)

if i ∈ S j and xi, j = 0, otherwise. We show that x is a
feasible solution to [LP(C)]. Indeed, constraints (1) are sat-
isfied since

∑
i∈M xi, j = ∑

i∈S j
si, j

σ j (S j)
= 1 for all j ∈ J .

For verifying that constraints (2) are satisfied, let j ∈ J and
i ∈ S j . By definition of S j , it has to be that σ j (S j) ≥ si, j and
σ j (S j) ≥ γ j , which implies that σ j (S j) ≥ ri, j . Therefore,

by replacing xi, j = si, j
σ j (S j)

, the corresponding coefficient

of (2) becomes:
f j (ri, j)ri, j

si, j
si, j

σ j (S j)
= f j (ri, j)ri, j

σ j (S j)
≤ f j (S j),

where the last inequality follows by Fact 5 and the fact that
σ j (S j) ≥ ri, j . Using the above analysis, we can see that for
any i ∈ M we have

∑

j∈J

f j (ri, j)ri, j
si, j

xi, j ≤
∑

j∈J | i∈S j
f j (S j) ≤ OPT ≤ C .

��

123

430 Journal of Scheduling (2023) 26:425–442

Assuming that C ≥ OPT, let x be an extreme point
solution to [LP(C)]. We create the assignment graph G(x)
with nodes V := J ∪M and edges E := {{i, j} ∈
M×J | xi, j > 0}, i.e., one edge for each machine–job
pair in the support of the LP solution. Notice that G(x) is
bipartite by definition. Furthermore, since [LP(C)] is struc-
turally identical to the LP of unrelated machine scheduling
Lenstra et al. (1990), the choice of x as an extreme point
guarantees the following sparsity property:

Proposition 2 Lenstra et al. (1990) For every extreme point
solution x of [LP(C)], each connected component of G(x)
contains at most one cycle.

As a graph with at most one cycle is either a tree or a tree
plus one edge, the connected components of G(x) are called
pseudotrees and the whole graph is called a pseudoforest. It
is not hard to see that the edges of an undirected pseudoforest
can always be oriented in a way that every node has an in-
degree of atmost one.We call such aG(x) a properly oriented
pseudoforest. Such an orientation can easily be obtained for
each connected component as follows: We first orient the
edges on the unique cycle (if it exists) consistently (e.g.,
clockwise) so as to obtain a directed cycle. Then, for every
node of the cycle that is also connected with nodes outside
the cycle, we define a subtree using this node as a root and
we direct its edges away from that root (see, e.g., Fig. 1).

Nowfixaproperly orientedG(x)with set of oriented edges
Ē . For j ∈ J , we define p(j) ∈ M to be its unique parent
machine with (p(j), j) ∈ Ē , if it exists, and T (j) = {i ∈
M | (j, i) ∈ Ē} to be the set of children machines of j ,
respectively. Notice, that for every machine i , there exists at
most one j ∈ J such that i ∈ T (j). The decision procedures
we construct in this paper are based, unless otherwise stated,
on the following scheme:

Algorithm: Given a target makespan C :

1. If [LP(C)] is feasible, compute an extreme point solu-
tion x of [LP(C)] and construct a properly oriented G(x).
(Otherwise, report that C < OPT.)

2. A rounding scheme assigns every job j ∈ J either only
to its parent machine p(j), or to a subset of its children
machines T (j) (see Sect. 3).

3. According to the rounding, every job j ∈ J that has been
assigned to T (j) is placed at the beginning of the schedule
(these jobs are assigned to disjoint sets of machines).

4. At any point a machine i becomes idle, it processes any
unscheduled job j that has been rounded to i such that
i = p(j).

We conclude this section by comparing our approach with
that of Lenstra et al. (1990) for the case of scheduling non-
malleable jobs on unrelated machines. In that case, their
algorithm starts from computing a feasible extreme point

i1

j1

i2

j2

j3

i3 i4

i5

T (j3)

p(j3)

Fig. 1 A properly oriented pseudotree with indegree at most 1 for each
node

solution to an assignment LP, which differs from [LP(C)] in
two ways: (i) The coefficient of each xi, j in constraints (2)
is pi, j = f j (si, j), namely the processing time of job j on
machine i . (ii) As a preprocessing step, each variable xi, j
with pi, j > C is removed. The rounding of Lenstra et al.
(1990) proceeds as follows: After computing a feasible solu-
tion x to the LP relaxation, a properly oriented pseudoforest
G(x) is constructed. Then, each machine i is allocated the set
of jobs that are integrally assigned by the LP, and its parent–
job in G(x) (if it exists), which has load at mostC (given that
only assignments such that pi, j ≤ C are allowed). Thus, the
resulting schedule has makespan at most 2C .

Notice that, in the above algorithm, the preprocessing step,
where all the assignments with pi, j > C are dropped, is
necessary for maintaining a constant integrality gap. In our
case, however, our [LP(C)] might no longer be a relaxation
after this preprocessing step, as a jobmight inherently require
the combination of more than one machines in order to be
processed within time C . Instead, we overcome this issue
by fixing the coefficient of each xi, j in constraints (2) to be

equal to
f j (ri, j)ri, j

si, j
.

3 Rounding schemes

In each of the following rounding schemes,we are given as an
input an extreme point solution x of [LP(C)] and a properly
oriented pseudoforest G(x) = (V , Ē).

3.1 A simple 4-approximation for unrelated
machines

We start from the following simple rounding scheme: For
each job j , assign j to its parent machine p(j) if xp(j), j ≥ 1

2 ,
or else, assign j to its children machines T (j). Formally, let
J (1) := { j ∈ J | xp(j), j ≥ 1

2 } be the sets of jobs that

123

Journal of Scheduling (2023) 26:425–442 431

are assigned to their parent machines and J (2) := J \J (1)

the rest of the jobs. Recall that we first run the jobs in
J (2) and then the jobs in J (1) as described at the end of
the previous section. For i ∈ M, define J (1)

i := { j ∈
J (1) | p(j) = i} and J (2)

i := { j ∈ J (2) | i ∈ T (j)}
as the sets of jobs in J (1) and J (2), respectively, that get
assigned to i (note that |J (2)

i | ≤ 1, as each machine gets
assigned atmost one job as a childmachine). Furthermore, let

i := ∑

j∈J (1)
i

f j (ri, j)
ri, j
si, j

xi, j be the fractional load incurred

by jobs in J (1) on machine i in the LP solution x .

Proposition 3 Let i ∈ M. Then,
∑

j∈J (1)
i

f j ({i}) ≤ 2
i .

Proof Let j ∈ J (1)
i . Since xi, j ≥ 1

2 by definition of J (1),
we get f j (si, j) ≤ 2 f j (si, j)xi, j . Furthermore, since si, j ≤
max{si, j , γ j } = ri, j , the by Fact 5, we have that f j ({i}) =
f j (si, j) ≤ f j (ri, j)

ri, j
si, j

. Thus, by summing up over all jobs

in J (1)
i , we get

∑

j∈J (1)
i

f j ({i}) ≤ 2
∑

j∈J (1)
i

f j (ri, j)
ri, j
si, j

xi, j = 2
i .

��
Proposition 4 Let j ∈ J (2). Then f j (T (j)) ≤ 2C.

Proof We assume that for all i ∈ T (j), si, j ≤ γ j , since,
otherwise, given some i ′ ∈ T (j) with si, j > γ j , we trivially
have that f j (T (j)) ≤ f j ({i ′}) ≤ f j (γ j) ≤ C .

For any i ∈ T (j) and using the fact that ri, j =
γ j , constraints (2) imply that f j (γ j)

γ j
si, j

xi, j ≤ C for
all i ∈ T (j). Summing over all these constraints yields
∑

i∈T (j)
f j (γ j)

C γ j xi, j ≤ σi (T (j)). Using the fact that
∑

i∈T (j) xi, j > 1
2 because j ∈ J (2), we get σi (T (j)) ≥

1
2γ j

f j (γ j)

C . By combining this with the fact that f j (γ j) ≤ C ,

by definition of γ j , and using Fact 5, this implies that
f j (T (j)) ≤ 2C . ��
Clearly, the load of any machine i ∈ M in the final sched-

ule is the sumof the load due to the execution ofJ (1), plus the
processing time of atmost one job ofJ (2). By Propositions 3,
4 and the fact that
i ≤ C for all i ∈ M by constraints (2), it
follows that any feasible solution of [LP(C)] can be rounded
in polynomial time into a feasible schedule of makespan at
most 4C .

3.2 An improved 2e
e−1 ≈ 3.163-approximation for

unrelatedmachines

In the simple rounding scheme described above, it can be the
case that the overall makespan improves by assigning some

job j ∈ J (2) only to a subset of the machines in T (j). This
happens because some machines in T (j) may have signif-
icantly higher load from jobs of J (1) than others, but job
j will incur the same additional load to all machines it is
assigned to.

We can improve the approximation guarantee of the
rounding scheme by taking this effect into account and fil-
tering out children machines with a high load. Define J (1)

and J (2) as before. Every job in j ∈ J (1) is assigned to its
parent machine p(j), while every job j ∈ J (2) is assigned
to a subset of T (j), as described below.

For j ∈ J (2) and θ ∈ [0, 1] define S j (θ) := {i ∈
T (j) | 1 −
i

C ≥ θ}. Choose θ j so as to minimize 2(1 −
θ j)C + f j (S j (θ j)) (note that this minimizer can be deter-

mined by trying out at most |T (j)| different values for θ j).
We then assign each job in j ∈ J (2) to themachine set S j (θ j).

By Proposition 3, we know that the total load of each
machine i ∈ M due to the execution of jobs from J (1) is
at most 2
i . Recall that there is at most one j ∈ J (2) with
i ∈ T (j). If i /∈ S j (θ j), then load of machine i bounded
by 2
i ≤ 2C . If i ∈ S j (θ j), then the load of machine i is
bounded by

max
i ′∈S j (θ j)

{
2
i + f j (S j (θ j))

}
≤ 2(1 − θ j)C + f j (S j (θ j)),

(4)

where the inequality comes from the fact that 1 −
i ′
C ≥ θ j

for all i ′ ∈ Sθ j . The following proposition gives an upper
bound on the RHS of (4) as a result of our filtering technique
and proves Theorem 2.

Proposition 5 For each j ∈ J (2), there exists a θ ∈ [0, 1]
such that 2(1 − θ)C + f j (S j (θ)) ≤ 2e

e−1C.

Proof We first assume that for all i ∈ T (j), it is the case that
si, j ≤ γ j and, thus, ri, j = γ j . In the opposite case, where
there exists some i ′ ∈ T (j) such that si, j > γ j , by choosing
θ = 0, then (4) can be upper bounded by 2C + f j (S j (0)) =
2C + f j (T (j)) ≤ 2C + f j (si ′, j) ≤ 3C and the proposition
follows.

Define α := 2e
e−1 . We show that there is a θ ∈ [0, 1]

with σ j (S j (θ)) ≥ γ j f j (γ j)

(α+2θ−2)C . Notice that, in that case,

f j (S j (θ)) ≤ (α + 2θ − 2)C by Fact 5, implying the lemma.
Define the function g : [0, 1] → R+ by g(θ) :=

σ j (S j (θ)). It is easy to see g is non-increasing integrable
and that

∫ 1

0
g(θ)dθ =

∑

i∈T (j)

si, j (1 −
i

C
).

See Fig. 2 for an illustration.

123

432 Journal of Scheduling (2023) 26:425–442

θ

g(θ) = σj(Sj(θ))

γ
j f

j (γ
j)

(α+2θ−2)C

∫ 1

0
g(θ)dθ =

∑
i∈T (j)

si,j(1− �i

C
)

0 1

Fig. 2 Volume argument for selecting a subset of the childrenmachines
in the proof of Proposition 5

Now assume by contradiction that g(θ) <
γ j f j (γ j)

(α+2θ−2)C for

all θ ∈ [0, 1]. Note that
i + γ j f j (γ j)

si, j
xi, j ≤ C for every

i ∈ T (j) by constraints (2) and the fact that |J (2)
i | ≤ 1.

Hence
f j (γ j)γ j

C xi, j ≤ si, j (1−
i
C) for all i ∈ T (j). Summing

over all i ∈ T (j) and using the fact that
∑

i∈T (j) xi, j ≥ 1
2

because j ∈ J (2), we get

f j (γ j)γ j

2C
≤

∑

i∈T (j)

si, j (1 −
i

C
)

=
∫ 1

0
g(θ)dθ

<
f j (γ j)γ j

C

∫ 1

0

1

α + 2θ − 2
dθ,

where the last inequality uses the assumption that g(θ) <
γ j f j (γ j)

(α+2θ j−2)C for all θ ∈ [0, 1]. By simplifying the above
inequality we get the contradiction

1 <

∫ α

α−2

1

λ
dλ = ln(

α

α − 2
) = 1,

which concludes the proof. ��
By the above analysis, our main result for the case of unre-
lated machines follows.

Theorem 2 There exists a polynomial-time 2e
e−1 -approxi-

mation algorithm for the problem of scheduling malleable
jobs on unrelated machines.

Remark 1 We can slightly improve the above algorithm
by optimizing over the threshold of assigning each job
to the parent or children machines in the assignment
graph (see Appendix A.1 for details). This optimization
gives a slightly better approximation guarantee of α =
infβ∈(0,1)

{

e
1
β

−1

β(e
1
β

−1−1)

}

≈ 3.14619.

Remark 2 The LP-based nature of our techniques allows the
design of polynomial-time O(1)-approximation algorithms
for the objective of minimizing the sum of weighted comple-
tion times, i.e.,

∑
j∈J w jC j , where w j is the weight and C j

is the completion time of job j ∈ J . This can be achieved by
using the rounding theorems of this section in combination
with the standard technique of interval-indexed formulations
Hall et al. (1997).

3.3 A 7/3-approximation for restricted identical
machines

We are able to provide an algorithm of improved approxi-
mation guarantee for the special case of restricted identical
machines. In this case, each job j ∈ J is associated with a
set of machines M j ⊆ M, such that si, j = 1 for i ∈ M j

and si, j = 0, otherwise. Notice that our assumption that
f j (0) = +∞,∀ j ∈ J implies that, in the restricted identi-
cal machines case, every job j has to be scheduled only on
the machines of M j .

Given a feasible solution to [LP(C)] and a properly ori-
entedG(x), we define the setsJ (1) := { j ∈ J | xp(j), j = 1}
and J (2) := J \J (1). The rounding scheme for this special
case can be described as follows:

1. Every job j ∈ J (1) is assigned to p(j) (which is the only
machine in G(x) that is assigned to j).

2. Every job j ∈ J (2)

(a) is assigned to the set T (j) of its children machines,
if |T (j)| = 1 or |T (j)| ≥ 3.

(b) is assigned to the subset S ⊆ T (j) that results in
the minimum makespan over T (j), if |T (j)| = 2.
Notice that for |T (j)| = 2 there are exactly three
such subsets.

3. As usual, the jobs of J (2) are placed at the beginning of
the schedule, followed by the jobs of J (1).

Clearly, by definition of our algorithm, constraints (2) and
the fact that f j (1) ≤ f j (γ j)γ j for all j ∈ J , the load of
any machine that only processes jobs of J (1) is at most C .
Therefore, we focus our analysis on the case of machines that
process jobs from J (2). Recall that every machine i ∈ M
can process at most one job j ∈ J (2), and thus, the rest of the

123

Journal of Scheduling (2023) 26:425–442 433

proof is based on analyzing the makespan of the machines
of T (j), for each j ∈ J (2).

Proposition 6 Any job j ∈ J (2) can be assigned to the set
T (j) with processing time most |T (j)|+1

|T (j)| C.

Proof Fix any job j ∈ J (2). By summing over the constraints
(2) for i ∈ T (j)∪{p(j)} (every machine in the support of j)
and using constraints (1), we have that γ j f j (γ j) ≤ (|Tj | +
1)C . By applying Fact 5 and the non-increasing property of
f j , we have that:

f j (|T (j)|) ≤ |T (j)| + 1

|T (j)| f j (|T (j)| + 1)

≤ |T (j)| + 1

|T (j)| f j (
f j (γ j)

C
γ j)

≤ |T (j)| + 1

|T (j)|
C

f j (γ j)
f j (γ j)

≤ |T (j)| + 1

|T (j)| C . ��

Taking into account that for any machine i ∈ M, the load
due to the jobs of J (1) is at most C , the above proposition
gives a makespan of at most

(
1 + 4

3

)
C , for the machines

T (j) of every job j ∈ J (2) such that |T (j)| ≥ 3. The cases
where |T (j)| ∈ {1, 2} need a more delicate treatment. For
any i ∈ T (j), let
i := ∑

j ′∈J (1) |p(j ′)=i f j ′(1) ≤ C to be

the load of i w.r.t. the jobs of J (1).

Proposition 7 For any job j ∈ J (2) with |T (j)| = 1 that is
assigned to its unique child i ∈ T (j), the total load of i is at
most 2C.

Proof Consider a job j ∈ J (2) of critical speed γ j , such that
|T (j)| = 1, and let i be the unique child machine in T (j).
By our assumption that i ∈ M j and the fact that γ j ≥ 1,
we have that ri, j = γi, j . By constraints (2) of [LP(C)], it
is the case that
i + γ j f j (γ j)xi, j ≤ C . Therefore, since
our algorithm assigns job j to i , the load of the latter
becomes:
i + f j (1) ≤
i + γ j f j (γ j)xi, j + γ j f j (γ j)(1 −
xi, j) ≤ C + γ j f j (γ j)xp(j), j , where we used the fact that
f j (1) ≤ γ j f j (γ j) and that xi, j + xp(j), j = 1 by constraints
(1). However, by constraints (2) for p(j) ∈ M, we can see
that γ j f j (γ j)xp(j), j ≤ C , which completes the proof. ��
Proposition 8 Consider any job j ∈ J (2) with |T (j)| = 2
that is assigned to the subset S ⊆ T (j) that results in the
minimum load. The load of any machine i ∈ S is at most 94C.

Proof We first notice that for the case where γ j ≤ |T (j)| =
2, by assigning j to all the machines of T (j), the total load of
any i ∈ T (j) is at most:
i + f j (T (j)) ≤
i + f j (γ j) ≤ 2C ,
by constraints (2). Therefore, we focus on the case where
γ j ≥ 3 (since we assume that γ j is an integer). For the

machines of T (j), denoted by T (j) = {i1, i2}, we assume
w.l.o.g. that xi1, j ≥ xi2, j .

Our algorithmattempts to schedule j on the sets S1 = {i1},
S2 = {i2} and SB = {i1, i2} and returns the assignment of
minimum makespan. We can express the maximum load of
T (j) in the resulting schedule as:

min
{
f j (1) +
i1 , f j (1) +
i2 , f j (2) + max

{

i1 ,
i2

}}

≤ C + min
{
f j (1) − γ j f j (γ j)xi1, j , f j (1) − γ j f j (γ j)xi2, j

, f j (2) + γ j f j (γ j)max
{ − xi1, j ,−xi2, j

}}

≤ C + min
{
f j (1) − γ j f j (γ j)xi1, j , f j (2) − γ j f j (γ j)xi2, j

}

≤ C + 1

2

(
f j (1) + f j (2) − γ j f j (γ j)(xi1, j + xi2, j)

)

= C + 1

2

(
f j (1) + f j (2) − γ j f j (γ j)(1 − xp(j),i)

)
, (5)

where the first inequality follows by the fact that
i ≤
C − γ j f j (γ j)xi, j , by constraints (2). Furthermore, the sec-
ond inequality follows by the assumption that xi1, j ≥ xi2, j ,
while the third inequality follows by balancing the two terms
of the minimization. Finally the equality follows by the fact
that xi1, j + xi2, j = 1 − xp(j), j , by constraints (1).

By constraints (2), we get that xp(j), j ≤ C
γ j f j (γ j)

, while

by Fact 5 we have that: γ j f j (γ j) ≥ f j (1), given that γ j ≥ 3.
Moreover, by Fact 5, we have that f j (2) ≤ 3

2C , using the
analysis of Proposition 6. By combining the above, we get
that

(5) ≤ C + 1

2

(
f j (1) + f j (2) − γ j f j (γ j) + γ j f j (γ j)xp(j),i)

)

≤ C + 1

2

(
f j (1) + f j (2) − f j (1) + C

)

≤ 9

4
C . ��

By considering the worst of the above scenarios, we can ver-
ify that the makespan of the produced schedule is at most
7
3C , thus, leading to the following theorem.

Theorem 3 There exists a polynomial-time 7
3 -approximation

algorithm for the problem of scheduling malleable jobs on
restricted identical machines.

3.4 A 3-approximation for uniformmachines

We prove an algorithm of improved approximation guaran-
tee for the special case of uniform machines, namely, every
machine i ∈ M is associated with a unique speed si , such
that si, j = si for all j ∈ J . Given a target makespan C , we
say that a machine i is j-fast for a job j ∈ J if f j ({i}) ≤ C ,
while we say that i is j-slow otherwise. As opposed to the
previous cases, the rounding for the uniform case starts by
transforming the feasible solution of [LP(C)] into another

123

434 Journal of Scheduling (2023) 26:425–442

extreme point solution that satisfies a useful structural prop-
erty, as described in the following proposition:

Proposition 9 There exists an extreme point solution x of
[LP(C)] that satisfies the following property: For each j ∈
J there is at most one j-slow machine i ∈ M such that
xi, j > 0 and xi, j ′ > 0 for some job j ′ �= j . Furthermore,
this machine, if it exists, is the slowest machine that j is
assigned to.

Proof Consider a job j and two j-slowmachines i1, i2 ∈ M,
such that xi1, j , xi2, j > 0. Let also two jobs j1, j2 ∈ J , other
than j , such that xi1, j1 > 0 and xi2, j2 > 0, assuming w.l.o.g.
that si2 ≥ si1 .We emphasize the fact j1 and j2 can correspond
to the same job. Recall that for any job j ′ and machine i ′, we
have that ri ′, j ′ = γ j ′ , if i ′ is j ′-slow, and ri ′, j ′ = si ′, j ′ , if i ′
is j ′-fast.

We show that we can transform this solution into a new
extreme point solution x ′ such that one of the following is
true: (a) j is no longer supported by i1 (i.e., x ′

i1, j
= 0), or

(b) j2 is no longer supported by i2 (i.e., x ′
i2, j2

= 0) and
x ′
i1, j2

= xi1, j2 + xi2, j2 . Let ai ′, j ′ be the coefficient of xi ′, j ′ in
the LHS of (2) for some machine i ′ and job j ′. Since i1, i2
are j-slow machines, it is the case that

ai1, j = f j (γ j)
γ j

si1
≥ f j (γ j)

γ j

si2
= ai2, j .

Suppose that we transfer an ε > 0 mass from xi1, j to
xi2, j (without violating constraints (1)). Then the load of i1
decreases byΔ− = ε f j (γ j)

γ j
si1

, while the load of i2 increases

by Δ+ = ε f j (γ j)
γ j
si2

. In order to avoid the violation of con-

straints (2), we also transfer an ε2 mass from xi2, j2 to xi1, j2 ,

such that: ε2ai2, j2 = Δ+, i.e., ε2 = ε 1
ai2, j2

f j (γ j)
γ j
si2

, given

that any coefficients ai ′, j ′ is strictly positive. Clearly, con-
straints (2) for i2 are satisfied since the fractional load of
the machine stays the same as in the initial feasible solution.
It suffices to verify that constraints (2) for i1 are also satis-
fied. Indeed, the difference in the load of i1 that results from
the above transformation can be expressed as ε2ai1, j2 − Δ−.
However, it is the case that:

ε2ai1, j2 = ε
ai1, j2
ai2, j2

f j (γ j)
γ j

si2

≤ ε
si2
si1

f j (γ j)
γ j

si2
= ε f j (γ j)

γ j

si1
= Δ−

and therefore, constraint (2) of i1 remains feasible as the load
difference is non-positive.

In the last inequality, we used the fact that
ai1, j2
ai2, j2

≤ si2
si1

,

which can be proved by case analysis:

(i) If both i1, i2 are j2-slow, then clearly

ai1, j2
ai2, j2

= f j (γ j2)γ j2/si1
f j (γ j2)γ j2/si2

= si2
si1

.

(ii) if i2 is j2-fast and i1 is j2-slow, we have that:

ai1, j2
ai2, j2

= f j (γ j2)γ j2/si1
f j2(si2)

≤ si2
si1

,

since by Fact 5, we have that f j2(si2) ≥ f j (γ j2)
γ j2
si2

.

(iii) If both i1, i2 are j2-fast, then

ai1, j2
ai2, j2

= f j2(si1)

f j2(si2)
≤ si2

si1
,

which follows by Fact 5 and the fact that si2 ≥ si1 .

By the above analysis,we can keep exchangingmass in the
aforementioned way until either xi1, j or xi2, j2 becomes zero.
In any case, job j shares at most one of i1 and i2 with another
job, the above process. Notice that the above transformation
always returns a basic feasible solution and reduces the total
number of shared j-slowmachines for a job j by one. There-
fore, by applying the transformation at most |J | + |M |
times, one can get a basic feasible solution that satisfies the
required property. Finally, by the same argument it follows
that for any job j ∈ J that shares a j-slow machine i j with
other jobs, then i j is the slowest that j is assigned to. In the
opposite case, assuming that there is another j-slowmachine
i ′ such that si j > si ′ , repeated application of the above trans-
formation would either move the total xi ′, j mass from i ′ to
i j , or replace the assignment of all the shared jobs from i j to
i ′. ��

Let x be an extreme point solution of [LP(C)] that sat-
isfies the property of Proposition 9 and let G(x) a properly
oriented pseudoforest. By the above proposition, each job
j has at most three types of assignments in G(x), regard-
ing its set T (j) of children machines: (i) j-fast machines
Fj ⊆ T (j), (ii) exclusive j-slow machines Dj ⊆ T (j), i.e.,
j-slow machines that are completely assigned to j , and (iii)
at most one shared j-slow machine i j ∈ T (j) (which is the
slowest machine that j is assigned to).

We now describe the rounding scheme for the special case
of uniform machines.

1. For any job j ∈ J such that xp(j), j ≥ 1
2 , j is assigned to

its parent machine p(j).
2. For any job j ∈ J such that such that xp(j), j < 1

2 , j is
assigned to a subset S ⊆ T (j), according to the following
rule:

(a) If Fj �= ∅, assign j to any i ∈ Fj ,

123

Journal of Scheduling (2023) 26:425–442 435

(b) else if σ j (Dj) ≥ ri, j f j (ri, j)
3C , then assign j only to the

machines of Dj (but not to the shared i j).
(c) In any other case, j is assigned to Dj ∪ {i j }.

3. As usual, the jobs that are assigned to more than one
machines are placed at the beginning of the schedule, fol-
lowed by the rest of the jobs.

Let J (1) be the set of jobs that are assigned by the algo-
rithm to their parent machines and J (2) = J \J (1) be the
rest of the jobs. By using the same analysis as in Proposi-
tion 3, we can see that the total load of any machine i ∈ M
that processes only jobs from J (1) is at most 2C . Since any
machine can process at most one job from J (2), it suffices to
focus on the makespan of the set T (j) for any job j ∈ J (2).

Clearly, for the case 2a, the processing time of a job j on
anymachine i ∈ Fj is at mostC , which, in combination with
Proposition 3, gives a total load of at most 3C . Moreover, for
the case 2b, where a job j is scheduled on the machines of
Dj ⊆ T (j), the total load of every i ∈ Dj is at most 3C . This
follows by a simple application of Fact 5, since σ j (Dj) ≥
ri, j f j (ri, j)

3C ≥ γ j f j (γ j)

3C , and the fact that the machines of Dj

are exclusively assigned to j .
Finally, consider case 2c of the algorithm, where σ j (Dj)

<
ri, j f j (ri, j)

3C and j is scheduled on (Dj ∪{i j }). By constraints
(2) and the fact that xi j , j + ∑

i∈Dj
xi, j > 1

2 , it follows that

σ j (Dj ∪ {i j }) ≥ f j (ri, j)
ri, j
2C , which by Fact 5 implies that

f j (Dj ∪ {i j }) ≤ 2C . Notice that the above analysis implies
the existence of a shared i j machine, if the time the algorithm
reaches case 2c.

In order to complete the proof, it suffices to show that
the load of the machine i j (i.e., the only machine of T (j)

that is shared with other jobs of J (1)) is at most C . Let

i = ∑

j ′∈J (1) |i=p(j) f (ri, j ′)
ri, j ′
si, j ′

xi, j ′ be the fractional load

of amachine i due to the jobs ofJ (1). Clearly, if i j is the only
child machine of j , then it has to be that xi j , j > 1

2 and the
total load of i j after the rounding is at most 2
i j + f j (si j) ≤
2
i + 2 f j (si j)xi j , j ≤ 2
i + 2 f j (ri, j)

ri, j
si j

xi j , j ≤ 2C , using

Proposition 3 and Fact 5. Assuming that Dj �= ∅, by sum-
ming over constraints (2) for all i ∈ Dj and using the fact that

σ j (Dj) <
ri, j f j (ri, j)

3C , we get that
∑

i∈Dj
xi, j < 1

3 . Therefore,

combining this with the fact that xi j , j +
∑

i∈Dj
xi, j > 1

2 , we

conclude that xi j , j > 1
6 . Now, for the fractional load
i j of

i j due to the jobs of J (1), by constraints (2), we have that

i ≤ C − f j (ri, j)
ri, j
si j

xi j , j ≤ C − f j (ri, j)
3ri, j C

6ri, j f j (ri, j)
≤ C

2 ,

where we used that xi j , j > 1
6 and the fact that i j is the small-

est machine in T (j) and, thus, si j ≤ σ j (Dj) <
ri, j f j (ri, j)

3C .

By Proposition 3, the load of i j due to the jobs of J (1) after
the rounding is at most 2
i j ≤ C . Therefore, in every case,

the load of any machine i ∈ T (j) for all j ∈ J (2) is at most
3C , which leads to the following theorem.

Theorem 4 There exists a polynomial-time 3-approximation
algorithm for the problem of scheduling malleable jobs on
uniform machines.

4 Extension: sparse allocations via p-norm
regularization

In the model of speed-implementable processing time func-
tions, each function f j (S) depends on the total additive
speed, yet is oblivious to the actual number of allocated
machines. However, the overhead incurred by the synchro-
nization of physical machines naturally depends on their
number. In this section, we study an extension of the speed-
implementable malleable model, that captures the impact of
the cardinality of a set of machines through the notion of
effective speed. In this setting, every job j is associated with
a speed regularizer p j ≥ 1, while the total speed of a set

S ⊆ M is given by:σ
(p j)

j (S) =
(∑

i∈S s
p j
i, j

) 1
p j . For simplic-

ity, we assume that every job has the same speed regularizer.
Clearly, the choice of p controls the effect of the cardi-

nality of a set to the resulting speed of an allocation, given
that as p increases a sparse (small cardinality) set has higher
effective speed than a non-sparse set of the same total speed.
Notice that for p = 1, we recover the standard case of addi-
tive speeds, while for p → ∞, parallelization is no longer
helpful as lim p→∞ σ

(p)
j (S) = maxi∈S{si, j }. As before, the

processing time functions satisfy the standard properties
of malleable scheduling, i.e., f j (s) is non-increasing while
f j (s) · s is non-decreasing in the total allocated speed. For
simplicity of presentation we assume that all jobs have the
same regularizer p, i.e., p = p j ,∀ j ∈ J , but we comment
on the case of job-dependent regularizers at the end of this
section.

Quite surprisingly, we can easily modify the algorithms
of the previous section in order to capture the above gener-
alization. Given a target makespan C , we start from a new
feasibility program [LP(p)(C)], which is given by constraints
(1), (3) of [LP(C)], combined with:

∑

j∈J
f j (ri, j)

(
ri, j
si, j

)p

xi, j ≤ C,∀i ∈ M . (6)

Note that γ j (C) and ri, j = max{γ j (C), si, j } are defined
exactly as before. As we can see, the only difference between
[LP(C)] and [LP(p)(C)] is that we replace each coefficient

f j (ri, j)
ri, j
si, j

with
(
f j (ri, j)

ri, j
si, j

)p
in constraints (2) of the

former. As we show in the following proposition, for any

123

436 Journal of Scheduling (2023) 26:425–442

C ≥ OPT, where OPT is the makespan of an optimal sched-
ule, [LP(p)(C)] has a feasible solution.

Proposition 10 For every C ≥ OPT, where OPT is the
makespan of an optimal schedule, [LP(p)(C)] has a feasi-
ble solution.

Proof Consider an optimal solution ofmakespanOPT,where
every job j is assigned to a subset of the available machines

S j ⊆ M. Setting xi, j = s pi, j
σ
p
j (S j)

if i ∈ S j and xi, j = 0,

otherwise, we get a feasible solution that satisfies inequalities
(1), (6), (3). Indeed, for constraints (1)we have

∑
i∈M xi, j =

∑
i∈S j

s pi, j

(σ
(p)
j (S j))p

= 1. Moreover, for every i ∈ S j and j ∈
J , it is true that:

f j (ri, j)

(
ri, j
si, j

)p

xi, j = f j (ri, j)

(
ri, j
si, j

)p
⎛

⎝
si, j

σ
(p)
j (S j)

⎞

⎠

p

≤
⎛

⎝
ri, j

σ
(p)
j (S j)

⎞

⎠

p

f j (ri, j)

≤
⎛

⎝
ri, j

σ
(p)
j (S j)

⎞

⎠

p−1

f j (S j)

≤ f j (S j),

where in the second inequality, we use Fact 5, since ri, j =
max{si, j , γ j (C)} ≤ σ

(p)
j (S j). Moreover, we use the fact that

ri, j

σ
(p)
j (S j)

≤ 1 for all j ∈ J and i ∈ S j . By the above analysis,

we can see that constraints (6) are satisfied, since for all
i ∈ M, we have:

∑

j∈J
f j (ri, j)

(
ri, j
si, j

)p

xi, j ≤
∑

j∈J | i∈S j
f j (S j) ≤ OPT ≤ C .

��
The algorithm for this setting is similar to the one of the

standard cases (see Sect. 3.1) and is based on rounding a
feasible extreme point solution of [LP(p)(C)]. Moreover,
the rounding scheme is a parameterized version of the simple
rounding of Sect. 3.1, with the difference that the threshold
parameter β ∈ [0, 1] (i.e., the parameter that controls the
decision of assigning a job j to either p(j) or T (j)) is not
necessarily 1

2 . In short, given a pseudoforest G(x) on the
support of a feasible solution x , the rounding scheme assigns
any job j to p(j) if xp(j), j ≥ β, or to T (j), otherwise.

Proposition 11 Any feasible solution of [LP(p)(C)] can be
rounded in polynomial time into a feasible schedule of

makespan at most
(
1
β

+ 1
(1−β)1/p

)
C.

Proof In order to prove the upper bound on the makespan
of the produced schedule, we work similarly to the proof of

Sect. 3.1. Let J (1) be the set of jobs that are assigned by our
algorithm to their parent machine and let J (2) = J \J (1)

be the rest of the jobs.
We first show that the total load of any machine i ∈ M

incurred by the jobs of J (1) is at most 1
β
C . By definition

of our algorithm, for every job j ∈ J (1) that is assigned to
some machine i , it holds that xi, j ≥ β. For the load of any
machine i ∈ M in the rounded schedule that corresponds to
jobs of J (1), we have:

∑

j∈J (1) |i=p(j)

f j (si, j) = 1

β

∑

j∈J (1) |i=p(j)

f j (si, j)β

≤ 1

β

∑

j∈J (1) |i=p(j)

f j (si, j)xi, j

≤ 1

β

∑

j∈J (1) |i=p(j)

f j (ri, j)
ri, j
si, j

xi, j

≤ 1

β

∑

j∈J (1) |i=p(j)

f j (ri, j)

(
ri, j
si, j

)p
xi, j

≤ 1

β
C,

where the second inequality follows by Fact 5, given that
si, j ≤ ri, j . Moreover, the third inequality follows by the

fact that
ri, j
si, j

≥ 1 and, thus,
ri, j
si, j

≤
(
ri, j
si, j

)p
. Finally, the last

inequality follows by constraints (6).
The next step is to prove that every job j ∈ J (2) has a

processing time of at most (1
1−β

)
1
p C . By definition of the

algorithm, for any j ∈ J (2) it is the case that
∑

i∈T (j) xi, j >

1 − β. First notice that for any j ∈ J (2) and i ∈ T (j),

by constraints (6), we have that f j (ri, j)
(
ri, j
si, j

)p
xi, j ≤ C ,

which is equivalent to f j (ri, j)r
p
i, j xi, j ≤ s pi, jC . By summing

the previous inequalities over all machines i ∈ T (j), for any
job j ∈ J (2), we get:

(1 − β) f j (ri, j)r
p
i, j ≤ f j (ri, j)r

p
i, j

∑

i∈T (j)

xi, j

≤
(
σ

(p)
j (T (j))

)p
C .

By the above analysis, we get that
(
σ

(p)
j (T (j))

)p ≥
(1 − β)

f j (ri, j)
C r pi, j and, thus,

σ
(p)
j (T (j)) ≥

(

(1 − β)
f j (ri, j)

C

) 1
p

ri, j

≥
(

(1 − β)
f j (ri, j)

C

) 1
p

γ j ,

123

Journal of Scheduling (2023) 26:425–442 437

where the last inequality follows by definition of ri, j . Finally,

by using Fact 5 and the fact that
(

C
f j (γ j)

) 1
p ≤ C

f j (γ j)
since

p ≥ 1, we get that f j (σ
(p)
j (T (j)) ≤

(
1

1−β

) 1
p
C . As previ-

ously, the proof of the proposition follows by the fact that, by
definition of our algorithm, each machine i ∈ M processes
at most one job from J (2). ��

It is not hard to see that, given p, the algorithm can initially
compute a threshold β ∈ [0, 1] that minimizes the above
theoretical bound. Clearly, for p = 1 the minimizer of the
expression is β = 1/2, yielding the 4-approximation of the
standard case, while for p → +∞ one can verify that β → 1
and:

lim
p→+∞ inf

β∈[0,1]

(
1

β
+ 1

(1 − β)1/p

)

= 2.

As expected, for the limit case where p → +∞, our algo-
rithm converges to thewell-known algorithmbyLenstra et al.
(1990), given that our problem becomes non-malleable. By
using the standard approximation β = 1 − ln(p)

p for p ≥ 2,
the following theorem follows directly.

Theorem 6 Any feasible solution of [LP(p)(C)] for p ≥ 2
can be rounded in polynomial time into a feasible schedule

of makespan at most
(

p
p−ln(p) + p

√
p

ln(p)

)
C.

Note that an analogous approach can handle the case where
jobs have different regularizers, with the approximation ratio
for this scenario determined by the smallest regularizer that
appears in the instance (note that the approximation factor is
always at most 4).

5 Hardness results and integrality gaps

We are able to prove a hardness of approximation result for
the case of scheduling malleable jobs on unrelated machines.

Theorem 1 For any ε > 0, there is no (e
e−1 − ε)-

approximation algorithm for the problem of scheduling
malleable jobs with speed-implementable processing time
functions on unrelated machines, unless P = N P.

Proof Following a similar construction as in Correa et al.
(2015) for the case of splittable jobs, we prove the APX-
hardness of the malleable scheduling problem on unrelated
machines by providing a reduction from the max- k- cover
problem: Given a universe of elements U = {e1, . . . , em}
and a family of subsets S1, . . . , Sn ⊆ U , find k sets that max-
imize the number of covered elements, namely, maximize
{∣∣⋃i∈I Si

∣
∣ | I ⊂ [n], |I | = k}. In Feige (1998), Feige shows

that it is NP-hard to distinguish between instances such that

all elements can be covered with k disjoint sets and instances
where no k sets can cover more than a (1− 1

e)+ε′ fraction of
the elements, for any ε′ > 0. In addition, the same hardness
result holds for instances where all sets have the same cardi-
nality, namely m

k . Note that in the following reduction, while
we allow for simplicity the speeds to take rational values, the
proof stays valid under appropriate scaling.

Given a max- k- cover instance, where each set has
cardinality m

k , we construct an instance of our problem in
polynomial time as follows:We consider n jobs, one for each
set S j , and we define the processing time of each job to be
f j (S) = max{ 1

σ j (S)
, 1}. It is not hard to verify that f j (S)

is non-increasing and σ j (S) f j (S) is non-decreasing in the
total allocated speed. We consider a set P of n − k common-
machines, such that si, j = 1 for j ∈ J and i ∈ P . Moreover,
for every element e, we consider an element-machine ie such
that sie, j = k

m if e ∈ S j and sie, j = 0, otherwise. In the
following, we fix ε > 0 such that 1

1− 1
e +ε′ = e

e−1 − ε.

Consider the case where all elements can be covered by
k disjoint sets. Let C be the family of sets in a cover. In that
case, we can assign to each job j such that S j ∈ C the ele-
ment machines that correspond to S j . Clearly, every such job
allocates m

k machines of speed si, j = k
m , thus, receiving a

total speed of one. The rest of the n − k jobs, can be equally
distributed to the n − k common machines, yielding a total
makespan of OPT = 1. On the other hand, consider the case
where no k sets can cover more than a (1− 1

e)+ε′ fraction of
the elements. In this case, we can choose any n − k jobs and
assign them to the common machines with processing time
exactly 1. Notice that since f j (S) ≥ 1, every (common- or
element-) machine can be allocated to at most one job (oth-
erwise the makespan becomes at least 2). Given that exactly
n−k jobs are scheduled on the commonmachines, we have k
jobs to be scheduled on them element machines. Aiming for
a schedule of makespan at most e

e−1 − ε, each of the k jobs
that are processed by the element machines should allocate
at least 1− 1

e +ε′ speed, that is, at least mk (1− 1
e +ε′) element

machines. Therefore, we need at leastm(1− 1
e +ε′)machines

in order to schedule the rest of the jobs within makespan
e

e−1−ε. However, by assumption on the instance of themax-

k- cover, for any choice of k sets, at most (1 − 1
e + ε′)m

machines can contribute non-zero speed, which leads to a
contradiction. Therefore, given a (e

e−1 − ε)-approximation
algorithm for the problem of scheduling malleable jobs on
unrelated machines, we could distinguish between the two
cases in polynomial time. ��

Notice that the above lower bound e
e−1 is strictly larger

than the well-known 1.5-hardness for the standard (non-
malleable) scheduling problem on unrelated machines. To
further support the fact that themalleable version of the prob-
lem is harder than its non-malleable counterpart, we provide

123

438 Journal of Scheduling (2023) 26:425–442

a pseudopolynomial transformation of the latter to malleable
scheduling with speed-implementable processing times.

Theorem 7 There exists a pseudopolynomial transformation
of the standard problem of makespan minimization on unre-
lated machines to the problem of malleable scheduling with
speed-implementable processing times.

Proof Consider an instance of the problem of scheduling
non-malleable jobs on unrelated machines. We are given a
set of machinesM and a set of jobs J as well as processing
times pi, j ∈ Z+ for each i ∈ M and each j ∈ J , with
the goal of finding an assignment minimizing the makespan.
We create an equivalent instance of malleable scheduling on
unrelated machines on the same set of machines and jobs
by defining the processing time functions and speeds as fol-
lows: Let pmax := maxi∈M, j∈J pi, j . For j ∈ J define

f j (s) := pmaxs
− 1

pmax |J ||M | and for each i ∈ M define

si, j :=
(
pmax
pi, j

)pmax|J ||M |
.

Note that f j ({i}) = pi, j . Furthermore it is easy to verify
that the functions f j fulfill the monotonic workload require-
ment and that f j (S) > mini∈S pi, j − 1

|J | for any S ⊆ M.
Therefore, any solution to the non-malleable problem cor-
responds to a solution of the malleable problem with the
same makespan by running each job on the single machine
it is assigned to. Conversely, any solution to the malleable
problem induces a solution of the non-malleable problem by
running each job only on the fastest machine it is assigned
to, increasing the makespan by less than 1. Since the optimal
makespan of the non-malleable instance is integer, an opti-
mal solution of the malleable instance induces an optimal
solution of the non-malleable instance.

Note that the encoding lengths of the speed values are
pseudopolynomial in the size of the encoding of the original
instance. However, by applying standard rounding tech-
niques to the original instance, we can ensure that the
constructed instance has polynomial size in trade for a mild
loss of precision. ��
Notice that the above reduction can be rendered polynomial
by standard techniques, preserving approximation factors
with a loss of 1 + ε. Finally, a simpler version of the above
reduction becomes polynomial in the strong sense in the case
of restricted identical machines. In brief, for any job j ∈ J ,
we define f j (s) = p j max{ 1s , 1}, where p j is the processing
time of the job in the non-malleable instance. Moreover, we
set si, j = 1 for any job j that can be executed on machine i
and si, j = 0, otherwise.

From the side of algorithmic design, we are able to show
the following lower bounds on the integrality gap of [LP(C)]
for each of the variants we consider:

Theorem 8 The integrality gap of [LP(C)] in the case of
unrelated machines is lower bounded by 1 + ϕ ≈ 2.618.

Proof The instance establishing the lower bound follows a
similar construction as inCorrea et al. (2015).Note thatwhile
in the following proof we allow speeds to take non-integer
values, the result also holds for integer-valued speeds under
appropriate scaling of the processing time functions.We con-
sider a set J = J ′ ∪{ ĵ} of 2k + 1 jobs to be scheduled on
a set M = MA ∪MB of machines. The set J ′ contains
2k jobs, each of processing time f j (s) = max{ 1s , ϕ

2 }, where
s is the total allocated speed, and these jobs are partitioned
into k groups of two, J
 for
 ∈ [k]. Every group J
 of two
jobs, is associated with a machine i A
 such that si A
 , j = 2

ϕ
for

all j ∈ J
 and si A
 , j = 0, otherwise. Let MA be the set of
these machines and note that |MA | = k. Moreover, every
job ofJ ′ is associated with a dedicatedmachine i Bj such that
si Bj , j = 2 − ϕ, only for job j and si Bj , j ′ = 0, otherwise. Let

MB be the set of these machines. Finally, job ĵ has process-
ing time f ĵ (s) = max{ 1s , 1}, while si, ĵ = 1 for all i ∈ MA

and si, ĵ = 0 for all i ∈ MB .
In the above setting, it is not hard to verify that the

makespan of an optimal solution is OPT = 1 + ϕ. Specifi-
cally, job ĵ uses exactly one machine ofMA to be executed,
given that additionalmachines cannot decrease its processing
time. Let î ∈ MA be thatmachine and let J

̂
= { ĵ1, ĵ2} be the

group of two jobs that is associated with î . Clearly, if at least
one of ĵ1 and ĵ2 is scheduled only on its dedicated machine
it is the case that f ĵ1(2 − ϕ) = f ĵ2(2 − ϕ) = 1

2−ϕ
= 1 + ϕ.

On the other hand, if both ĵ1 and ĵ2 make use of their î , then
the load of î is at least 1 + ϕ.

Consider the following solution of [LP(C)] forC = 1+ 1
k .

Notice that for C = 1 + 1
k and k ≥ 1, we have that γ j =

� 1
C � = � k

k+1� = 1 for any j ∈ J ′ and γ ĵ = � 1
C � = 1.

Therefore, for any j ∈ J ′, we have ri, j = max{γ j , si, j } =
2
ϕ
, ∀i ∈ MA and ri, j = 1, ∀i ∈ MB . Finally, we have

ri, ĵ = 1, ∀i ∈ MA ∪MB .

For each job j ∈ J that belongs to the group J
, we
set xi A
 , j = 1

ϕ
for the assignment of j to its corresponding

machine in MA and xi Bj , j = ϕ−1
ϕ

for the assignment to its

dedicated machine of MB . Moreover, we set xi, ĵ = 1
k for

every i ∈ MA. Notice that, for this assignment, constraints
(1) and (3) are trivially satisfied.

For verifying constraints (2), for any machine i ∈ MA

with corresponding jobs j1, j2 ∈ J ′, we have:

f ĵ (ri, ĵ)
ri, ĵ
si, ĵ

xi, ĵ + f j1(ri, j1)
ri, j1
si, j1

xi, j1 + f j2(ri, j2)
ri, j2
si, j2

xi, j2

= xi, ĵ + ϕ

2
xi, j1 + ϕ

2
xi, j2

= 1

k
+ 1 = C .

123

Journal of Scheduling (2023) 26:425–442 439

Finally, for any machine i ∈ MB dedicated to a job j ∈ J ′,
we have that:

f j (ri, j)
ri, j
si, j

xi, j = 1

2 − ϕ
xi, j = ϕ − 1

ϕ(2 − ϕ)
= 1 ≤ C,

where the last equality holds for number ϕ. Given the above
construction, for k → ∞, there exists an instance such that
the integrality gap of [LP(C)] is at least 1 + ϕ, since:

lim
k→∞

OPT

C
= lim

k→∞
1 + ϕ

1 + 1
k

= 1 + ϕ ≈ 2.618.
��

Theorem 9 The integrality gap of [LP(C)] in the case of
restricted identical machines is lower bounded by 2.

Proof We consider a set J of k identical jobs, each of
processing time f j (s) = max{ 2s , 1}, where s is the total
allocated speed. It is not hard to verify that f j is monotone
non-increasing, while its work smax{ 2s , 1} = max{2, s} is
non-decreasing. Every job i can be executed on a dedicated
machine, let i j , while there exists a common pool of k − 1
machines P that can be used by any job. Recall that in the
restricted assignment case, every feasible pair (i, j) has unit
speed. Clearly, the optimal makespan of the above family of
instances for k ≥ 1 is OPT = 2, since there exists at least
one job that must be executed only on its dedicated machine.
Assuming this is not the case, it has to be that exactly k jobs
make use of the common pool of k − 1 machines, which, by
pigeonhole principle, cannot happen within a makespan of
at least OPT = 2.

Consider the following solution of [LP(C)], for C =
2k

2k−1 ∈ (1, 2): We set xi j , j = k
2k−1 for the assignment

of each job to its dedicated machine and xi, j = 1
2k−1 for

every j ∈ J and i ∈ P . According to this assignment,
for every job j ∈ J we have that γ j = � 2

C � = 1, while
for any machine i we have ri, j = max{si, j , γ j } = 1.
Therefore, for the dedicated machine of each job j , con-
straint (2) corresponding to i j is satisfied with equality since:
f j (ri, j)ri, j xi j , j = 2xi j , j = 2k

2k−1 = C . Moreover, for any
machine i ∈ P , constraints (2) are also satisfied with equal-
ity, since,

∑
j∈J f j (ri, j)ri, j xi, j = 2k 1

2k−1 = C . Notice,
that the above assignment satisfies constraints (1) and (3).
According to the above construction, for k → ∞, there exists
an instance such that the integrality gap of [LP(C)] is at least
2, since:

lim
k→∞

OPT

C
= lim

k→∞ 2

(

1 − 1

2k

)

= 2.

Finally, it is not hard to verify that C = 2k
2k−1 is the smallest

C such that [LP(C)] is feasible. Indeed, by summing over
constraints (1), we get that

k =
∑

j∈J

⎛

⎝xi j , j +
∑

i∈P
xi, j

⎞

⎠ ≤ k
C

2
+ (k − 1)

C

2
≤ (k − 1

2
)C,

where the first inequality follows by constraints (2). ��
Theorem 10 The integrality gap of [LP(C)] in the case of
uniform machines is lower bounded by 2.

Proof We consider a set J of 2k + 1 identical jobs, each
of processing time f j (s) = max{ 2s , 1}, where s is the total
allocated speed. It is not hard to verify that f j is monotone
non-increasing and has non-decreasing work. Moreover, we
consider a set MS of 2k slow machines of speed si = 1 for
all i ∈ MS and a setMF of k fastmachines of speed si = 2
for all i ∈ MF . Clearly, the optimal makespan of the above
family of instances for k ≥ 1 is OPT = 2. By construction
of the instance, the optimal makespan is always an integer
number. Assuming that OPT = 1, it has to be that every fast
machine process at most one job (k jobs in total), while the
set of slow machines should process exactly k jobs in pairs
of two. By pigeonhole principle, since the number of jobs is
2k + 1, there exist a job that remains to be scheduled and the
minimum processing time of this job is one, a contradiction.

Consider the following solution of [LP(C)], for C =
2k+1
2k ∈ (1, 2): We set xi, j = 1

4k for the assignment of every
j ∈ J on i ∈ MS and xi, j = 1

2k for the assignment of

every j ∈ J on i ∈ MF . For C = 2k+1
2k , the critical value

of any job j becomes γ j = � 2
C � = 2. Moreover, for any

job j ∈ J we have ri, j = max{γ j ,si } = 1 for i ∈ MS and

ri, j = max{γ j ,si } = 2 for i ∈ MF . Clearly, constraints (1)
and (3) of [LP(C)] are satisfied. For this assignment, for every
i ∈ MS , we have:

∑

j∈J
f j (ri, j)

ri, j
si

xi, j = 2
∑

j∈J
xi, j = 2

2k + 1

4k
= C .

Moreover, for every i ∈ MF , we get:

∑

j∈J
f j (ri, j)

ri, j
si

xi, j =
∑

j∈J
xi, j = 2k + 1

2k
= C .

Therefore, constraints (2) are satisfied for every i ∈ MS ∪
MF . Given the above construction, for k → ∞, there exists
an instance such that the integrality gap of [LP(C)] is at least
2, since:

lim
k→∞

OPT

C
= lim

k→∞ 2

(

1 − 1

2k

)

= 2.

Finally, it is not hard to verify that C = 2k
2k−1 is the small-

est C such that [LP(C)] is feasible. Indeed, by summing
constraints (1) over all j ∈ J , we get that: 2k + 1 =

123

440 Journal of Scheduling (2023) 26:425–442

∑
j∈J

(∑
i∈MS

xi, j + ∑
i∈MS

xi, j
)

≤ 2k C
2 + kC = 2kC ,

where the inequality follows by using constraints (2). ��

6 The case of supermodular processing time
functions

In this paper we concentrated our study on speed-imple-
mentable processing time functions. However, the general
definition of malleable scheduling, as given in Sect. 1, leaves
room for many other possible variants of the problem with
processing times given bymonotone non-increasing set func-
tions. One natural attempt of capturing the assumption of
non-decreasing workload is to assume that, for each job
j ∈ J , the corresponding processing time function f j is
supermodular, i.e.,

f j (T ∪ {i}) − f j (T) ≥ f j (S ∪ {i}) − f j (S)

for all S ⊆ T ⊆ M and i ∈ M \ T . The interpretation
of this assumption is that the decrease in processing time
when adding machine i diminishes the more machines are
already used for job j (note that the terms on both sides of
the inequality are non-positive because f j is non-increasing).
For this setting, which we refer to as generalized malleable
scheduling with supermodular processing time functions, we
derive a strong hardness of approximation result.

Theorem 11 There is no |J |1−ε-approximation for gener-
alized malleable scheduling with supermodular processing
time functions, unless P = N P.

Proof We show this by reduction from graph coloring:
Given a graph G = (V , E), what is the minimum number
of colors needed to color all vertices such that no to adjacent
vertices have the same color? It is well-known that this prob-
lem does not admit a |V |1−ε-approximation unless P = N P
(Feige & Kilian, 1998).

Given a graph G = (V , E), we introduce a job jv for
each v ∈ V and a machine ie for each e ∈ E . For each
v ∈ V , let δ(v) be the set of incident edges and define the
corresponding set of machines Sv := {ie : e ∈ δ(v)}. We
define the processing time function of job jv ∈ J by

f jv (S) := 1 + |V ||Sv \ S|.

It is easy to verify that these functions are non-increasing
and supermodular. We show that the optimal makespan for
the resulting instance of generalized malleable scheduling is
equal to the minimum number of colors needed to color the
graph G.

First assume thatG has a coloringwith k colors.We create
a schedule with makespan at most k as follows. Arbitrarily
label the colors {0, . . . , k − 1} and let c(v) be the color of
vertex v ∈ V . For each v ∈ V , start job jv on the set of
machines Sv at time c(v). Because f jv (Sv) = 1, each job
jv is done at time c(v) + 1 and two jobs jv, jv′ only run in
parallel if c(v) = c(v′). Because no two adjacent vertices
have the same color, c(v) = c(v′) implies Sv ∩ Sv′ = ∅.
Hence every machine runs at most one job at any given time,
which shows that the schedule is feasible. Its makespan is k
as the last job starts at time k − 1.

Now assume there is a schedule with makespan C . We
show there is a coloring with at most �C� colors. We can
assume that C ≤ |V |, as otherwise the trivial coloring
suffices. Hence, for each v ∈ V , the subset of machines
that job jv is assigned to contains the set Sv . Define the
color of vertex v ∈ V by c(v) := �C jv�, i.e., the comple-
tion time of the corresponding job rounded down. Note that
c(v) ∈ {1, . . . , �C�}, because each job has a processing time
of at least 1 and the last job finishes at timeC . Furthermore, if
c(v) = c(v′) for some v, v′ ∈ V , then there is a time t where
jv and jv′ are both being processed in the schedule. Since
each machine in Sv is assigned to job jv and each machine
in Sv′ is assigned to job jv′ , we conclude that Sv ∩ Sv′ = ∅,
i.e., v and v′ are not adjacent. Hence the coloring is feasible.

By the above analysis, we conclude that any polynomial-
time |J |1−ε-approximation algorithm for the generalized
malleable scheduling problemwith supermodular processing
time functions would imply a |V |1−ε-approximation algo-
rithm for graph coloring, which is a contradiction, unless
P = N P . ��

7 Conclusion

In this work, we propose and study a generalization of
the malleable scheduling problem in the setting of non-
identical machines. For this problem, we design constant
approximation algorithms for the cases of unrelated, uniform
and restricted identical machines. Although our generalized
model widens the amount of applications captured compar-
ing to the case ofmalleable scheduling of identical machines,
it does not yet capture issues of interdependence between the
machines in an explicit manner. As an example, consider the
case where a set of machines performs better in combination
due to locality or other aspects.

In this direction, an interesting future work can be the
study of the malleable scheduling problem with more gen-
eral processing time functions that are able to capture the
particularities of real-life resource allocation systems.

123

Journal of Scheduling (2023) 26:425–442 441

Acknowledgements Part of this work was carried out while the authors
participated in the program“Real-TimeDecisionMaking” at theSimons
Institute for the Theory of Computing, Berkeley, CA. Part of this work
was carried out while the second author worked at Technische Uni-
versität München and was supported by the Alexander von Humboldt
Foundation with funds of the German Federal Ministry of Education
and Research (BMBF).

A Appendix

A.1 A slight improvement by optimizing the
threshold

Recall that in both algorithms for the unrelated machines
case, the threshold for deciding whether a job j is assigned to
p(j) or to T (j) is set to 1/2. While this is the optimal choice
for the simple 4-approximate rounding scheme, we can
achieve a slightly better bound for our improved algorithm
by optimizing this threshold accordingly. Let β ∈ (0, 1) be
the threshold such that a job j is assigned to p(j) when
xp(j), j ≥ β, or to the set T (j), when

∑
i∈T (j) xi, j > 1− β.

Formally, let J (1) := { j ∈ J | xp(j), j ≥ β} be the
set of jobs that are assigned to their parent machines and
J (2) := J \J (1) the rest of the jobs. For j ∈ J (2) and
θ ∈ [0, 1] define S j (θ) := {i ∈ T (j) | 1 −
i

C ≥ θ}. Choose
θ j so as to minimize 2(1− θ j)C + f j (S j (θ j)) (note that this
minimizer can be determined by trying out at most |T (j)|
different values for θ j). We then assign each job in j ∈ J (2)

to the machine set S j (θ j).
Recall that for any i ∈ M there is at most one j ∈ J (2)

with i ∈ T (j). If i /∈ S j (θ j), then load of machine i is
bounded by 1

β

i ≤ 1

β
C , where
i as defined in Sect. 3.1. If

i ∈ S j (θ j), then the load of machine i is bounded by

max
i ′∈S j (θ j)

{
β−1
i + f j (S j (θ j))

}
≤ β−1(1 − θ j)C

+ f j (S j (θ j)), (7)

where the inequality comes from the fact that 1 −
i ′
C ≥ θ j

for all i ′ ∈ Sθ j .
We now fix β to be the unique solution of β−1 + 1 =
e
1
β

−1

β(e
1
β

−1−1)
in the interval [0, 1]. The following proposition

gives an upper bound on the RHS of (4) as a result of our
filtering technique.

Proposition 12 For each j ∈ J (2), there is a θ ∈ [0, 1] with
β−1(1 − θ)C + f j (S j (θ)) ≤ e

1
β

−1

β(e
1
β

−1−1)
C.

Proof We first assume that for all i ∈ T (j), it is the case
that si, j ≤ γ j and, thus, ri, j = γ j . In the opposite case,
where there exists some i ′ ∈ T (j) such that si, j > γ j , by

choosing θ = 0, then (4) can be upper bounded by β−1C +
f j (S j (0)) = β−1C+ f j (T (j)) ≤ (

β−1 + 1
)
C . In that case,

the proposition follows directly by the fact that β−1 + 1 =
e
1
β

−1

β(e
1
β

−1−1)
, by our choice of β.

Define α := e
1
β

−1

β(e
1
β

−1−1)
. We show that there is a θ ∈ [0, 1]

with σ j (S j (θ)) ≥ γ j f j (γ j)

(α+β−1θ−β−1)C
. Then f j (S j (θ)) ≤ (α +

β−1θ − β−1)C by Fact 5, implying the lemma.
Define the function g : [0, 1] → R+ by g(θ) :=

σ j (S j (θ)). It is easy to see g is non-increasing integrable
and that

∫ 1

0
g(θ)dθ =

∑

i∈T (j)

si, j (1 −
i

C
).

Now assume by contradiction that g(θ) <
γ j f j (γ j)

(α+β−1θ−β−1)C

for all θ ∈ [0, 1]. Note that
i + γ j f j (γ j)

si, j
xi, j ≤ C for every

i ∈ T (j) by constraints (2). Hence
f j (γ j)γ j

C xi, j ≤ si, j (1−
i
C)

for all i ∈ T (j). Summing over all i ∈ T (j) and using the
fact that

∑
i∈T (j) xi, j ≥ 1 − β because j ∈ J (2), we get

(1 − β)
f j (γ j)γ j

C
≤

∑

i∈T (j)

si, j (1 −
i

C
)

=
∫ 1

0
g(θ)dθ

<
f j (γ j)γ j

C

∫ 1

0

1

α + β−1θ − β−1 dθ,

where the last inequality uses the assumption that g(θ) <
γ j f j (γ j)

(α+β−1θ j−β−1)C
for all θ ∈ [0, 1]. By simplifying the above

inequality, we get the contradiction

1 − β

β
<

∫ α

α−β−1

1

λ
dλ = ln(

α

α − β−1) = 1 − β

β
.

��

Therefore, by choosing α = infβ∈(0,1){ e
1
β

−1

β(e
1
β

−1−1)
} ≈

3.14619 5, with threshold β ≈ 0.465941, we can prove the
following theorem.

Theorem 12 There exists a polynomial-time 3.1461-
approximation algorithm for the problem of scheduling mal-
leable jobs on unrelated machines.

5 Note that the minimizer of this expression coincides with the unique

solution of β−1 + 1 = e
1
β

−1

β(e
1
β

−1−1)
in the interval [0, 1].

123

442 Journal of Scheduling (2023) 26:425–442

References

Amdahl, G. M. (2007). Validity of the single processor approach to
achieving large scale computing capabilities. IEEE Solid-State
Circuits Society Newsletter, 12(3), 19–20.

Blazewicz, J., Kovalyov, M. Y., Machowiak, M., Trystram, D., &
Weglarz, J. (2006). Preemptable malleable task scheduling prob-
lem. IEEE Transactions on Computers, 55(4), 486–490.

Brent, R. P. (1974). The parallel evaluation of general arithmetic expres-
sions. Journal of the ACM (JACM), 21(2), 201–206.

Correa, J., Marchetti-Spaccamela, A., Matuschke, J., Stougie, L.,
Svensson, O., Verdugo, V., & Verschae, J. (2015). Strong LP for-
mulations for scheduling splittable jobs on unrelated machines.
Mathematical Programming, 154(1–2), 305–328.

Du, J., & Leung, J. (1989). Complexity of scheduling parallel task sys-
tems. SIAM Journal on Discrete Mathematics, 2(4), 473–487.

Dutot, P.,Mounié, G., &Trystram, D. (2004). Scheduling parallel tasks:
Approximation algorithms. In J. T. Leung (Ed.), Handbook of
scheduling: Algorithms, models, and performance analysis, chap-
ter 26 (pp. 26–1–26–24). CRC Press.

Feige, U. (1998). A threshold of ln n for approximating set cover. Jour-
nal of the ACM (JACM), 45(4), 634–652.

Feige, U., & Kilian, J. (1998). Zero knowledge and the chromatic num-
ber. Journal of Computer and System Sciences, 57(2), 187–199.

Garey,M., &Graham, R. (1975). Bounds formultiprocessor scheduling
with resource constraints. SIAM Journal on Computing, 4(2), 187–
200.

Graham,R. (1969).Bounds onmultiprocessing timing anomalies.SIAM
Journal on Applied Mathematics, 17(2), 416–429.

Hall, L. A., Schulz, A. S., Shmoys, D. B., &Wein, J. (1997). Scheduling
tominimize average completion time:Off-line and on-line approx-
imation algorithms. Mathematics of Operations Research, 22(3),
513–544.

Hanen, C., & Munier, A. (2001). An approximation algorithm for
scheduling dependent tasks on m processors with small commu-
nication delays. Discrete Applied Mathematics, 108(3), 239–257.

Hochbaum, D. S., & Shmoys, D. B. (1985). Using dual approxima-
tion algorithms for scheduling problems: Theoretical and practical
results. In 26th annual symposium on foundations of computer sci-
ence, FOCS ’85, pp. 79–89.

Jansen, K., & Land, F. (2018). Scheduling monotone moldable jobs in
linear time. In 2018 IEEE international parallel and distributed
processing symposium, IPDPS2018,Vancouver,BC,Canada,May
21–25, 2018, pp. 172–181.

Jansen, K., & Porkolab, L. (2002). Linear-time approximation schemes
for scheduling malleable parallel tasks. Algorithmica, 32(3), 507–
520.

Jansen, K., & Thöle, R. (2010). Approximation algorithms for schedul-
ing parallel jobs. SIAM Journal on Computing, 39(8), 3571–3615.

Jansen, K., & Zhang, H. (2006). An approximation algorithm for
scheduling malleable tasks under general precedence constraints.
ACM Transactions on Algorithms (TALG), 2(3), 416–434.

Lenstra, J. K., Shmoys,D.B.,&Tardos, É. (1990).Approximation algo-
rithms for scheduling unrelated parallel machines. Mathematical
Programming, 46(1), 259–271.

Makarychev, K., & Panigrahi, D. (2014). Precedence-constrained
scheduling of malleable jobs with preemption. In Automata,
languages, and programming—41st international colloquium,
ICALP 2014, Copenhagen, Denmark, July 8–11, 2014, Proceed-
ings, Part I, pp. 823–834.

Mounié, G., Rapine, C., & Trystram, D. (1999). Efficient approxima-
tion algorithms for scheduling malleable tasks. In Proceedings of
the eleventh annual ACM symposium on parallel algorithms and
architectures, SPAA ’99, Saint-Malo, France, June 27–30, 1999,
pp. 23–32.

Mounie, G., Rapine, C., & Trystram, D. (2007). A 3/2-approximation
algorithm for scheduling independent monotonic malleable tasks.
SIAM Journal on Computing, 37(2), 401–412.

Papadimitriou, C. H., & Yannakakis, M. (1990). Towards an
architecture-independent analysis of parallel algorithms. SIAM
Journal on Computing, 19(2), 322–328.

Patterson, D. A., & Hennessy, J. L. (2013). Computer organization and
design, fifth edition: The hardware/software interface (5th ed.).
Morgan Kaufmann Publishers Inc.

Rayward-Smith, V. J. (1987). UET scheduling with unit interprocessor
communication delays.Discrete Applied Mathematics, 18(1), 55–
71.

Srinivasa Prasanna, G. N., &Musicus, B. R. (1991). Generalised multi-
processor scheduling using optimal control. In Proceedings of the
third annual ACM symposium on parallel algorithms and archi-
tectures, ACM, New York, NY, USA, SPAA ’91, pp. 216–228.

Turek, J., Wolf, J. L., & Yu, P. S. (1992). Approximate algorithms
schedulingparallelizable tasks. InProceedings of the fourth annual
ACM symposium on parallel algorithms and architectures, ACM,
New York, NY, USA, SPAA ’92, pp. 323–332.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Malleable scheduling beyond identical machines
	Abstract
	1 Introduction
	1.1 Contribution and techniques
	1.2 Related work
	2 The general rounding framework

	3 Rounding schemes
	3.1 A simple 4-approximation for unrelated machines
	3.2 An improved 2ee-1 approx3.163-approximation for*3pt unrelated machines
	3.3 A 7/3-approximation for restricted identical machines
	3.4 A 3-approximation for uniform machines

	4 Extension: sparse allocations via p-norm regularization
	5 Hardness results and integrality gaps
	6 The case of supermodular processing time functions
	7 Conclusion
	Acknowledgements
	A Appendix
	A.1 A slight improvement by optimizing the threshold
	References

