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Abstract
This paper addresses the job shop scheduling problem including time lag constraints. This is an extension of the job shop
scheduling problemwithmany applications in real production environments,where extra (minimumandmaximum) delays can
be introduced between operations. It belongs to a category of problems known as NP-hard problems due to the large solution
space. Biogeography-based optimization (BBO) is an evolutionary algorithm which is inspired by the migration of species
between habitats, recently proposed by Simon (IEEE Trans Evol Comput 12:702–713, 2008) to optimize hard combinatorial
optimization problems. BBO has successfully solved optimization problems in many different domains and has demonstrated
excellent performance. We propose a hybrid biogeography-based optimization (HBBO) algorithm for solving the job shop
scheduling problem with additional time lag constraints while minimizing total completion time. In the proposed HBBO,
an effective greedy constructive heuristic is adapted to generate the initial habitat population. A local search metaheuristic
is investigated in the mutation step in order to improve the solution quality and enhance the diversity of the population. To
assess the performance of the HBBO, a series of experiments are performed on well-known benchmark instances for job shop
scheduling problems with time lag constraints. The results prove the efficiency of the proposed algorithm in comparison with
various other algorithms.

Keywords BBO · Job shop · Scheduling · Optimization · Time lag

1 Introduction

The scheduling problem is one of the most commonly
encountered problems in the management of production
systems. It involves the allocation of a number of jobs
to machines taking into consideration a set of constraints.
Scheduling problems occur in all economic domains, from
computer engineering to manufacturing techniques. Most
scheduling problems are complex combinatorial optimiza-
tion problems and very difficult to solve. The job shop
scheduling problem (JSP) is a branch of production schedul-
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ing which is among the hardest combinatorial optimization
problems. It is a well-known optimization problem often
used in practical scheduling applications in the manufactur-
ing sector. The JSP consists of a set of n jobs that have to be
processed on a set ofmmachines. Each job is fully defined by
an ordered sequence of operations that are associated with a
particular machine while respecting certain constraints, such
as:

(i) No more than one operation of any job can be executed
simultaneously.

(ii) Nomachine can process more than one operation at the
same time.

(iii) The job operations must be executed in a predefined
sequence, and once an operation is started, no preemp-
tion is permitted.

The objective is to schedule each operation on the machines,
taking the precedence constraints into account such that a
number of optimization criteria are attained, including cost,
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run time, and makespan (Cmax: total completion time) mini-
mization.

In this paper we are interested in the job shop scheduling
problem including time lag constraints, which is a special
case of resource-constrained project scheduling problems
with minimum and maximum time lags between operations
of different jobs (González et al. 2015).

The job shop problem including minimum and maxi-
mum time lag constraints is a generalization of the job
shop scheduling problem, in which there are time rela-
tions between the starting times of operations. The job shop
scheduling problem including time lag constraints involves
two kinds of time lag constraints: either time lags between
two successive operations of the same job (job shop schedul-
ing problem with time lags, denoted as JSPTL) or generic
time lags between pairs of operations, denoted as JSPGTL.
A job shop scheduling problem including minimum and
maximum time lag constraints is NP-hard (Lacomme and
Tchernev 2012).

The addition of time lag constraints between operations
makes even the usually simple task of finding a feasible
schedule difficult, and few articles have tackled time lag
constraints. In this paper we propose solving the JSPTL-
JSPGTL problem with a biogeography-based optimization
(BBO) algorithm combined with a greedy constructive algo-
rithm and Tabu search metaheuristic. BBO was introduced
in 2008 to solve global optimization problems. It is an evolu-
tionary algorithm that is inspired by the migration of species
between habitats. BBO has been demonstrated to be a pow-
erful search technique because it includes both exploration
and exploitation strategies based on migration. It is one of
the fastest-growing nature-inspired algorithms for solving
practical optimization problems. This is a result of its advan-
tages in terms of simplicity, flexibility, and computational
efficiency, as well as its stochastic nature, which does not
require derivatives of the objective function. Motivated by
the effectiveness of this newly emerging evolutionary algo-
rithm in solving different kinds of optimization problems,
this study represents the first reported work using the BBO
for solving the JSPTL-JSPGTL problem. Our intention is to
provide an adaptation of the different parameters of BBO to
suit the problem characteristics. We also extend the classic
BBO algorithm by adding a constructive greedy algorithm
to create the initial population and using the Tabu search
algorithm for the mutation step. This hybridization allows
us to obtain the best results for the job shop with time lags,
which is a very challenging problem for local search meta-
heuristics, because the classical neighborhood structures for
the standard job shop lead to unfeasible schedules most of
the time. We conducted an experimental study in which we
compared it with the state-of-the-art approach in both the
JSPTL and JSPGTL. The experimental results prove that our
method is very competitive and that the proposed HBBO

Fig. 1 Minimum time lags

algorithm is both effective and efficient. The remainder of
the paper is organized as follows. The next section provides
related works. In Sect. 3, we give an overview of the job shop
scheduling problem with minimum and maximum time lag
constraints. In Sect. 4 we explain the concept and structure
of the basic BBO algorithm, and we present the adaptation
of the HBBO algorithm for our problem in Sect. 5. Section 6
analyzes the performance results of HBBO when applied to
solve instances of benchmark problems in the literature. In
Sect. 7, we summarize our contributions and propose some
avenues for future research.

2 Related works

Time lag describes the waiting-time constraints between two
consecutive operations in the same job or between two oper-
ations of different jobs. Two kinds of time lag constraints
can be used in several fields of industrial job shop appli-
cations, either minimum or maximum time lags. Minimum
time lag constraints can correspond to overlap time, storage
time, transit time, or communication time between processes
of a computer system.Minimum time lagsmay be usedwhen
waiting time between operations is required for processing,
such as cooling (Fondrevelle et al. 2006), material handling
(Soukhal et al. 2005), and chemical reactions (Chu and Proth
1996). The minimum time lag between operations (i, j) and
(i ′, j ′) of different jobs is denoted as T Lmin

(i, j),(i ′, j ′), see Fig. 1.
Maximum time lags can be used to demand that the waiting
time between operations not be overly long in order to avoid
deterioration of products (Hodson et al. 1985). Maximum
time lag constraints can be used in the chemical sector. For
example, filtration of a product must respond quickly to the
formulation to prevent the precipitation of the product. In
the agribusiness sector, for example, freezing of meals must
occur no later than 30 minutes after cooking; otherwise the
meal is declared unfit for human consumption. Similar sce-
narios can be found in the pharmaceutical and other sectors.
The maximum generic time lag between operations (i, j)
and (i ′, j ′) of different jobs is denoted as T Lmax

(i, j),(i ′, j ′), see
Fig. 2.

Minimum and maximum time lag constraints arise in
many real-life scheduling applications. For example, in the
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Fig. 2 Maximum time lags

steel industry, the time lag between the heating of a piece
of steel and its molding should be small (Wismer 1972).
Similarly when scheduling chemical reactions, the reac-
tive component usually cannot be stored for a long period
between two stages of a process, so as to avoid interactions
with external elements (Rajendran 1994). Many other indus-
trial applications can be found, such as fabrication of printed
circuits (Kimet al. 1996), hoist-scheduling problems (Manier
and Bloch 2003), perishable product production (Johnson
1954), biotechnology, and chemistry (Nawaz et al. 1983).

Time lag constraints have been introduced in numerous
scheduling problems. Mitten (1958) employed time lag con-
straints for the first time in a problem with parallel machines
using a polynomial algorithm to minimize the makespan for
the flow shop problem with two machines. Wikum et al.
(1994) studied problems with a single machine consider-
ing minimum and maximum distances between jobs and
proved that these problems are NP-hard, although some
particular cases are polynomially solvable. Brucker et al.
(1999) showed many examples of scheduling problems that
can be modeled as single-machine problems with time lags,
including multiprocessor tasks, multipurpose machines, or
problems with changeover costs. They also proposed a
branch-and-bound method to solve the problem. Hurink and
Keuchel (2001) proposed a local search approach for the
single-machine problem with positive and negative time
lags. Fondrevelle et al. (2006) solved permutation flow shop
scheduling problems with maximum and minimum time
lags. Botta-Genoulaz (2000) tackledmaximum latenessmin-
imization in hybrid flow shop scheduling with precedence
constraints and time lags. Another example was presented in
the thesis of Zhang (2010), where several variants of online
and offline problemswith time lags are studied. Time lag con-
straints have been introduced in many works concerned with
solving the resource-constrained project scheduling prob-
lem (RCPSP). Bartusch et al. (1988) proposed a scheduling
project network with resource constraints and time windows,
and Brinkmann and Neumann (1996) proposed heuristic
procedures for resource-constrained project scheduling with
minimum and maximum time lags. Neumann et al. (2002)
studied the project scheduling problem with time windows
and scare resources. Heilmann (2003) proposed an exact
procedure for a general RCPSP where multiple modes are

available for the performance of the individual activities, as
well as both minimum and maximum time lags between the
different activities. The objective is to determine a mode
and a start time for each activity such that all constraints
are observed while minimizing the project duration. Hamdi
and Loukil (2011) proposed a permutation flow shop prob-
lem with maximum and minimum time lags and makespan
minimization. Nikbakhsh et al. (2012) proposed an immune
algorithm for a hybrid flow shop scheduling problem with
time lags and sequence-dependent setup times.

Dhouib et al. (2013) proposed a combination of a simu-
lated annealing algorithm and a mixed-integer mathematical
program for solving a permutation flow shop scheduling
problemwith time lag constraints. Sheikh (2013) investigated
a genetic algorithm for solving a multi-objective flexible
flow line problem with due window, time lag, and job rejec-
tion. Zhao et al. (2017) proposed a universal approach to
resolve flow shop scheduling problems with time lags. Ye
et al. (2017) studied a non-permutation flow shop scheduling
problem with time lags to minimize the makespan.

Different methods have been proposed in the literature for
solving the job shop scheduling problemwith time lags in the
literature. Caumond et al. (2005a) introduced a genetic algo-
rithm based on an operation insertion heuristic. Caumond
et al. (2004) proposed a Tabu search metaheuristic, and Cau-
mond et al. (2005b) proposed a constructive heuristic based
on Giffer and Thompson’s heuristic. Deppner (2004) investi-
gated an approach based on a constructionmethod. Caumond
et al. (2008) introduced a memetic algorithm based on a dis-
junctive graph that is suitable for various industrial situations.
Karoui et al. (2010) investigated a climbing discrepancy
search method. Artigues et al. (2011) proposed an insertion
heuristic and generalized resource constraint propagation
approach for the job shop problem. González et al. (2015)
proposed a scatter search procedure combiningpath relinking
and the Tabu search metaheuristic of Nowicki and Smut-
nicki (2005). Afsar et al. (2016) proposed a disjunctive graph
model for the job shop problem with time lags and transport.
Other methods have been proposed for solving the job shop
scheduling problem with generic time lags. Lacomme et al.
(2011) proposed a dedicated constraint propagation tech-
nique using the Bierwirth vector for presenting a solution,
and Lacomme and Tchernev (2012) proposed a set of greedy
randomized propagation rules. Harrabi and Belkahla Driss
(2016) proposed a Tabu search metaheuristic, while Harrabi
et al. (2017a, b, c) proposed a combination of a genetic algo-
rithm and Tabu search metaheuristic. Multi-agent systems
have recently been widely used for the resolution of job shop
problems. Harrabi and Belkahla Driss (2015) proposed a
Tabu search metaheuristic in a multi-agent model. Harrabi
et al. (2017a, b, c) proposed the use of parallel Tabu searches
in a multi-agent system composed of competitive agents.
Harrabi et al. (2017a, b, c) proposed a multi-agent model
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based on a hybrid genetic algorithm. Harrabi et al. (2018)
proposed a BBO combined with a greedy algorithm for the
job shop scheduling problem with time lags between succes-
sive operations of the same job.Harrabi et al. (2020) proposed
a modified BBO algorithm with an improved mutation oper-
ator for the job shop scheduling problem with generic time
lags. In this paper,wepropose a hybridBBOalgorithm for the
job shop scheduling problem with additional minimum and
maximum time lag constraints with makespan minimization.
Indeed, the popularity of hybrid optimization approaches
is rapidly growing as an effective strategy to improve the
performance of classical algorithms by combining compo-
nents from various optimization methods. Population-based
optimization algorithms like BBO often have good global
exploration ability. However, they are generally not very
efficient at local exploitation. In contrast, local search algo-
rithms are efficient at local exploitation but are not effective
at exploring the entire search space. Therefore, hybridiza-
tion of a local search with population-based optimization
is a promising way to synergize the advantages of both
approaches in a single algorithm. The aim of this type of
hybridization is to find the right trade-off between global
exploration and local exploitation of the problem search
space. Studies have shown that BBO performance can be
enhanced through the incorporation of techniques from other
metaheuristics (Ma and Simon 2017). Many works in the
literature have investigated the hybridization of BBO with
other algorithms.Al-Roomi andEl-Hawary (2016) presented
a combination of BBO and simulated annealing (SA), and
Wee et al. (2016) introduced a Tabu search in the mutation
step of BBO for the quadratic assignment problem. BBO
is also often hybridized with other population-based algo-
rithms. Foe example, many authors have used a hybridization
of BBO and differential evolution (DE) to solve various opti-
mization problems. Bhattacharya and Chattopadhyay (2010)
and Bhattacharya and Chattopadhyay (2011) investigated an
application of BBO and DE for economic emission load dis-
patch. Wireless sensor network power allocation was solved
with BBO/DE in Boussaïd et al. (2011). In Du et al. (2009),
BBO was hybridized with an evolutionary strategy (ES).
Sinha et al. (2012) proposed a hybridization between BBO
and ant colony optimization (ACO). The combination of
BBO and particle swarm optimization (PSO) was proposed
in Guo et al. (2013). Zheng et al. (2014a, b) introduced a new
variation of BBO, called ecogeography-based optimization
(EBO), which regards the population of islands (solutions)
as an ecological system with a local topology. Two novel
migration operators are designed to perform effective explo-
ration and exploitation in the solution space, mimicking the
species dispersal under ecogeographic barriers and differ-
entiations. Lu et al. (2018) proposed a biogeography-based
memetic algorithm, or BBMA, which redefines the migra-
tion and mutation operators of the BBO. They employed

a local population topology to suppress premature conver-
gence and used a critical-path-based local search operator to
enhance the exploitation ability. Rifai et al. (2018) investi-
gated anon-dominated sortingBBOfor a schedulingproblem
of a flexible manufacturing system (FMS) having multi-
loading/unloading and shortcuts infused in the reentrant
characteristics. This model is formulated to identify the near
optimal trade-off solutions capable of addressing the two
objectives of makespan minimization and total earliness. Wu
et al. (2019) used a water optimization metaheuristic for the
flow shop scheduling problem using a self-adaptive local
search procedure to improve the basic algorithm. Zhao et al.
(2019) proposed a hybrid BBOwith a variable neighborhood
search for solving the no-wait flow shop scheduling problem.

3 Job shop scheduling problemwith time
lags: description andmathematical
modeling

3.1 Problem description

The job shop problem with generic minimum and maxi-
mum time lags (JSPGTL) is a generalization of the job shop
problem in which there are time constraints restricting the
minimum and/or the maximum distance between two oper-
ations. The JSPGTL involves a set of jobs that should be
processed on a set of machines. Each job i consists of a
sequence of operations; (i, j) denotes the j th operation of
job i . Machines cannot process more than one job simulta-
neously. Each operation should be allocated to one machine.
Every machine and every job is ready at time 0. Each job
has a fixed processing sequence; if the process of an opera-
tion is started, it should be finished without any interruption.
For some pairs of operations (i, j) and (i ′, j ′), there are
minimum and maximum time lag constraints, respectively,
denoted by TLmin

(i, j),(i ′, j ′) and TL
max
(i, j),(i ′, j ′), restricting the dis-

tance between the end of (i, j) and the start of (i ′, j ′) to the
interval [TLmin

(i, j),(i ′, j ′),TL
max
(i, j),(i ′, j ′)]. Solving the JSPGTL

consists in sequencing all operations on themachines subject
to a set of constraints. There are precedence constraints for
operations of the same job, so each job consists of a set of
operations that should be sequentially scheduled. Also, there
are capacity constraints such that each machine processes at
most one operation at a time, and each operation requires the
uninterrupted and exclusive use of a givenmachineduring pi j
time units. Finally, we consider the addition of minimum and
maximum time lags constraints between operations which
present the minimum and maximum waiting time between
the ending time and the starting time of two operations. The
objective is to find an optimal solution according to some
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Table 1 Example of instance job shop J

Operation 1 Operation 2 Operation 3

Job 1 m1, 10 m2, 35 m3, 25

Job 2 m1, 15 m3, 16 m2, 12

Job 3 m3, 11 m1, 12 m2, 21

Fig. 3 Example of a Gantt chart solution

criterion, most commonly the makespan, which is the com-
pletion time of the last operation.

Example: Table 1 illustrates an example of instance J for
a job shop with three jobs and three machines.

The minimum and maximum time lags between opera-
tions of different jobs are:

T Lmin
(O11),(O13) = 36 T Lmax

(O11),(O13) = 45
T Lmin

(O11),(O22) = 20 T Lmax
(O11),(O22) = 30

T Lmin
(O21),(O31) = 5 T Lmax

(O21),(O31) = 20

Figure 3 presents an example of a feasible solution in a Gantt
chart model for the instance of a job shop with generic time
lags given in Table 1.

3.2 Mathematical modeling

The mathematic model of the job shop scheduling problem
with generic time lags is formulated as follows:

Input variables

• M = the set of machines;
• J = the set of jobs;
• � = the set of operations;
• �μ = the set of operations processed on machine μ.

Decision variables

• pi j = the duration of operation (i, j);
• ti j = the start times of operations (i, j);
• TLmin

(i, j),(i ′, j ′) = minimum time lags between operations
(i, j) and (i ′, j ′);

• TLmax
(i, j),(i ′, j ′) = maximum time lags between operations

(i, j) and (i ′, j ′);

• x(i j),(i ′ j ′) = corresponds to the sequencing variables;

x(i j),(i ′ j ′) =
{
1 if (i j) is before (i ′ j ′)
0 Otherwise.

• H is a large positive number.

Linear programming equations
The problem of linear formulation of a job shop with

generic time lags was given by Lacomme et al. (2011) and
was inspired by the linear programming formulation for job
shop scheduling proposed by (Manne 1960).

MinCmax (1)

such that

Cmax ≥ ti j + pi j ,∀(i, j) ∈ � (2)

ti ′ j ′ ≤ ti j + pi j + H .(x(i j),(i ′ j ′) − 1),

∀(i, j), (i ′, j ′) ∈ �μ,∀μ ∈ M (3)

ti j ≤ ti ′ j ′ + pi ′ j ′ + H .x(i j),(i ′ j ′),

∀(i, j), (i ′, j ′) ∈ �μ,∀μ ∈ M (4)

ti ′ j ′ ≥ ti j + pi j + T Lmin
(i, j),(i ′, j ′),∀(i, j), (i ′, j ′) ∈ � (5)

ti ′ j ′ ≤ ti j + pi j + T Lmax
(i, j),(i ′, j ′),∀(i, j), (i ′, j ′) ∈ � (6)

ti j ≥ 0,∀(i, j) ∈ � (7)

x(i j),(i ′ j ′) ∈ {0, 1},∀(i, j), (i ′, j ′) ∈ �μ,∀μ ∈ M (8)

Constraint (2) states that themakespan is greater than or equal
to the finish time of each operation. Constraints (3) and (4)
represent the machine disjunctions. Constraints (5) and (6)
correspond to the time lags constraints.

When there is a classical precedence constraint between
two operations, the value of the minimum time lag is set to
0, and the value of the maximum time lag is set to ∞.

When there is no constraint between two operations, both
the minimum and the maximum time lags are set to ∞.

3.3 Disjunctive graphmodel

In the disjunctive graph introduced by Roy and Sussmann
(1964), each operation is modeled by a node and an arc from
operation (i, j) to operation (i ′, j ′), and represents the mini-
mum distance between the start time of these two operations.
It corresponds to the binary constraint:

ti ′ j ′ − ti j ≥ l(i j),(i ′ j ′), where l(i j),(i ′ j ′) is the length of the
arc. The maximum time lag from an operation (i, j) to an
operation (i ′, j ′) is represented by an arcwith negative length
which corresponds to the duration of (i, j) plus themaximum
time lag value. Minimum time lag constraints are modeled
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Fig. 4 Disjunctive graph

by an extra arc from operation (i, j) to operation (i ′, j ′) and
weightedwith the processing time of (i, j) plus theminimum
time lag value. When no time lags are specified (for exam-
ple, between one operation and the dummy operation of the
graph), it is possible to assume, without loss of generality,
that we have null minimum time lags and infinite maximum
time lags. Since there is no interest in considering infinite
maximum time lags, negative arcs representing infinite max-
imum time lags are ignored in the graphic representation.
To model time lag constraints on the conjunctive/disjunctive
graph, we use the formulation based only on the start times
of operations stOi, j (and the processing times of operations).
Then, the time lag constraints given in Sect. 3.1 are modeled
by:

• 46 ≤ stO1,3 − stO1,1 ≤ 55
• 30 ≤ stO2,2 − stO1,1 ≤ 40
• 20 ≤ stO3,1 − stO2,1 ≤ 35

Figure 4 presents the disjunctive graph of the job shop
scheduling problem with generic time lags given in Table 1.
Maximum time lag constraints are represented by negative
arc cost in the disjunctive graph from one operation to the
previous one. The negative cost of the arc is equal to the
duration of the previous operation plus the maximum time
lag value.

4 Biogeography-based optimization

4.1 Basic concepts of the BBO algorithm

The BBO algorithm, proposed by Simon (2008), is inspired
by the mathematics of biogeography, mainly from the work
of MacArthur and Wilson (1967). A large number of theo-
retical, methodological, and practical studies on BBO have
since arisen. The two main concepts of BBO are habitat suit-

ability index (HSI) and suitability index variables (SIVs).
Features that correlate with the HSI include rainfall, diver-
sity of topographic features, land area, and temperature. SIVs
are considered the independent variables of the habitat. Geo-
graphical areas that are well suited for species are said to
possess a high HSI. Considering the optimization algorithm,
a population of candidate solutions can be represented as vec-
tors. Each integer in the solution vector is considered a SIV.
In assessing the performance of the solutions, habitats with
a high HSI are considered to be good solutions, and habitats
with a low HSI are considered to be poor solutions. There-
fore, theHSI is analogous to fitness in other population-based
optimization algorithms. The twomain operators of the BBO
are migration and mutation. The main algorithm of the BBO
is shown in Algorithm 1.

Algorithm 1Main algorithm of BBO
Begin
Generate a set of habitats to a problem
Evaluate the fitness value or HSI for each habitat
When Stopping criterion do not met do

Determine immigration rate λ and emigration rateμ for each habi-
tat

Modify habitats based on λ and μ

For i = 1 to N (Population size) do
Use λ to probabilistically decide whether to modify a habitat
If rand (0,1)< λi

Select Habitat Hj through roulette wheel method to emigra-
tion

Perform migration on Hi and Hj
Evaluate the fitness value or HSI for newly generated solu-

tion
Replace the new solution with Hi

End
If rand (0,1) < PMutation

Apply mutation on Hi
Evaluate the fitness value or HSI for newly generated solu-

tion
End

End
Update Habitat’s population

End

4.2 Adaptation of the BBO algorithm in scheduling
problems

The BBO algorithm has been successfully used for solv-
ing many scheduling problems. Ma et al. (2015) proposed a
multi-objective BBO for automated warehouse scheduling,
in which a real-world scheduling problem was presented as
a constrained multi-objective optimization problem. A rail-
way scheduling application using BBO was presented by
Zheng et al. (2014a, b), which derived a mathematical model
that considered multiple stations requiring supplies, source
stations for storing supplies, and allocation stations for pro-
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Fig. 5 Habitat representation

viding wagons. Rabiee et al. (2016) developed a modified
BBO algorithm for hybrid flow shop scheduling to mini-
mize mean tardiness under various assumptions, including
machine eligibility, unrelated parallel machines, different
ready times, and sequence-dependent setup times. Habib
et al. (2011) introduced a new BBO algorithm for solving the
flexible job shop scheduling problem.Wang andDuan (2014)
proposed a HBBO algorithm for the job shop scheduling
problem in which the proposed HBBO algorithm combines
chaos theory and a “searching around the optimum” strat-
egy with the basic BBO, which makes it converge to global
optimum solution faster and more stably. Yang (2015) inves-
tigated a modified BBO algorithm with a machine-based
shifting decoding strategy for solving the flexible job shop
scheduling problem. Lin (2016) introduced a hybrid discrete
BBO algorithm, or HDBBO, which combined the Nawaz,
Enscore, and Ham (NEH) heuristic with opposition-based
learning and BBO for the flow shop scheduling problem. The
literature reports numerous applications of BBO to bench-
marks and practical optimization problems and compares the
performance against different well-known algorithms. The
results confirm thatBBOoutperforms the existing algorithms
and can efficiently solve most of the benchmark functions. In
this work, we use the hybridization of BBO for the job shop
scheduling problem with time lags and makespan minimiza-
tion.

5 Hybrid biogeography-based optimization
for the job shop scheduling problemwith
time lag constraints

In this section,we present the hybridization steps for theBBO
algorithm with a Tabu search metaheuristic for solving the
job shop scheduling problem with minimum and maximum
time lags constraints.

5.1 Representing habitat

We represent a solution with a real number vector containing
the total number of operations and the processing order of
operations for each machine. Each vector presents a solu-
tion. Figure 5 presents an example of the representation of
a solution from the problem instance given in Table 1. In
Fig. 5, (O11, O21, O32, O33, O12, O23, O31, O22, O31) is
a possible habitat for an instance of a job shop scheduling
problemwith time lag constraints with problem size of 3×3.

We have a vector V containing the operations sequence with
length L = (n × m), equal to the total number of opera-
tions (3 × 3 = 9). For each machine, the processing order
of operations is given. For example, the processing order of
operations for machine 1 is (O21, O11, O32). Each index rep-
resents the selected operation to be processed on themachine
indicated at position p. For example, p = 4, V (4) is the
selected operation O21 to be executed on machine m2.

5.2 Initialization of population

The BBO algorithm starts with population habitats. Accord-
ing to the chosen parameter population size PS, an initial
population containing PS individuals is generated using the
greedy algorithm. This heuristic is a popular method for
solving combinatorial optimization and operations research
problems (i.e., generally NP-hard). Greedy heuristics are
used because they are fast, produce solutions with good qual-
ity, are easy to implement, and can easily be expanded. They
are commonly used to speed up research. Indeed, in most
cases, greedy algorithms have a reduced polynomial time
complexity, and their use often leads to better-quality local
optima (Talbi 2009). The greedy algorithm starts building
the solution fromone operation to another. After inserting the
operation to a defined position of the current solution, the dif-
ferent constraints are checked. If all constraints are satisfied,
we proceed to the next operation. Otherwise this operation is
deleted in the current position and added to another position
that respects the different constraints, see Algorithm 2.

Algorithm 2 The greedy algorithm
Begin
solution ω ; Set = {operation}

While (Not-empty(Set) and Not-solution.complete() )
Select (x, Set) x∈ Set

If solution.add − possible (x) = true then solution.add(x)
x ∈ Set

Else Set.det(x) x∈ Set
End while

End

5.3 Selecting strategies

This step is one of the distinctive steps of BBO with other
algorithms, and is executed through two different strategies,
one for migration and one for mutation.

5.3.1 Selecting migration strategies

Solutions are selected for immigrating or emigrating accord-
ing to the immigration rate λi and the emigration rate μ j .
According to the concept of the BBO algorithm, during the
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migration process, we face two types of selection. Firstly, we
should determine whether or not a special habitat Hi should
immigrate. To do so, a simple comparison of λi with a ran-
dom number is done. Secondly, we should select habitat Hi

for emigrating to Hj . Details of the selection algorithm for
migration are shown in Algorithm 3.

Algorithm 3 Selecting migration strategy
Begin
Select Rand (Rand ∈ [0,1])
If rand (0,1) < λi then

For j= 1 to n
Select Hj through roulette wheel process
If Hj is selected
Using Hi and Hj , the migration process is done

End if
End if
End

5.3.2 Selecting mutation strategies

According to the concept of the BBO algorithm, during
the mutation process, a habitat Hi should or should not be
mutated. For this, a simple comparison of the mutation prob-
ability with a random number is done. Algorithm 4 explains
how the mutation selection strategy is performed in the BBO
algorithm.

Algorithm 4 Selecting mutation strategy
Begin
Select Hi (SIV) according to mutation probability
If Hi (SIV) is selected

The mutation operator is done
End

5.4 Migration operator

Migration is a probabilistic operator that is used for modi-
fying each solution Hi by sharing features among different
solutions. The idea of a migration operator is based on the
migration in biogeography which shows the movement of
species among different habitats. Solution Hi is selected as
immigrating habitat with respect to its immigration rate λi ,
and solution Hj is selected as emigrating habitat with respect
to its emigration rateμ j . Thismeans that a solution is selected
for immigrating or emigrating depending on its immigration
rate λi or emigration rate μ j ; the migration process can be
shown as:

Hi (SIV)← Hj (SIV) After calculating the HSI for each
solution Hi , the immigration rate λi and the emigration rate

Fig. 6 Migration operator of the BBO algorithm

μ j can be evaluated as follows:

λi = I

(
1 − ki

n

)
(9)

μ j = E

(
ki
n

)
(10)

In Eqs. (9) and (10), ki represents the rank of the i th habitat
after sorting all habitats according to their HSIs, and n rep-
resents the size of the population. It is clear that since higher
HSI indicates a better solution, higher ki represents the bet-
ter solution. Therefore, the first solution is the worst, and the
nth solution is the best. In the equations, n is the number
of habitats in the population, while I represents the maxi-
mum immigration rate and E the maximum emigration rate,
which are both usually set to 1. The two rates λi and μ j are
the functions of fitness or HSI of the solution. Since, accord-
ing to the biogeography, the SIVs of a high-HSI solution tend
to emigrate to low-HSI solutions, a high-HSI solution has a
relatively high μ j and low λi , while in a poor solution, a
relatively low μ j and a high λi are expected. The migration
process can be presented as Algorithm 5 (Wang and Duan
2014).

Algorithm 5 The migration process of BBO
Begin
For i = 1 to N

Use λi to probabilistically decide whether to emigrate to Hi
If rand (0,1) < λi then
Select the emigrating island Hj with probability αμ j , j ∈ [1,N]
If rand (0,1) < μ j then
Hj (SIV) ← Hi (SIV)
End if

End if
End for
End

Figure 6 illustrates an example of migration operator
application for our problem, see Fig. 6.

As mentioned earlier, the SIVs from a good habitat
tend to migrate into a poor habitat. This migration oper-
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Fig. 7 Gantt charts of migration
process solutions

ator is performed probabilistically based on immigration
and emigration rates. In this example, we will explain
how the migration is implemented in our BBO algorithm.
Consider dealing with an instance of a job shop schedul-
ing problem with time lags with three jobs, three opera-
tions, and three machines. Suppose, based on immigration
and emigration rates, that an immigrating habitat Hi =
(O21, O11, O32, O12, O23, O33, O31, O22, O31)and an emi-
grating habitat He = (O11, O21, O32, O12, O33, O23, O31,

O22, O31). The migration process is: He (SIV) ← Hi (SIV)
SIVs of Hi will be randomly selected and replace ran-

domly selected SIVs of He. Assuming that SIVs of Hi (O12,
O23, O33) are selected to replace SIVs of He (O12, O33, O23),
the migration process consists of the following steps:

(1) SIVs of machine 2 from Hi (O12, O23, O33) migrate into
He to replace SIVs of He (O12, O33, O23).

(2) SIVs (O12, O23, O33) replace SIVs (O12, O33, O23).
(3) SIVs (O11, O21, O32) and (O31, O22, O31) of machine 1

and machine 3 from He remain at original places.
(4) Therefore, the new habitat, Hn = (O11, O21, O32,

O12,O23, O33, O31, O22, O31) is produced, see Fig. 7.

5.5 Mutation operator

Mutation is used to enhance the diversity of the population,
which helps to decrease the chances of becoming trapped
in the local optima. Solutions with very high HSI and very

low HSI are both equally improbable, while medium-HSI
solutions are relatively probable to mutate. Namely, a ran-
domly generated SIV replaces a selected SIV in the solution
Hi according to a mutation probability. Note that an elitism
approach is employed to save the features of the habitat that
has the best solution in the BBO process and guarantees the
survival of the best individual(s). The habitat with the best
solution has a mutation rate of 0. Mutation is a probabilistic
operator that randomly modifies a solution’s SIV based on
its priori probability of existence. The probability Ps, which
represents that the habitat contains exactly species S, changes
from time t to time t + �t .

It is updated as follows:

Ps(t + �t) = Ps(t)(1 − λs�t − μs�t)

+Ps−1λs−1�t + Ps+1μs+1�t (11)

Species count probabilities Ps computed from λi and μ j

with equation (11) are used to determine the mutation rates.
Suppose a habitat with S species is selected to execute the
mutation operation, then randomly modify a chosen variable
(SIV) based on its associated probability Ps . The mutation
rate m(s) can be computed according to the following func-
tion proportional to Ps :

m(s) = mmax

(
1 − Ps

Pmax

)
(12)
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Suppose that habitat Hi ∈ SIVR represents a feasible solu-
tion to some problem; the mutation process can be presented
in Algorithm 6 (Wang and Duan 2014).

Algorithm 6 The mutation process of BBO
Begin

For i = 1 to R
Compute the probability Ps with equation 11
Compute the mutation rate m(s) with equation 12
Select Hj with probability α m(s)
If Hj is selected then
Replace Hj with randomly generated SIV

End if
End for

End

If a solution is selected for mutation, it is replaced by a
randomly generated new solution set. This random mutation
affects the exploration ability of the BBO algorithm (Feng
et al. 2017). The mutation habitats are kept in the popula-
tion only if the quality is better than the original habitats.
However, this is not practical when solving a complex opti-
mization problem such as job shop scheduling with time lag
constraints. Most of the time, the resulting habitats from a
simple mutation operator are unlikely to be better than the
original habitats, especially as the algorithm converges. To
overcome this weakness of the classical BBO algorithm,
we propose replacing the mutation operator with a Tabu
search (TS) procedure. Proposed by Glover (1986), TS is
a metaheuristic which performs a local search based on the
information in thememory. TS is both a neighborhood-based
and iterative procedure. At each iteration, the current solu-
tion will make a move to the neighborhood solution with
the best objective function value. To avoid trapping in local
optima, the move that has been made will be stored in a
Tabu list, and a reverse move to previous solutions is for-
bidden. The performance of Tabu search is highly dependent
on the neighborhood type used and Tabu list implementa-
tion. The Tabu search metaheuristic has been successfully
used for solving different combinatorial optimization prob-
lems. The advantages of replacing the mutation operator of
the classical BBO algorithm with TS are twofold. First, the
original aim of the mutation process is maintained, which is
to increase the diversity of the population. At the same time,
the quality of the resulting habitats is prevented from being
degraded (Wee et al. 2016). Different parameters of the TS
metaheuristic are presented in the following sections.

5.5.1 Initial solution

The initial solution is the starting step used for the algorithm
to begin the search for better configurations in the search
space. In this implementation, the initial solution used is the

resulting solution of the migration step of the BBO algo-
rithm; the Tabu search process then proceeds iteratively to
visit series of locally best configurations following a neigh-
borhood function, see Fig. 8.

5.5.2 Neighborhood structure

A neighborhood is a set of solutions (neighbors) created by
a specific operator.

A move is a function transforming a solution into one of
its neighbors. In the literature, we can find many types of
moves. Among the most common we can cite:

Swapping moves: this type of neighborhood is created by
reversing two successive elements in the current solution.
This movement generates a neighborhood of size (n − 1),
which can be explored in O(n2m), see Fig. 9.

Exchange moves: this type of neighborhood is created by
swapping the positions pi and p j of any two elements. This
movement generates a neighborhood of size n(n − 1)/2, and
exploring the neighborhood reaches O(n3m), see Fig. 10.

Insertion moves: this type of neighborhood is created b
moving an element from its original position pi to a new
position p j . This movement generates a neighborhood of
size (n−1)2, but it can be evaluated in O(n2m), see Fig. 11.

Deroussi et al. (2006) proposed a study of different neigh-
borhood structures and showed that local search algorithms
based on swap moves do not allow one to reach good-quality
solutions, and local search algorithms based on exchange
moves provide good-quality local minima, but the neighbor-
hood exploration is inO(n3m), which can cause considerable
computation time for large instances.

In this implementation, we use the insertion move struc-
ture, which is considered the most effective and most
commonly used in several approaches described in the lit-
erature because of its efficiency in terms of quality of the
solution and running time. Figure 12 illustrates an example
of an insertion move neighborhood structure for the job shop
scheduling problem with time lag constraints.

As mentioned earlier, the insertion move neighborhood
structure is performed by simplymoving a selected operation
from its original position pi to a new position p j . Assuming
that the operation O13 is chosen to be moved, the resulting
neighbor solution produced is shown in Fig. 13.

5.5.3 Tabu List

The Tabu list (TL) can be used to avoid searching the previ-
ously tested solutions of the minimization or maximization
problem. The TL stores the attributes of the moves that have
been made.When the length of the list reaches the maximum
fixed value Lmax, before adding the next element, the oldest
one is deleted. When, in a given step, all the moves are for-
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Fig. 8 Gantt chart of initial
solution

Fig. 9 Swapping moves

Fig. 10 Exchange moves

Fig. 11 Insertion moves

bidden by the Tabu list, the oldest elements are deleted from
the list until at least one move is allowed.

5.5.4 Diversification

In order to ensure sufficient diversity in the search, a spe-
cific diversification must be incorporated to complement
the neighborhood. The diversification step is activated when
the number of iterations continuously increases without any
improvement in the current solution, which means that the
best solution found has not been replaced by one of these
neighbors for some time, which is a sign that the Tabu search
was probably trapped in a local optimum. In this case, a
simple effective method is used to achieve diversity. A new
schedule is generated using a new insertion order of jobs in
order to explore a new region of the search space, and the
resolution process is started again. Next, the number of iter-
ations diversification, i.e., the number of iterations after the
last improvement, is reset, and the research process contin-
ues by considering the solution obtained by diversification
phase as a new current solution until reaching the stopping
criterion.

Fig. 12 Insertion moves structure

6 Experimental results

In order to evaluate the performance of the proposed hybrid
biogeography-based optimization algorithm for the job shop
scheduling problem with minimum and maximum time lag
constraints, we give in this section the results of the HBBO
algorithm for the job shop scheduling problemwith time lags
between successive operations of the same job (JSPTL) and
the results of the job shop scheduling problem with generic
time lags between whatever pairs of operations of different
jobs (JSPGTL). Several experiments were conducted on a set
of benchmarks for job shop problems with additional time
lag constraints existing in the literature.

6.1 Experimental results for JSPTL

For the JSPTL problem, we use the instances of Fisher and
Thompson (1963), Lawrence (1984), and Carlier (1978). For
instances of Fisher and Thompson (1963) and Lawrence
(1984), we compare the results of the HBBO algorithmwith:

• Generalized disjunctive constraint propagation based on
a job insertion heuristic JI (Artigues et al. 2011)

• Approach based on operation insertion heuristicOI (Cau-
mond et al. 2005b)

• Tabu Search algorithm TS (Caumond et al. 2004)
• Multi-agent model based on Tabu search metaheuristic
MATS (Harrabi and Belkahla Driss 2015)

• Competitive agents implementing parallel Tabu searches
CAPTS (Harrabi et al. 2017a, b, c)

• Greedy biogeography-based optimization GBBO
(Harrabi et al. 2018)
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Fig. 13 Gantt charts of insertion
moves neighborhood

Table 2 Results for JI/OI/TS/MATS/CAPTS/GBBO/HBBO for Fisher and Thompson instances

Instances n ∗ m Lower bound JI heuristic OI heuristic TS MATS-JSTL CAPTS-JSTL Greedy BBO HBBO

ft06_0_0 6 ∗ 6 73 96 83 94 80 73 83 73*

ft06_0_0.5 6 ∗ 6 63 72 109 81 69 66 73 69

ft06_0_1 6 ∗ 6 58 72 58 61 64 60 61 60

ft06_0_2 6 ∗ 6 55 70 55 55 60 57 55 55*

For instances of Carlier (1978), we compare the results of
the HBBO algorithm with:

• Tabu search algorithm TS (Caumond et al. 2004)
• Memetic algorithm Mem (Caumond et al. 2008)
• Multi-agent model based on Tabu search metaheuristic
MATS (Harrabi and Belkahla Driss 2015)

• Competitive agents implementing parallel Tabu searches
CAPTS (Harrabi et al. 2017a, b, c)

• Greedy biogeography-based optimization GBBO
(Harrabi et al. 2018)

For all instances, TLmin
(i, j),(i j+1) = 0.

For each instance, TLmax
(i, j),(i j+1) = {0, 0.5, 1, 2}.

Instances are designedwithNameTLmin
(i, j),(i j+1)TL

max
(i, j),(i j+1).

For example, ft06-0-0.5 is the instance of Fisher and Thomp-
son 6with TLmin

(i, j),(i j+1) = 0 and TL
max
(i, j),(i j+1)= 0.5. For some

instances, HBBO gives an optimal solution with a makespan
value equal to the lower bound. We mark the values of these
instances with “*”.

6.1.1 Comparison results of Fisher and Thompson instances
for the JSPTL problem

Table 2 presents results for JI/OI/TS/MATS/CAPTS/GBBO/
HBBO for Fisher and Thompson instances.

For the ft06 instances, the proposed HBBO algorithm
gives better results than the job insertion heuristic method

in 100% of instances and better results than TS, MATS, and
GBBO in 75%. Compared with CAPTS, HBBO gives better
results in 25% and gives 50% better than the OI heuristic (see
Table 2).

6.1.2 Comparison results of Lawrence instances for the
JSPTL problem

Table 3 presents results for JI/OI/TS/MATS/CAPTS/GBBO/
HBBO for Lawrence instances.

For Lawrence instances with ten jobs and five machines,
results show that the BBO algorithm gives better results than
the job insertion heuristic and Tabu search heuristic in 95%
of instances, and better results than the operation insertion
heuristic, MATS, CAPTS, and Greedy BBO in 100% of
instances, see Table 3.

6.1.3 Comparison results of Carlier instances for the JSPTL
problem

Table 4 presents results for TS/Mem/MATS/CAPTS/GBBO/
HBBO for Carlier instances.

For Carlier’s instances, results show that the HBBO algo-
rithm gives better makespan values than the Tabu search
in 87.5% of instances and better results than the memetic
algorithm in 40% of instances. Compared with CAPTS and
GBBO, HBBO gives better results in 25% and better results
than MATS in 50%. See Table 4.
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Table 3 Results for JI/OI/TS/MATS/CAPTS/GBBO/HBBO for Lawrence instances

Instances n ∗ m Lower bound JI heuristic OI heuristic TS MATS- JSTL CAPTS- JSTL Greedy BBO HBBO

la01_0_0 5 ∗ 10 971 1258 1504 1473 1020 1012 1133 984

la01_0_0.5 5 ∗ 10 758 1063 1474 758 980 924 959 817

la01_0_1 5 ∗ 10 683 928 1114 916 907 891 934 751

la01_0_2 5 ∗ 10 666 967 948 732 894 856 889 666*

la02_0_0 5 ∗ 10 937 1082 1416 1436 1085 1034 1103 954

la02_0_0.5 5 ∗ 10 742 1011 1207 1153 973 952 1019 895

la02_0_1 5 ∗ 10 686 935 1136 900 694 686 874 686*

la02_0_2 5 ∗ 10 673 928 895 681 874 673 801 673*

la03_0_0 5 ∗ 10 820 1081 1192 1108 1178 1018 1059 917

la03_0_0.5 5 ∗ 10 679 930 1085 1052 946 874 966 843

la03_0_1 5 ∗ 10 640 886 931 847 894 718 837 689

la03_0_2 5*10 630 808 787 671 761 630 651 630*

la04_0_0 5*10 887 1207 1346 1275 1393 1237 1250 914

la04_0_0.5 5*10 703 870 1156 1106 1234 1015 906 882

la04_0_0 5*10 646 1010 857 950 915 826 867 784

la04_0_ 2 5*10 619 892 838 642 827 783 804 724

la05_0_0 5*10 757 1080 1224 1128 1168 868 1049 758

la05_0_0.5 5*10 622 935 1208 957 962 817 976 634

la05_0_1 5*10 593 814 964 761 803 624 736 614

la05_0_2 5*10 593 749 683 600 763 593 700 593*

Table 4 Results for TS/MEM/MATS/CAPTS/GBBO/HBBO for Carlier instances

Instances n ∗ m Lower bound TS MEM MATS-JSTL CAPTS-JSTL GBBO HBBO

Car5_0_0 10*6 7821 11495 7821 8346 8145 9406 9218

Car 5_0_0.5 10*6 7821 10293 7821 7815 7762 8854 8753

Car 5_0_1 10*6 7805 8910 7821 7748 7724 7805 7805

Car 5_0_2 10*6 7700 8281 7702 7732 7702 7894 7702*

Car 6_0_0 8*9 8313 11243 8313 8407 8367 8453 8411

Car 6_0_0.5 8*9 8300 9100 8330 8387 8324 8312 8306

Car 6_0_1 8*9 8323 9248 8313 8362 8319 8313 8323*

Car 6_0_2 8*9 8305 8467 8505 8357 8313 8417 8406

Car 7_0_0 7*7 6558 7704 6558 6704 6617 7528 7467

Car 7_0_0.5 7*7 6558 6953 6558 6624 6593 6958 9928

Car 7_0_1 7*7 6573 6590 6558 6602 6574 6609 6573*

Car 7_0_2 7*7 6558 6573 6558 6568 6561 6572 6564

Car 8_0_0 8*8 8407 10144 8407 8409 8394 8423 8407*

Car 8_0_0.5 8*8 8407 8856 8407 8367 8338 8459 8446

Car 8_0_1 8*8 8279 8833 8264 8326 8287 8304 8279

Car 8_0_2 8*8 8259 8586 8279 8302 8264 8285 8267

6.2 Experimental results for the JSPGTL problem

For the JSPGTL problem, we use the instances of Lawrence
(1984) and Carlier (1978).

For instances of Carlier, we compare the results of the
proposed HBBO algorithm with:

• Dedicated constraint propagation DCP (Lacomme et al.
2011)

• Greedy randomized propagation rules modified ARP-
MD Lacomme and Tchernev (2012)

• Tabu search (TS) metaheuristic (Harrabi and Belkahla
Driss 2016);
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Table 5 Results for DCP/GR-ARP-MD/TS/GATS/MAHGA/GBBO/HBBO for Carlier instances

Instances n ∗ m Lower bound DCP GR-ARP-MD TS GATS MAHGA GBBO HBBO

Car1 11*5 7038 8574 13788 9817 9264 8960 8628 8610

Car2 13*4 7166 7777 / 6358 7633 7633 7725 7693

Car3 12*5 7312 9025 / 8217 9025 8964 8961 8946

Car4 14*4 8003 8787 / 8624 8619 8513 8619 8600

Car5 10*6 7702 9867 13597 8415 10163 10163 10127 10084

Car6 8*9 8313 9404 / 8634 9683 9608 9467 9428

Car7 7*7 6558 8746 10948 9215 8911 8853 8738 8719

Car8 8*8 8264 11317 16130 10820 12257 12173 11308 11283

• Genetic algorithmcombinedwith theTabu search (GATS)
metaheuristic (Harrabi et al. 2017a, b, c);

• Multi-agent model based on the hybrid genetic algorithm
(MAHGA) (Harrabi et al. 2017a, b, c);

• Greedybiogeography-basedoptimization (GBBO) (Harrabi
et al. 2018).

6.2.1 Comparison results of Lawrence instances for the
JSPGTL problem

Table 5 presents results for DCP/GR-ARP-MD/TS/GATS/
MAHGA/GBBO/HBBO for Carlier instances.

For Carlier instances, results show that the HBBO algo-
rithm gives better results than the dedicated constraint prop-
agation in 62% of instances and better results than the greedy
randomized propagation rules and greedy biogeography-
based optimization in 100% of instances. Compared with
the Tabu search, HBBO gives better results in 37%, and com-
paredwith the hybrid genetic algorithm, theHBBOalgorithm
gives better results in 87% of instances and better results in
75% than the multi-agent model based on the hybrid genetic
algorithm.

6.2.2 Comparison results of Lawrence instances for the
JSPGTL problem

Table 6 presents results for DCP/GR-ARP-MD/TS/GATS/
MAHGA/GBBO/HBBO for Lawrence instances.

For Lawrence instances, results show that theHBBOalgo-
rithm gives better results than the dedicated constraint prop-
agation in 82% of instances and better results than the greedy
randomized propagation rules and greedy biogeography-
based optimization in 100% of instances. Compared with the
Tabu search, HBBO gives better results in 65%, and com-
pared with hybrid genetic algorithm, the HBBO algorithm
gives better results in 85% of instances and better results in
62% than the multi-agent model based on the hybrid genetic
algorithm.

6.3 Analysis of results

The proposed hybrid biogeography-based optimization was
evaluated by using 88 well-studied instances with different
sizes of problem; 40 instances for a job shop with time lags
and 48 instances for a job shop with generic time lags in
order to prove its efficiency and effectiveness. These problem
instances are commonly utilized for benchmarking job shop
scheduling with time lags with the objective of minimizing
makespan.

Results show that hybrid BBO gives 14 optimal solutions
from 80 instances compared with the lower bound found
using CPLEX, proposed (by Lacomme and Tchernev 2012)

The proposed hybrid biogeography-based optimization
was able to achieve 11 optimal solutions for the following
instances of a job shop with time lags: ft06-0-0, ft06-0-2,
la01-0-2, la02-0-1, la02-0-2, la03-0-2, Car5-0-1, Car5-0-2,
Car6-0-1, Car 7-0-1, Car 8-0-1.

In addition, hybrid BBO was able to achieve three opti-
mal solutions for the following instances of a job shop with
generic time lags: la01, la12, la22.

Moreover, hybrid BBO was able to achieve near-optimal
schedules for the majority of all problem instances. It is clear
that the proposedoptimization technique achieved36%of the
optimal solutions for JSPTL and near-optimal solutions for
the rest of instances.

For the job shop with generic time lags, the best-known
solution considered is the DCP approach. The proposed
hybrid biogeography-based optimization gives the best-
known solutions in some instances (la01, la04) and gives for
the remaining instances the near-optimal schedules in which
they were generally better than those of the other algorithms.

Based on the above results, it appears that the proposed
technique was able to provide optimal schedules in some
cases and near-optimal schedules in most cases. Based on
these results, the proposed approach can be considered as an
efficient algorithm for solving job shop scheduling problems
with time lags and generic time lags.
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Table 6 Results for DCP/GR-ARP-MD/TS/GATS/MAHGA/GBBO/HBBO for Carlier instances

Instances n ∗ m Lower bound DCP GR-ARP-MD TS GATS MAH GA GBBO HBBO

la01 10*5 666 666 875 654 684 684 694 666*

la02 10*5 655 697 897 718 854 811 772 753

la03 10*5 597 636 / 684 738 738 658 627

la04 10*5 590 713 / 627 713 713 737 713

la05 10*5 573 593 878 634 622 622 588 576

la06 15*5 926 926 / 867 1132 1104 1085 1037

la07 15*5 780 894 1123 837 852 834 847 829

la08 15*5 663 907 / 883 962 943 728 704

la09 15*5 851 951 / 904 928 906 917 917

la10 15*5 858 958 / 923 924 911 903 903

la11 20*5 1022 1222 / 1304 1054 1022 1032 1024

la12 20*5 1059 1039 1575 986 1168 1136 1074 1059*

la13 20*5 1005 1150 / 1024 918 918 1043 1027

la14 20*5 1192 1292 1584 1137 1234 1207 1258 1241

la15 20*5 1109 1207 1593 1194 1109 1093 1121 1109

la16 10*10 945 1114 1599 1084 1114 1114 1208 1181

la17 10*10 787 1091 1292 1128 1128 1104 1124 1108

la18 10*10 848 1076 / 1036 1186 1186 1094 1094

la19 10*10 842 1050 1403 964 1050 1050 1059 1052

la20 10*10 902 1142 1635 1019 1419 1376 1212 1204

la21 15*10 1046 1181 1795 1146 1093 1038 1084 1078

la22 15*10 927 1028 / 984 973 924 934 927*

la23 15*10 1032 1054 / 1035 1267 1219 1071 1064

la24 15*10 935 1054 / 1078 1017 993 1023 1009

la25 15*10 977 1069 1736 1031 1028 1028 1062 1053

la26 20*10 1018 1306 1877 1269 1154 1079 1114 1107

la27 20*10 1035 1408 / 1227 1186 1128 1154 1116

la28 20*10 1135 1325 1997 1271 1216 1191 1185 1167

la29 20*10 1057 1308 / 1294 1286 1264 1273 1238

la30 20*10 1135 1395 / 1319 1267 1238 1237 1218

la31 30*10 1704 1890 2543 1722 1718 1718 1721 1718

la32 30*10 1750 1986 2500 1837 1822 1786 1771 1753

la33 30*10 1519 1790 / 1819 1604 1592 1619 1604

la34 30*10 1721 1962 / 1894 1874 1874 1891 1864

la35 30*10 1888 2128 / 2089 2063 2037 2038 2016

la36 15*15 1268 1350 1747 1309 1350 1350 1354 1327

la37 15*15 1397 1566 2452 1617 1604 1604 1570 1564

la38 15*15 1196 1295 1725 1238 1218 1218 1229 1207

la39 15*15 1233 1390 / 1367 1286 1217 1256 1248

la40 15*15 1122 1320 / 1286 1224 1194 1208 1194

7 Conclusion

Over the past few decades, a number of new types of
algorithms have been developed for solving optimization
problems. Biogeography-based optimization is a new sim-
ulated bio-inspired intelligent algorithm which has some

features that are distinct from other biology-based optimiza-
tion methods. We propose an improved biogeography-based
optimization algorithm hybridized with the Tabu search
metaheuristic for solving the job shop scheduling prob-
lem including minimum and maximum time lag constraints,
which is an NP-hard problem, and obtaining a feasible solu-
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tion is a difficult problem. According to an analysis and
comparisons of the test results of HBBO through different
instances of job shop scheduling problems with additional
time lag constraints described in the literature, this algorithm
is better able to solve well-known benchmarks. Compared
with other proposed algorithms, the HBBO algorithm has
significantly better performance. Based on the good results
of the proposedHBBOalgorithm, it can be used to solve other
extensions of our problem.We can develop the hybridization
of BBO with other algorithms such as ACO, PSO, or GA
in order to solve the same problem. We can also adopt the
distributed BBO via the multi-agent system.
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