
Journal of Scheduling (2021) 24:223–236
https://doi.org/10.1007/s10951-020-00675-2

Coupled task scheduling with time-dependent processing times

Mostafa Khatami1 · Amir Salehipour1

Accepted: 21 December 2020 / Published online: 21 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The single machine coupled task scheduling problem includes a set of jobs, each with two separated tasks, and there is
an exact delay between the tasks. We investigate the single machine coupled task scheduling problem with the objective
of minimizing the makespan under identical processing time for the first task and identical delay period for all jobs, and
the time-dependent processing time setting for the second task. Certain healthcare appointment scheduling problems can be
modeled as the coupled task scheduling problem. Also, the incorporation of time-dependent processing time for the second
task lets the human resource fatigue and the deteriorating health conditions be modeled. We provide optimal solution under
certain conditions. In addition, we propose a dynamic program under the condition that the majority of jobs share the same
time-dependent characteristic. We develop a heuristic for the general case and show that the heuristic performs well.

Keywords Coupled task scheduling · Time-dependent processing time · Simple linear processing time · Dynamic program ·
Heuristic · Healthcare scheduling

1 Introduction

The single machine coupled task scheduling problem aims
to schedule a set of jobs on a single machine (processor)
such that a performance criterion (objective function) is opti-
mized. In this study, we investigate the performance criterion
of minimizing the makespan, i.e., the completion time of the
last job in the sequence. Each job consists of two separated
tasks with an exact delay (time interval) between them. The
second (completion) task must be processed after the com-
pletion of the first (initial) task. A job j ∈ J , where J is the
set of all jobs, is shown by a triple (a j , L j , b j). Parameters
a j , L j and b j denote the processing time of the initial task,
the amount of delay and the processing time of the comple-
tion task.

Shapiro (1980) modeled a pulsed radar system as a cou-
pled task scheduling problem. A pulse of electromagnetic
energy is used to track an object. The pulse is transmitted, and
then, its reflection is received after a period of time, helping to
measure the size and/or the shape of the object. The objective

B Amir Salehipour
amir.salehipour@uts.edu.au

Mostafa Khatami
mostafa.khatami@student.uts.edu.au

1 School of Mathematical and Physical Sciences, University of
Technology Sydney, Ultimo, Australia

is tomaximize the number of detected objects. Other applica-
tions of the coupled task problem include certain scheduling
problems in chemistrymanufacturing,where there is an exact
technological delay between the completion time of the first
task and the starting time of the second one (Ageev and
Baburin 2007), in robotic cells, in which a cell includes input
and output stations, a machine and a robot, which transports
material between stations and machine (Lehoux-Lebacque
et al. 2015), and in healthcare appointment scheduling, for
example, in a chemotherapy treatment once the medicine is
prescribed the patient visits the health center at treatment
days separated by a fixed number of rest days (Condotta and
Shakhlevich 2014).

The coupled task scheduling problem can be applied to
certain healthcare problems with multi-stage characteristics.
Consider scheduling the appointment of patients in a nuclear
medicine clinic. The problem consists of strict multi-stage
sequential procedures (Pérez et al. 2011, 2013), where a sin-
gle procedure requires multiple stages and each stage needs
to be successfully completed within a strict time window.
The cost of required resources and the short half-life of
the radio-pharmaceuticals needed for the procedure justifies
minimizing a performance criterion related to the patients
flow time. In this context, the tiredness of the staff, which typ-
ically occurs in practice and impacts the processing time and
hence, the start time of the next job, can bemodeled as a time-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-020-00675-2&domain=pdf
http://orcid.org/0000-0003-4866-1396

224 Journal of Scheduling (2021) 24:223–236

dependent event. For example, Pérez et al. (2013) highlight
the importance of modeling human resource fatigue within
the patient appointment scheduling in nuclear medicine clin-
ics or in similar environments, proposing therefore studies on
the coupled task scheduling with time-dependent processing
times. The problem of scheduling patients in a pathology
laboratory is another example. Certain blood tests, e.g., the
fasting blood sugar test, require multiple tests and there is an
exact time interval between a pair of tests. Although the next
test cannot be administered until an exact delay is elapsed,
the tests associated with other patients can be administered
within such a delay period. In the simplest form, a pair of
tests form a coupled task job. Here, the performance crite-
rion is to minimize the waiting time of the patients (Marinagi
et al. 2000; Azadeh et al. 2014). This problem can also be
investigated with regard to the human resource fatigue. Sim-
ilar characteristics can be found in the patient appointment
scheduling in radiotherapy clinics (Legrain et al. 2015) and
in hemodialysis treatment services (Liu et al. 2019).

We also note that Mosheiov (1994) and Gawiejnow-
icz (2008) studied the time-dependent processing times to
model the time of performing the medical services as the
time increases under deteriorating health conditions. It is
true that in the aforementioned applications, particularly, in
chemotherapy and radiotherapy services, the symptoms of
the patient rapidly grow over time, i.e., the patient needs
longer treatment if that treatment is started late.

Shapiro (1980) showed that the coupled task scheduling
problem is equivalent to an NP-hard class of two-machine
job-shop problem.They proposed twoheuristic algorithms of
“interleaving” and “nesting” for the problem. The interleav-
ing heuristic aims to sequence jobs such that the completion
tasks arrive for processing in the same order as the initial
tasks (Fig. 1a). In the nesting procedure, the completion
tasks arrive in the reverse order of the initial tasks (Fig. 1b).
Scheduling a single job without interleaving or nesting is
often referred to as “appending.” The strong NP-hardness of
minimizing the makespan for the coupled task problem was
proved by Sherali and Smith (2005). Condotta and Shakhle-
vich (2012) showed that the problem remains strongly
NP-hard even if the sequence for the initial tasks is given.
Several special caseswere also shown tobe stronglyNP-hard.
For example, under the objective function of minimizing the
makespan problems (a j = L j = b j), (a j , L j = L, b j = b)
and (a j = p, L j , b j = p), where L , b and p are posi-
tive integers, are strongly NP-hard (Orman and Potts 1997).
Even the complexity of a restricted case where all jobs have
the same tasks and delay, i.e., (a j = a, L j = L, b j = b),
which is commonly known as the “identical” case, is still
open. Two notable studies for the identical case are due to
Ahr et al. (2004), who proposed an O(nr2L)-time dynamic
program, where r is a function of a, and to Baptiste (2010),

(a): aj ak bj bk

(b): aj ak bk bj

Fig. 1 Interleaving jobs j and k (a) and nesting jobs j and k (b)

who improved the complexity to O(log n) for fixed a, L and
b.

For the general case of the problem, Ageev and Kononov
(2007) proposed a 3.5-approximation algorithm that operates
by ordering the jobs in a non-increasing order of (a j + L j).
Li and Zhao (2007) presented lower bounds for the prob-
lem. Heuristic algorithms (Li and Zhao 2007; Condotta and
Shakhlevich 2012) and exact methods (Békési et al. 2014)
were also proposed. The recent heuristic of binary search
by Khatami and Salehipour (2020) systematically tightens
lower and upper bounds until a feasible schedule is obtained.
Several studies investigated the problemwith additional con-
straints, e.g., with the precedence constraints (Blazewicz
et al. 2010), with the compatibility constraints (Simonin et al.
2011; Bessy and Giroudeau 2019), and with the fixed-job-
sequence constraints (Hwang and Lin 2011). In the shop
environment, Yu et al. (2004) and Leung et al. (2007) stud-
ied the makespan minimization in a two-machine flow-shop
problem. Ageev (2018) recently studied the complexity of
the open-shop problem with the coupled tasks. For a com-
prehensive review of the coupled task studies, applications
and models, we refer the interested reader to Khatami et al.
(2020).

Certain special cases of the coupled task problem have
been shown to be polynomially solvable. For example,
Orman and Potts (1997) proved that the case (a j = p, L j =
p, b j) (identical initial tasks and delays for all jobs) is poly-
nomially solvable for the objective function of minimizing
the makespan. We investigate the same case, and also with
the objective function of minimizing the makespan; how-
ever, with a time-dependent processing time characteristic
for the completion tasks. Under this setting, the processing
time of the completion task depends on its starting time. To
the best of our knowledge, the present study is thefirst attempt
toward studying the coupled task scheduling problem with
time-dependent processing time characteristic.

Gupta and Gupta (1988) introduced the scheduling prob-
lems with time-dependent processing times. The time-
dependent processing times have various applications, e.g.,
in steel production, in financial management and in resource
allocation, where a delay in starting a job may decrease or
increase its processing time (Kunnathur and Gupta 1990;
Cheng et al. 2004). Under this setting, job j has a normal
processing time α j ≥ 0 and a processing rate β j ≥ 0.
The actual processing time of job j depends on its start-
ing time s j , and is typically shown as p j = α j ± β j s j .

123

Journal of Scheduling (2021) 24:223–236 225

A variant of this model, which is called the “simple lin-
ear processing time”, assumes α j = 0, and therefore,
p j = β j s j .We investigate the simple linear processing times
model for the completion tasks. Therefore, with consider-
ing the three-field scheduling notation proposed by Graham
et al. (1979), the present study investigates the problem
1|(a j = p, L j = p, b j = β j s j)|Cmax. We assume a j , L j

and b j only take positive integers values. There are other
cases that we do not study in this paper, either because their
time-dependent processing times counterpart remains poly-
nomially solvable or remains stronglyNP-hard. For example,
the case (a j = p, L j = L, b j = p), i.e., all jobs are
identical was shown to be polynomially solvable (Orman
and Potts 1997). We do not study that case with the time-
dependent processing times because the problem is trivial if
all jobs share the same processing rate (a greedy approach
leads to the optimal makespan). Also, the strongly NP-hard
cases of (a j = L j = b j), (a j , L j = L, b j = b) and
(a j = p, L j , b j = p) remain strongly NP-hard with the
addition of the time-dependent processing times.

The remainder of this paper is organized as follows. In
Sect. 2, we present a mathematical formulation for the prob-
lem. In Sect. 3,we discuss optimal properties for the problem.
A dynamic program and a heuristic are also proposed. The
results of numerical experiments are presented in Sect. 4. The
paper ends with a few conclusions in Sect. 5.

2 Problem definition and formulation

Given a set of coupled task jobs J = {1, 2, . . . , n}, each
with two tasks and there is an exact delay period between
two consecutive tasks, to be processed on a single machine,
a job j ∈ J is represented by (a j = p, L j = p, b j =
β j s j), where p is a positive integer, and β j , s j > 0,∀ j ∈
J . Therefore, parameter b j ,∀ j is a time-dependent variable
defined by a simple linear processing time. The goal is to
develop a schedule for (a j = p, L j = p, b j = β j s j), so to
minimize the makespan, i.e., Cmax.

There are a number ofmathematical programs available in
the literature for the general coupled task problem. Khatami
et al. (2020) discussed that the model proposed by Békési
et al. (2014) is computationally among the top performing
models.Hence,we extend that formulation for the problemof
this study. The formulation utilizes linear ordering variables,
and the sequence is therefore built by ordering the tasks. For
this reason, we define a set of tasks H = {1, 2, . . . , 2n},
where H2 j−1 and H2 j represent the initial and completion
tasks of job j . For any pair of tasks h, h′, we define a binary
variable xh,h′ , which takes a value of 1 if task h′ starts after
task h in the sequence, and 0 otherwise. The problem P1
below shows the formulation for (a j = p, L j = p, b j =
β j s j).

Problem P1

z = minCmax (1)

subject to

Cmax ≥ s2 j + β j s2 j , 1 ≤ j ≤ n, (2)

x2 j−1,2 j = 1, 1 ≤ j ≤ n, (3)

xh,h′ + xh′,h = 1, 1 ≤ h < h′ ≤ 2n, (4)

xh,h′ + xh′,h′′ + xh′′,h ≤ 2, 1 ≤ h < h′ < h′′ ≤ 2n, (5)

s2 j = s2 j−1 + 2p, 1 ≤ j ≤ n, (6)

s2 j ≤ UB − β j s2 j , 1 ≤ j ≤ n, (7)

sh ≥ s2 j−1 + p −UB(1 − x2 j−1,h), 1 ≤ j ≤ n,

1 ≤ h ≤ 2n, h /∈ {2 j − 1, 2 j}, (8)

sh ≥ s2 j + β j s2 j −UB(1 − x2 j,h), 1 ≤ j ≤ n,

1 ≤ h ≤ 2n, h /∈ {2 j − 1, 2 j}, (9)

sh ≥ 0, 1 ≤ h ≤ 2n, (10)

xh,h′ ∈ {0, 1}, 1 ≤ h, h′ ≤ 2n, h �= h′. (11)

The objective function (Eq. (1)) minimizes the makespan.
The constraints (2) ensure that the makespan is larger than
the completion time of any job. Constraint (3) ensures that
the completion task of each job should be scheduled after its
initial task. Constraints (4) and (5) set the relative order of any
pair of tasks and any triple distinct tasks, respectively. The
link between the starting time of the tasks (of the same job)
is established by constraints (6), while an upper bound (UB)
is considered for the starting time of the completion tasks
in constraints (7). Constraints (8) and (9) relate the starting
time of tasks, and also relate the starting time variables to the
linear ordering variables. Constraints (10) and (11) ensure
that the decision variables are non-negative and binary. We
note that the total number of variables and constraints of the
model is equal to 4n2 + 1 and 8

3n
3 + 2n2 + 1

3n, respectively.

3 Minimizing themakespan

We show that problem P1 can be easily solved for these two
cases: (1) β j > 0.5,∀ j ∈ J and (2) a two-job instance.
In addition, under the condition that jobs are grouped into
a few classes we propose a dynamic program for problem
P1 that delivers the optimal schedule in polynomial time. In
many applications, it is indeed safe to group the jobs. For the
general case, we propose an efficient heuristic algorithm.

3.1 Optimal schedule

Orman and Potts (1997) showed that for problem (a j =
p, L j = p, b j) under general processing times, the nesting

123

226 Journal of Scheduling (2021) 24:223–236

(a):
0 p 2p 3p

aj ak bj bk

(b):
0 p 2p

aj bj

Fig. 2 Contribution of an interleaving pair of jobs (a) and a single job
(b) to the makespan

of jobs is not possible. For a pair of jobs j and k, if b j ≤ p, it
is possible to interleave jobs j and k, where j is the first job
and k is the second job of the pair. The contribution of this
setting to the makespan is equal to 3p+bk . This is illustrated
in Fig. 2a. On the other hand, any job j with b j > p con-
tributes 2p+b j to the makespan (see Fig. 2b). Therefore, the
optimal schedule is derived when as many jobs as possible
are interleaved. We will investigate whether this is the case
in problem (a j = p, L j = p, b j = β j s j).

In the classical single machine setting, the optimal sched-
ule for both simple linear and linear time-dependent pro-
cessing times exists. For example, under the simple linear
condition Mosheiov (1994) showed that all schedules lead to
the samemakespan, which is equal to s1×∏

j (1 + β j), s1 >

0, where s1 is the start time of the schedule. Under the linear
processing times, Gupta and Gupta (1988) proved that the
optimal makespan is obtained when jobs are sequenced in a
non-decreasing order of α j/β j .

The results of Gupta and Gupta (1988) may be extended
for problem (a j = p, L j = p, b j = β j s j). We note that
the combination of the initial task and the delay period of
job j can be considered as the normal processing time of job
j , i.e., α j = p + p = 2p. If no interleaving is possible,
problem (a j = p, L j = p, b j = β j s j) reduces to the single
machine scheduling with linear time-dependent processing
times, forwhich sequencing jobs in a non-decreasing order of
α j/β j leads to the optimal makespan. Therefore, it is suffice
to investigate if interleaving is possible.

It is safe to assume that the first job starts at time zero
because all jobs are available at time zero. Then, the pro-
cessing time of its completion task will be b j = β j × 2p.
Two cases are possible: (1) β j > 0.5,∀ j ∈ J and (2)
β j ≤ 0.5, ∃ j ∈ J . The following theorem leads to the opti-
mal schedule if β j > 0.5,∀ j .

Theorem 1 The optimal solution for problem P1 is obtained
when jobs are sorted in a non-increasing order of β j , if and
only if β j > 0.5,∀ j .

Proof Without loss of generality let the first job start at time
zero. Therefore, its completion task starts at time2p andb j =
β j × 2p. It is clear that b j > p, since β j > 0.5,∀ j . Recall
that there is no possibility for jobs interleaving if b j > p (see
Fig. 2b). Hence, the optimal sequence is obtained by ordering

(l, k):
0 p 2p 3p

al ak bl bk

2pβl 3pβk

(k, l):
0 p 2p

ak bk al bl

2pβk (4p + 2pβk)βl

p

Fig. 3 Two possible schedules for a two-job instance: (l, k), where
interleaving occurs, and (k, l), where interleaving is not possible

jobs in a non-decreasing order of α j/β j , or equivalently in a
non-increasing order of β j since α j = 2p > 0,∀ j ∈ J . 	

The proof of Theorem 1 shows that even though the actual
processing time of jobs depends on the start time of the
completion tasks, this does not impact the optimal sequence
because α j = 2p,∀ j ∈ J . The result of Theorem 1 may
also be utilized to locate jobs that cannot be the first of an
interleaving pair. This leads to the following lemma.

Lemma 1 Under arbitrary values of β the jobs in set J̄ ⊂ J ,
where J̄ = { j |β j > 0.5} appear in the optimal schedule in
a non-increasing order of β j , j ∈ J̄ .

Proof Let β j > βk > 0.5 for jobs j, k ∈ J̄ . Assume that
job k precedes job j in the optimal schedule. It is easy to
see that swapping jobs j and k decreases the makespan,
which implies that job k cannot precede job j in the optimal
schedule. We note that the jobs in J̄ cannot be the first of an
interleaving pair, and swapping jobs j, k does not therefore
change the order of other jobs. 	

We now investigate the case of β j ≤ 0.5, ∃ j ∈ J .
There might be some possibility for interleaving of jobs.
The following scenario shows the impact of interleaving
two jobs on the makespan. Let l = (p, p, bl = βl sl) and
k = (p, p, bk = βksk) be a two-job instance of problem
(a j = p, L j = p, b j = β j s j). Also, let βl ≤ 0.5 and
βk > 0.5. Assume that the schedule starts at time zero and
the first completion task therefore starts at time 2p. Because
βl ≤ 0.5, βl(2p) ≤ p, implying that the jobs can be inter-
leaved if the schedule starts with l. On the contrary, because
βk > 0.5, and therefore βk(2p) � p, the interleaving of jobs
is not possible if the schedule starts with k. The Gantt chart
of Fig. 3 illustrates these two cases. The makespan for those
cases can be derived as follows.

(l, k) : C(1) = p + p + p + 3pβk = 3p + 3pβk, (12)

(k, l) : C(2) = p + p + 2pβk + p + p + (4p + 2pβk)βl

= 4p + 2pβk + (4p + 2pβk)βl . (13)

123

Journal of Scheduling (2021) 24:223–236 227

Obviously, we are interested in finding the values of βl and
βk such that C(1) ≤ C(2):

3p + 3pβk ≤ 4p + 2pβk + (4p + 2pβk)βl �⇒
pβk ≤ p + 4pβl + 2pβlβk �⇒
βk ≤ 1 + 4βl + 2βlβk �⇒
βk − 2βlβk ≤ 1 + 4βl �⇒
βk(1 − 2βl) ≤ 1 + 4βl .

(14)

It should be noted that if βl = 0.5, Inequality (14) always
holds, i.e., interleaving is beneficial. Following this, we pro-
pose Lemma 2.

Lemma 2 If there exists a job l withβl = 0.5, and the remain-
ing jobs with β j > 0.5,∀ j ∈ J \ {l}, the optimal schedule
is obtained by interleaving job l with the job with the largest
value of β j , j ∈ J \ {l}, and sequencing the remaining jobs
in a non-increasing order of their β values.

Proof Interleaving job l with a job k, βk > 0.5 leads to a
smaller makespan. This is shown in Inequality (14). It is clear
that the largest improvement in the makespan is obtained
when interleaving job l with the job with the largest value
of β. The optimal sequence for the remaining jobs can be
determined by Theorem 1. 	

Lemma2 further shows that it is only enough to investigate
the potential of interleaving when 0 < βl < 0.5. Given a
pair of jobs l, k, Inequality (15) calculates a threshold for
βk > 0.5 such that an interleaving improves the makespan:

βk ≤ 1 + 4βl
1 − 2βl

. (15)

This leads to the following theorem.

Theorem 2 In a two-job (l, k) instance of problem (a j =
p, L j = p, b j = β j s j), an interleaving reduces the

makespan if 0.5 < βk ≤ 1+4βl
1−2βl

, 0 < βl < 0.5.

Proof As discussed above. 	

We note that Theorem 2 does not necessarily hold when

n ≥ 3. A counter-example is shown in Fig. 4. The optimal
schedule for a three-job instance with β1 = 0.1, β2 = 1,
β3 = 1.5 and p = 1 does not follow Theorem 2, because

the theorem implies that we may schedule an interleaving
pair of jobs 1 and 3 at the beginning of the schedule since
β3 <

1+4β1
1−2β1

(prioritizing job 3 to job 2 since β3 > β2 due to
applying Lemma 1), followed by job 2. However, the optimal
sequence is (3, 1, 2).

3.2 Groups of identical jobs

Although the computational complexity of problem (a j =
p, L j = p, b j = β j s j) under arbitrary values of β

remains open, we now investigate a polynomially solv-
able case, in which jobs are partitioned into a set of G =
{1, . . . ,m}, |G| = m groups. An important characteristic of
group g ∈ G is that all of its jobs share the same processing
rate denoted by βg .

The simplest case includes only one group of jobs, i.e.,
m = 1, implying that all jobs are identical and in the form
of (a j = p, L j = p, b j = βs j). The problem can easily
be solved because the sequence is immaterial. We further
show this in Sect. 3.4. When m > 1, however, the number
of all possible permutations of jobs grows exponentially. As
an example, consider m = 2. For the simplicity, let n be
an even number and let each group have an equal number
of jobs. Therefore, n

2 jobs have a processing rate of β1 and
the remaining n

2 jobs have a processing rate of β2. It is clear
that the number of all possible permutations of jobs is equal
to n!

n
2 ! n2 ! . Next, we present a dynamic program for problem

(a j = p, L j = p, b j = β j s j), and show that DP runs in
polynomial time when m is relatively small.

3.2.1 The dynamic programming algorithm

Let i = 1, . . . , n denote the current stage of the algorithm,
where the total number of stages is equal to the number of
jobs. At stage i the set of i first jobs is scheduled. Let π

denote the set of jobs-group at stage i and j denote the last
job scheduled in stage i . We denote by ziπ, j = (ciπ, j , t

i
π, j) the

state of the system at stage i , where ciπ, j presents the comple-

tion time of i first jobs and t iπ, j represents two operations of
“interleaving” (int) or “appending” (app) for the next job in
the sequence. The recursive formula for ziπ, j , 1 ≤ i ≤ n − 1
is shown in Eq. (16).

ziπ, j = (ciπ, j , t
i
π, j) =

⎧
⎪⎨

⎪⎩

(ci−1
π\{ j} + b j , app) if t i−1

π\{ j} = int,

(ci−1
π\{ j} + 2p + b j , app) if t i−1

π\{ j} = app ∧ b j > p,

(ci−1
π\{ j} + 3p, int), (ci−1

π\{ j} + 2p + b j , app) if t i−1
π\{ j} = app ∧ b j ≤ p.

(16)

123

228 Journal of Scheduling (2021) 24:223–236

Fig. 4 Counter-example for
generalizing the result of
Theorem 2 (1, 3, 2):

0 1 2 3 7.5 8.5 9.5 19

a1 a3 b3 a2 b2

b1 = 0.1× 2 1.5× 3 1× 9.5

(3, 1, 2):
0 1 2 5 6 7 8 16

a3 b3

1.5× 2

a1 a2 b1

0.1× 7

b2

1× 8

where

b j =
{

β j (s
i−1
π\{ j}) if t i−1

π\{ j} = int,

β j (s
i−1
π\{ j} + 2p) if t i−1

π\{ j} = app.
(17)

Given that ci−1
π\{ j} represents the completion time of the i − 1

first jobs and si−1
π\{ j} and t i−1

π\{ j} denote the starting time and
the operations “int” or “app” for the last job in the sequence
of i −1 first jobs, then at each stage i > 1, we show the state
of the system at the previous stage by zi−1

π\{ j}.

The initial state is
(
c0
∅

, t0
∅

) =
{

(0, int)

(0, app),
and the final state

is

znπ, j = cnπ, j =
{
cn−1
π\{ j} + b j if tn−1

π\{ j} = int,

cn−1
π\{ j} + 2p + b j if t i−1

π\{ j} = app.
(18)

The four possible cases for ziπ, j in Eq. (16) are as follow.

If t i−1
π\{ j} = int, job j is interleaved with the last job in the

sequence and the next job should be in the form of appending
(case 1). If t i−1

π\{ j} = app, job j will be appended, but the
possibilities for the next job depend on the value of b j . If
b j > p, the next job is also in the form of appending since it
cannot be interleavedwith job j (case 2).However, if b j ≤ p,
the next job can be interleaved with job j . We point that both
interleaving and appending (cases 3 and 4, respectively)must
be considered for the next job. Consider a three-job instance,
whereβ1 = 0.25, β2 = 0.20, β3 = 0.17 and p = 1. Figure 5
shows that although job 2 can be interleaved with job 1,
instead, its appending leads to the optimal schedule (Fig. 5a).

We note that at most three cases, out of four, need to be
considered in any stage. Also, at each stage i , for any π ,
from the cases with similar t iπ, j the one with smaller ciπ, j is
stored for the next stage. Therefore, in each stage at most
two options of appending and interleaving may be possible.
Next, we show that the proposed dynamic program can be
solved in polynomial time when m is relatively small.

(a):
0 1 2 2.5 3.5 4.5 5.5 6.435

a1 b1 a2 a3 b2 b3

0.25× 2 0.2× 4.5 0.17× 5.5

(b):
0 1 2.5 3 3.6 4.6 5.6 6.552

a1 a2 b1 b2 a3 b3

0.25× 2 0.2× 3 0.17× 5.6

Fig. 5 A three-job example showing that appending job 2 (a) leads to
a smaller makespan than interleaving jobs 1 and 2 (b)

3.2.2 Complexity of the proposed dynamic program

We assume that jobs are partitioned into m groups. Let first
consider the case that each group contains an equal number
of jobs, which is n

m .
In stage i there is a number of candidates for π . Each

candidate includes exactly i jobs. The number of candidates
depends on both i and m because we only distinguish jobs
by their group(s). In stage i, 1 ≤ i ≤ n

m , the number of
candidates, which we denote by η, is equal to the number of
solutions of Eq. (19):

m∑

m′=1

xm′ = i, 0 ≤ xm′ ≤ n

m
,∀m′ ∈ {1, . . . ,m}. (19)

Since both i and xm′ are bounded from above by n
m ,

η is equal to
(i+m−1

i

)
. In stage i, n

m < i ≤ n, η is still
derived by using Eq. (19), however, out of the total number
of

(i+m−1
i

)
some are invalid. More precisely, because i > n

m
the solutions including xm′ > n

m , ∃m′ ∈ {1, . . . ,m} are not
considered, leading to a smaller value of η. Therefore, η in
any stage i is not greater than

(i+m−1
i

)
. Now consider the

case where the groups do not contain an equal number of
jobs. We can still derive η by using Eq. (19), however, again
some of the solution are invalid, and hence, η in stage i is
never greater than

(i+m−1
i

)
.

Additionally, in stage i there are at mostm candidate jobs
to occupy the last position because m groups of jobs exist.
Also, at most three cases of appending or interleaving need to
be considered. Hence, the time complexity of stage i is in the
order of O(m

(n+m−1
n

)
), implying that the time complexity

123

Journal of Scheduling (2021) 24:223–236 229

Table 1 The dynamic
programming calculations for
stage i = 1 of the numerical
example

π {k} {l}
j k l

z0
∅

{
(0, int)

(0, app)

{
(0, int)

(0, app)

b j

{
0.1(0) = 0

0.1(0 + 2) = 0.2

{
0.2(0) = 0

0.2(0 + 2) = 0.4

z1π, j

{
(0 + 3, int) = (3, int)∗

(0 + 2 + 0.2, app) = (2.2, app)∗

{
(0 + 3, int) = (3,int)∗

(0 + 2 + 0.4, app) = (2.4, app)∗

Bold value denotes the superior outcome

of the proposed dynamic program is O(nm
(n+m−1

n

)
), which

is shown by Theorem 3 to be polynomial for small values of
m.

Theorem 3 The proposed dynamic program solves problem
P1 with n jobs and m groups of identical jobs in O(mnm).

Proof The proof is by induction:

If m = 2, then 2n
(n+2−1

n

) = 2n(n + 1) ≈ O(n2),

If m = 3, then 3n
(n+3−1

n

) = 3n(n + 2)(n + 1)/2 ≈
O(n3),
Ifm = 4, then 4n

(n+4−1
n

) = 4n(n+3)(n+2)(n+1)/6 ≈
O(n4),
. . . .

In general, if m groups of identical jobs exist, the time com-
plexity isO(mnm).Wenote thatwhenm = n, the complexity
of the dynamic program is O(nn+1). 	

Next, we explain a numerical example to illustrate the oper-
ation of the dynamic program.

3.2.3 A numerical example

Consider a four-job problem, where G = {1, 2}, β1 =
0.1, β2 = 0.2 and p = 1. Each group consists of an equal
number of jobs.

Stage i = 1 includes only one job, and the two options for
π include {k} and {l}, where k represents jobs that belong to
group 1 and l denotes jobs of group 2. It is clear that there is
only one candidate for job j (the job in the last position in the
sequence). Table 1 shows the calculations. Because there is
one option for app and one for int, both will be stored by the
algorithm for the next stage. Those are shown by an asterisk
in Table 1.

Table 2 shows the calculations for stage i = 2. Three
candidates for π include {k, k}, {k, l} and {l, l}. In the second
set both k and l may fill the last position. Also, because there
are more than one option for app under {k, k} and {l, l}, and
more than one option for both app and int under {k, l}, the

ones with the smaller value of makespan will be kept by the
algorithm for the next stage.

Due to the example’s assumption that there are an equal
number of jobs in each group, in stage i = 3 we have only
two candidates for π , which are {k, k, l} and {k, l, l}. Table 3
shows the calculations. The algorithm proceeds to stage i =
4. There is a single candidate for π and π = {k, k, l, l} since
all jobs are considered. Table 4 shows that the optimal value
of makespan is equal to 7.26. By starting from stage i = 4
and going backward, we observe that the optimal solution is
formed by first scheduling jobs of group 2, followed by jobs
of group 1. Figure 6 depicts the optimal schedule.

3.3 The heuristic algorithm

In Sect. 3.1, we showed that in problem (a j = p, L j =
p, b j = β j s j) the first priority must be given to jobs with
greater values of β j (implied by Theorem 1). An interleav-
ing of jobs, however, may potentially decrease the makespan
if Theorem 2 holds. Therefore, when constructing a sched-
ule the only two available options at any point include (1)
appending a single job, or (2) interleaving a pair of jobs.
We utilize those principles and develop a heuristic algorithm
for problem P1. The proposed heuristic first constructs a
schedule (see Algorithm 1), and then iteratively improves
the schedule (see Algorithm 2).

Let T = J be the set of unscheduled jobs and S = ()

be the sequence of performing jobs. Each iteration of the
constructive heuristic consists of identifying a single job to
be appended, or a pair of jobs to be interleaved. Let assume
that the jobs can start at time zero. Therefore, the start time of
the completion task in the first iteration is s1 = 2p. At every
iteration i ≥ 1, a threshold on β is calculated: βthr = p

si
(the

threshold is used to identify jobs with b j ≤ p). The subset
of jobs with β j ≤ βthr are identified as the jobs that can be
the first of a potential interleave. From those, the job with the
largest value of β is selected. Let l denote this job. The other
job, say k, is then selected such that it has the largest value
of β among all jobs.

Next, it is checked whether job k satisfies the bound βk ≤
1+4βl
1−2βl

. If so, the interleaving pair of jobs l and k is scheduled,

123

230 Journal of Scheduling (2021) 24:223–236

Ta
bl
e
2

T
he

dy
na
m
ic
pr
og
ra
m
m
in
g
ca
lc
ul
at
io
ns

fo
r
st
ag
e
i
=

2
of

th
e
nu
m
er
ic
al
ex
am

pl
e

π
{k,

k}
{k,

l}
{l,

l}
j

k
k

l
l

z1 π
\{

j}

{
(3

,
in
t)

(2
.2

,
ap
p)

{
(3

,
in
t)

(2
.4

,
ap
p)

{
(3

,
in
t)

(2
.2

,
ap
p)

{
(3

,
in
t)

(2
.4

,
ap
p)

b
j

{
0.
1(
3)

=
0.
3

0.
1(
2.
2

+
2)

=
0.
42

{
0.
1(
3)

=
0.
3

0.
1(
2.
4

+
2)

=
0.
44

{
0.
2(
3)

=
0.
6

0.
2(
2.
2

+
2)

=
0.
84

{
0.
2(
3)

=
0.
6

0.
2(
2.
4

+
2)

=
0.
88

z2 π
,
j

⎧ ⎪ ⎨ ⎪ ⎩

(3
+

0.
3,
ap
p)

=
(3

.3
,
ap
p)

∗

(2
.2

+
3,
in
t)

=
(5

.2
,
in
t)

∗

(2
.2

+
2

+
0.
42

,
ap
p)

=
(4

.6
2,

ap
p)

⎧ ⎪ ⎨ ⎪ ⎩

(3
+

0.
3,
ap
p)

=
(3

.3
,
ap
p)

∗

(2
.4

+
3,
in
t)

=
(5

.4
,
in
t)

(2
.4

+
2

+
0.
44

,
ap
p)

=
(4

.8
4,
ap
p)

⎧ ⎪ ⎨ ⎪ ⎩

(3
+

0.
6,
ap
p)

=
(3

.6
,
ap
p)

(2
.2

+
3,
in
t)

=
(5

.2
,
in
t)

∗

(2
.2

+
2

+
0.
84

,
ap
p)

=
(5

.0
4,
ap
p)

⎧ ⎪ ⎨ ⎪ ⎩

(3
+

0.
6,
ap
p)

=
(3
.6
,a
pp

)∗

(2
.4

+
3,
in
t)

=
(5

.4
,
in
t)

∗

(2
.4

+
2

+
0.
88

,
ap
p)

=
(5

.2
8,
ap
p)

B
ol
d
va
lu
e
de
no
te
s
th
e
su
pe
ri
or

ou
tc
om

e

Ta
bl
e
3

T
he

dy
na
m
ic
pr
og
ra
m
m
in
g
ca
lc
ul
at
io
ns

fo
r
st
ag
e
i
=

3
of

th
e
nu
m
er
ic
al
ex
am

pl
e

π
{k,

k,
l}

{k,
l,
l}

j
k

l
k

l

z2 π
\{

j}

{
(5

.2
,
in
t)

(3
.3

,
ap
p)

{
(5

.2
,
in
t)

(3
.3

,
ap
p)

{
(5

.4
,
in
t)

(3
.6

,
ap
p)

{
(5

.2
,
in
t)

(3
.3

,
ap
p)

b
j

{
0.
1(
5.
2)

=
0.
52

0.
1(
3.
3

+
2)

=
0.
53

{
0.
2(
5.
2)

=
1.
04

0.
2(
3.
3

+
2)

=
1.
06

{
0.
1(
5.
4)

=
0.
54

0.
1(
3.
6

+
2)

=
0.
56

{
0.
2(
5.
2)

=
1.
04

0.
2(
3.
3

+
2)

=
1.
06

z3 π
,
j

⎧ ⎪ ⎨ ⎪ ⎩

(5
.2

+
0.
52

,
ap
p)

=
(5

.7
2,

ap
p)

∗

(3
.3

+
3,
in
t)

=
(6

.3
,
in
t)

∗

(3
.3

+
2

+
0.
53

,
ap
p)

=
(5

.8
3,
ap
p)

{
(5

.2
+

1.
04

,
ap
p)

=
(6

.2
4,
ap
p)

(3
.3

+
2

+
1.
06

,
ap
p)

=
(6

.3
6,
ap
p)

⎧ ⎪ ⎨ ⎪ ⎩

(5
.4

+
0.
54

,
ap
p)

=
(5

.9
4,
ap
p)

∗

(3
.6

+
3,
in
t)

=
(6
.6
,in

t)
∗

(3
.6

+
2

+
0.
56

,
ap
p)

=
(6

.1
6,
ap
p)

{
(5

.2
+

1.
04

,
ap
p)

=
(6

.2
4,
ap
p)

(3
.3

+
2

+
1.
06

,
ap
p)

=
(6

.3
6,
ap
p)

B
ol
d
va
lu
e
de
no
te
s
th
e
su
pe
ri
or

ou
tc
om

e

123

Journal of Scheduling (2021) 24:223–236 231

where job l is the first job of the interleaving pair. Otherwise,
job k is appended to S. At the end of each iteration, the
makespan, i.e., the start time of the next completion task,
and S and T are updated. The procedure continues until all
jobs are scheduled, or no interleaving is possible, i.e., b j �
p, j ∈ T . In this case, the remaining jobs are appended to S
in a non-increasing order of β j .

Algorithm 1: The construction procedure of the heuris-
tic algorithm.

1 Input: S = (), T = J , p, β j ,∀ j ∈ J , s1 = 2p.
2 Output: A sequence S with makespan CS .

3 for i = 1 to n do
4 βthr = p

si
;

5 if ∃ j ∈ T , β j ≤ βthr then
6 l ← argmax j∈T (β j |β j ≤ βthr);
7 k ← argmax j∈T (β j);

8 if βk ≤ 1+4βl
1−2βl

then
9 Interleave jobs l and k adjacently;

10 si+1 = si + (βk)(si + p) + 3p;
11 S ← S ∪ {l, k};
12 T ← T \ {l, k};
13

14 else
15 Append job k adjacently;
16 si+1 = si + (βk)si + 2p;
17 S ← S ∪ {k};
18 T ← T \ {k};
19 end
20 else
21 Break;
22 end
23 end
24 Adjacently append the remaining jobs in T to S, in a

non-increasing order of β j ;
25 return S;

By utilizing the delay periods, Algorithm 1 constructs as
many interleaving pairs as possible, while it gives higher
priority to the jobs with larger value of β. The total number
of iterations performed by the algorithm is at most equal to
the number of jobs. Because finding jobs l and k in each
iteration requires O(n) time, the algorithm therefore has a
time complexity of O(n2).

We now present an example to clarify the operation
of Algorithm 1. Consider four jobs with β values of
{0.1, 0.15, 0.18, 3.0} and p = 1. We initialize T =
{1, 2, 3, 4} and S = (). Assuming that we start at time zero,
then s1 = 2. Table 5 shows that the algorithm appends job 4
in the first iteration. In the second iteration, jobs 1 and 3 are
interleaved,where job 1 is the first job of the interleaving pair.
Then, because the condition in line 5 of Algorithm 1 is not
satisfied, the loop is terminated and the remaining job, i.e.,
job 2 is appended. The Gantt chart depicted in Fig. 7 shows

the schedule delivered by Algorithm 1, which is indeed the
optimal schedule.

The schedule obtained by Algorithm 1 may further be
improved. To do so, we iteratively apply swap moves. This is
presented in Algorithm 2. We implement the “first improve-
ment” criterion, i.e., once an improving solution is obtained
it is accepted and the schedule is updated. It is clear that the
run time of Algorithm 2 is O(n2). Therefore, the run time of
the proposed heuristic is O(n2).

Algorithm 2:The improvement procedure of the heuris-
tic algorithm.

1 Input: β j ,∀ j ∈ J , S0, CS0 , j = 1.
2 Output: A sequence S with makespan CS .

3 S = S0;
4 CS = CS0 ;

5 while j ≤ n − 1 do
6 Improve = 0;

7 for k = j + 1 : n do
8 S′ ← swap(j, k);
9 CS′ ← makespan(S′);

10 if CS′ < CS then
11 S = S′;
12 CS = CS′ ;
13 Improve = 1;
14 end
15 end
16 if Improve = 0 then
17 j = j + 1;
18 end
19 end
20 return S;

3.4 Lower bound

We derive a lower bound for problem P1 by letting β j =
min j∈J β j ,∀ j ∈ J , i.e., all jobs have an identical processing
rate. Theorem 4 shows this.

Theorem 4 Optimizing problem P1 under the setting βmin =
min j∈J β j leads to a makespan, which is never greater than
the makespan under the arbitrary values for β.

Proof Assume that the makespan under the setting βmin =
min j∈J β j is greater than the makespan under the arbitrary
values for β. Then, there exits an optimal makespan where
β j > βmin, j ∈ J . Because the initial task and the delay
period take identical values for all jobs, the makespan under
β j > βmin, j ∈ J is never less than the one under βmin,
implying that the initial assumption is contradicted. 	

Next, we show that obtaining this lower bound is trivial.

123

232 Journal of Scheduling (2021) 24:223–236

Table 4 The dynamic
programming calculations for
stage i = 4 of the numerical
example

π {k, k, l, l}
j k l

z3π\{ j}

{
(6.6, int)

(5.94, app)

{
(6.3, int)

(5.72, app)

b j

{
0.1(6.6) = 0.66

0.1(5.94 + 2) = 0.794

{
0.2(6.3) = 1.26

0.2(5.72 + 2) = 1.544

z4π, j

{
6.6 + 0.66 = 7.26
5.94 + 2 + 0.794 = 8.734

{
6.3 + 1.26 = 7.56

5.72 + 2 + 1.544 = 9.264

Bold value denotes the superior outcome

Fig. 6 Optimal schedule of a
four-job problem produced by
the dynamic program (l, l, k, k):

0 1 2 3 3.6 4.6 5.6 6.6 7.26

al al bl bl ak ak bk bk

0.2× 2 0.2× 3 0.1× 5.6 0.1× 6.6

Fig. 7 The sequence and
schedule for a four-job instance
delivered by Algorithm 1 (4, 1, 3, 2):

0 1 2 8 9 10 11 12.98 13.98 14.98 17.227

a4 b4 a1 a3 b1 b3 a2 b2

3× 2 0.1× 10 0.18× 11 0.15× 14.98

Table 5 The operation of Algorithm 1 for a four-job instance

Step i βthr l k S T si+1

1 1
2 3 4 (4) {1, 2, 3} 10

2 1
10 1 3 (4, 1, 3) {2} 14.98

3 1
14.98 – – – – –

Lemma 3 Under the setting β j = βmin,∀ j ∈ J the
makespan for problem P1 is minimized if the sequence
includes a number of adjacent interleaving pairs followed by
appending the remaining jobs once no interleaving is pos-
sible (sequence 1), or if the sequence includes appending a
single job at the beginning, followed by a number of adja-
cent interleaving pairs and then appending the remaining
jobs (sequence 2).

Proof Wenote that the schedulewith theminimummakespan
consists of as many interleaving pairs (of jobs) as possible.
Intuitively, this implies that a number of adjacent interleav-
ing pairs followed by appending the remaining jobs once no
interleaving is possible must lead to the minimummakespan.
We show that in some cases a better makespan (with smaller
value) is obtained if we first append a single job, and then
add a set of interleaving pairs followed by a set of append-
ing jobs. We note that interleaving is possible as long as the
completion task of the first job (of an interleaving pair) starts
no later than p

βmin
.

Let illustrate sequences 1 and 2 by a three-job example,
where p = 1 and βmin = 0.1. Sequence 1 consists of one
interleaving pair, followed by appending the third job. This
results in Cmax = 5.83 (see Fig. 8a). In sequence 2, the third

(a):
0 1 2 3 3.3 4.3 5.3 5.83

a1 a2 b1 b2 a3 b3

0.1× 2 0.1× 3 0.1× 5.3

(b):
0 1 2 3.2 4.2 5.2 5.72

a3 b3 a1 a2 b1 b2

0.1× 2 0.1× 4.2 0.1× 5.2

Fig. 8 A three-job instance to illustrate calculation of the lower bound
for problem P1

job is scheduled before the interleaving pair. This results in
Cmax = 5.72, i.e., the minimum makespan (see Fig. 8b).
There is no possibility to append two (or more) jobs at
the beginning of the sequence because an interleaving pair
of those jobs would complete earlier than appending them
adjacently. 	

4 Computational results

We evaluate the performance of the proposed heuristic on
a set of 120 randomly generated instances. The instances
include 5, 10, 20, 50, 75 and 100 jobs (n). We set the
parameter β in a way to allow some interleaving in the
schedule. Since large values of β result in less possibility
for interleaving, and hence, easier instances, we therefore
consider two settings. For the first setting, we randomly
select β from the continuous uniform distribution such that
β j ∈ (0, 0.1),∀ j ∈ J , and for the second setting β j ∈
(0, 0.2),∀ j ∈ J . We generated 10 instances for each combi-

123

Journal of Scheduling (2021) 24:223–236 233

Table 6 Number of feasible and
optimal solutions delivered by
Heurcons and Gurobi

n Setting for β Feasible Optimal

Heurcons Gurobi1 Gurobi4 Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 10 10 10 0 10 10

(0, 0.2) 10 10 10 2 10 10

10 (0, 0.1) 10 10 10 9 7 10

(0, 0.2) 10 10 10 7 10 10

20 (0, 0.1) 10 10 10 0 0 0

(0, 0.2) 10 10 10 0 0 0

50 (0, 0.1) 10 10 10 0 0 0

(0, 0.2) 10 0 0 0 0 0

75 (0, 0.1) 10 1 1 0 0 0

(0, 0.2) 10 0 0 0 0 0

100 (0, 0.1) 10 0 0 0 0 0

(0, 0.2) 10 0 0 0 0 0

Total 120 71 71 18 37 40

nation of n and β. This results in 120 instances in total. We
set p = 1 for all instances.

We also solve the instances by optimizing problemP1with
the solver Gurobi version 8.0.0 (Gurobi Optimization 2018).
We implement problem P1 and the heuristic algorithm in the
programming language Python version 2.7. We perform all
computational experiments on a PC with Intel® Core™ i5-
7500 CPU clocked at 3.40GHz with 8GB of memory under
Linux Ubuntu 18.04 operating system. We set a time limit of
3600 seconds for the solver Gurobi. We utilize one proces-
sor (thread) for the heuristic algorithm, however, we run the
Gurobi by using one processor and four processors (denoted
as Gurobi1 and Gurobi4). For the remaining parameters of
the solver Gurobi we used the default values.

Table 6 reports the outcomes of the heuristic algorithm,
denoted as “Heurcons” and Gurobi. We use two criteria of
“Feasible” and “Optimal”, which denote the number of fea-
sible and optimal solutions, respectively, obtained by the
heuristic and Gurobi in order to evaluate the performance of
the methods. According to the results, Gurobi1 and Gurobi4

generate feasible solution for only 71 instances, out of 120
(i.e., for almost 59%). Within 3600 seconds of running,
Gurobi reports feasible solution for only one instance with
75 jobs and β j ∈ (0, 0.1); it also does not report feasible
solution for the instances with 50 jobs and β j ∈ (0, 0.2). For
the instances with 100 jobs, Gurobi runs out of memory. The
performance ofGurobi4 is slightly better than that of Gurobi1

since it obtains three additional optimal solutions. The pro-
posed heuristic, however, delivers feasible solution for all
instances. Interestingly, the heuristic produces the same best
solutions for 18 of those instances, i.e., for 45%.

Table 7 reports two criteria of “Gap (%)” and “Time (sec)”
(computation time in seconds), which are averaged over 10
instances per setting (either heuristic or Gurobi). The gap is

calculated as z−z∗
z∗ × 100, where z is the objective function

value, i.e., the makespan delivered by the method, and z∗ is
the best objective function value between the heuristic and
Gurobi. The gap measures proximity of a solution obtained
by the method from the best available one. Consistent with
earlier findings, for small instances with 5 and 10 jobs the
solver Gurobi outperforms the proposed heuristic. For larger
instances, however, the heuristic delivers improved solutions.
Particularly, we note that both versions of Gurobi have a gap
of 75.42% and 77.16% for instances with 50 and 75 jobs,
not to mention that because Gurobi is not able to report any
feasible solution for four groups of instances, the value of
gap cannot be calculated for those instances (“-” in Table 7
shows this).

Table 8 summarizes the outcomes ofHeurcons andGurobi1

andGurobi4. The highlighted values denote the superiority of
the method with respect to the criterion. As the table shows,
the proposed heuristic performs very well, and obtains high-
quality solutions: its average gap is 0.30%, while its worst
gap is nearly 1.22%. In addition, it is very efficient since it
solves even the problems with 100 jobs within three seconds.
The average time of both Gurobi1 and Gurobi4 is almost 40
min, and significantly increases with the number of jobs.

To further evaluate the performance of the proposed
heuristic, i.e., Heurcons, we compare the values of its gap
to the lower bound and those of the solver Gurobi. We report
the outcomes in Table 9, where the values of gap are aver-
aged over 10 instances per setting. The gap is calculated as
z−lb
lb × 100, where z is the objective function value, i.e., the

makespan delivered by themethod, and lb is the lower bound
obtained via procedure explained in Sect. 3.4. We report the
results only for instances with n = 5, 10 because proven
optimal solutions are available only for these instances. The
results indicate that Heurcons performs very closely toGurobi

123

234 Journal of Scheduling (2021) 24:223–236

Table 7 Gap from the best
obtained solution and the
computation time for Heurcons
and Gurobi

n Setting for β Gap (in %) Time

Heurcons Gurobi1 Gurobi4 Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 1.08 0.00 0.00 < 0.01 0.20 0.18

(0, 0.2) 1.13 0.00 0.00 < 0.01 0.18 0.16

10 (0, 0.1) 0.01 0.00 0.00 < 0.01 3167.36 1526.39

(0, 0.2) 1.22 0.00 0.00 < 0.01 443.31 199.38

20 (0, 0.1) 0.00 6.52 4.86 0.02 3600.00 3600.03

(0, 0.2) 0.14 4.45 3.81 0.02 3600.01 3600.03

50 (0, 0.1) 0.00 75.42 75.42 0.25 3600.01 3600.07

(0, 0.2) 0.00 – – 0.31 3600.02 3600.02

75 (0, 0.1) 0.00 77.16 77.16 0.92 3600.15 3600.26

(0, 0.2) 0.00 – – 1.17 3600.28 3600.39

100 (0, 0.1) 0.00 – – 2.36 – –

(0, 0.2) 0.00 – – 2.79 – –

Table 8 Overall results for
Heurcons and Gurobi

Method Feasible Optimal Gap (%) Time (sec)

Ave Max Ave Max

Heurcons 120 18 0.30 1.22 0.65 2.79

Gurobi1 71 37 13.25 77.16 2521.18 3600.28

Gurobi4 71 40 12.93 77.16 2332.69 3600.39

Bold values denote the superior outcome

because its average values of gap to the lower bound are very
close to those of Gurobi.

Because Gurobi cannot deliver feasible solutions for large
instances, we further assess the performance of the proposed
heuristic, i.e., Heurcons by solving the instances with two
new settings and comparing the outcomes of Heurcons and
those of the two settings. For this purpose, we generate initial
solutions via sorting the jobs in non-increasing and non-
decreasing orders of their β values that results in two new
variants for the heuristic, denoted as “HeurLPT ”, “HeurSPT ”,
respectively.We summarize the results in Table 10, where the
metric best denotes the number of best solutions obtained by
each setting. The results show that Heurcons obtains signif-
icantly better solutions than those two variants of HeurLPT
and HeurSPT . Indeed, Heurcons obtains the best solution in
108 instances. The average gap of Heurcons over all instances
is almost 0.44%, that is much lower than the average gap of
the two settings of HeurLPT and HeurSPT . Those results
further indicate the quality of solutions produced by the pro-
posed heuristic.

5 Conclusion

We investigated the single machine coupled task scheduling
problem where the processing time of initial tasks and the
delay periods have identical values, and the processing time

Table 9 Gap to the lower bound for Heurcons and Gurobi

n Setting for β Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 2.55 1.50 1.50

(0, 0.2) 6.73 5.67 5.67

10 (0, 0.1) 3.72 3.71 3.71

(0, 0.2) 23.34 22.58 22.58

Average 9.08 8.36 8.36

of completion tasks follow a time-dependent characteristic.
We showed that the optimal schedule can be obtained under
certain conditions. Also, we proposed a dynamic program
that can solve the problem in polynomial time if jobs can be
grouped with respect to their processing rates, and the num-
ber of groups is not large. For general case, the computational
complexity of the problem still remains open, and we there-
fore developed certain theoretical results and utilized those
in a very efficient heuristic algorithm. Particularly, in large
instances where the solver Gurobi is unable to generate even
feasible solutions, the proposed heuristic is shown to perform
very well and obtains quality solutions very quickly.

A direction for future research includes studying the prob-
lem where the delay duration is time-dependent. Also, it
is interesting to investigate the identical case, i.e., (a j =
a, L j = L, b j = b) with time-dependent processing times.

123

Journal of Scheduling (2021) 24:223–236 235

Table 10 Assessing the
performance of Heurcons,
HeurLPT and HeurSPT

n Setting for β Heurcons HeurLPT HeurSPT

Gap (in %) Best Gap (in %) Best Gap (in %) Best

5 (0, 0.1) 1.08 10 1.08 10 1.08 10

(0, 0.2) 2.01 10 2.01 10 2.01 10

10 (0, 0.1) 0.01 9 0.01 9 0.04 9

(0, 0.2) 1.22 8 3.10 5 2.48 5

20 (0, 0.1) 0.52 6 1.11 7 1.91 2

(0, 0.2) 0.40 9 3.13 2 9.80 0

50 (0, 0.1) 0.02 8 2.23 2 10.95 0

(0, 0.2) 0.00 10 5.71 0 6.88 0

75 (0, 0.1) 0.00 10 2.86 0 10.23 0

(0, 0.2) 0.00 9 4.94 1 10.43 0

100 (0, 0.1) 0.07 9 2.87 1 7.09 0

(0, 0.2) 0.00 10 4.61 0 12.61 0

Average / total 0.44 108 2.81 47 6.29 36

Bold values denote the superior outcome

Acknowledgements The authors would like to thank the anonymous
referees for their valuable suggestions and comments.Mostafa Khatami
is the recipient of the UTS International Research Scholarship (IRS)
and the UTS President’s Scholarship (UTSP). Amir Salehipour is the
recipient of an Australian Research Council Discovery Early Career
Researcher Award (project number DE170100234) funded by the Aus-
tralian Government.

References

Ageev,A.A. (2018). Inapproximately lower bounds for open shop prob-
lems with exact delays. Approximation and online algorithms (pp.
45–55). New York: Springer.

Ageev, A. A., & Baburin, A. E. (2007). Approximation algorithms for
UET scheduling problems with exact delays.Operations Research
Letters, 35(4), 533–540.

Ageev, A. A., & Kononov, A. V. (2007). Approximation algorithms for
scheduling problems with exact delays. Approximation and online
algorithms. Berlin: Springer.

Ahr, D., Békési, J., Galambos, G., Oswald, M., & Reinelt, G. (2004).
An exact algorithm for scheduling identical coupled tasks. Math-
ematical Methods of Operations Research, 59(2), 193–203.

Azadeh, A., Farahani, M. H., Torabzadeh, S., & Baghersad, M. (2014).
Scheduling prioritized patients in emergency department labora-
tories. Computer Methods and Programs in Biomedicine, 117(2),
61–70.

Baptiste, P. (2010). A note on scheduling identical coupled tasks in
logarithmic time.DiscreteAppliedMathematics, 158(5), 583–587.

Békési, J., Galambos, G., Jung, M. N., Oswald, M., & Reinelt, G.
(2014). A branch-and-bound algorithm for the coupled task prob-
lem.MathematicalMethodsofOperationsResearch,80(1), 47–81.

Bessy, S., & Giroudeau, R. (2019). Parameterized complexity of a
coupled-task scheduling problem. Journal of Scheduling, 22(3),
305–313.

Blazewicz, J., Ecker, K., Kis, T., Potts, C. N., Tanas, M., & Whitehead,
J. (2010). Scheduling of coupled tasks with unit processing times.
Journal of Scheduling, 13(5), 453–461.

Cheng, T. C. E., Ding, Q., & Lin, B. M. T. (2004). A concise survey
of scheduling with time-dependent processing times. European
Journal of Operational Research, 152, 1–13.

Condotta, A., & Shakhlevich, N. (2012). Scheduling coupled-operation
jobs with exact time-lags.Discrete AppliedMathematics, 160(16),
2370–2388.

Condotta, A., & Shakhlevich, N. (2014). Scheduling patient appoint-
ments via multilevel template: a case study in chemotherapy.
Operations Research for Health Care, 3(3), 129–144.

Gawiejnowicz, S. (2008). Time-dependent scheduling. New York:
Springer.

Graham, R., Lawler, E., Lenstra, J., & Kan, A. R. (1979). Optimization
and approximation in deterministic sequencing and scheduling: a
survey. Annals of Discrete Mathematics, 5, 287–326.

Gupta, J. N. D., & Gupta, S. K. (1988). Single facility scheduling with
nonlinear processing times. Computers and Industrial Engineer-
ing, 14(4), 387–393.

Gurobi Optimization, L. (2018). Gurobi Optimizer Reference Manual.
Hwang, F. J., & Lin, B. M. T. (2011). Coupled-task scheduling on a

single machine subject to a fixed-job-sequence. Computers and
Industrial Engineering, 60(4), 690–698.

Khatami, M. and Salehipour, A. (2020). A binary search algorithm for
the general coupled task scheduling problem. 4OR, 1–19.

Khatami, M., Salehipour, A., & Cheng, T. C. E. (2020). Coupled task
scheduling with exact delays: literature review and models. Euro-
pean Journal of Operational Research, 282(1), 19–39.

Kunnathur,A. S.,&Gupta, S.K. (1990).Minimizing themakespanwith
late start penalties added to processing times in a single facility
scheduling problem. European Journal of Operational Research,
47(1), 56–64.

Legrain, A., Fortin, M.-A., Lahrichi, N., Rousseau, L.-M., & Widmer,
M. (2015). Stochastic optimization of the scheduling of a radio-
therapy center. Journal of Physics: Conference Series. Vol. 616. 1.
IOP Publishing, 012008.

Lehoux-Lebacque, V., Brauner, N., & Finke, G. (2015). Identical cou-
pled task scheduling: polynomial complexity of the cyclic case.
Journal of Scheduling, 18(6), 631–644.

Leung, J.Y.-T., Li,H.,&Zhao,H. (2007). Scheduling two-machine flow
shops with exact delays. International Journal of Foundations of
Computer Science, 18(02), 341–359.

123

236 Journal of Scheduling (2021) 24:223–236

Li, H., & Zhao, H. (2007). Scheduling Coupled-Tasks on a Sin-
gle Machine. IEEE Symposium on Computational Intelligence in
Scheduling, 137–142.

Liu, Z., Lu, J., Liu, Z., Liao, G., Zhang, H. H., & Dong, J. (2019).
Patient scheduling in hemodialysis service. Journal of Combina-
torial Optimization, 37(1), 337–362.

Marinagi, C. C., Spyropoulos, C.D., Papatheodorou, C.,&Kokkotos, S.
(2000). Continual planning and scheduling for managing patient
tests in hospital laboratories. Artificial Intelligence in Medicine,
20(2), 139–154.

Mosheiov, G. (1994). Scheduling jobs under simple linear deterioration.
Computers and Operations Re-search, 21(6), 653–659.

Orman, A., & Potts, C. (1997). On the complexity of coupled-task
scheduling. Discrete Applied Mathematics, 72(1), 141–154.

Pérez, E., Ntaimo, L., Malavé, C. O., Bailey, C., & McCormack, P.
(2013). Stochastic online appointment scheduling of multi-step
sequential procedures in nuclear medicine. Health Care Manage-
ment Science, 16(4), 281–299.

Pérez, E., Ntaimo, L., Wilhelm, W. E., Bailey, C., & McCormack,
P. (2011). Patient and resource scheduling of multi-step medical
procedures in nuclear medicine. IIE Transactions on Healthcare
Systems Engineering, 1(3), 168–184.

Shapiro, R.D. (1980). Scheduling coupled tasks.Naval Research Logis-
tics Quarterly, 27(3), 489–498.

Sherali, H. D., & Smith, J. C. (2005). Interleaving two-phased jobs on
a single machine. Discrete Optimization, 2(4), 348–361.

Simonin, G., Darties, B., Giroudeau, R., & König, J.-C. (2011).
Isomorphic coupled-task scheduling problem with compatibility
constraints on a single processor. Journal of Scheduling, 14(5),
501–509.

Yu,W., Hoogeveen, H., & Lenstra, J. K. (2004). Minimizing make span
in a two-machine flow shop with delays and unit-time operations
is NP-hard. Journal of Scheduling, 7(5), 333–348.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Coupled task scheduling with time-dependent processing times
	Abstract
	1 Introduction
	2 Problem definition and formulation
	3 Minimizing the makespan
	3.1 Optimal schedule
	3.2 Groups of identical jobs
	3.2.1 The dynamic programming algorithm
	3.2.2 Complexity of the proposed dynamic program
	3.2.3 A numerical example

	3.3 The heuristic algorithm
	3.4 Lower bound

	4 Computational results
	5 Conclusion
	Acknowledgements
	References

