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Abstract
In this paper, we study an important real-life scheduling problem that can be formulated as an unrelated parallel machine
scheduling problem with sequence-dependent setup times, due dates, and machine eligibility constraints. The objective is
to minimise total tardiness and makespan. We adapt and extend a mathematical model to find optimal solutions for small
instances. Additionally, we propose several variants of simulated annealing to solve very large-scale instances as they appear
in practice. We utilise several different search neighbourhoods and additionally investigate the use of innovative heuristic
move selection strategies. Further, we provide a set of real-life problem instances as well as a random instance generator
that we use to generate a large number of test instances. We perform a thorough evaluation of the proposed techniques and
analyse their performance. We also apply our metaheuristics to approach a similar problem from the literature. Experimental
results show that our methods are able to improve the results produced with state-of-the-art approaches for a large number of
instances.

Keywords Unrelated parallel machine scheduling · Multi-objective optimisation · Mixed-integer programming · Metaheuris-
tics · Simulated annealing

1 Introduction

Finding optimised machine schedules in manufacturing is
an important and challenging task, as a large number of jobs
need to be processed every day. While a manual approach
performed by human experts can be used to deal with a small
number of jobs, the large-scale requirements of modern fac-
tories introduce the need for efficient automated scheduling
techniques. In the literature, such scheduling problems that
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deal with the assignment of jobs to multiple machines which
operate in parallel have previously been described as Parallel
Machine Scheduling Problems (PMSPs, e.g. Allahverdi et al.
2008; Allahverdi 2015).

Several types of machines can perform different sets of
operations in the industry, so that each job can be assigned
to a specified set of eligible machines, and varying machine
efficiency has to be considered. PMSPs that consider eligi-
ble machines are well-known in the literature and have been
studied in several publications (e.g. Afzalirad and Rezaeian
2016; Perez-Gonzalez et al. 2019). Similarly, problems with
varying machine efficiency have been previously described
as Unrelated PMSP (UPMSP) (e.g. Vallada and Ruiz 2011;
Avalos-Rosales et al. 2015; Allahverdi 2015). After a job has
reached its completion on a machine, in practice it is often
required to perform a change of the tooling or a machine
maintenance before the next job can be processed. The corre-
sponding changeover times between jobs have been referred
to as sequence-dependent setup times in previous publica-
tions (e.g. Vallada and Ruiz 2011; Perez-Gonzalez et al.
2019).

In the problem,we investigate in this paper,which emerges
from a company in the packaging industry, each job cor-
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responds to a customer order with an associated due date.
Therefore, the problem’s objective function aims tominimise
the total tardiness of all jobs in addition to the totalmakespan.

In summary, the real-life problem we investigate in
this paper can be characterised as UPMSP with sequence-
dependent setup times and eligible machines that aims to
minimise both tardiness and makespan. Although a large
number of different variants of UPMSP that feature all of
the mentioned attributes to some extent have been described
in the literature, efficient metaheuristic and exact solution
methods that consider both tardiness and makespan objec-
tives at the same time remain to be investigated.

We adapt existing mathematical models for related prob-
lems and compare several variations for our problem. How-
ever, the evaluated exact approaches can solve in reasonable
time only small instances. To solve large practical instances,
we deeply investigate several variants of Simulated Anneal-
ing (SA, Kirkpatrick et al. 1983). The variants we investigate
include different cooling schemes such as a dynamic cool-
ing rate and a reheating mechanism. We investigate different
search neighbourhoods based on shift and swap moves,
which are commonly used in the context of PMSP. Addition-
ally, we propose a novel neighbourhood operator for UPMSP
that operates on blocks of consecutively scheduled jobs. To
increase the effectiveness of the move generation procedure,
we guide the search towards more promising regions of the
search space by incorporating domain knowledge into the
neighbourhood move selection strategy.

We provide real problem instances which are based on
real-life scheduling scenarios that have been provided to us
by an industrial partner. Furthermore, we propose a random
instance generator to generate diverse datasets that together
with the real-world instances form a large pool of instances
which we use in our experimental evaluation. Experimental
results show that the Simulated Annealing approach is able
to obtain high-quality solutions for both randomly generated
and real-life instances.

To show the robustness of our method we compare to
the approach from Perez-Gonzalez et al. (2019) that was
proposed recently for a similar problem. The problem spec-
ification provided by Perez-Gonzalez et al. (2019) uses the
same set of constraints of the problem that we investigate in
this paper and also aims to minimise total tardiness. How-
ever, the authors do not consider the minimisation of the
total makespan. As the minimisation of total tardiness is
incomparablymore important than themakespan in our prob-
lem specification, we can easily use our solution methods to
approach the problem instances provided by Perez-Gonzalez
et al. (2019). Our comparison on a huge set of instances that
have been provided by Perez-Gonzalez et al. (2019) shows
that our approach produces improved results for the majority
of the instances.

The structure of the paper is as follows: In Sect. 2, we
describe our problem and give an overview of the existing
related literature. We provide eight different mixed-integer
programming (MIP) formulation variants for the problem
in Sect. 3. Our metaheuristic algorithms are presented in
Sect. 4. Our instance generator and our datasets are described
in Sect. 5. The results of our computational experiments are
presented in Sect. 6. Finally, conclusions and remarks on
possible future research are given in Sect. 7.

2 Problem statement and literature review

The problemwe investigate in this paper can be characterised
as an Unrelated Parallel Machine Scheduling Problem with
Sequence-Dependent Setup Times and Machine Eligibility
Constraints with the objective of minimising both total tar-
diness as well as makespan. A Parallel Machine Scheduling
Problem (PMSP) aims to assign jobs to a given number of
machines to create an optimised production schedule, where
every machine is continuously available and can process one
job at a time. The execution of jobs cannot be interrupted
and resumed later, and there are no precedence constraints
between jobs. Furthermore, everymachine is assumed to start
immediately the execution of its assigned schedule without
any break or interruption.

Instances of the PMSP are stated using a set of machines
M and a set of jobs J . For every job j ∈ J , we have a due date
d j denoting its latest acceptable completion time and a set
of eligible machines Mj ⊆ M on which the job can be pro-
cessed. The processing time p jk of each job j ∈ J depends
on the machine k ∈ M on which it is executed. Further, setup
times si jk are defined for any pair of jobs i and j that are con-
secutively scheduled on a machine k. Additionally, an initial
setup time s0 jk is required before the execution of job j can
beginwhen it is scheduled as the first job onmachine k. Anal-
ogously, a clearing time s j0k is required after the execution
of job j , if it is the last scheduled job on machine k.

A solution to aPMSPassigns a schedule for everymachine
k, which is represented by a permutation of a subset of all
jobs J . If a job i occurs directly before another job j in the
schedule for machine k, then i is called the predecessor of j
(and j is the successor of i). Since the solution representation
of the schedule is sequence-based, the completion time C j

of a job j is the sum of the predecessor’s completion time
Ci , the appropriate setup time si jk , and the job’s processing
time p jk . If a job is the first in its schedule, its completion
time is defined by the initial setup time s0 jk plus its own
processing time p jk . Furthermore, the tardiness of a job is
defined to be the difference between its completion time and
due date (Tj := max(0,C j −d j )). Themachine span Ok for
a machine k is set to the completion time of the job which is
scheduled last plus the final clearing time s j0k . Note that the
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final clearing times only affect the machine spans, but not
the completion times of jobs. Finally, the makespan Cmax is
defined to be equal to the maximum of all machine spans.

Graham et al. (1979) proposes a three-field α|β|γ nota-
tion to categorise machine scheduling problems, where α,
β and γ describe the machine environment, additional
constraints and the solution objectives, respectively. The
machine environment for PMSPs typically consists of iden-
tical machines (Pm) or unrelated machines (Rm). Given that
we are dealing with an environment consisting of unrelated
machines, the problem we investigate can be characterised
as Rm |si jk, Mj |Lex(Σ j (Tj ),Cmax). The objective function
Lex(Σ j (Tj ),Cmax) in this case means that both tardiness
and makespan should be minimised, with the tardiness being
incomparably more important than the makespan (i.e. the
objectives are lexicographically ordered). This particular
problem variant can be seen as a generalisation of the basic
PMSP with identical machines (Pm ||Cmax), which has been
shown to beNP-hard evenwith only twomachines (seeGarey
and Johnson 1979). Furthermore, even the minimisation of
only tardiness has been shown to be NP-hard by Du and
Leung (1990).

PMSPs have been the subject of thorough research in
the past, and two surveys by Allahverdi et al. (2008) and
Allahverdi (2015) give an overview of the related literature.
Sequence-dependent setup times on unrelatedmachines have
been described for many problems that have been studied in
the literature. Awell-known problem in this area is for exam-
ple the Unrelated Parallel Machine Scheduling Problemwith
Sequence-Dependent Setup Times, aiming to minimise the
makespan (Rm |si jk |Cmax). Among the first to investigate this
problem variant were Al-Salem (2004), who propose a Parti-
tioning Heuristic as solution method and Rabadi et al. (2006)
who tackle the problem using a novel technique calledMeta-
Heuristic for Randomised Priority Search. Arnaout et al.
(2010) proposed an Ant Colony Optimisation algorithm,
which they further improved later (Arnaout et al. 2014). Val-
lada and Ruiz (2011) propose Genetic Algorithms for the
problem and create a set of benchmark instances for their
experiments. Avalos-Rosales et al. (2015) propose two new
mathematical formulations and a Variable Neighbourhood
Descent metaheuristic. They show that their proposed MIP
models outperform existing models on the set of benchmark
instances provided by Vallada and Ruiz (2011). More recent
contributions include Santos et al. (2019) who use Stochastic
Local Searches on Vallada’s instances. They find that Simu-
lated Annealing offers good performance over all evaluated
instance sizes. Tran et al. (2016) apply bothLogic-basedBen-
ders Decomposition and Branch and Check as exact methods
for solving the problem. Gedik et al. (2018) propose a Con-
straint Programming formulation of the problem, leveraging
the benefits of interval variables. Fanjul-Peyro et al. (2019)
propose a new MIP model for the problem and an algo-

rithm based on mathematical programming. They replace
the sub-tour elimination constraints in the MIP model from
Avalos-Rosales et al. (2015) by constraints adapted from
previous traveling salesperson problem formulations. This
results in a more efficient mathematical formulation for the
problem which does not compute all of the jobs’ completion
times. Other contributions for this problem variant include
a Tabu Search approach (Helal et al. 2006) and a Simulated
Annealing approach (Ying et al. 2012).

PMSPs that include machine eligibility constraints have
been considered several times in the literature. Rambod and
Rezaeian (2014) consider a PMSP with sequence-dependent
setup times and machine eligibility constraints that focuses
on minimising the makespan (Rm |si jk, Mj |Cmax). Addition-
ally, they include the likeliness of manufacturing defects in
their objective function. Afzalirad and Rezaeian (2017) min-
imise a bi-criterion objective consisting of mean weighted
tardiness (MWT ) and mean weighted flow time (MWFT )
in aPMSPwith sequence-dependent setup times andmachine
eligibility. They assume different release times of jobs (r j )
and precedence constraints (prec) among jobs
(Rm |si jk, Mj , r j , prec|MWT , MWFT ).

Afzalirad and Rezaeian (2016) try to minimise the
makespan for a similar problem where the execution of
jobs requires additional resources (res) with limited avail-
ability (Rm |si jk, Mj , r j , prec, res|Cmax). Bektur and Saraç
(2019) consider a problem variant similar to the one we
investigate in this paper, where they minimise the total
weighted tardiness. Additionally, they require the availabil-
ity of a single server (S1) to perform the setups between
jobs (Rm |si jk, Mj , S1|Σ j (w j · Tj )). Chen (2006) considers
a problem with machine eligibility, where fixed setup times
are only required if two consecutive jobs produce different
product families. Their objective is to minimise the maxi-
mum tardiness of all jobs. Afzalirad and Shafipour (2018)
try to minimise the makespan in a PMSP with machine eligi-
bility and resource restrictions and assume that setup times
are included in the processing times.

The problem statementsmost closely resembling the prob-
lem considered in this paper are studied by Caniyilmaz et al.
(2015), Adan et al. (2018) and Perez-Gonzalez et al. (2019).
All three papers use sequence-dependent setup times, due
dates and machine eligibility constraints. However, each of
these papers focuses on the minimisation of a slightly differ-
ent objective function.

Caniyilmaz et al. (2015) try to minimise the sum of
makespan and cumulative tardiness (Cmax + Σ j Tj ). They
implement an Artificial Bee Colony algorithm and compare
its performance against a Genetic Algorithm on a real-life
instance originating from a quilting work centre. This most
closely resembles our objective of minimising tardiness as
primary target and makespan as secondary target. Adan et al.
(2018) try to minimise a three-part objective function, con-
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sisting of a weighted sum of total tardiness, setup times and
processing times (α · Σ j Tj + β · Σ jk p jk + γ · Σi jksi jk),
where α, β and γ are weights. This objective function coin-
cides with our objective function when there is only a single
machine available and the weights are chosen appropriately.
They implement a Genetic Algorithm very similar to the one
described by Vallada and Ruiz (2011) and apply it to three
real-life datasets. Perez-Gonzalez et al. (2019) also consider
a problem that is similar to ours, but they only take the tardi-
ness of jobs into consideration and disregard the makespan.
Furthermore, they propose a MIP model for their problem
which is based on the mathematical formulation from Val-
lada and Ruiz (2011), along with five different constructive
heuristics and an immune-based metaheuristic. They are the
first to create a sizeable dataset that is available for other
researchers.

In summary, we can see that a large variety of PMSPs
have been studied in the past. However, to the best of
our knowledge, efficient metaheuristic and exact solution
methods for the particular problem variant that considers
a lexicographically ordered minimisation of total tardiness
and makespan under machine eligibility constraints and
sequence-dependent setup times remains to be investigated.

3 Mixed-integer programming

In their work, Perez-Gonzalez et al. (2019) propose a math-
ematical formulation for a similar PMSP that is based on the
model described by Vallada and Ruiz (2011). As their objec-
tive function does not consider the makespan, their model
does not include corresponding constraints. We therefore
extend their proposed model by constraint sets (5) and (8), to
calculate the makespan (which includes the clearing times).
The variables used in the formulation are described in Table
1. The set J0 includes a dummy job (0), that represents the
start and end points of eachmachine schedule. The predeces-
sor of the first job assigned to each machine is set to be the
dummy job. Similarly, the successor of the last job assigned
to each machine is set to be the dummy job. Xi, j,m are binary
decision variables which are set to 1 if and only if job j is
scheduled directly after job i onmachinem (and0 otherwise).
C j,m denotes the completion time of job j onmachinem and
variables Tj represent the tardiness of job j . Cmax is set to
the total makespan which includes the clearing times.

The resulting model M1 can be stated as follows:

minimise Lex(Σ j∈J (Tj ),Cmax), subject to

Tj ≥ C j,m − d j ,∀m ∈ M, j ∈ J (1)
Σm∈MΣi∈J0,i �= j Xi, j,m = 1,∀ j ∈ J (2)
Σm∈MΣ j∈J0,i �= j Xi, j,m ≤ 1,∀i ∈ J (3)
Σ j∈J0 X0, j,m ≤ 1,∀m ∈ M (4)
Σm∈MΣi∈J0,i �= j Xi, j,m = Σm∈MΣi∈J0,i �= j X j,i,m ,

∀ j ∈ J (5)
Σk∈J0,k �=i (Xk,i,m) ≥ Xi, j,m ,∀i, j ∈ J ,m ∈ M, i �= j (6)
C j,m + V · (1 − Xi, j,m) ≥ Ci,m + si, j,m + p j,m ,

∀i ∈ J0, j ∈ J ,m ∈ M, i �= j (7)
Σi∈J0Σ j∈J0 Xi, j,m · (si, j,m + p j,m) ≤ Cmax,∀m ∈ M (8)
C0,m = 0,∀m ∈ M (9)
Xi, j,m ∈ {0, 1},∀i, j ∈ J ,m ∈ M (10)
Tj ≥ 0,∀ j ∈ J (11)
C j,m ≥ 0,∀m ∈ M (12)

Constraint set (1) binds the tardiness of each job. Con-
straint set (2) ensures that every job has exactly one prede-
cessor and is scheduled on one machine, while constraint
set (3) restricts every job to have only one successor. They
are not instantiated for the dummy job, because it is shared
over all machines and thus can have multiple predecessors
(successors) in the solution. Constraint set (4) restricts every
machine to schedule at most one job at position one. Con-
straint set (5) forces each job (except for the dummy job)
to have a single predecessor and successor on the machine
where it is scheduled. Constraint set (6) checks that if a job
j is scheduled after another job i on the same machine, then
i has at least one predecessor as well. Constraint set (7) cal-
culates the completion time C j,m for every job j on machine
m. Note that V ·(1− Xi, j,m) evaluates to 0, if job i is the pre-
decessor of job j on some machine. Otherwise, it evaluates
to V and thereby fulfils the inequality. Given that every job
has a processing time greater than zero on every machine,
constraint set (7) also enforces sub-tour elimination regard-
ing the predecessor relations. Constraint set (8) calculates the
makespanwhich includes the clearing time after the final job.
Constraint set (9) forces the completion time of the dummy
job to be 0 on every machine. Constraint sets (10) to (12)
restrict the domains of the decision variables.

Note that constraint set (2) does not ensure that jobs
are scheduled on one of their eligible machines. Instead,
M1 sets the processing times of each job on its ineligible
machines to V (an upper bound to the makespan) so that
the minimisation will implicitly avoid assignment of jobs
on ineligible machines. This way of implicitly modelling
the machine eligibility constraints was used in the parallel
machine schedulingmodel proposedbyPerez-Gonzalez et al.
(2019).

We additionally investigate in this paper an alternative
model M2 that simply models machine eligibility explicitly
by constraint sets (13) and (14) that replace constraint set (2).

Σm∈E j Σi∈J0,i �= j Xi, j,m = 1,∀ j ∈ J (13)

Σm∈M\E j Σi∈J0,i �= j Xi, j,m = 0,∀ j ∈ J (14)

Constraint set (13) ensures that every job is scheduled
on exactly one of its eligible machines, while constraint
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Table 1 Variables used in MIP
models M1 and M2

Parameter Additional information Description

J − Set of Jobs

J0 − Set of Jobs, including Dummy Job 0

M − Set of Machines

E j j ∈ J , E j ⊆ M Eligible Machines of job j

d j j ∈ J Due Date of job j

p j,m j ∈ J , m ∈ M Processing Time of job j on machine m

si, j,m i, j ∈ J0, m ∈ M Setup Time between jobs i and j on machine m

Variable Additional Information Description

Xi, j,m i, j ∈ J0, m ∈ M Job i is the predecessor of job j on machine m

C j,m j ∈ J0,m ∈ M Completion time of job j on machine m

Tj j ∈ J Tardiness of job j

Cmax − Makespan

V − Large Constant, e.g. Upper Bound for Makespan

set (14) prohibits jobs from being scheduled on any other
machine.

Avalos-Rosales et al. (2015) propose new mathemati-
cal formulations for the problem described by Vallada and
Ruiz (2011). Most notably, they include a new set of binary
decision variables Y j,m to describe whether or not job j is
scheduled on machine m and they additionally introduce the
notion of machine spans. Further, they replace the decision
variables for the completion time C j,m of job j on machine
m by the variables C j .

In addition to the above-mentioned models M1 and M2,
we extend the model proposed by Avalos-Rosales et al.
(2015) to our problem statement to derive alternative math-
ematical formulations. These extensions include machine
eligibility, due dates and the incorporation of final clearing
times.

The resulting model M3 can be stated as:

minimise Lex(Σ j∈J (Tj ),Cmax), subject to

Σm∈M (Y j,m) = 1,∀ j ∈ J (15)

Σi∈J0,i �= j (Xi, j,m) = Y j,m,∀ j ∈ J ,m ∈ M (16)

Σ j∈J0,i �= j (Xi, j,m) = Yi,m,∀i ∈ J ,m ∈ M (17)

C j ≥ Ci + si, j,m + p j,m + V · (Xi, j,m − 1),

∀i ∈ J0, j ∈ J ,m ∈ M (18)

Σ j∈J (X0, j,m) ≤ 1,∀m ∈ M (19)

Σi∈J0, j∈J ,i �= j (si, j,m · Xi, j,m) +
Σi∈J (pi,m · Yi,m + si,0,m · Xi,0,m) ≤ Cmax,

∀m ∈ M (20)

Tj ≥ C j − d j ,∀ j ∈ J (21)

Tj ≥ 0,∀ j ∈ J (22)

C0 = 0 (23)

Xi, j,m ∈ {0, 1},∀i, j ∈ J ,m ∈ M (24)

Yi,m ∈ {0, 1},∀ j ∈ J ,m ∈ M (25)

Constraint set (15) ensures that every job is scheduled
on exactly one machine. Constraint sets (16)(17) ensure that
every job has predecessors and successors on a machine if
and only if the job is scheduled on this machine. Constraint
set (18) connects the completion time for each job to its
predecessors. Constraint set (19) ensures that there is at most
one first job on each machine. Constraint set (20) binds the
machine span for each machine by summing up the setup
times between its scheduled jobs and their processing times.
Constraint sets (21) and (22) involve the tardiness of each
job and force it to be nonnegative. Constraint (23) sets the
dummy job’s completion time to 0. Constraint (24) and (25)
enforce that variables Xi, j,m and Yi,m have a binary domain.

The modelM3 incorporates machine eligibility via penal-
isation of the corresponding processing times similar as it is
done in M1, and therefore also sets the processing time of
each job on its ineligible machines to V . We investigate in
this paper an alternative model M4 that is based on M3 but
explicitly models the machine eligibility constraints using
hard constraints. M4 therefore replaces constraint set (15)
with constraint sets (26) and (27).

Σm∈E j (Y j,m) = 1,∀ j ∈ J (26)

Σm∈M\E j (Y j,m) = 0,∀ j ∈ J (27)

Constraint set (26) ensures that every job is scheduled
on exactly one of its eligible machines, while constraint set
(27) prohibits jobs from being scheduled on any ineligible
machines.

Helal et al. (2006) use a different formulation for con-
straint set (18) which aggregates the machines via sums
instead of instantiating the constraints for every machine.
Replacing constraint set (18) in modelsM3 and M4 by con-
straint set (28) results in modelsM5 and M6.
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C j ≥ Ci + Σm∈M (Xi, j,m · (si, j,m + p j,m))+
V · (Σm∈M (Xi, j,m) − 1),

∀i ∈ J0, j ∈ J

(28)

We additionally experimented with an alternative variant
for constraint set (5),which removes the set ofmachines from
the summation and instead includes it in the ∀ quantifier. We
therefore introduce constraint set (29):

Σi∈J0,i �= j Xi, j,m = Σi∈J0,i �= j X j,i,m,

∀ j ∈ J ,m ∈ M
(29)

Replacing constraint set (5) in models M1 and M2 by
constraint set (29) results in modelsM7 and M8.

The implementation of models M1–M8 and their effec-
tiveness will be discussed in Sect. 6.1.

4 Metaheuristic approaches

In addition to the MIP formulations, we propose several
Simulated Annealing variants to quickly find high-quality
solutions for large instances as they appear in the real world.
We first describe how initial solutions for local search can be
generated in Sect. 4.1. Afterwards, we propose neighbour-
hood operators for the PMSP in Sect. 4.2, and finally, we
describe three Simulated Annealing variants in Sect. 4.3.

4.1 Constructing initial solutions

Oneway to create an initial solution for local search is to ran-
domly assign jobs to machines. We can do this by selecting
one of the eligible machines for each job randomly and then
scheduling all jobs in randomorder on the selectedmachines.

An alternative to using a random construction of initial
solutions is to greedily build an initial schedule. In our case,
we propose a constructive greedy heuristic which aims to
minimise both tardiness and makespan as follows: first, we
sort the set of jobs in ascending order by the due dates. After-
wards, we process the ordered jobs and schedule one job after
the other on one of its eligible machines. To decide which
machine should be selected for a job, the greedy heuristic
compares the total machine spans that would be caused by
each of the feasible machine assignment and finally selects
the assignment that leads to the lowest machine span (ties are
broken randomly). If multiple jobs exist that have exactly the
same due date, we compare possible machine assignments
for all of these jobs in a single step instead of processing
them in random order. In such a case we then also select the
job to machine assignment that leads to the lowest increase
in machine span. The detailed pseudo-code for this heuristic
can be seen in Algorithm 1.

Algorithm 1 Constructive Heuristic (CH)
1: function ConstructSolution(Jobs, Machines)
2: for all m ∈ Machines do
3: � initialise empty machine schedules
4: Schedulem ← empty schedule
5: � set machine span to 0
6: tm ← 0
7: � set last scheduled job id to 0 (no job) at first
8: lm ← 0
9: end for
10:
11: G ← sort and group Jobs by due dates
12: for all g ∈ G do
13: while |g| > 0 do
14: � find job/machine causing lowest machine span
15: j,m ← argmini∈g,n∈M (tn + sln im + pin)
16: tm ← tm + slm jm + p jm
17: lm ← j
18: � schedule job j on machine m
19: Schedulem .Append( j)
20: g ← g \ { j}
21: end while
22: end for
23: end function

4.2 Search neighbourhoods

In this section, we introduce the neighbourhood relations that
we use in our search method. We begin with the atomic
neighbourhoods Shift and Swap, and then we describe the
more complex block moves, called BlockShift and Block-
Swap. Finally, we discuss the general notion of guidance
used to bias the random selection toward promising moves.

4.2.1 Shift neighbourhood

A Shiftmove is configured to shift a given job j ontomachine
m at position p. In otherwords, the job j is first removed from
its original location in the current solution. Any successor on
the associatedmachine is then shiftedbyoneposition towards
the front of the schedule. Finally, job j is re-inserted into the
solution at its target position p in the schedule of machine
m. Any job that is present on the target schedule at a later or
equal position is shifted towards the end of the schedule.

We call a shift move an intra-machine shift move if job j
is already scheduled on machine m in the current solution.
Otherwise, if j is currently assigned to a machine different
to m, it is called an inter-machine shift move. An example
of an inter-machine shift move is visualised in Fig. 1. The
figure shows a schedule for two machines, before and after
job 3 is moved from machine 1 to machine 2. Note that the
length of the arrows between two consecutive jobs indicates
the length of the required setup time.

Shift moves are feasibility-preserving as long as the target
machine m is eligible for the selected job j .
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Machine 1: 1 2 3 4 5 6 7

Machine 2: 8 9 10 11 12

(a) Before Move Application

Machine 1: 1 2 4 5 6 7

Machine 2: 8 9 10 11 12 3

(b) After Move Application

Fig. 1 An example inter-machine shift move

Machine 1: 1 2 3 4 5 6 7

Machine 2: 8 9 10 11 12

(a) Before Move Application

Machine 1: 1 2 11 4 5 6 7

Machine 2: 8 9 10 3 12

(b) After Move Application

Fig. 2 An example inter-machine swap move

4.2.2 Swap neighbourhood

A Swap move swaps the position of two distinct jobs j1
and j2. If both jobs are scheduled on the same machine, we
refer to such a move as an intra-machine swap. Otherwise,
if jobs are scheduled on different machines, we call it an
inter-machine swap. An example of an inter-machine swap
move is visualised in Fig. 2. The figure shows a schedule for
two machines, before and after job 3 is swapped with job 11
between machine 1 and machine 2.

Note that in the case of inter-machine swaps it is likely that
the processing times and associated setup times for both jobs
will change. Furthermore, completion times of all jobs that
are scheduledon the affectedmachines after the swapped jobs
need to be updated. When performing intra-machine swaps,
the processing times of the swapped jobs do not change.
However, the completion times of other jobs on the same
schedule still need to be updated.

To preserve feasibility for swapmoves, it has to be ensured
that the first job’s machine has to be eligible for the second
job and vice versa.

4.2.3 Block moves

We introduce the notion of block moves, as a variant of the
basic shift and swap neighbourhoods: A block is defined as
a set of jobs that are scheduled consecutively on a single
machine. Therefore, a block move operates on a set of jobs
instead of a single job. This concept can be applied to both
Swap and Shift moves, leading to two new neighbourhoods
that we call BlockSwap and BlockShift, respectively. Block-
Shift moves are similar to regular shift moves, but include an
additional parameter l determining the length of the block.
In turn, every BlockSwapmove uses two additional attributes
l1 and l2 representing the length of the blocks.

Block moves are motivated by our real-life application,
where usually several jobs process the same material type
and thus are in the best case scheduled consecutively to
avoid unnecessary setup times. Therefore, moving blocks of
jobs at once can be beneficial to preserve low setup times
when searching for neighbourhood solutions. To the best of
our knowledge, using such block moves to approach parallel
machine scheduling problems has not been considered in the
literature before.

To be feasibility-preserving, the targetmachine of aBlock-
Shiftmove has to be included in the intersection of all eligible
machine sets of the affected blocks. For intra-machineBlock-
Swap moves, the blocks may not overlap and the second
block’s machine has to be contained in the intersection of the
eligible machine sets of all jobs in the first block and vice
versa.

4.2.4 Guidance in randommove generation

As customary for many practical scheduling problems, the
size of the search neighbourhood becomes tremendously
large for real-world instances. Therefore, it might be infea-
sible to explore all possible neighbourhood moves in rea-
sonable time and the probability of randomly guessing an
improving move usually is very low. Thus, it can be ben-
eficial to introduce problem-specific strategies that guide
exploration towards promising areas in the search neighbour-
hood. The general idea is to preferably select moves affecting
jobs and machines that contribute to the cost of the solution.

Santos et al. (2019) propose a guidance strategy for their
Simulated Annealing approach that focuses on reducing the
makespan. They point out that a move can only improve the
makespan if it involves themachinewith the longest machine
span. For this reason, they generate moves such that at least
one of the involved machines is fixed to be this machine, in
addition to randomly generated moves.
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Similarly, in our problem the tardiness of a solution can
only be improved if a tardy job is either rescheduled at an
earlier time, or its predecessors are shifted to other machines
or later positions. Therefore, we propose a move selection
strategy that is biased towards moves that shift tardy jobs
to earlier positions in the schedule as follows: Whenever a
tardy job exists in the schedule, either the job itself or one
of its predecessors is selected randomly. Otherwise, if no
tardy job exists, any random job is chosen. Additionally, in
case of an intra-machine (block) shift move we restrict the
target position to be earlier than the source position. The
detailed procedure to select a job that can improve tardiness
is described in Algorithm 2.

Algorithm 2 Job Selection Procedure
1: function PickJobToImproveTardiness(M)
2: � iterate over all jobs scheduled on machine M backwards
3: for i ← |M | until 1 do
4: j ← M[i]
5: if Tj > 0 then
6: � Select the tardy job or one of its predecessors
7: k ← Random(1, i)
8: return M[k]
9: end if
10: end for
11: � No tardy job could be found: pick one at random
12: i ← Random(1, |M |)
13: return M[i]
14: end function

To generate the moves we include, in addition to a
completely random move generation, both the makespan
guidance and the tardiness guidance strategies. One of the
mentioned generation strategies is chosen during a search
iteration based on random probabilities that are configured
by parameters.

4.3 Simulated annealing

Simulated Annealing is a metaheuristic procedure which is
inspired by the cooling processes appearing in metallurgy
and has first been proposed by Kirkpatrick et al. (1983). The
main idea is to generate random neighbourhood moves and
determine the probability of move acceptance based on the
change in solution quality caused by the move. Moves that
lead to an improved objective function or no change in solu-
tion cost are accepted in any case. To determine whether
or not a move that weakens the solution quality should be
accepted, the notion of temperature is used. Simply put, the
higher the temperature, the higher is the probability to accept
alsoworseningmoves.As the search goes on, the temperature
lowers its value according to some cooling scheme and even-
tually reaches values close to zero. Towards the end of search

Simulated Annealing therefore evolves into a Hill-Climber
as only improving moves are accepted.

Pseudo-code for the basic procedure of SimulatedAnneal-
ing can be seen in Algorithm 3, where Tmax, Ns and α are the
initial temperature, the number of samples per temperature,
and the cooling rate, respectively.

Algorithm 3 Simulated Annealing
1: function SA(Solution)
2: c ← Solution
3: b ← c
4: tc ← T0
5: while ¬timeout do
6: for i ← 0 until Ns do
7: x ← GenerateNeighbour(c)
8: if Accept(x, tc) then
9: c ← x
10: if Cost(x) < Cost(b) then
11: b ← x
12: end if
13: end if
14: end for
15: tc ← tc · α

16: end while
17: return b
18: end function

In the remainder of this section, we propose three differ-
ent variants of Simulated Annealing with different cooling
schemes.

4.3.1 Reheating simulated annealing (SA-R)

This uses a geometric cooling scheme, i.e. ti+1 := ti · α,
where the cooling rate α is a predefined constant. At each
temperature, a number of moves Ns are generated before the
next cooling step is applied. To determine the neighbour-
hood from which to sample the next move, we use a set of
hierarchical probabilities (pI , pS , and pB). When the next
move is determined to be a block move, we determine its
size by uniformly sampling from the set {2, ..., Bmax}. Fur-
ther options for move generation are whether or not to enable
guidance towards minimising tardiness or makespan. This is
again handled by corresponding probabilities, pT and pM .

If the generated move improves the solution, it is accepted
immediately. The probability of accepting a worsening move
is calculated via Eq. (30) where δ denotes the cumulative
weighted delta cost introduced by the move and tc is the
current temperature.

p := e− δ
tc (30)

In order to compute δ, we define the weighted cost of a
solution S asC(S) Eq. (31), whereC(S) is the weighted sum
of total tardiness and the makespan.
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C(S) := W · Σ j Tj (S) + Cmax(S) (31)

W should be a constant that is sufficiently large to ensure
the lexicographic order of the objectives (in our experiments
we set W := 105). Given a current solution S and a solution
S′, we then set δ := C(S′) − C(S).

Since improvingmoves are acceptedunconditionally, only
positive values for δ can occur in this formula. It should be
noted that higher values for δ lead to lower values in the
exponent and thus lower acceptance probabilities.

When the algorithm reaches its minimum temperature
Tmin, a reheat occurs and its temperature is set to the ini-
tial temperature Tmax. Execution stops when a time limit is
reached.

The parameters for this variant of Simulated Annealing
are the following:

– Tmax: Initial Temperature
– Tmin: Minimum Temperature
– Ns : Samples per Temperature
– α: Cooling Rate
– pI : Probability of generating inter-machine moves (as

opposed to intra-machine moves)
– pS : Probability of generating shift moves (as opposed to
swap moves)

– pB : Probability of generating block moves (as opposed
to single-job moves)

– pT : Probability of applying tardiness guidance in the
move generation

– pM : Probability of applying makespan guidance in the
move generation

– Bmax: Maximum size of blocks

4.3.2 Simulated annealing with dynamic cooling (SA-C)

This variant tries to continually adapt its cooling rate in such a
way that theminimum temperature is reached at the end of the
algorithm’s time limit. Therefore, an estimate of how many
iterations can still be done within the time limit is calculated
after each iteration. Before every cooling step, the current
cooling rate αi is computed according to Eq. (32), where x is
the number of cooling steps left, Tmin and tc are theminimum
and current temperature, respectively. Pseudo-code for this
dynamic cooling procedure can be seen in Algorithm 4.

αi := x

√
Tmin

tc
(32)

In order to minimise the time spent in high temperatures,
we further apply a cut-off mechanic. This counts the number
of accepted moves at every temperature and forces an imme-
diate cooling step if a specified threshold Na is exceeded.

Algorithm 4 Calculating the Cooling Rate
1: function CoolOff(tc, iterationsDone, elapsedTime, timeLeft)
2: i pt ← i terationsDone

elapsedT ime
3: l ← i pt · timeLe f t
4: q ← Tmin

tc
5: α ← l

√
q

6: return tc · α

7: end function

This threshold is often specified as ratio ρ = Na
Ns

and a typ-
ical value is 0.05. Overall, SA-C requires the same set of
parameters as SA-R, except for α, which is replaced by ρ.

4.3.3 Simulated annealing with iteration budget (SA-I)

This variant uses a constant cooling rate to determine the
temperature for each iteration. In addition to a time limit,
it uses a fixed iteration budget I to limit its run time. The
idea is to choose the value for I is to estimate the possible
number of iterations within the given time limit, based on
the execution speed of sample iterations on the benchmark
machine (in our experiments, we set I to 185 · L , where L is
the time limit in milliseconds). The provided iteration budget
is split evenly over the temperatures, such that the minimum
temperature is reachedwhen its iteration budget is exhausted.
As such, the number of samples per temperature is defined
as the value of a function depending on the maximum and
minimum temperature, which can be seen in Eq. (33).

Ns := I
logα( Tmin

Tmax
)

(33)

We apply the same cut-off mechanism as in SA-C. Since
the cooling rate is adjusted differently than for SA-C, this
may cause the temperature to fall below the actual minimum
temperature. Due to Ns being calculated directly by SA-I, it
does not have to be provided as a parameter. However, the
cooling rate α has to be stated as a parameter for SA-I.

5 Instances

To evaluate the proposed approaches, we perform a large
number of experiments with a set of randomly generated
instances, a set of real-life instances, and instances on a
related PMSP from the literature. In Sect. 5.1, we provide
information on our instance generator, then we describe the
set of randomly generated instances in Sect. 5.2. Later in
Sect. 5.3, we present the real-life instances that have been
provided to us by our industrial partner. Additional informa-
tion on the problem instances from the literature are given in
Sect. 5.4.
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5.1 Instance generator

To describe the generation of instances we use the notion
of materials, as our real-life data determines the setup times
using materials instead of jobs. As every job processes a sin-
gle material, converting a given material-based setup time
matrix into a job-based setup time matrix is a simple prepro-
cessing step. The main reason for this kind of specification
of the setup times is to reduce space requirements of the
instance files. A similar instance format has also been used
previously in the literature (e.g. Caniyilmaz et al. 2015).

To create a large pool of instances we implement a random
instance generator which is configured by parameters that
specify the desired instance size (i.e. the number ofmachines,
materials and jobs) as well as a random seed. This instance
generator is based on a similar one proposed by Vallada and
Ruiz (2011), but we extend it to include also the generation
of machine eligibility constraints and due dates. The detailed
pseudo-code is provided in Algorithm 5 (where parameters
NoMach, NoMat, NoJbs are the number of machines, the
number of materials, and the number of jobs).

The processing time of each job on each machine and the
setup time between every pair of materials are drawn from
uniform distributions [1, 100) and [1, 125), respectively.
Setup times between two jobs sharing the same material are
set to zero.

Exactly one material is assigned to each job as follows:
At first, one job after the other gets matched to an unused
material until every material has been assigned exactly once.
Afterwards, a randomly selected material is assigned to any
job that has not been matched to a material yet. Thus, no two
jobs will process the same material if the number of jobs is
lower or equal to the number of materials.

For every job, the corresponding set of eligiblemachines is
determined in the following way: First, the eligible machine
countm is sampled fromauniformdistribution [1, M], where
M is the total number of machines. Then, the set of avail-
able machines is sampled m times without replacement to
determine the eligible machines for the job.

We further use three different procedures to assign
due dates randomly to create different sets of benchmark
instances.

In the first two procedures, the due dates are determined
by constructing a reference solution for the problem and
afterwards setting the scheduled completion time of each
job as the corresponding due date. Thus, it is ensured by
construction that a feasible schedule exists for every gener-
ated problem instance even though the generated reference
solution may not be optimal with respect to makespan. The
construction of such a reference solution consists of the
following steps (see Algorithm 5, lines 35–46): First, we
determine a random order of jobs in which we will schedule

them one after the other. Then, for every job we randomly
select one of its eligible machines according to an indepen-
dently specified selection strategy. The job is then appended
to the selected machine’s schedule and the job’s due date is
set to its completion time based on the current schedule.

Our first due date generation procedure (S-style) con-
structs a solution as described abovewith the use of a random
machine selection strategy.

The second due date generation procedure (T-style) also
constructs a reference solution but aims to obtain tighter due
dates through the use of an alternative greedy machine selec-
tion heuristic (see Algorithm 6). This alternative strategy
greedily selects themachine that causes the lowest setup time
when the corresponding job is scheduled.

The third due date generation procedure (P-style) does not
rely on constructing a reference solution but assigns random
due dates by sampling the values from a uniform distribution
[C̃max · (1− τ − R/2), C̃max · (1− τ + R/2)]. The variables
τ and R in this case are parameters determining the tightness
and variance of the generated due dates. For the calculation
of the approximate makespan C̃max, we use the formula sug-
gested by Perez-Gonzalez et al. (2019) (see Eq. (34)). Similar
approaches to randomly sample due dates have been used by
Potts and Wassenhove (1982), Chen (2006) and Lee et al.
(2013).

C̃max := max
j∈J

Σm∈E j (p j,m) + Σi∈J (si, j,m)

n

|E j | · n

m
(34)

5.2 Generated instances

Using the previously described instance generator, we gen-
erated 560 instances that can be separated into six different
categories. The instances of each category have been gener-
ated with a differently configured random instance generator
(see Table 2).

When every job in an instance is assigned to a different
material (i.e. no pair of jobs use the same material), then the
instance is classified as usingUnique Materials. In this case,
between any pair of jobs, the setup time is greater than zero.
This is the case commonly found in the literature.

Instances with less materials than jobs are classified as
using Shared Materials, because at least one material is
shared between multiple jobs. As mentioned earlier, in such
a case the setup time between pairs of jobs is zero, because
no change in tooling is required. This reflects the structure
observed in our real-life instances.

For the due date generation procedure that does not use
a reference solution, we set the parameters τ = 0.25 and
R = 0.5, to generate instances that are unlikely to have zero-
cost solutions with respect to tardiness.
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Table 2 Number of generated
instances per category

S-style due dates T-style due dates P-style due dates

Unique materials 110 110 60

Shared materials 110 110 60

Table 3 Ranges for specifics of
generated instances

Variable Distribution range Remarks

Number of machines [1, 30] Max. 1
3 · |Jobs|

Number of jobs [20, 1000] Step size: 20

Number of materials [1, |Jobs|) Only with shared materials

We sample the input parameters for our instance generator
(i.e. the number of jobs, machines and materials) from the
uniform distributions described in Table 3. For instanceswith
shared materials, both the number of jobs and the number of
materials are sampled separately from a uniform distribution.
For instances with unique materials, the number of materials
is set to be equal to the number of jobs. The bounds for the
value ranges have been chosen to generate instances with
realistic size.

As our metaheuristic approaches rely on a number of
parameters, we use the automated parameter configuration
tool SMAC to find efficient parameter configurations. To
avoid over-fitting of the tuned parameters on the instances
we use in our experiments, we split the 560 randomly gener-
ated instances into a training set for parameter tuning and a
validation set that is used in our final experimental evaluation.
To create our training set we uniformly sampled 90 S-style
instances with shared materials and 90 S-style instances with
unique materials. Similarly, we further sampled two sets of
90 instances from the T-style ones. Finally, we also sampled
40 P-style instances with shared materials and another 40
P-style ones with unique materials. Our training set there-
fore consists of 440 instances in total, while the validation
set consists of the remaining 120 instances. Further details
on the parameter tuning are given in Sect. 6.2.1.

The generated instances are publicly available at https://
doi.org/10.5281/zenodo.4118241, and the instancegenerator
is available on request.

5.3 Real-life instances

For testing purposes, our industrial partners provided us with
three real-life instances (A, B and C) that represent planning
scenarios from industrial production sites. The characteris-
tics of these instances can be seen in Table 4.

We further created four additional instances by scaling up
instance C (up to 16 times the original size). Additionally,
we include a new instance, called C-assigned, that uses the

Table 4 Real-life instance specifics

Instance Machines Jobs Materials

A 3 29 29

B 3 187 4

C 13 172 40

same set of jobs and machines as instance C, but predeter-
mines a machine assignment for each job. Similar to instance
C, we scaled up instance C-assigned to create another four
instances. The set of all real-life based instances used in our
benchmark experiments can be seen in the first column of
Table 13.

5.4 Instances from the literature

We evaluate the performance of our metaheuristics on
instances for the PMSP variant that has been described
by Perez-Gonzalez et al. (2019).1 The only difference to
the problem we investigate is that their objective function
only considers the minimisation of total tardiness and does
not include the makespan. Since the makespan is the sec-
ondary objective in our problem and thus incomparably less
important than total tardiness, we can directly use our meta-
heuristics to approach the problem from Perez-Gonzalez
et al. (2019) by simply ignoring the makespan.

6 Computational results

To evaluate our approaches we performed a large number
of experiments based on the sets of instances described in
Sect. 5.1.

1 The instances we use in our experiments have been kindly provided
to us by the authors.
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Algorithm 5 Instance Generator
1: function GenerateInstance(NoMach, NoMat, NoJbs)
2: Mach ← list from 1 to NoMach
3: Mat ← list from 1 to NoMat
4: Jbs ← list of jobs from 1 to NoJbs
5:
6: for i ← 1 until NoJbs do
7: n ← UniformRandom(1, NoMach + 1)
8: E ← select n random elements from Mach
9: p ← empty dictionary
10: for all m ∈ E do
11: processingT ime ← UniformRandom(1, 100)
12: p.Add(m, processingT ime)
13: end for
14: t ← select element from Mat
15: Jbs[i].eligibleMachines ← E
16: Jbs[i].processingT imes ← p
17: Jbs[i].material ← t
18: end for
19:
20: � Initialise empty setup time matrix
21: ST ← (NoMat + 1) × (NoMat + 1) × (NoMach) matrix
22: for all pred ∈ Mat ∪ {0} do
23: for all succ ∈ Mat ∪ {0} do
24: for all m ∈ Mach do
25: if pred = succ then
26: st ← 0
27: else
28: st ← UniformRandom(1, 125)
29: end if
30: ST [pred, succ,m] = st
31: end for
32: end for
33: end for
34:
35: S ← empty dictionary
36: for all m ∈ Mach do
37: S.Add(m, empty schedule)
38: end for
39:
40: � Determine the Due Dates
41: for all j ∈ Shuffle(Jobs) do
42: m ← SelectMachine( j)
43: S[m].Append( j)
44: c ← completion time of j on S[m]
45: j .dueDate = c
46: end for
47:
48: return NewInstance(Mach, Mat, Jbs, ST )

49: end function

6.1 Comparison of mixed-integer programming
formulations

We implemented the MIP models described in Sect. 3
with Gurobi 8.1.1. Experiments with the MIP models were
performed on a computer with an AMDRyzen 2700X Eight-
Core CPU and 16 GB RAM.

All eight models were evaluated on the 25 smallest gen-
erated instances from the validation set under a time limit of

Algorithm 6 Greedy Machine Selection
1: function SelectGreedyMachine(j)
2: m ← null
3: s ← 0
4: for all e ∈ j .eligibleMachines do
5: i ← ID of last job on e or 0 if the schedule is empty
6: � ST as defined in Algorithm 5
7: t ← ST [i, j,m]
8: if (m = null) ∨ (t < s) then
9: s ← t
10: m ← e
11: end if
12: end for
13: return m
14: end function

1800 s per instance. Table 5 summarises the results (tardi-
ness/makespan) for each instance.

It can be seen that the models that account for the machine
eligibility requirements by a set of hard constraints (M2,M4,
M6, andM8) are able to provide solutions for more instances
than their counterparts (M1,M3,M5,M7) that set ineligible
machines processing times to a makespan upper bound. In
fact, models M2 and M6 are able to provide solutions for
all 25 randomly generated instances, while M4 and M8 can
provide solutions for all instances but one. Interestingly, the
solutions found by M1 exhibit often higher quality than the
corresponding solutions found by M2, the same is true for
M7 andM8which are similar toM1 andM2, but differ only
in the formulation of constraint set (29). If we compare the
results produced by M1 and M7, we see that the solution
quality is only slightly different for most instances. How-
ever, it seems thatM1 reaches overall best results more often
than M7. Similarly, we can see that M2 produces slightly
more feasible results than its counterpart M8, although M8
produces a better solution quality for some instances and can
reach overall best results for four instances. If we compare
results produced by models M3 and M5 with their coun-
terparts M4 and M6 we can clearly see that M4 and M6
produce better results for the majority of the instances. The
novel model adaptation that we described in Sect. 3 (M6) is
able to find the best solutions for 14 of the randomly gener-
ated instances. Nine of these instances are P-style, four are
S-style and one is a T-style instance. M4 provides the best
solution two times for P-style instances, three times for S-
style ones and four times for T-style ones. Further, M4 is
able to prove optimality for two solutions, while M6 is able
to find one optimal solution. Overall, M4 and M6 provide
the best solutions for 22 randomly generated instances.

Tables 6 and 7 show initial and final dual bounds obtained
by the MIP solver for each instance. We can seeM4 andM6
produce the best bounds for most instances, indicating that
these two formulations often lead to a tighter linear relax-
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Table 6 Comparison of initial dual bounds found by MIP formulations. Bold entries mark the best bounds per instance

Instance M1 M2 M3 M4 M5 M6 M7 M8

A 484.3461 1,088,864.0 – 1,088,864.0 1,088,863.0 1,088,863.0 484.3461 1,088,864.0

B 0.0 0.0 – 0.0 0.0 0.0 0.0 0.0

C – 12,700,800.0 – 2,294,640.0 12,700,800.0 2,294,700.0 – 12,700,800.0

C-x2 – – – 25,401,600.0 25,401,600.0 25,401,600.0 – –

C-x4 – – – – – – – –

C-x8 – – – – – – – –

C-x16 – – – – – – – –

C-assigned – – – 4,986,939.0 12,700,800.0 4,986,939.0 – –

C-assigned-x2 – – – 25,401,600.0 25,401,600.0 25,401,600.0 – 9,626,400.0

C-assigned-x4 – – – 50,803,200.0 – 50,803,200.0 – –

C-assigned-x8 – – – 101,606,400.0 – 101,606,400.0 – –

C-assigned-x16 – – – – – – – –

P_3-17-20_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_7-19-40_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_9-180-180_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_13-80-80_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_15-60-60_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_15-63-80_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_16-100-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_16-180-180_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_17-100-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_18-80-80_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_20-180-180_1 – 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_22-140-140_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_29-140-140_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_1-3-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_4-16-20_1 340.0 340.0 340.0 340.0 340.0 340.0 340.0 340.0

S_10-120-180_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_15-80-80_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_15-80-80_3 0.0 0.0 0.0 183.0099 0.0 182.9401 0.0 0.0

S_22-149-160_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_3-12-200_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_10-24-40_1 229.0454 225.803 0.0 222.2626 229.0454 0.0 229.0454 229.0454

T_15-77-80_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_18-56-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_20-76-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_28-34-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Dashes mark no bounds being found

ation. However, other formulations are able to provide better
bounds in some cases.

To calculate the relative performance, we use the Relative
PercentageDeviation (RPD) for every instance I and solution
S as defined in Eq. (35). RPD values have also been used as
a performance measure in publications on related problems
(e.g.Vallada and Ruiz 2011).

RPDI ,S := costI ,S − bestI
bestI

(35)

Figure 3 visualises the RPD values of each model in the
form of box plots. In Fig. 3a, results for all models except
for M3 are presented. Figure 3b shows RPD values of mod-
els with explicit machine eligibility constraints and Fig. 3c
shows RPD values for models M4, M5 and M6. Model M3
is excluded from the comparisons, as it was unable to solve
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Table 7 Comparison of best dual bounds found by MIP formulations within the time limit

Instance M1 M2 M3 M4 M5 M6 M7 M8

A 132,156.0 1,091,223.0 – 1,091,223.0 1,091,223.0 1091223.0 108,400.0 1,091,223.0

B 139,228.0 12,720.0 – 12,720.0 0.0 12,720.0 11,878,016.0 12720.0

C - 12,700,800.0 – 2,294,640.0 12,700,800.0 2,309,760.0 - 12,700,800.0

C-x2 – – – 25,401,600.0 25,401,600.0 25,401,600.0 – –

C-x4 – – – – – – – –

C-x8 – – – – – – – –

C-x16 – – – – – – – –

C-assigned – – – 5,094,000.0 12,700,800.0 5,094,000.0 – –

C-assigned-x2 – – - 25,790,400.0 25,401,600.0 25790400.0 – 9,626,400.0

C-assigned-x4 – – – 50,803,200.0 – 50,803,200.0 – -

C-assigned-x8 – – – 101,606,400.0 – 101,606,400.0 - -

C-assigned-x16 – – – – – – – –

P_3-17-20_1 148.0 128.0 142.0 148.0 125.0 140.0 173.0 166.0

P_7-19-40_1 154.0 172.0 148.0 146.0 127.0 128.0 182.0 189.0

P_9-180-180_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_13-80-80_1 31.0 47.0 0.0 13.0 16.0 13.0 43.0 62.0

P_15-60-60_1 179.0 213.0 111.0 124.0 121.0 153.0 175.0 172.0

P_15-63-80_1 19.0 24.0 0.0 9.0 10.0 10.0 14.0 22.0

P_16-100-100_1 0.0 11.0 0.0 0.0 0.0 0.0 0.0 26.0

P_16-180-180_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_17-100-100_1 0.0 81.0 0.0 66.0 66.0 66.0 0.0 146.0

P_18-80-80_2 56.0 70.0 0.0 0.0 0.0 0.0 64.0 71.0

P_20-180-180_1 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_22-140-140_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

P_29-140-140_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_1-3-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_4-16-20_1 409.0 409.0 409.0 409.0 409.0 409.0 409.0 409.0

S_10-120-180_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_15-80-80_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S_15-80-80_3 0.0 0.0 0.0 192.0 0.0 193.0 0.0 0.0

S_22-149-160_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_3-12-200_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_10-24-40_1 373.0 373.0 0.0 373.0 373.0 0.0 373.0 373.0

T_15-77-80_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_18-56-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_20-76-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T_28-34-100_1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Bold entries mark the best bounds per instance. Dashes mark no bounds being found

most instances. Only those instances that could be solved by
all compared models within the time limit are included in the
plots to avoid missing values.

Overall, we conclude that modelsM4 andM6 provide the
best results for the majority of instances in our experiments.
The best model depends on the instance characteristics: For
T-style instances,M4 shows the best performance, whileM6
produces the best results for P-style instances.

6.2 Comparison of metaheuristic approaches

Both parameter tuning and benchmark experiments for the
metaheuristics have been executed on a computer with an
Intel Xeon E5-2650 v4 12-Core processor that has 24 logical
cores and 252 gigabytes of RAM.
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(a) All models (except M3 )

(b) M2 , M4 , and M6 (c) M4 , M5 , and M6

Fig. 3 RPD values of MIP models

6.2.1 Parameter tuning

As our methods include various parameters which have
an impact on the final results, we performed automated
parameter tuning using Sequential Model-based Algorithm
Configuration (SMAC) as proposed by Hutter et al. (2011).

For every Simulated Annealing variant, we started 24 par-
allel SMAC runs with a wallclock time budget of 18 h per
run. The initial configurations used for the starting point of
SMAC are based on intuition about plausible parameter val-
ues. Table 8 shows the value ranges for all parameters as
well as their initial values. The tuned parameters proposed
by SMAC are listed in Table 9.

To investigate the robustness of theSAvariants against dif-
ferent configurations, we conducted additional experiments
for the so-called incumbent configurations (i.e. the best found

configurations) of each parallel SMAC run. We let every SA
variant run 20 times with every incumbent configuration on
the validation set. Box plots for the resulting RPD values
can be seen in Fig. 4. It can be seen that SA-I and SA-R (on
the left and right thirds of the plot, respectively) are much
more robust against changes in the configuration than SA-C.
Figure 5 shows the RPD values for all incumbents, grouped
per SA variant for a clearer visual representation. Inspec-
tion of the plot scales shows that SA-C and SA-R are the
least and most robust of the compared SA variants, respec-
tively. Figure 5a, c shows that most configurations result in a
very similar performance for both SA-I and SA-R. However,
some configurations lead to significantly better results than
the others. This suggests that both SA-I and SA-R are largely
robust against changes in the configuration, but still have the
potential for some optimisation.
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Table 8 Parameter value ranges
for SMAC

Tmax Tmin Ns pI pS pB pT pM Bmax α ρ

Minimum value 500 0.0001 1000 0.0 0.0 0.0 0.0 0.0 2 0.75 0.01

Maximum value 10,000 10.0 250,000 1.0 1.0 1.0 1.0 1.0 200 0.999 1.0

Default value 1000 0.01 10,000 0.9 0.5 0.1 0.1 0.1 100 0.9 0.05

Table 9 Configurations
obtained from parameter tuning

Configuration Tmax Tmin Ns pI pS pB pT pM Bmax α ρ

SA-I 5485.42 9.17 – 0.49 0.78 0.01 0.31 0.81 100 0.95 0.78

SA-C 6188.72 5.18 191,058 0.53 0.81 0.02 0.47 0.27 32 – 0.42

SA-R 2764.93 6.73 20,339 0.66 0.84 0.04 0.85 0.71 26 0.93 –

Fig. 4 RPD values for all incumbent configurations

6.2.2 Results on randomly generated instances

In this section, we present the results produced by the pro-
posed Constructive Heuristic (Algorithm 1) and Simulated
Annealing variants. For each of the investigated Simulated
Annealing variants, we performed experiments with a ran-
domly generated initial solution (R) and initial solutions
produced by our Constructive Heuristic (CH). All experi-
ments were performed within a time limit of 60 s per run
regardless of the instance size. For SA-I, we set an iteration
budget of 11,100,000 iterations, as this corresponds to the
average number of iterations that the other SimulatedAnneal-
ing variants performed within the 60 seconds time limit.

Tables 10, 11 and 12 show the detailed experimental
results for all SA variants. Fig. 6 further visualises an
overview of the relative algorithm performances on the
entire validation set as box plots. As expected, all Simulated
Annealing variants are able to significantly improve the qual-

ity of their initial solution (Algorithm 1). Further, we can see
in Fig. 6b that SA starting from a good initial solution pro-
duces significantly lower mean RPDs than SA starting from
a random initial solution. Figure 6c shows box plots over the
median RPD values per instance for each algorithm. The fact
that the median RPD values are not notably different from
the mean RPD values for SA (CH) indicates its robustness.

Comparing SA variants with random initial solution, we
conclude that SA-R shows a slightly better performance com-
pared to the other two SA variants. We further observe that
all SA variants produce similar results when starting from a
greedily constructed initial solution.

6.2.3 Results on real-life instances

To evaluate our approaches on the real-life instances, we use
the same computational environment and time limits as in
Sects. 6.1 and 6.2. Table 13 shows the best solution costs
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(a) Incumbents for SA-I

(b) Incumbents for SA-C

(c) Incumbents for SA-R

Fig. 5 RPD values for all incumbent configurations per SA variant

obtained by MIP (across all models) and the median abso-
lute solution costs provided by each SA variant. All methods
obtained the same solution costs for instances A and C-
assigned, which also could be solved to optimality by MIP.
For the rest of the instances, SA produced better results than
MIP in our experiments. All SA variants achieved the same
result in all 20 runs for four instances (A, B, C-restricted and
C-restricted x2). Only for the larger instances we observe
varying solution qualities. SA-R exhibits a slightly better
performance on the larger instances (C-x8, C-x16 and C-
assigned-x8), while SA-I performs best on smaller instances
(C-x2 and C-x4). The box plots in Fig. 7 show that all SA
variants perform very similarly, with RPDs close to zero.

6.2.4 Influence of the features

To investigate the influence of block moves and guidance
strategies on the performance of the metaheuristics, we per-
formed additional experiments with different configurations
on the validation set. We created further configurations for
each SA variant by changing the value for a single feature
in the configuration while leaving everything else fixed. The
derived configurations are the following:

– Standard The configuration proposed by SMAC
– X% Blocks The probability for generating block moves

pB is set to 0%, 10%, 20%, and 30%, corresponding to
pB = 0.0, 0.1, 0.2, and 0.3, respectively.

– G-T The probability for applying guidance towards min-
imising makespan pM is set to zero

– G-MThe probability for applying guidance towardsmin-
imising tardiness pT is set to zero

– G-NoneBoth guidance probabilities (pM and pT ) are set
to zero

The RPD values for all three SA variants over the val-
idation instances can be seen in Fig. 8. For SA-I, any
modification of the standard configuration leads to perfor-
mance degradation as can be seen in Fig. 8a. For SA-C and
SA-R, the results are not as clear (see Fig. 8b, c). In the
case of SA-C, block moves apparently have the most nega-
tive impact, as increases in block move probabilities lead to
increases inRPDvalues. SA-R loses someperformancewhen
the guidance is reduced in any way but does not perform sig-
nificantly different with higher probabilities for blockmoves.

Overall, there is no configuration for any of the SA vari-
ants that outperforms the standard configuration. Thus, we
conclude that a limited amount of guidance towards minimi-
sation of both makespan as well as tardiness is favourable
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Table 10 Median results for
S-style instances in the
validation set

Instance SA-I (CH) SA-I (R) SA-C (CH) SA-C (R) SA-R (CH) SA-R (R)

1-3-100_1 0/10746 48/6362 0/10746 48/6328 0/10746 48/6362

10-120-180_1 0/771 0/761 0/838 0/806 0/771 0/732

10-468-800_1 0/4539 23/5294 0/3860 15/3798 0/3640 23/3879

11-680-680_1 0/3538 0/3823 0/3110 0/2944 0/2833 0/2906

12-380-380_2 0/1407 65/1442 5/1535 0/1576 5/1471 0/1465

12-700-700_1 0/3351 0/3727 0/2935 0/2804 0/2682 47/2788

12-720-720_1 0/3730 0/3948 0/3044 0/2945 0/2846 0/2851

13-476-540_1 0/1875 0/1814 0/2044 0/2026 0/1832 0/1851

14-940-940_1 0/4716 43/5009 0/3628 26/3311 0/3141 0/3164

15-500-500_1 0/1512 0/1486 0/1622 0/1631 0/1495 0/1477

15-80-80_2 0/336 0/333 0/337 0/340 0/314 0/320

15-80-80_3 0/272 0/275 0/288 0/282 0/274 0/271

16-646-660_1 0/2437 0/2632 0/2101 0/2015 0/1875 0/1837

18-460-660_1 0/1679 0/2271 0/1883 0/1823 0/1666 0/1617

18-763-800_1 0/2830 0/3194 0/2430 0/2157 0/2094 0/2031

19-800-800_1 41/2624 0/3055 33/2193 0/2193 0/1881 0/1977

20-794-800_1 0/2710 42/2888 0/2186 2/1998 0/1873 0/1883

21-530-560_1 0/1261 0/1504 0/1309 0/1319 0/1186 0/1195

22-149-160_1 0/363 0/369 0/396 0/402 0/350 0/352

22-519-740_1 0/1815 0/2334 0/1772 40/1756 0/1503 0/1522

22-600-600_1 0/1408 0/1774 0/1360 0/1392 0/1220 0/1208

23-612-640_1 0/1718 0/1790 0/1429 0/1392 0/1272 0/1231

24-900-900_1 0/2701 0/2807 0/2025 0/1856 0/1731 0/1695

25-300-300_1 0/575 0/576 0/655 0/631 0/558 0/535

25-660-660_1 0/1476 0/1819 0/1410 0/1345 0/1133 0/1190

26-181-500_1 0/810 0//904 0/992 0/977 0/836 0/833

26-414-460_1 3/768 0/777 0/885 0/898 0/796 0/785

27-249-660_1 0/1089 0/1238 0/1268 0/1253 0/1105 0/1105

28-105-420_1 0/667 0/635 0/771 0/787 0/668 0/652

29-580-580_1 0/1284 0/1266 0/1093 0/1032 0/876 0/892

3-500-500_1 5/11156 23/11373 2/8205 40/8167 0/8485 2/9237

30-720-720_2 0/1611 43/1746 0/1278 7/1200 0/1081 7/1105

30-760-760_1 0/1615 0/1912 0/1433 0/1291 0/1160 0/1157

4-16-20_1 0/409 0/409 0/409 0/409 0/409 0/409

4-460-460_1 0/6886 5/7018 0/5741 0/5779 0/5962 0/6046

5-14-620_1 0/7499 0/7737 0/5583 0/5462 0/5672 0/5570

5-500-500_1 0/5669 0/5834 0/4907 0/4909 0/5048 0/4978

7-166-600_1 0/4304 0/4829 0/4118 0/4108 0/4072 67/4282

7-50-360_1 0/2221 0/2274 0/2332 0/2344 0/2267 0/2245

8-780-780_1 0/6717 0/7034 0/4892 0/4785 0/4769 0/4847

The lowest values are highlighted in bold
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Table 11 Median results for
T-style instances in the
validation set

Instance SA-I (CH) SA-I (R) SA-C (CH) SA-C (R) SA-R (CH) SA-R (R)

1-73-620_1 0/51,539 0/51,486 0/36,170 0/35794 0/37,602 0/37,505

10-230-700_1 1/3246 36/3813 55/3126 167/3100 2/3137 68/3444

10-24-40_1 18/319 33/319 18/319 63/341 68/319 18/319

10-389-940_1 45/4996 101/5641 53/4274 222/4239 156/4706 234/4929

11-400-400_1 46/1795 345/1565 214/1682 76/1654 95/1771 365/1610

12-351-1000_1 74/4648 449/4876 42/3726 79/3696 75/4086 278/5058

13-940-940_1 26/4029 598/4262 39/3290 222/3120 66/3272 141/4416

14-520-520_1 3/1470 8/1451 18/1634 13/1582 0/1502 0/1537

14-680-680_1 65/2625 230/2555 60/2273 50/2149 31/2206 190/2989

14-680-680_2 0/2342 364/2755 0/2209 146/2160 0/2108 115/2409

15-400-400_1 0/1081 5/1128 29/1233 3/1189 29/1162 29/1190

15-740-740_2 0/2242 388/2763 1/2192 50/2093 0/2231 93/2345

15-77-80_1 0/317 0/337 0/335 0/334 0/313 0/317

17-520-520_1 138/1250 325/1376 124/1332 464/1331 147/1331 403/1706

18-56-100_1 64/318 51/316 45/318 110/340 10/316 5/313

18-820-820_2 45/2557 271/2570 34/2110 253/1937 25/2071 247/2053

18-90-880_1 14/2415 123/2560 14/2099 205/2096 23/2157 122/2276

2-380-380_1 0/12,602 98/12,371 0/9408 0/9325 0/9835 51/10619

2-490-800_1 0/30975 7/30,893 0/21,557 0/21226 0/31120 0/22,518

20-76-100_1 0/282 0/291 0/294 35/300 0/270 0/261

22-471-480_1 130/864 80/892 92/996 126/945 33/967 292/974

22-760-760_1 22/1720 200/1941 40/1561 205/1516 8/1489 31/1597

24-280-280_1 4/508 8/512 11/558 92/571 0/512 43/700

24-400-400_1 34/663 119/817 35/742 301/734 34/678 173/747

25-352-680_1 5/1061 189/1463 0/1206 174/1178 0/1122 122/1182

26-220-240_1 0/388 67/421 0/452 62/461 0/400 62/591

26-334-480_1 49/720 89/902 5/828 45/809 52/1030 9/977

26-540-540_1 10/787 134/1003 10/875 26/864 10/837 9/833

27-360-360_1 22/544 65/537 4/597 69/607 2/550 51/595

27-540-540_1 35/784 94/997 0/863 257/873 29/835 93/907

28-189-240_1 0/384 54/371 0/419 0/418 0/379 65/383

28-34-100_1 0/231 0/241 0/231 0/231 0/231 39/237

28-371-520_1 0/714 110/858 6/808 16/781 0/741 135/788

28-620-620_1 2/980 72/1266 85/990 73/1004 3/934 154/1193

29-137-340_1 21/454 52/469 5/521 79/524 2/492 6/479

3-12-200_1 2/3133 107/3138 2/3006 109/3067 107/3210 86/3241

30-580-580_1 16/929 104/1040 11/872 175/838 16/812 141/1017

6-540-540_1 19/4516 146/4944 0/4131 54/4105 54/4243 54/4267

6-860-860_1 92/9345 87/9744 45/6971 111/6861 45/7966 78/7911

8-3-260_1 178/1229 299/1250 162/1266 221/1182 189/1259 220/1231

The lowest values are highlighted in bold
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Table 12 Median results for P-style instances in the validation set

Instance SA-I (CH) SA-I (R) SA-C (CH) SA-C (R) SA-R (CH) SA-R (R)

1-364-580_1 0/41388 0/41487 0/32825 0/32504 0/33940 0/34177

1-829-860_1 3314/62,953 15,353/62,253 5432/51146 8441/50725 4194/60,661 7716/57,869

10-376-680_1 418/4076 473/3755 527/3270 582/3154 438/3590 667/3550

13-760-760_1 710/3583 934/3467 749/2806 701/2730 698/3157 776/2950

13-80-80_1 665/359 618/377 436/359 414/334 514/361 423/370

15-60-60_1 656/313 778/392 656/313 626/326 658/398 718/307

15-63-80_1 548/369 536/386 600/369 515/424 488/339 540/391

15-640-640_1 340/2607 281/2536 298/2034 350/1960 406/2105 324/2598

16-100-100_1 350/335 492/359 314/334 599/326 321/336 354/327

16-180-180_1 597/577 566/572 564/571 552/577 623/540 605/540

16-233-260_1 430/932 487/781 485/776 436/768 503/759 543/785

17-100-100_1 1346/353 1213/350 1342/355 1110/330 1287/342 901/322

18-80-80_2 851/306 931/327 803/307 756/307 805/307 752/312

19-540-540_1 565/1656 551/1670 552/1337 546/1307 659/1783 544/1411

2-760-760_2 1874/26,221 2215/26,225 2190/20,551 1208/20646 1177/23483 1267/22758

20-180-180_1 487/416 552/426 419/483 523/460 497/462 547/465

20-340-340_1 658/685 830/686 621/794 679/791 709/799 664/796

21-62-740_1 444/1929 641/1977 525/1591 458/1627 562/2190 602/2118

22-140-140_1 456/317 681/324 474/333 431/318 457/315 375/341

23-394-420_1 294/792 285/899 205/817 246/908 335/868 349/863

23-840-840_1 282/2214 705/2311 290/1743 910/1714 347/2056 553/2181

26-223-260_1 673/411 599/428 593/482 803/486 591/491 755/469

27-268-860_1 113/1786 146/1925 104/1498 148/1462 134/1862 224/1434

28-340-340_1 808/576 662/615 823/598 749/605 563/719 884/709

28-594-760_1 512/1590 616/1621 443/1277 690/1258 430/1682 507/1363

29-140-140_1 665/307 546/305 630/307 742/310 814/307 634/287

29-170-760_1 885/1432 1406/1540 751/1187 840/1210 714/1303 1110/1549

3-17-20_1 937/525 1212/546 945/568 1073/527 954/512 957/611

3-580-580_1 293/12,336 611/12,517 626/9913 424/9683 602/10740 367/10852

30-13-560_1 658/954 674/957 656/800 678/795 643/819 640/946

30-148-220_1 490/312 622/316 500/359 591/337 500/348 555/338

30-332-340_1 396/489 483/518 399/565 472/521 431/552 564/660

30-52-420_1 447/666 327/606 327/595 349/628 357/644 465/637

4-620-620_1 8435/9794 8864/9925 7571/7772 7259/7829 7011/9728 7931/9793

5-83-360_1 218/3271 458/4520 208/3398 290/3341 261/3736 233/3688

6-680-680_2 30/6559 212/6874 185/5179 96/5125 142/5577 140/6027

7-19-40_1 2002/520 1937/507 1999/511 2188/483 2035/477 2134/533

7-249-980_1 898/8503 1487/8748 1092/6388 1146/6262 1035/7311 1026/8730

7-431-480_1 985/4200 886/4159 977/3440 897/3316 832/3625 876/4332

9-180-180_1 769/898 797/889 835/952 929/961 711/994 1160/1237

The lowest values are highlighted in bold
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(a) Means, including solutions from CH

(b) Means (c) Medians

Fig. 6 RPD values for SA variants, with constructive heuristic (CH) and random initial solution (R)

over a purely unguided search. The block moves in their cur-
rent implementation, however, do not provide a significant
benefit and, if selected to often, are detrimental to the perfor-
mance of SA-I and SA-C.

To further analyse the influence of block moves on the
instance structure, we can look on only the results for the set
of instances which use unique materials without including
the results for shared materials instances and vice versa.

Figures 9, 10, and 11 show the results produced by differ-
ent block move configurations using SA-I, SA-C, and SA-R
separately for unique material instances and shared material
instances.

For SA-I we can see that using no block moves still pro-
duces the best results for both unique material and shared
material instances. However, for SA-C and SA-R the results
show that for the unique material instances the 10% Blocks

configuration produced the best results, whereas for shared
material instances again the 0% Blocks configuration per-
forms best.

6.2.5 Comparison to results from the literature

To assess the quality of our methods, we compare them to
the state of the art approach that was proposed recently for
the problem provided by Perez-Gonzalez et al. (2019).

Since the optimal solution for the majority of these
instances has an objective function value of zero, we use
the Relative Deviation Index (RDI, Eq. (36)) as performance
measure instead of the RPD. Similar performance measures
have been used in previous publications (e.g. Perez-Gonzalez
et al. 2019).
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Fig. 7 RPD values for SA on real-life instances

RDII ,S := costI ,S − bestI
worstI − bestI

(36)

We ran each of our SA variants 20 times on every instance
with a time limit that is based on the run time formula used
by Perez-Gonzalez et al. (2019). The parameters for each of
our metaheuristics are set to the ones determined by SMAC.

The results for the Clonal Selection Algorithms
(CSA_t and CSA_f) described by Perez-Gonzalez et al.
(2019) have been kindly provided to us by the authors. Pub-
licly available CPU benchmarks2 show that the CPU used
in our experiments is roughly 1.5 times faster than the Intel
i7 7700 processor that was used by Perez-Gonzalez et al.
(2019) with respect to single-thread performance. Therefore,
we used a time limit of M · N · 20

2 milliseconds per instance,
where M is the number of machines and N is the number
of jobs (Perez-Gonzalez et al. (2019) used a time limit of
M · N · 30

2 in their experiments).
For the majority of the instances (2469 small, 5058

medium and 5909 big), all runs of the Simulated Anneal-
ing variants and all runs of the Clonal Selection Algorithms
produced solutions with the exact same solution cost. Fig-
ure 13 shows box plots for all evaluated algorithms on the
remaining 1371 small, 702 medium and 91 big instances,
respectively. In the aggregated results it can be seen that all
SA variants outperform the CSA algorithms regarding solu-
tion quality for most of the instances. This observation is
further supported by Mann–Whitney–Wilcoxon tests using
a confidence level of 0.95 which show that the proposed
SA variants produce significantly improved results than both
CSA_t and CSA_f in our experiments.

2 https://www.cpubenchmark.net/compare/Intel-i7-7700-vs-Intel-
Xeon-E5-2650-v4/2905vs2797. Ta
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Fig. 8 RPD for the SA variants, with different features

(a) SA-I block move configurations for unique material in-
stances

(b) SA-I block move configurations for shared material in-

stances

Fig. 9 RPDforSA-Iwith different blockmove configurations on shared
and unique material instances

When looking at the best results per instance for all SA
and both CSA variants, respectively, we observe that in 3291
small, 5548 medium and 5979 big instances, the best SA
result has the same cost as the best CSA result. For 506
small, 208 medium and 21 big instances, the best SA result
is better than the best CSA result. On the other hand, for
43 small and 4 medium instances, the best CSA result is
better than the best SA result. Figure 12 shows the number
of instances where CSA outperforms SA, grouped by the
number of jobs per instance. We observe that the number of
instances where CSA outperforms SA declines with instance
size, which indicates that SA scales better with increasing
instance size.
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(a) SA-C block move configurations forunique material
instances

(b) SA-C block move configurations for shared material
instances

Fig. 10 RPD for SA-C with different block move configurations on
shared and unique material instances

Detailed results of all our experiments are publicly
available for download at https://doi.org/10.5281/zenodo.
4284100.

7 Conclusions

In this paper,wehave investigated several solution approaches
for a novel variant of the Unrelated Parallel Machine
Scheduling Problem. To approach the problem, we have
proposed several Simulated Annealing-based metaheuristics
that utilise different neighbourhood operators and have inves-
tigated variations of a mathematical formulation.

Based on a set of randomly generated and real-life
instances, we performed a thorough evaluation of all investi-
gated methods. Furthermore, we evaluated the performance

(a) SA-R block move configurations for unique material
instances

(b) SA-R block move configurations for shared material
instances

Fig. 11 RPD for SA-R with different block move configurations on
shared and unique material instances

Fig. 12 Instances where CSA outperforms SA
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(a) RDI Values over 1371 Small Instances (b) RDI Values over 702 Medium Instances

(c) RDI Values over 91 Big Instances

Fig. 13 Comparison of metaheuristics on literature instances

of the proposed metaheuristics on a related problem from
the literature, and compared the results to the state-of-the-art
on a set of existing benchmark instances. The experimen-
tal results show that Simulated Annealing is able to provide
high-quality solutionswithin short run times andoutperforms
other approaches for the large majority of instances. Using
our approach, we were further able to provide previously
unknown upper bounds for a large number of benchmark
instances from the literature.

For future work, it may be interesting to select Block
Moves based on solution-specific information. For instance,
a more sophisticated heuristic for the selection of job blocks
could be employed by defining a distance measure between
jobs and building blocks based on this measure. Addition-
ally, it would be interesting to investigate newneighbourhood
operators and hybrid algorithms for this problem.
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