
Journal of Scheduling (2020) 23:301–325
https://doi.org/10.1007/s10951-020-00651-w

Resource-constrained multi-project scheduling: benchmark datasets
and decoupled scheduling

Rob Van Eynde1 ·Mario Vanhoucke1,2,3

Published online: 10 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we propose a new dataset for the resource-constrained multi-project scheduling problem and evaluate the
performance of multi-project extensions of the single-project schedule generation schemes. This manuscript contributes to
the existing research in three ways. First, we provide an overview of existing benchmark datasets and classify the multi-
project literature based on the type of datasets that are used in these studies. Furthermore, we evaluate the existing summary
measures that are used to classify instances and provide adaptations to the data generation procedure of Browning and Yassine
(J Scheduling 13(2):143-161, 2010a). With this adapted generator we propose a new dataset that is complimentary to the
existing ones. Second, we propose decoupled versions of the single-project scheduling schemes, building on insights from
the existing literature. A computational experiment shows that the decoupled variants outperform the existing priority rule
heuristics and that the best priority rules differ for the two objective functions under study. Furthermore, we analyse the effect
of the different parameters on the performance of the heuristics. Third, we implement a genetic algorithm that incorporates
specific multi-project operators and test it on all datasets. The experiment shows that the new datasets are challenging and
provide opportunities for future research.

Keywords Multi-project scheduling · Portfolio scheduling · Summary measures · Decoupled scheduling · Benchmark data

1 Introduction

The resource-constrained project scheduling problem
(RCPSP) is a well-known scheduling problem where a set
of activities needs to be scheduled subject to precedence and
resource constraints in order to optimise anobjective function
(e.g. minimise makespan). This problem has a wide vari-
ety of applications and extensions (Hartmann and Briskorn
2010). The resource-constrained multi-project scheduling
problem (RCMPSP) extension deals with a portfolio of mul-
tiple projects that require the same resources. The problem is
to construct a schedule, where activities of different projects

B Mario Vanhoucke
mario.vanhoucke@ugent.be

Rob Van Eynde
rob.vaneynde@ugent.be

1 Faculty of Economics and Business Administration,
Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium

2 Vlerick Business School, Reep 1, 9000 Ghent, Belgium

3 UCL School of Management, University College London,
1 Canada Square, London E14 5AA, UK

can be executed in parallel as long as the resource constraints
are not violated. In the last decades, more attention has been
devoted to this multi-project extension because most compa-
nies have multiple active projects in their portfolio and most
of the value is situated in this multi-project setting (Payne
1995; Maroto et al. 1999; Liberatore and Pollack-Johnson
2003). Even though most companies operate in a multi-
project environment, the sharing of resources over projects
might not be feasible (e.g. due to geographical constraints)
or not desirable. In this case, resources are dedicated to the
individual projects, such that each project can be scheduled
individually and theproblemcanbe treated as a single-project
scheduling problem (Beşikci et al. 2013).

As the RCMPSP has received less attention from
researchers than its single-project variant, the literature lags
behind with regard to both summary measures to classify
data and standardised datasets to benchmark algorithms. In
this paper, we will review the incumbent summary mea-
sures and make some adaptations to them. Furthermore,
we will evaluate the existing datasets and propose an alter-
native dataset which includes parameter combinations that
are absent in the incumbent sets. We introduce two sched-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-020-00651-w&domain=pdf

302 Journal of Scheduling (2020) 23:301–325

ule generation schemes that take the specific multi-project
structure into account. Some previous research suggested
that incorporating this multi-project information could lead
to well-performing algorithms (Asta et al. 2016; Mittal and
Kanda 2009). We evaluate the performance of these schemes
in a computational experiment on both existing and new
datasets. Furthermore, we implement a genetic algorithm and
test it on all datasets.

The outline of the paper is as follows. Section 2 first
discusses the basic problem formulation and extensions for
the RCMPSP. Then, the existing summary measures and
datasets are reviewed. In Sect. 3, we explain our multi-
project extensions of the single-project schedule generation
schemes (SGS). In Sect. 4, we adapt the generation proce-
dure of Browning and Yassine (2010b) and use it to generate
a new benchmark dataset. We evaluate the new SGS’ and the
genetic algorithm on the existing and new datasets in Sect. 5,
and we conclude the manuscript in Sect. 6.

2 Problem Formulation

In this section, we will first give a formal description
of the basic RCMPSP with according notation. Then, we
will review the literature with regard to extensions of the
RCMPSP. Third, we will discuss the existing multi-project
measures andweconclude this section by reviewing the exist-
ing benchmark datasets.

2.1 Description

Amulti-project portfolio consists of a set of projects J , each
with a set of activities I j . The total number of activities in the
multi-project is denotedby s.Activity i of project j is denoted
by ai j and has a duration of di j . Precedence relations between
activities may exist. The set of predecessors of ai j is denoted
by Pi j . An activity ai j can only be started when all akj ∈ Pi j
are finished. A project can be graphically represented by a
directed acyclic graph (also called a project network) with a
node for each activity and an arc for each precedence relation.
A project network also has a dummy start and dummy end
activity with a duration of zero to indicate when the project is
started and completed. Each project also has a set of renew-
able resources types K that are shared among all projects.
Each resource type has a per period availability of Rk . Activ-
ity ai j has a constant per period resource requirement of ri jk
for each k ∈ K . Since it is not necessary that all activities
require each resource type, Hi j denotes the set of resource
types for which ai j has a non-negative demand.

A schedule for a multi-project is an assignment of a start
time to each activity. When a project has a release date r j , it
cannot be started before this date. Furthermore, a project can
have a due date d̄ j , i.e. the desired finish time for the project.

Based on the start times of the activities, the values of the
project start and finish times can be derived. The start time
(S j) of project j is the start time of the first non-dummy activ-
ity of that project. The finish time of project j is denoted by
Fj and is equal to the finish time of its dummy end activity.
The makespan of a project (Mj) is the difference between
Fj and S j . The portfolio makespan (M) is the difference
between the latest finish time and the first start time over all
projects in the portfolio. The critical path duration is calcu-
lated by constructing the earliest start schedule where each
activity starts as soon as possible, respecting the precedence
relations but neglecting resource constraints. The makespan
of a project in this schedule is the critical path duration CP j ,
and the longest critical path in the portfolio is denoted by
CPmax. The portfolio makespan of the earliest start schedule
is indicated by CP.

In this paper, we will address two objective functions that
are commonly used in the literature: the average per cent
delay (APD) and the portfolio delay (PDEL) (Browning and
Yassine 2010b). The APD is defined as follows:

APD = 1

|J |
∑

j∈J

M j − CP j

C Pj
. (1)

APD normalises the makespan of a project over its critical
path duration and averages it over all projects in the portfo-
lio. As it takes all projects into consideration, this objective
function can be classified under the multi-project approach.
The PDEL is defined by

PDEL = M − CPmax

CPmax
. (2)

This objective functiononly evaluates the portfoliomakespan
and normalises it by CPmax. As such, it is equivalent to
combining all projects into one single-project network and
minimising the single-project makespan. Nevertheless, we
chose to include this objective in our study to resolve con-
flicting results from the literature regarding which priority
rules perform best. We come back to this in Sect. 3.

2.2 Extensions

In the previous subsection,wedefined thebasicRCMPSP, but
researchers have extended this problem in six ways. First of
all, in the multi-mode extension (MRCMPSP), each activity
has several execution modes where each mode has a corre-
sponding cost and duration and there is an available budget.
The objective is to minimise a time-related objective while
respecting the budget constraint. This extension was the sub-
ject of the MISTA 2013 challenge (Wauters et al. 2016), and
several of these submitted algorithms have been published
(Asta et al. 2016; Geiger 2017; Toffolo et al. 2016). Ver-

123

Journal of Scheduling (2020) 23:301–325 303

cellis (1994) also addresses the multi-mode extension, but
with the objective of maximising the net present value of
the project. A second extension that has received consider-
able attention is the decentralised RCMPSP (DRCMPSP),
which relaxes the assumption that all information is cen-
trally available (Confessore et al. 2007; Homberger 2007).
Instead, a schedule is the result of a negotiation process
between different project managers and possibly a mediat-
ing agent, each having access to only a part of all available
information. Researchers mainly solve this problem with
multi-agent systems,where virtual agents negotiatewith each
other about allocated resources, start times, etc. Third, the
dynamic RCMPSP relaxes the assumption that all projects
in the portfolio are known at the decision time and assume
new projects can arrive during project execution. In this con-
text, previous scheduling decisions may have to be revised
and activities may be preempted when new projects arrive
into the system (Yang and Sum 1997; Wang et al. 2015).
Fourth, the stochastic RCMPSP relaxes the assumption that
all information is deterministic. In the study of Wang et al.
(2015), the resource availability is subject to uncertainties,
while Zheng et al. (2013) and Wang et al. (2017) address
the problem where activity durations are stochastic. Fifth,
Beşikci et al. (2013) address the resource dedication prob-
lem (RDP), where amounts of resources need to be allocated
to the different projects in the portfolio. Once allocated, the
resources are not shared among the projects, which reduces
the problem to separate single-project scheduling problems.
This research is extended in Beşikci et al. (2015) to a multi-
project environment where first a budget is allocated to each
resource type, then the resource dedication problem is solved,
and finally, the individual projects are scheduled. The last
extension to the RCMPSP incorporates resource transfer
times, where transferring a resource from one project or
activity to another may incur a delay. This problem is stud-
ied in Krüger and Scholl (2009, 2010). Resource transfers
have been investigated in a static decentralised environment
(Adhau et al. 2013) and in a dynamic decentralised envi-
ronment (Yang and Sum 1993, 1997). This paper treats the
basic RCMPSP with two time-related objectives, but further
research could extend the insights towards other objec-
tive functions or towards extensions of the basic problem
(Table 1).

2.3 Existingmulti-project measures

Similar to the single-project literature, summary measures
have been introduced to classify multi-project instances.
The existing measures are reviewed in Browning and Yas-
sine (2010b) (BY10), the authors use one network measure
and three resource measures to generate their data. C j

describes the network structure of the projects in the port-
folio. The resource-related measures are the normalised

Table 1 Summary of symbols

Basic parameters

J The set of projects, indexed by j

I j The set of activities of project j , indexed by i

s
∑

j |I j |
ai j Activity i of project j

di j The duration of ai j
Pi j The set of predecessors of ai j
Resource parameters

K The set of renewable resource types, indexed by k

Rk The per period availability of resource type k

ri jk The resource requirement of ai j for resource type k

Hi j The set of resource types for which the demand of
ai j is nonzero

Schedule parameters

r j The release date of project j

d̄ j The due date of project j

CP j The critical path duration of project j

CPmax max j∈J C Pj

CP max j∈J (r j + CPj) − min j∈J r j

Decision variables

S j The start time of project j

Fj The finish time of project j

M j Fj − S j

M max j∈J Fj − min j∈J S j

average resource loading factor, the modified average util-
isation factor and its variance. In the remainder of this
subsection, wewill discuss thesemeasures and propose some
extensions or adaptations.

Network complexity (C j): This measure compares the
number of non-redundant arcs to the theoretical maximum
number of arcs. An arc (i, k) is redundant or transitive when
(i, j) and (j, k) are both arcs in the network.C j is calculated
as follows:

C j = A′ − A′
min

A′
max∗ − A′

min
(3)

where A′ is the number of non-redundant arcs, A′
min = |I j |−

1 and A′
max∗ is the maximum of non-redundant arcs, which

depends on the length L j of the network. L j is defined as
the length of the longest path of non-dummy nodes between
the dummy start to the dummy end node. A′ can have values
between A′

min and A′
max∗ , so C j lies in the interval [0,1].

BY10 generated a dataset of project networks with a low
(C j = 0.14) and a high (C j = 0.69) number of arcs. They
report that the length L j , averaged over the three networks
in one portfolio lies in the range [2, 11.67].

123

304 Journal of Scheduling (2020) 23:301–325

Table 2 Network structure of the data from BY10

Min Avg Max

L j 2 2.41 5

SP 0.05 0.07 0.21

OS 0.03 0.05 0.21

The structure of a project network has been described
in the single-project literature by different measures. An
overviewof themeasures is given byVanhoucke et al. (2008);
a review on the strengths and weaknesses of the measures
can be found in Demeulemeester et al. (2003). In the fol-
lowing discussion, the progressive level Pi j of an activity
will be used, which is defined as the longest path from the
dummy start to the activity ai j (Elmaghraby 1977). We will
now evaluate the network structure of the instances in BY10
by calculating their values for two well-known metrics: the
order strength (OS) and the serial–parallel (SP) indicator. The
OS compares the total of all redundant and non-redundant
arcs in the network with the theoretical maximum for a net-
work of that size (independent of the length of the network),
leading to values in the range [0,1]. SP divides L j − 1 by
|I j | − 1, its value lies in the range [0,1]. For both measures,
0 corresponds to the completely parallel network and 1 to
the completely serial network. Table 2 reports the minimum,
average andmaximumvalue over all instances for L j , SP and
OS. Even instances with high C j values of 0.69 score low on
SP and OS. With an average length of 2.41, the instances in
the BY10 dataset are rather parallel. The most serial network
in the BY10 set has a length of 5, while each network consists
of 20 nodes.

The discrepancy between the values ofC j and OS/SP val-
ues can be attributed to the discriminative power of C j and
the generation procedure. First, C j has a lower discrimina-
tive power between serial and parallel instances than OS and
SP. While the extremes of OS and SP correspond to the com-
pletely parallel and serial networks, this is not the case forC j .
As a consequence, it is not easy to interpret C j unambigu-
ously. Browning and Yassine (2010a) state that the minimum
number of arcs (C j = 0) is obtained for both the completely
serial and parallel network. The maximum number of arcs
(C j = 1) is obtained by assigning (|I j |−L j +2)/2 activities
to two consecutive progressive levels and 1 activity to the oth-
ers. Additionally, C j depends on L j because L j determines
the value of A′

max∗ . Two networks with different lengths may
have the same value for C j , even though the one with the
higher L j is more serial than the other.

The second cause originates in the generation procedure.
The authors specify the length of a network (i.e. the num-
ber of progressive levels) and a value for C j . The procedure
then assigns each activity to a progressive level. In order to
enforce this progressive level Pi j of an activity ai j , it should

have at least one predecessor ai j ′ with Pi j ′ = Pi j − 1. In the
dataset, this condition is not always satisfied, leading to more
parallel instances than originally specified because activities
may have a lower progressive level. As a consequence, the
critical path durations of the instances may also differ, which
impacts the values for the resource measures which are dis-
cussed hereafter.

The Normalised Average Resource Loading Factor
(NARLF): Kurtulus and Davis (1982) defined the average
resource loading factor (ARLF) to indicate whether the total
resource requirement of a project mainly occurs in the first or
second half of its critical path duration. To compute it, they
define two auxiliary variables:

Zi jt =
{

−1 if t ≤ r j + (CP j/2),

1 if t > r j + (CP j/2)
(4)

Xi jt =
{
1 if activity ai j is active at time t ,

0 otherwise
(5)

Zi jt indicates whether time t falls in the first or second half
of CP j , taking into account the release date of the project.
Xi jt is equal to one if ai j is being executed or active at time t
according to the resource-unconstrained earliest start sched-
ule. Now, the ARLF j of project j can be calculated with

ARLF j= 1
CP j

r j+CP j∑
t=r j

∑
i∈I j

∑
k∈Hi j

Zi j t Xi j t

(
ri jk
|Hi j |

)
(6)

In this formula, the resource demand of activities that fall
in the first (second) half of the critical path of project j has
a negative (positive) contribution to the ARLF j . When the
largest fraction of the demand occurs in the first (second)
half, the ARLF j will be negative (positive) and the project is
called front loaded (back loaded). The ARLF of the portfolio
is obtained by averaging over all projects:

ARLF= 1
|J |

∑
j∈J

ARLF j (7)

BY10, however, state that this measure may produce
biased results and propose the NARLF. Equation 6 calcu-
lates theARLF j of every individual project relative to its own
critical path duration. BY10 argue that when the durations of
the projects differ significantly, ARLF provides misleading
results.

NARLF= 1
|J |∗CPmax

∑
j∈J

r j+CP j∑
t=r j

∑
i∈I j

∑
k∈Hi j

Zi j t Xi j t

(
ri jk
|Hi j |

)
(8)

Equation 8 partially solves this issue, as the resource dis-
tribution of every project is normalised over the duration of

123

Journal of Scheduling (2020) 23:301–325 305

Fig. 1 NARLF vs NARLF′: an
illustration

Project 1 Project 2 Portfolio

Portfolio 1

Demand
profile

NARLF 0 0 0
NARLF′ 0 0 0

Portfolio 2

Demand
profile

NARLF 0 0 0
NARLF′ 0 -1.5 -0.75

the whole portfolio (CPmax). However, we believe the mea-
sure can be further improved since Zi jt is still calculated
with regard to the critical path duration of the individual
projects. In order to resolve this, we propose a new
definition Z ′

t :

Z ′
t =

⎧
⎪⎨

⎪⎩

−1 if t ≤ min
j∈J

(r j) + �CP/2� ,

1 if t > min
j∈J

(r j) + �CP/2� (9)

This new variable indicates whether a time point falls in
the first or second half of the critical path duration of the
portfolio rather than the critical path durations of the indi-
vidual projects. NARLF′ is calculated with Eq. 8 where Zi jt

is replaced by Z ′
t . We demonstrate the difference between

the two measures with the example in Fig. 1. There are two
portfolios, each consisting of two projects. For each of the
individual projects, the demand is equally distributed over its
own critical path duration. The half of the critical path dura-
tion is indicated by the bold line. In the right hand side of the
table, the demand profiles of the portfolios are shown. These
are obtained by aggregating the demand profiles of the con-
stituent projects. Portfolio 1 has a constant resource demand
over its duration, leading to a value of 0 for both NARLF
and NARLF′. However, in portfolio 2 the biggest part of the
resource demand clearly occurs in the first half of CPmax (the
first two periods). According to NARLF, there is no differ-
ence in the loading of the resource profile of portfolio 1 and
2, even though the latter is more front loaded. NARLF′, on
the other hand, correctly indicates that the second portfolio
is front loaded.

TheModifiedAverageUtilisationFactor (MAUF):MAUF
gives an indication of the resource constrainedness. In single-
project literature, several measures exist to describe resource
constrainedness (Resource Strength, Resource Constrained-
ness,...). Demeulemeester et al. (2003) provide an overview
and discuss their strengths andweaknesses.Davis (1975)was
the first to introduce a multi-project measure for resource

constrainedness. He created the utilisation factor UF, which
calculates the resource requirement per time unit based on
the unconstrained earliest start schedule and divides it by the
available resources per time unit. Kurtulus and Davis (1982)
proposed to average the utilisation factor over time inter-
vals in order to reduce the computational effort. Browning
and Yassine (2010b) noted that this measure may be biased
because the intervals could be of different length. To resolve
this issue, they proposed to use unit intervals for the calcu-
lations. This approach is equivalent to the original definition
of Davis (1975), as it measures the demand per time unit
and compares it to the available resources. The original argu-
mentation for averaging over time intervals becomes obsolete
with modern computing power. AsMAUF and UF are equiv-
alent, we will abbreviate it for the remainder of the document
to the measure UF.

The Variance of UF (σ 2
UF): As each resource type k may

have a different UFk , Browning and Yassine (2010b) pro-
posed to measure the variation of UF over the different
resource types. They define UF as the maximum utilisation
factor over all resource types and σ 2

UF as the variance from
this maximum:

σ 2
UF =

∑
k∈K (UF − UFk)2

|K | (10)

If σ 2
UF> 0, BY10 set UF1 = UF and

UFk = UF −
√

σ 2
UF, ∀k > 1 (11)

This results in resource type 1 being the most constrained
and all others less but equally constrained. However, a multi-
tude of different utilisation factors may lead to the same σ 2

UF,
so only a small subset of all possible resource availabilities is
generated when Equation 11 is used. Therefore, we propose
an adapted approach in which resource type k = 1 is again
the most constrained but UFk, ∀k > 1 can have values that
differ from those in Equation 11.

123

306 Journal of Scheduling (2020) 23:301–325

2.4 Existing benchmark sets

In the multi-project literature, four datasets have been used
for benchmarking algorithms. First, Homberger (2007) cre-
ated themulti-project schedulingproblem library (MPSPLIB),
consisting of 80 instances for the decentralised RCMPSP
with completely global resources, i.e. each project has access
to each resource type. The author combined single-project
instances from PSPLIB (Kolisch and Sprecher 1997) into
portfolios and assigned a release date to the constituent
projects. For each of the instances, the portfolio resource
measure AUF is also reported. This dataset was extended
with 60 instances similar to the original ones, but having
a combination of global and local resources (Homberger
2012). A local resource type is only accessible by one of
the projects in the portfolio, while a global resource is acces-
sible by all projects. Second, Browning and Yassine (2010a)
proposed a new generation procedure for the RCMPSP and
a corresponding dataset of 12,320 instances. The proce-
dure generates single-project networks with a desired value
for the network complexity measure C j and then combines
them into one project portfolio. Next, the resource profile
of the portfolio is set such that it meets the target val-
ues for three resource-related portfolio measures (NARLF,
MAUF and σ 2

MAUF). We will call this dataset BY10. Third,
an open library called RCMPSPLIBwas created by Vázquez
et al. (2015), containing 14 instances constructed from sin-
gle projects in PSPLIB, 7 instances from the generator of
BY10 and 5 instances generated by the authors (without
specified parameter values). The fourth and last dataset was
created for the MISTA 2013 challenge, addressing the multi-
mode RCMPSP (Wauters et al. 2016). The authors combined
single-project multi-mode instances from PSPLIB to create
30 multi-project instances, included release dates and made
the distinction between global and local resources.

Tables 3 and 4 provide an overview of the previously
discussed benchmark datasets and the datasets used in the
literature, respectively. The column ‘#Inst.’ indicates the
number of instances in the dataset, while column |J | reports
the minimum and maximum number of projects per portfo-
lio and |I j | denotes the minimum and maximum number of
activities per project. ‘Origin’ denotes how the single-project
networks were obtained, while ‘Network’ and ‘Resources’

indicate which network and resource measures were used to
generate these projects. In Table 3, we separate these mea-
sures on the portfolio and project level, while in Table 4 the
portfoliomeasures are bold-faced.Note that not every dataset
explicitly reports the values of the single-projectmeasures for
each instance. The column ‘Local’ indicates whether local
resources are included in the instances (Y) or not (N). In
Table 4, the last column indicates which extension of the
RCMPSP is addressed. All network and resource measures
that occur in this paper are explained in “Appendix”.

In Table 4, we have summarised the literature of solu-
tion procedures for the RCMPSP. We classify the papers in
three classes, based on two criteria labelled as reproducibil-
ity and comparability. We define a dataset to be reproducible
when it is (1) created with a multi-project generator, (2) cre-
ated by combining instances from single-project libraries
or generators or (3) generated by the authors with a cus-
tom procedure and both network and resource measures are
reported. A dataset is comparable when it is freely available
and as such it is possible to benchmark the results of differ-
ent algorithms on this dataset. The data in the first class are
neither reproducible nor comparable as the algorithms are
tested on non-standard instances (which we label NS in the
table). These data are either created without in-depth docu-
mentation on their generation or obtained from real life cases.
Although these datasets were relevant in the research stud-
ies mentioned in the table, they cannot be used in future
studies making comparisons harder or even impossible. The
second class contains the literature where the procedures are
tested on reproducible data. For data in this class, it is pos-
sible for the reader to obtain instances that are similar, but
not exactly the same, to those proposed in the paper. The
third class contains papers that use comparable data. The lit-
erature in this class uses one of the libraries from Table 3.
This approach is the most favourable because the instances
are specifically designed for the multi-project context, and
the results of different authors can be compared on the same
benchmark.Note that for the papers that use comparable data,
we only report which dataset is used, as the other informa-
tion can be found in Table 3. This summary table exhibits
that there is a trend towards reproducibility and comparabil-
ity of the data, facilitating the comparison of results. 58%
and 32% of the literature published since 2010 use a com-

Table 3 Summary information datasets

Dataset #Inst. |J | |I j | Project level Portfolio level

Origin Network Resources Resources Local

MPSPLIB 140 [2,20] [30, 120] PSPLIB NC RF AUF N(80), Y(60)

BY10 12,320 [3,3] [20,20] New C j – NARLF, MAUF, σ 2
MAUF N

RCMPSPLIB 26 [2,10] [10, 120] PSPLIB, BY10, New NC, C j RF NARLF, MAUF, σ 2
MAUF N

MISTA 30 [2,20] [10, 30] PSPLIB NC RF – Y

123

Journal of Scheduling (2020) 23:301–325 307

Ta
bl
e
4

O
ve
rv
ie
w
of

da
ta
in

th
e
lit
er
at
ur
e

R
ef
er
en
ce

#I
ns
t.

|J
|

|I j
|

O
ri
gi
n

N
et
w
or
k

R
es
ou
rc
es

R
C
M
PS

Pa

N
on
-s
ta
nd
ar
d

C
he
n
an
d
Sh

ah
an
da
sh
ti
(2
00
9)

2
3

[2
1,
46
]

N
S

–
–

B
as
ic

C
hi
u
an
d
T
sa
i(
20
02
)

89
38

[2
,4
]

–
N
S

–
–

D
C
F

D
ec
kr
o
et
al
.(
19
91
)

1
8

[1
1,
20
]

N
S

–
–

B
as
ic

K
um

an
an

et
al
.(
20
06
)

1
5

[6
,1
2]

N
S

–
–

B
as
ic

K
ur
tu
lu
s
an
d
D
av
is
(1
98
2)

77
[3
,5
]

–
N
S

–
A
R
L
F,

A
U
F

B
as
ic

K
ur
tu
lu
s
(1
98
5)

77
[3
,5
]

–
N
S

–
A
R
L
F,

A
U
F

B
as
ic

L
aw

re
nc
e
an
d
M
or
to
n
(1
99
3)

16
0

5
[2
5,
50
]

N
S

O
S

–
B
as
ic

Si
ng
h
(2
01
4)

1
5

8
N
S

–
–

B
as
ic

V
er
ce
lli
s
(1
99
4)

–
[5
,1
0]

[1
0,
20
]

N
S

–
–

M
M
,N

PV

W
an
g
et
al
.(
20
15
)

18
[5
,3
0]

10
N
S

–
L
oa
d

ST
O
,D

Y
N

R
ep
ro
du
ci
bl
e

B
eş
ik
ci
et
al
.(
20
13
)

60
6

[2
0,
30
]

PS
PL

IB
N
C

M
U
F

M
M
,R

D

B
eş
ik
ci
et
al
.(
20
15
)

80
6

[2
0,
30
]

PS
PL

IB
N
C

M
U
F

M
M
,R

D

C
ha
kr
ab
or
tty

et
al
.(
20
17
)

77
3

20
G
en
er
at
or

B
Y
10

C
j

N
A
R
L
F,

M
A
U
F,

σ
2 M
A
U
F

B
as
ic

C
on
fe
ss
or
e
et
al
.(
20
07
)

24
0

[3
,5
]

[1
0,
18
]

Pr
oG

en
N
C

R
F

D
E
C

D
um

on
d
an
d
M
ab
er
t(
19
88
)

1
25
0

[7
,5
0]

Pa
tte
rs
on

–
–

D
Y
N

G
on
ça
lv
es

et
al
.(
20
08
)

12
0

[1
0,
50
]

12
0

PS
PL

IB
N
C

–
B
as
ic

K
rü
ge
r
an
d
Sc
ho
ll
(2
00
9)

10
0

5
[7
,5
0]

Pa
tte
rs
on

–
–

R
T

K
rü
ge
r
an
d
Sc
ho
ll
(2
01
0)

10
0

5
[7
,5
0]

Pa
tte
rs
on

–
–

R
T

L
ee

et
al
.(
20
03
)

10
0

3
[6
,1
5]

Pr
oG

en
N
C

R
F

D
E
C

L
ov
a
et
al
.(
20
00
)

32
[4
,8
]

[3
0,
60
]

N
S

N
C
,N

PL
R
F,
A
U
F

B
as
ic

L
ov
a
an
d
To

rm
os

(2
00
1)

32
[4
,8
]

[3
0,
60
]

N
S

N
C
,N

PL
R
F,
A
U
F

B
as
ic

M
itt
al
an
d
K
an
da

(2
00
9)

64
[3
,6
]

[3
0,
60
]

PS
PL

IB
N
C

R
F,
A
U
F

B
as
ic

W
an
g
et
al
.(
20
17
)

42
0

3
30

R
an
G
en
2

SP
N
A
R
L
F,

M
A
U
F
,σ

2 M
A
U
F

ST
O

Y
an
g
an
d
Su

m
(1
99
3)

16
50
0

[6
,4
9]

Pa
tte
rs
on

–
–

D
E
C
,D

Y
N
,R

T

Y
an
g
an
d
Su

m
(1
99
7)

10
50
0

[6
,4
9]

Pa
tte
rs
on

–
–

D
E
C
,D

Y
N
,R

T

Z
he
ng

et
al
.(
20
13
)

10
00
0

3
30

R
an
G
en

O
S

R
C

ST
O

C
om

pa
ra
bl
e

A
dh
au

et
al
.(
20
12
)

M
PS

PL
IB

D
E
C

A
dh
au

et
al
.(
20
13
)

M
PS

PL
IB

D
E
C
,R

T

H
om

be
rg
er

(2
00
7)

M
PS

PL
IB

D
E
C

H
om

be
rg
er

(2
01
2)

M
PS

PL
IB

D
E
C

So
ng

et
al
.(
20
17
)

M
PS

PL
IB

D
E
C

W
au
te
rs
et
al
.(
20
15
)

M
PS

PL
IB

D
E
C

B
ro
w
ni
ng

an
d
Y
as
si
ne

(2
01
0b
)

B
Y
10

B
as
ic

V
áz
qu
ez

et
al
.(
20
15
)

R
C
M
PS

PL
IB

B
as
ic

Pé
re
z
et
al
.(
20
16
)

R
C
M
PS

PL
IB

B
as
ic

A
st
a
et
al
.(
20
16
)

M
IS
TA

M
M

G
ei
ge
r
(2
01
7)

M
IS
TA

M
M

To
ff
ol
o
et
al
.(
20
16
)

M
IS
TA

M
M

a
N
PV

:n
et
pr
es
en
tv

al
ue
,D

C
F:

di
sc
ou
nt
ed

ca
sh

flo
w
s,
M
M
:m

ul
ti-
m
od
e,
ST

O
:s
to
ch
as
tic
,R

D
:r
es
ou
rc
e
de
di
ca
tio

n,
D
E
C
:d

ec
en
tr
al
is
ed
,D

Y
N
:d

yn
am

ic
,R

T:
re
so
ur
ce

tr
an
sf
er
s

123

308 Journal of Scheduling (2020) 23:301–325

parable or reproducible dataset, respectively, which indicates
that the practice of using standardised data is becomingmore
widespread in multi-project literature.

Despite these fragmentary efforts to create multi-project
benchmark data, not many authors have focused on a stan-
dardised generation approach with summary measures that
are specific to the RCMPSP. However, the random genera-
tor and benchmark dataset of Browning and Yassine (2010a)
are very important steps in this direction. Their generation
procedure has been our main inspiration to initially look at
all the data for the RCMPSP, which resulted in some ideas
for improvements. In Sect. 4, we adapt this procedure and
propose a new dataset as a complementary alternative to the
incumbent sets.

3 Decoupled schedule generation schemes

In multi-project scheduling literature, one of the most preva-
lent scheduling techniques is priority rule-based heuristics,
because they have a number of advantages (Browning and
Yassine 2010b). First, they are relevant for practitioners
due to their ease of implementation. Second, they can be
used as building blocks for more advanced solution meth-
ods. Third, as their computation speed is very high, they are
also applicable to large instances. For these reasons, sev-
eral authors have used priority rules to solve the RCMPSP.
For the description of priority rules used in this paper, we
refer to Table 6. Kurtulus and Davis (1982) analysed the
performance of 9 different priority rules for the RCMPSP.
The authors distinguish between two ways to solve the
RCMPSP: the multi-project or single-project approach. The
former treats the projects individually (e.g. each project
has its own critical path), while the latter combines all
networks into one super-project, losing information on its
constituent projects. They concluded that priority rules that
incorporate both project and activity information (i.e. the
multi-project approach) give better results. Kurtulus (1985)
extended this study to multi-projects with unequal delay
penalties, incorporating due date and penalty information in
some priority rules. Dumond andMabert (1988) investigated
the extension to due dates with varying degrees of negotiat-
ing power of the portfolio manager. Lawrence and Morton
(1993) propose a weighted, slack-based priority rule that
incorporates due dates and compare their heuristic with 20
priority rules from the literature. Lova et al. (2000) propose
a heuristic method that lexicographically optimises time-
related and non-time-related objectives. For the time-related
objective, they use two priority rules: MINLFT and SASP.
Lova and Tormos (2001) propose an objective function for
both the multi-project (mean project delay) as the single-
project approach (multi-project duration increase, which is
equivalent to PDEL) and analyse the performance of 7 pri-

ority rules on both objectives. They conclude that for a
multi-project objective, priority rules that use activity and
project information (i.e. the multi-project approach) give the
best results. Browning and Yassine (2010b) were the first
to perform a systematic experiment with 20 priority rules
from the literature on a dataset that is generated to cover a
range of different parameters. They conclude that TWK-LST
and SASP perform well for the multi-project objective APD,
while MINWCS performs best for the single-project objec-
tive PDEL and that these results are robust over different
parameter values. Vázquez et al. (2015) propose a learning
algorithm that starts with an initial set of 34 priority rules
and generates a set of project priority lists. From this set, the
algorithm selects the best priority rule and a tie breaker for
the chosen instance. The best priority rule and correspond-
ing project priority lists are then used as input for a genetic
algorithm.

The previous paragraph shows that several researchers
have advocated the usefulness of the multi-project approach
and implemented this with new priority rules that take into
account both project and activity information. However,
these new rules are still often applied with the single-project
serial and parallel schedule generation scheme. Only a few
authors so far have separated the project and activity selec-
tion decisions. In our manuscript, we will call this separation
of the project and the activity selection decision decoupled
scheduling. Note that for decoupled priority rules, we use the
notation X–Y , where X refers to the project priority rule and
Y to the activity priority rule.

To the best of our knowledge, Lova and Tormos (2001)
were the first to introduce decoupled priority rules. They
use TWK (called MAXWK in our study) as project rule
and test 4 activity rules. These decoupled rules all outper-
formed the original priority rules. Two of them (TWK-EST
and TWK-LST) were used in other studies (Browning and
Yassine 2010b;Wang et al. 2017), where they also performed
well. Mittal and Kanda (2009) created a decoupled serial
schedule generation scheme and compared it to existing pri-
ority rules on 64 instances. They conclude that the decoupled
variant, which uses multi-project information, outperforms
the existing heuristics for both APD and PDEL. This contra-
dicts the findings of Lova and Tormos (2001) and Browning
and Yassine (2010b) who found that for PDEL, the single-
project rules outperform rules that incorporate multi-project
information. In our computational experiment (Sect. 5), we
will reconcile these conflicting observations. Zheng et al.
(2013) created a genetic algorithmwith an activity list where
all activities of a project need to form a contiguous block in
the list. Vázquez et al. (2015) create a serial schedule gen-
eration scheme where the priority list is filled with project
indices. At each iteration, the project index determines which
project will be considered. From this project, the eligible
activity with the highest priority is scheduled. Asta et al.

123

Journal of Scheduling (2020) 23:301–325 309

Table 5 Additional notation

Notation Meaning

ESi j , LSi j The earliest and latest start time of activity ai j according to the critical path schedule.

LFi j The latest finish time of ai j according to the critical path schedule.

Ei j The earliest precedence and resource feasible start time for ai j in the current partial schedule.

SLKi j Slack of ai j in the current partial schedule: LSi j − max(ESi j , Ei j).

Wi j The work content of ai j :
∑
k∈K

ri jkdi j .

ASj The set of activities of project j that are already added to the partial schedule.

USj The set of unscheduled activities of project j .

EP The set containing all pairs of eligible activities for the current partial schedule.

Ei j,kl The earliest precedence and resource feasible start time for ai j if first akl and then ai j are scheduled.

Si j The set of direct successors of ai j .

RCPj The remaining critical path length of project j where di j = 0 for all completed activities, di j = di j − (t − si j) for activities
that are in execution at schedule time t and di j is unchanged for ai j ∈ USj . si j is the start time of ai j .

EDL j The expected delay: MI NDUR j − DUE j . MI NDUR j is the finish time of project j when all activities ai j ∈ USj are
started as soon as possible in the partial schedule, neglecting resource constraints. DUE j is the due date of project j , in
this study the finish time according to the critical path calculations

(2016) created a hyper-heuristic for themulti-mode resource-
constrainedmulti-project scheduling problem (MRCMPSP),
which won the MISTA 2013 challenge (Wauters et al. 2016).
They keenly observe that when the objective is to minimise
the sum or average of project completion times, good solu-
tions often exhibit an approximate ordering of projects. To
fully exploit this insight, they created neighbourhood oper-
ators that act on a complete project, in addition to operators
that act on individual activities. The previous examples show
that decoupling the activity and project selection may be a
promising directionwhen the objective function is a sumover
projects. To extend this research, we create decoupled exten-
sions of the single-project schedule generation schemes and
introduce new decoupled scheduling rules.

We divide priority rule heuristics for the RCMPSP
into three classes: single-project, coupled and decoupled
heuristics. Single-project heuristics originate from RCPSP
research; these priority rules only use information that is
related to the activities. The rules are combined with the
single-project serial or parallel schedule generation scheme
to create a schedule. This approach reduces a multi-project
instance to a single project and does not take into account
any project-specific information.

Coupled heuristics consist of a single-project SGS with a
priority rule that combines activity and project information.
Previous research has shown that incorporating both activ-
ity and project information in priority rules can outperform
single-project priority rules, certainly when the objective
function incorporates project-specific information (Brown-
ing and Yassine 2010b). Although these heuristics improve
upon their single-project variants, the SGS still treats the
multi-project as one super-project network. The eligible

activities of all projects are collected in one set, and no dis-
tinction is made between activities from different projects.

Decoupled heuristics resolve this issue by separating the
eligible activities in different sets, one per project. The result-
ing SGS’ decouple the project and activity prioritisation
decisions. In the first step, the projectwith the highest priority
is selected and in the second step the activity with the high-
est priority from the selected project. In our literature review,
we established that previous research has indicated the value
of this approach (Lova and Tormos 2001; Mittal and Kanda
2009). In our computational experiment, we extend the exist-
ing body of knowledge by comparing the performance of
the decoupled schemes with the single-project and coupled
scheduling schemes. The additional notation required for the
calculation of the priority rules is provided in Table 5. Table 6
lists the priority rules used in our experiments, classified in
the three categories. Note that for the heuristics in the third
category, both activity and project priority rules are provided
as the scheduling scheme makes two selection decisions. In
the remainder of this section, we provide a description of the
parallel and serial decoupled schedule generation schemes.

3.1 The parallel decoupled SGS

The parallel decoupled SGS (PSGSd) is a time-incrementing
scheme; its pseudocode is shown in Algorithm 1. The differ-
ence with the single-project parallel SGS is that in every
iteration it first prioritises the projects according to their
project priority and then iterates over their eligible sets in that
order. The eligible set of a project is denoted by E j . First, the
time is initialised to t = 0. At the beginning of every iter-
ation, the procedure schedules the dummy start activities of

123

310 Journal of Scheduling (2020) 23:301–325

Table 6 Priority rules used in this study

Code Name Description

Single-project rules

MINEST Minimum earliest start time min
i, j

(ESi j)

MAXEST Maximum earliest start time max
i, j

(ESi j)

MINLST Minimum latest start time min
i, j

(LSi j)

MAXLST Maximum latest start time max
i, j

(LSi j)

MINSLKd Minimum slack (dynamic) min
i, j

(SLKi j)

MAXSLKd Maximum slack (dynamic) max
i, j

(SLKi j)

SPT Shortest processing time min
i, j

(di j)

LPT Longest processing time max
i, j

(di j)

MINWCS Minimum worst case slack min
i, j

(LSi j − max
akl :(ai j ,akl)∈EP

Ei j,kl)

MAXSUC Maximum direct successors max
i, j

(|Si j |)
FCFS First come first served The activity that arrived first in the eligible set.

Coupled rules

SASP Shortest activity of shortest project min
i, j

(di j + CPj)

LALP Longest activity of longest project max
i, j

(di j + CPj)

MINTWK Minimum total work content min
i, j

(Wi j + ∑
i∈ASj

Wi j)

MAXTWK Maximum total work content max
i, j

(Wi j + ∑
i∈ASj

Wi j)

Decoupled rules

Project selection rules Activity selection rules

MAXWKa,b Work content max
j

(
∑

i∈ASj

Wi j) MINESTa,b Earliest start min
i

(ESi j)

MINWKb Work content min
j

(
∑

i∈ASj

Wi j) MAXEST Earliest start max
i

(ESi j)

MAXTWK Total work content max
j

(
∑
i∈I j

Wi j) MINLSTa,b Latest start min
i

(LSi j)

MINTWK Total work content min
j

(
∑
i∈I j

Wi j) MAXLST Latest start max
i

(LSi j)

MINCPb CP-length min
j

(CPj) MINLFTb Latest finish min
i

(LFi j)

MAXCPb CP-length max
j

(CPj) MINSLKdb Slack (dynamic) min
i

(SLKi j)

MAXTWRb Total work remaining max
j

(
∑

i∈USj

Wi j) MAXSLKd Slack (dynamic) max
i

(SLKi j)

MINTWRb Total work remaining min
j

(
∑

i∈USj

Wi j) MINSLKs Slack (static) min
i

(LSi j − ESi j)

MAXSP SP value max
j

(SP j) MAXSLKs Slack (static) max
i

(LSi j − ESi j)

MINSP SP value min
j

(SP j) SPTb Processing time min
i

(di j)

MAXACT Number of activities max
j

(|I j |) LPT Processing time max
i

(di j)

123

Journal of Scheduling (2020) 23:301–325 311

Table 6 continued

Code Name Description

MINACT Number of activities min
j

(|I j |) MINWKb Work content min
i

(Wi j)

MINRCPb Remaining CP-length min
j

(RCPj) MAXWKb Work content max
i

(Wi j)

MAXRCb Remaining CP-length max
j

(RCPj) MAXSUC Number of successors max
i

(|Si j |)
MINEDL Expected delay min

j
(EDL j) FCFSa,b First come, first served

MAXEDL Expected delay max
j

(EDL j) MINWCS Worst case slack min
i

(LSi j − max
akl :(ai j ,akl)∈EP

Ei j,kl)

a Occurs in Lova and Tormos (2001)
b Occurs in Mittal and Kanda (2009)

all projects that are not started yet and for which the release
date is equal to t . Then, it runs through the sorted project list
and per project runs through the sorted eligible activity list. It
schedules the activities for which there are enough resources
available at the current time. At the end of the iteration, it
updates the eligible set if necessary. Then, it increments t
to the minimum of the earliest release date of the unstarted
projects and the earliest finish time greater than t and frees
the resources of all activities that finish at time t . The algo-
rithm repeats these steps until the counter c is equal to s, the
total number of activities in the multi-project.

Algorithm 1: Decoupled parallel SGS

1 c ← 0; t ← 0
2 for j ∈ J do
3 E j ← {a0 j }
4 while c < s do
5 for j ∈ J do
6 if a0 j ∈ E j and ES0 j ≥ t then
7 Schedule(a0 j); c ← c + 1

8 P ← Prioritise(J)
9 for j ∈ P do

10 A j ← Prioritise(E j)
11 for ai j ∈ A j do
12 if CheckResources(ai j) then
13 Schedule(ai j); c ← c + 1

14 Release()
15 t ← IncrementTime()

3.2 The serial decoupled SGS

The serial decoupledSGS (SSGSd) is an activity-incrementing
scheme; the general outline is shown in Algorithm 2. Again,
it differs from its single-project variant because at every iter-
ation it first selects the highest priority project and from that
project the eligible activity with the highest priority. The
algorithm first schedules the dummy start activities of all

projects at their earliest start times, i.e. the release date of
their respective projects. Then, it iteratively schedules the
activity with the highest priority from the project with the
highest priority to its earliest precedence and resource fea-
sible start time. Once the activity is scheduled, the eligible
set is updated if necessary. Again, this is repeated until all
activities are scheduled (i.e. c = s).

Algorithm 2: Decoupled serial SGS

1 c ← 0; t ← 0
2 for j ∈ J do
3 E j ← {a0 j }
4 Schedule(a0 j , E S0 j); c ← c + 1

5 while c < s do
6 j ← Prioritise(J)
7 ai j ← Prioritise(E j)
8 t ← FindWindow(ai j)
9 Schedule(ai j , t); c ← c + 1

4 Data generation

In this section, we will generate new datasets for our com-
putational experiments. In Sect. 4.1, we reimplement the
generation procedure of BY10 with the minor adaptations
of Sect. 2. In Sect. 4.2, we evaluate the procedure and com-
pare it with the existing datasets. After this analysis, we will
propose a new benchmark dataset using the modified gener-
ation procedure.

4.1 Reimplementation of generation procedure

Wehave reimplemented the generation algorithm fromBY10
with three adaptations. First, Sect. 2 shows that the networks
in the dataset BY10were all rather parallel. In order to obtain
a more diverse set of networks, we used RanGen2 because it
was shown that this generator is able to generate a wide vari-
ety of networks with different properties (Vanhoucke et al.
2008). We systematically created networks with SP values

123

312 Journal of Scheduling (2020) 23:301–325

in the interval of [0.1, 0.9] in order to cover the most impor-
tant range of network types. The networks are divided in 3
classes of seriality:L (low:SP∈ {0.1, 0.2, 0.3}),M (medium:
SP ∈ {0.4, 0.5, 0.6}) and H (high: SP ∈ {0.7, 0.8, 0.9}). Net-
works with SP values outside this interval are rather extreme
cases, as they are close to the completely serial or parallel net-
work. Similar to Browning and Yassine (2010b), we denote
the network structure of a portfolio by a vector of the three
categories. For instance, 8L-2M-2H denotes that the portfo-
lio contains 8 projects in the low category, 2 in the medium
category and 2 in the high category. Second, we generated
instances with the adapted definition of NARLF′. The algo-
rithm to obtain this value is the same as reported in BY10, but
now works with NARLF′ instead of NARLF. Third, σ 2

UF was
generated in amore general manner.With this adaptation, the
algorithmcan generate differentUFk values for each resource
type, while still meeting the target σ 2

UF. More precisely, UF1
is set to the maximum value UF, while UFk for k > 1 is
sampled from the range [LBσ , UF]. LBσ is the lower bound
on UFk for all resource types given a desired σ 2

UF, while UF
is the upper bound by definition. LBσ can be calculated as
follows. Take the extreme case where UFk = UF1 for all
resource types except one arbitrary type, we take type 2 for
illustrative purposes. It follows that only UF2 contributes to
σ 2
UF. Isolating UF2 in Equation 10 results in:

UF2 = UF1 ±
√

σ 2
UF · |K |. (12)

σ 2
UF is a variance from the maximum, so UFk ≤ UF1, ∀k.

As a consequence, Equation 12 reduces to

UF2 = LBσ = UF1 −
√

σ 2
UF · |K |. (13)

If UF2 would be lower than this LBσ , σ 2
UF would exceed

the desired variance, independent of the other UFk values.
Because Eq. 13 may result in negative values, we set a min-
imum value for UFk > 0.1.

The generation algorithmconsists of three steps,which are
shown inAlgorithms 3, 4 and 5. First, the single projects with
the desired SP j , |I j | and |K | are generated (Algorithm3). For
each activity ai j , the demand for each resource type is ran-
domly sampled from the interval [1, Rk]. In the second step
(Algorithm 4), the algorithm iteratively changes the resource
demand of random activities until the desired NARLF′ is
obtained. This means that when the target NARLF′ is higher
than the current value, the algorithm will decrease (increase)
the demand of activities that lie in the first (second) half

of CP according to the earliest start schedule, where ESi j
indicates the earliest start time of activity ai j . The algorithm
returns a failure if the target NARLF′ was not obtained after
max I t iterations. In the third step (Algorithm5), the resource
availabilities Rk are generated such that the resulting UF and
σ 2
UF meet the desired values. Resource type 1 is set to be

the most constrained, and the others are randomly sampled
from [LBσ ,UFdes]. As long as the difference between the
resulting σ 2

UF and the target exceeds a small value (β), the
algorithm increments or decrements UFk values, within the
interval [max(LBσ , 0.1),UF]. Once a feasible set of UF val-
ues is obtained, the Rk values are set such that the desired UF
is obtained. There are two situations that cause the algorithm
to return a failure. First, for higher UFk it is possible that
the resulting Rk value for a resource type is smaller than the
requirement for that type of at least one activity, resulting in
an infeasible instance. Second, due to rounding, the differ-
ence between the actual UFk and the desired UF can exceed
a threshold value γ .

Algorithm 3: Read single projects

1 Create an empty multi-project
2 for j ∈ J do
3 Add a single project with desired SP j , |I j | and |K |
4 Randomise resource demand

Algorithm 4: tuneNARLF(NARLF′
des)

1 c ← 0
2 while |NARLF′ − NARLF′

des | > α do
3 if c ≥ max I t then
4 return failure

5 else
6 Select random activity ai j
7 Select random resource type k ∈ Hi j
8 Calculate NARLF′
9 if NARLF′ < NARLF′

des then
10 if ESi j+� di j

2 �≤min
j

r j+� CP
2 � then

11 ri jk ← ri jk − 1

12 else
13 ri jk ← ri jk + 1

14 else
15 if ESi j+� di j

2 �≤min
j

r j+� CP
2 � then

16 ri jk ← ri jk + 1

17 else
18 ri jk ← ri jk − 1

19 c ← c + 1

20 return success

123

Journal of Scheduling (2020) 23:301–325 313

Algorithm 5: tuneUF(UFdes , σ 2
UF,des)

1 if σ 2
UF,des = 0 then

2 Set all UFk ← UFdes

3 else
4 Set UF1 ← UFdes
5 for k > 1 do
6 UFk ← rand(LBσ ,UFdes)

7 while |σ 2
UF −σ 2

UF,des | > β do
8 Calculate σ 2

UF
9 Select a random resource type k > 1

10 if σ 2
UF > σ 2

UF,des then
11 UFk ← UFk + 0.05

12 else
13 UFk ← UFk - 0.05

14 for k ∈ K do

15 Rk = round(

∑
j∈J

∑
i∈I j ri jk di j

C Pmax ·UFk)

16 if Rk < max
i, j

(ri jk) or | Wk
CPmax ·Rk

− UFk | > γ then

17 return failure

18 return success

4.2 Evaluation of the generation procedure

In order to evaluate the modified generation procedure, we
have generated a large set of instances and compared them
with the existing datasets (we exclude theMISTA set because
it is designed for the multi-mode variant). In order to select
appropriate values for NARLF′, UF and σ 2

UF we used the
extreme values found in the existing datasets. This resulted
in the intervals [−30, 2], [0.25, 9.25] and [0, 6] for NARLF′,
UF and σ 2

UF, respectively. Because most of the instances in
the incumbent datasets are rather parallel, we chose 7 dif-
ferent combinations of L, M and H such that three types of
portfolios are obtained. In type 1, all projects are in the same
category, in type 2 one category is predominantly present,
and in type 3 each category is equally represented in the
portfolio. We generated instances with 6, 12 and 24 projects
per instance. Figure 2 shows the two-dimensional parame-
ter plots for the three existing datasets and the result of the
generation procedure for the three portfolio sizes.

The plots allow us to make several observations. First of
all, we observe that the parameter space obtained by the
generation procedure encloses the three existing datasets,
i.e. it can create instances that are similar to those in the
datasets. Second, the generator obtains parameter combina-
tions that are not present in any of the datasets. RCMPSPLIB
and MPSPLIB approximately cover the complete NARLF′
range, but most of their instances have a low σ 2

UF. The BY10
dataset, on the other hand, covers a wider variety of σ 2

UF
values, but does not contain instances with NARLF′ higher
than -7.5. The generator can create instances on the whole

spectrum for the three measures. Third, the range of feasible
NARLF′ and UF values depends on the number of projects
in the portfolio. When the number of projects in the port-
folio |J | increases, the minimal obtainable NARLF′ value
increases. When the portfolio size increases, the effect of a
project with an extreme NARLF′ is averaged over a larger
amount of projects. This reduces the effect of individual
projects, leading to less extreme values. Moreover, higher
UF values are more likely to be generated with increasing
|J | because adding new projects to the portfolio increases
the total resource demand and thus the UF.

Although Fig. 2 suggests that the procedure can generate
instances over the whole spectrum, this is not the case for
every parameter combination. We detected two parameter
dependencies. First, the range of feasible NARLF′ values
depends on the SP vector. Only for instances where all
projects are in the low-SP category, the whole range of
NARLF′ values can be obtained. The more projects in the
high category, the smaller the feasible NARLF′ range. A sec-
ond dependency was found between the SP vector and UF.
For the case with 6 projects, UF values higher than 4.25 are
practically only obtainable for portfolios where all projects
have a low SP value. These instances have on average a lower
CPmax than those with a higher SP value. As CPmax is in the
denominator of the UF formula, this explains why more par-
allel instances can have a higher UF.

Furthermore, we observed that the procedure may gener-
ate instances with unrealistic resource profiles. For instance,
for high NARLF′ values, the procedure may shift a large
amount of demand to activities in the second half of the port-
folio, while reducing the demand of activities in the first
half to very low values. This leads to distorted demand pro-
files as activities may have extremely high or low demands.
In order to obtain a quantifiable measurement of this dis-
tortion, we rely on the Gini coefficient, which is used in
economics to measure the inequality of e.g. wealth distribu-
tion. In this context, it measures how the total work content
(
∑

j∈J
∑

i∈I j
∑

k∈K ri jk ·di j) is distributed among all activ-
ities. A value of 0 means that each activity has the same work
content, while a value of 1 means that one activity accounts
for the total resource demand and the others have no resource
demand. To benchmark this distortion of resource profiles,
we calculated the distribution of Gini values for instances
that were randomly generated without any parameter spec-
ifications. This distribution is shown in Fig. 3 by the grey
full line. The black line shows the distribution of Gini val-
ues for instances generated by our adapted procedure over
the whole feasible range of parameter combinations. This
second type of multi-project instances has a wider range
of possible Gini values, which is in line with the existing
datasets where more than 95% of the Gini values range from
0.3 to 0.55. These distributions show that by just combining
single-project instances, only a subset of all possible multi-

123

314 Journal of Scheduling (2020) 23:301–325

Fig. 2 The two-dimensional parameter space plots

project instances can be generated. However, higher Gini
values result in more activities that have a very low resource
demand which are thus less likely to trigger resource con-

flicts. As such, the resulting instances may not be realistic
anymore because the scheduling problem becomes easier. In
order to set a threshold for acceptable Gini values, we eval-

123

Journal of Scheduling (2020) 23:301–325 315

Fig. 3 Gini distribution

uated its relation with the percentage of extreme activities:
the percentage of activities that require less than 5% of the
available resources for each resource type. This relation is
expressed by the dashed line in Fig. 3. We chose to keep the
average percentage of extreme activities below 20%. This
leads to a threshold for Gini of 0.42, allowing us to include
74.86% of all possible instances.

4.3 Dataset generation

The previous subsection showed that the feasible NARLF′
and UF ranges depend on the SP vector of the portfolio,
which prevents the construction of a complete orthogonal
test design in which each parameter combination occurs. We
restrict the NARLF′ and UF values to the ranges where the
procedure was able to generate instances for different SP
vectors. Furthermore, the procedure only accepts instances
if their Gini coefficient is less than or equal to 0.42. For each
parameter combination, the procedure tried to generate one
instance, terminating after 10 unsuccessful trials.

We generated three datasets (6×60, 12×60 and 24×60)
with 6, 12 and 24 projects per instance, respectively. Each

project consists of 60 activities, resulting in 360, 720 and
1440 activities per instance for the respective datasets. All
instances have 4 global resource types. Table 7 shows the
ranges of parameter values for each of the datasets. Note
that the NARLF′ range decreases for the larger datasets,
while the UF range increases. The range for σ 2

UF remains
constant over the three sets. The seven SP-combinations are
listed in the second section of the table. Even within these
restricted parameter ranges, the procedure was not able to
generate every parameter combination. It could generate the
least instances when all projects were in the high-SP cate-
gory.

From the set of successfully generated instances, we
selected a subset such that each SP vector was equally rep-
resented and that the instances were divided as equally as
possible over the ranges of the three other parameters. This
resulted in a selection of 833, 1463 and 2254 instances for
the three respective datasets.

The incumbent and newly created datasets are available on
www.projectmanagement.ugent.be. All datasets were con-
verted to the same format, such that researchers can easily
access and use the available data. This format is also
explained on the website.

5 Computational results

In this section, we will first evaluate the performance of
the priority rules on the existing and new datasets. Then,
we will test a genetic algorithm on the datasets to evaluate
whether the proposed datasets are challenging enough for
more advanced algorithms.

5.1 Evaluation priority rules

We will analyse the performance of the decoupled SGS’ for
the objective functions APD and PDEL. We evaluated every
combination of activity and project PR, which means that
256 different PR combinations are tested on both the parallel

Table 7 Parameter settings for the datasets

Parameter 6 × 60 12 × 60 24 × 60

Range Increment Range Increment Range Increment

NARLF′ [-14, 0] 1 [-12, 0] 1 [-8, 0] 1

UF [0.25, 4.25] 0.5 [0.25, 5.25] 0.5 [0.25, 7.25] 0.5

σ 2
UF [0, 5] 1 [0, 5] 1 [0, 5] 1

Type 1 6L, 6M, 6H, 12L, 12M, 12H, 24L, 24H, 24H,

SP Type 2 4L-M-H, L-4M-H, L-M-4H, 8L-2M-2H, 2L-8M-2H, 2L-2M-8H, 16L-4M-4H, 4L-16M-4H, 4L-4M-16H,

Type 3 2L-2M-2H 4L-4M-4H 8L-8M-8H

Design size 5,670 6,006 5,670

Selection size 833 1,463 2,254

123

www.projectmanagement.ugent.be

316 Journal of Scheduling (2020) 23:301–325

Table 8 Best priority rules for APD

Existing datasets New datasets

MINTWR-MINLST (S) MINCP-MINSLKd (P)

MINTWR-MINLST (P) MINCP-MINLST (S)

MINTWR-MINSLKd (P) MINCP-MINLST (P)

MAXWK-MINLST (P) MINCP-MINLFT (P)

MAXWK-MINSLKd (P) MINSP-MINSLKd (P)

MINTWR-MINSLKs (S) MINSP-MINLST (P)

MINTWR-MINSLKs (P) MINSP-MINLST (S)

MINTWR-MINWCS (S) MINSP-MINLFT (P)

MINTWR-MINLFT (S) MINCP-MINEST (P)

MINTWR-MINSLKd (S) MINCP-MINLFT (S)

and serial decoupled SGS.Wewill compare the performance
over the different sets and analyse the impact of the different
parameters on the performance.

5.1.1 APD

Table 8 reports the 10 best priority rules for the existing
and new datasets. The letter between parentheses indicates
whether the results were obtained with the serial (S) or par-
allel (P) variant of the SGS.

A first observation is that the decoupled scheduling
schemes outperform the existing variants as the 10 best rules
are decoupled. For the existing datasets, the decoupled rule
MINTWR-MINLST gives the best results. This observa-
tion matches the conclusions of Mittal and Kanda (2009),
where MINTWR combined with MINLST, MINSLKd and
MINLFT scored best on the average delay. For our own
generated data, the rule MINCP-MINSLKd performed best.
Although the coupled rules MAXTWK and SASP do not
occur in the top 10, it is worthwhile to note that they con-
sistently exhibit a better performance than the single-project
rules on our datasets. Second, we observe that most of the
best performing activity selection rules are critical path based
(e.g. minimum LFT, minimum slack,...) and that this is con-
sistent over all datasets. However, for the existing datasets,
work content-related project rules perform best, while for
our datasets the best project rules are related to the (critical
path) length of the projects. The difference in PR perfor-
mance between our dataset and the others can be explained
by the variation in the SP values within a portfolio. To anal-
yse this difference, we define the SP spread of a portfolio as
the difference in SP value between the most serial and the
most parallel of its projects. Table 9 shows the minimum,
maximum and average SP spread per dataset. Our datasets
have on average a higher SP spread and a larger range of
possible SP spread values. This means that most instances
in the incumbent sets consist of projects with very similar

Table 9 The SP spread statistics per dataset

Dataset Min Avg Max

BY10 0 0.04 0.16

MPSPLIB 0 0.04 0.13

RCMPSPLIB 0 0.04 0.23

6 × 60 0 0.45 0.82

12 × 60 0.1 0.51 0.82

24 × 60 0.2 0.54 0.82

SP values and critical path durations. It follows that due to
these small differences, project priority rules that use SP-
related information will not perform well and others, related
to e.g. work content, are better suited. However, when the
difference between the length of the project varies more, the
length-related project priority rules exhibit the best perfor-
mance. This result shows that our dataset contains instances
for which insights from previous research are not necessarily
generalisable.

Next, we evaluate which step in the algorithm has the
strongest effect on the performance: the project or activ-
ity selection decision. Table 10 reports the average APD
obtained over all instances in dataset 24 × 60, grouped per
project or activity priority rule. For the sake of brevity, we
only report the results for set 24 × 60, but the same con-
clusions can be drawn from the other two sets. The table
shows that for APD the choice of project PR has a large
impact on the performance of the decoupled SGS, while the
activity PR has a smaller impact. MINCP and MINSP are
the best project PR’s, while MINSLKd and MINLFT are the
best activity PR’s.1 This is in line with the observation of
Asta et al. (2016) that high-quality solutions tend to have
an approximate ordering of projects. We conjecture that the
project PR will have a large impact for objective functions
that average a certain value over all projects in the portfolio.

Furthermore, we can deduce from the table the choice
of scheduling scheme has a relatively small impact on the
performance for most of the rules. However, for certain rules
the choice of SGS has a larger impact that is consistent over
the three datasets. We highlighted the project (activity) rules
in boldface for which one SGS outperforms the other with
minimum 5% (2%) for the three datasets.

Next, we will evaluate the impact of the different problem
parameters on the performance of the decoupled scheduling
schemes. Figure 4 shows the average APD over each of the
parameter values for the best rule MINCP-MINSLKd (P).

1 The instances in each of our datasets have the same number of activ-
ities, so all projects are tied for the MAXACT and MINACT rules.
Because we set MINCP as tie breaker, MINACT and MAXACT are
equivalent to MINCP in this case. Therefore, we omit these rules here
from the discussion.

123

Journal of Scheduling (2020) 23:301–325 317

Table 10 Performance grouped per project and activity PR (24 × 60)

Project PR Parallel Serial Activity PR Parallel Serial

MAXWK 3.61 3.59 MINEST 5.05 4.99

MINWK 7.52 7.75 MAXEST 5.11 5.05

MAXTWK 4.84 4.93 SPT 5.09 5.06

MINTWK 4.42 4.49 LPT 5.09 4.97

MINCP 3.38 3.43 MINSLKd 4.94 4.94

MAXCP 5.97 6.06 MAXSLKd 5.04 5.06

MAXTWR 8.05 8.30 MINLST 5.03 4.92

MINTWR 4.03 4.49 MAXLST 5.13 5.07

MAXSP 5.84 5.92 MINWK 5.11 5.07

MINSP 3.39 3.45 MAXWK 5.07 4.97

MAXACT 3.38 3.43 MAXSUC 5.07 5.02

MINACT 3.38 3.43 FCFS 5.06 4.98

MINRCP 6.26 4.62 MINWCS 5.09 4.95

MAXRCP 5.66 6.03 MINSLKs 5.07 4.97

MINEDL 5.92 6.17 MAXSLKs 5.03 5.06

MAXEDL 5.27 3.94 MINLFT 4.93 4.96

Again we only show the effects for the dataset 24 × 60, but
the results are similar for the other two sets. The effects of
NARLF′ and UF are in line with the conclusions drawn by
Browning and Yassine (2010b), with a lower NARLF′ or a
higher UF leading to a higher APD. For the network struc-
ture, we observe that the average APD is the lowest when all
projects fall in the same category of SP values. When there
is variation in SP values within the portfolio, it seems that
the number of low seriality projects in the portfolio has the
strongest effect on the APD. The last factor σ 2

UF exhibits a
positive correlation with APD. However, this contradicts to
Browning and Yassine (2010b), where a negative correlation
was observed.

Figure 5 shows the two-way interaction effects. The
strongest interaction effect is observed between SP and UF.
The strength of the relationship betweenAPD andUF clearly
depends on the network structure of the portfolio. A second,
smaller interaction effect can be observed between UF and
NARLF′. A highly negative NARLF′ combined with a high
UF leads to a bigger increase in APD. We conclude from the
plots that there is no clear discernible interaction between
NARLF′ and σ 2

UF or between SP and σ 2
UF. Note that we do not

show the NARLF′-SP and UF-σ 2
UF interaction plots because

these parameters depend on each other and it was not possi-
ble to generate every combination of the two parameters. As
such, these plots do not bring any useful insight.

In addition to the plots, we created an OLS regression
model to quantify the effect of the parameters on the perfor-
mance of the scheduling schemes. A model consisting of all
main effects resulted in an adjusted R2 of 88.8%. Including
the SP-UF interaction effects increased the adjusted R2 to

94.9%. Adding other interaction effects did not increase the
R2 of the model significantly and lead to multi-collinearity
problems. We also tried including the NARLF′-SP and UF-
σ 2
UF interactions, neither of them increased the explanatory

power of the model. The regression calculated a negative
coefficient for σ 2

UF (i.e. −0.1215), confirming the observa-
tions of Browning and Yassine (2010b). This is probably
caused by the oversimplification of a main effect plot, which
only takes into account the explanatory power of one param-
eter. The coefficients for the other parameters are in line with
the observations in the main effect plots.

5.1.2 PDEL

Now we will discuss the performance of the priority rules
for the PDEL objective, which measures the makespan of
the portfolio. Table 11 reports the 10 best PRs for the incum-
bent and the new datasets, respectively. For the existing sets,
the single-project rules MINWCS, MINSLKd and MINLST
form the top 3, followed by decoupled rules. This confirms
the conclusions of Browning and Yassine (2010b) and Lova
and Tormos (2001) that single-project rules are better when
the objective is PDEL.

On the contrary, on our datasets, decoupled PR’s do
consistently outperform single-project rules, confirming the
observations of Mittal and Kanda (2009). For the new
datasets, it is worthwhile to include multi-project informa-
tion in the heuristics, even though the objective function is
equivalent to single-projectmakespanminimisation. Further-
more, there are only twowell-performing project rules for our
dataset: MAXTWR and MINWK. To conclude, we observe
that the parallel SGS is consistently better than the serial SGS
for the PDEL objective.

The impact of the project and activity selection rules is
shown in Table 12, where the results are grouped per project
and activity rule, respectively. We again restrict our analy-
sis to the dataset 24 × 60. Similar to the results for APD,
the choice of project priority rule explains more variation
than the choice of activity priority rule. However, the dif-
ferences between project rules are much smaller than with
APD. Because PDEL only looks at the maximum finish time
over all projects, the finish time of all other projects becomes
irrelevant, which explains why the impact of project prior-
ities is stronger for APD than for PDEL. Furthermore, the
parallel SGS on average outperforms the serial for all rules,
which was not the case for APD.

The main effect plots for MAXTWR-MINLFT(P) over
the different parameters are shown in Fig. 6. For NARLF′,
UF and σ 2

UF, the effects have the same direction as those
observed forAPD.However, the impact ofNARLF′ onPDEL
is smaller than on APD. According to the figure, the network
structure has a different effect on PDEL than on APD, and
the size of the effect is smaller. For 24H, the PDEL is still

123

318 Journal of Scheduling (2020) 23:301–325

Fig. 4 Main effect plots APD

Fig. 5 Interaction effect plots APD

the lowest, but the average PDEL is higher for 24M and
24L. When there is variation in the SP vector, the number of

projects in categories M and H seems to be the driving fac-
tors behind the increase in of PDEL, as the largest increases

123

Journal of Scheduling (2020) 23:301–325 319

Table 11 Best priority rules for PDEL

Existing datasets New datasets

MINSLKd (P) MAXTWR-MINLFT (P)

MINLST (P) MAXTWR-MINSLKd (P)

MINWCS (P) MAXTWR-MINLST (P)

MAXTWR-MINSLKd (P) MAXTWR-MINEST (P)

MAXTWR-MINLST (P) MAXTWR-FCFS (P)

MAXEDL-MINSLKd (P) MINWK-MINLFT (P)

MINWK-MINLST (P) MAXTWR-MAXWK (P)

MINRCP-MINSLKd (P) MINWK-MINSLKd (P)

MINWK-MINSLKd (P) MINWK-MINLST (P)

MINRCP-MINLST (P) MAXTWR-MINWCS (P)

Table 12 Average PDEL grouped per project and activity PR (24×60)

Project PR Parallel Serial Activity PR Parallel Serial

MAXWK 4.10 4.52 MINEST 3.89 4.21

MINWK 3.55 3.66 MAXEST 3.91 4.24

MAXTWK 4.00 4.28 SPT 3.90 4.25

MINTWK 3.95 4.28 LPT 3.90 4.19

MINCP 4.12 4.48 MINSLKd 3.89 4.21

MAXCP 3.78 4.04 MAXSLKd 3.91 4.27

MAXTWR 3.51 3.62 MINLST 3.89 4.17

MINTWR 3.99 4.28 MAXLST 3.91 4.25

MAXSP 3.82 4.08 MINWK 3.91 4.25

MINSP 4.12 4.48 MAXWK 3.90 4.19

MAXACT 4.12 4.48 MAXSUC 3.90 4.22

MINACT 4.12 4.48 FCFS 3.90 4.21

MINRCP 3.71 4.35 MINWCS 3.90 4.20

MAXRCP 3.81 4.11 MINSLKs 3.90 4.20

MINEDL 3.78 3.94 MAXSLKs 3.91 4.27

MAXEDL 3.95 4.46 MINLFT 3.89 4.21

are observed for the instances with 8 or 16 projects in these
categories.

The interaction plots are shown in Fig. 7. The interaction
effects SP-UF and NARLF′-UF that were observed for APD
are absent for PDEL. Only for the SP vector equal to 24L,
the increase due to UF seems to be somewhat smaller than
for the other network types. Again there is no clear interac-
tion effect between NARLF′ and σ 2

UF or SP and σ 2
UF. These

observations were confirmed by the OLS regression model
that was constructed. The model consisting of only the main
effects obtained an adjusted R2 of 98.7%. None of the inter-
action effects increased this R2 further.

To conclude, we summarise the insights gained. First of
all, decoupled scheduling outperformed the existing schedul-
ing schemes on all datasets for APD, but only on the new
datasets for PDEL. This last result shows that even though the

objective is equivalent to single-project makespan minimi-
sation, including multi-project information in the heuristic
can improve the performance. Second, our proposed datasets
contain more variety regarding the network structure of the
underlying project and as a result different priority rules
performed best than on the existing sets. Third, the project
selection decision has the largest impact on the performance
of the scheduling scheme and this effect is stronger for APD
than for PDEL. Last, the impact of the different summary
measures is in line with conclusions from previous research
Browning and Yassine (2010b).

5.2 Metaheuristic

Although the computational experiments with priority rules
lead to valuable insights, multi-project research has pro-
gressed tomore advanced algorithmic procedures. In order to
evaluate whether our datasets are also challenging for more
complex algorithms, we implemented a genetic algorithm. In
this subsection, we start by describing the genetic algorithm.
Afterwards, we will discuss the results of a computational
experiment and draw conclusions regarding the proposed
datasets.

5.2.1 Description of genetic algorithm

For the genetic algorithm (GA), a schedule is represented by
an activity list, where p(ai j) denotes the position of activity
ai j in a given activity list. The list is precedence feasible,
i.e. p(akj) < p(ai j), ∀akj ∈ Pi j (Hartmann 1998). Now,
the range of feasible positions for ai j is denoted by [ai j , ai j],
where ai j and ai j are, respectively, the leftmost and rightmost
position in the list where the activity can be placed without
violating the precedence constraints.

The genetic algorithm has a population size of 200. In the
initial population, 150 random precedence feasible lists are
created and the remaining 50 lists are obtained by scheduling
the instance with all previously discussed priority rules and
converting the 50 best schedules to their corresponding activ-
ity lists. In every iteration, the 16 best individuals are copied
to the next population. The rest of the population is obtained
by repeatedly selecting two parents, creating offspring using
crossover operators and possibly applying a mutator to the
offspring. The first parent is selected by a two-round tour-
nament selection. The second parent is selected either by a
one-round tournament selection or by a uniform selection;
both selection operators have a 50% probability of being
used. The offspring are created by randomly applying one
out of four crossover operators on the parents. Each of the
children is mutated with a probability of 20%. When muta-
tion is triggered, the GA selects one out of seven mutator
operators. The parameter values for the genetic algorithm
were set based on experiments on a training set.

123

320 Journal of Scheduling (2020) 23:301–325

Fig. 6 Main effect plots PDEL

Fig. 7 Interaction effect plots PDEL

Now we will explain the crossover and mutator operators
that were implemented for the genetic algorithm. To clarify
the discussion, we will first explain two concepts. The order

oi j of an activity indicates its position in the list relative to
the other activities of the same project. oi j = z means that
z activities of project j precede ai j in the list. As such, for

123

Journal of Scheduling (2020) 23:301–325 321

any activity ai j of project j , oi j ∈ [0, |I j | − 1]. Second,
the centre c j of a project gives an indication of the rela-
tive position of projects in the activity list. It is defined as
c j = 1

|I j |
∑

ai j∈I j p(ai j) (Asta et al. 2016). If the activities
of project j are situated more in the front of the list than
those of project l, it follows that c j < cl . As our results
in the previous subsection and recent research (Asta et al.
2016; Vázquez et al. 2015; Zheng et al. 2013) confirmed
that separating project and activity selection can improve the
performance, we chose to implement operators that change
activity lists at the project level, in addition to those that work
on the activity level.

Crossover operators: we chose to implement a traditional
two-point crossover and three new project level crossover
operators.

• Two-Point: Select two positions, keep the activities to the
left of the first position and to the right of the second posi-
tion. Swap the activities between the two positions with
the other parent. For the details, we refer to Hartmann
(1998).

• Project Order Swap: Copy one of the parents into the
child list. Run through the child list and at each position
replace ai j by the activity of project j that has order oi j
in the other parent. Repeat this process, starting with a
copy from the other parent.

• Hybrid Project Order 1: Calculate the project orders for
both parents, based on their centre. Construct a prece-
dence graph of the projects where project j precedes
project k if j precedes k in the order of both parents. Cre-
ate a new random project order that respects the project
precedence graph. For each child, run through the project
order, and per project add all its activities to the child fol-
lowing the activity order of one of the parents. The first
child and second child inherit the activity order of the
first and second parent, respectively.

• Hybrid Project Order 2: This operator is similar to the
previous operator, but for each child a different project
order is created.

Mutator operators: we based ourselves on the neigh-
bourhood operators from Asta et al. (2016) as they were
shown to perform well for the RCMPSP.

• Swap: Select a random activity ai j and a second random
activity akl with p(akl) ∈ [ai j , ai j]. If p(ai j) ∈ [akl , akl],
swap the activities. Otherwise, do nothing.

• Insert: Select a random activity ai j and insert it in a ran-
dom position in [ai j , ai j].

• Scramble: Choose two random positions in the list and
remove all activities between these positions. Randomly
reinsert the removed activities in the empty spots, respect-
ing precedence constraints.

• Swap Projects: Randomly select two projects k and l
and remove all their activities from the list. Insert all
activities of l in the first |Il | empty spots, preserving the
original activity order. Then, insert all activities of k in
the remaining spots, again preserving the order.

• Swap Adjacent Projects: Sort the projects according to
their centre value and select two projects that are adjacent
in this ordering. Apply it Swap Projects to these projects.

• Compress Project: Select a random project j and remove
all its activities from the list. Left shift all remain-
ing activities as much as possible, such that they form
one contiguous block. Select a random position p in
[0, s − |I j |] and right shift the activities on positions
[p, s − |I j |] as much as possible, leaving a contiguous
block of empty spots at the interval [p, p+|I j |−1]. Insert
all activities of project j in this empty block, respecting
the original activity ordering.

• Shuffle Project: Select a random project j and remove
all its activities from the list. Reinsert the activities in the
empty positions in a randomorder, respecting precedence
constraints.

Each time an operator is applied, it is randomly cho-
sen from the list above. Based on how often an operator
improves the solution, its selection probability can be adapted
by the algorithm. This will make the algorithm favour
well-performing operators. However, in order to stimulate
diversification, we set a lower bound on the selection proba-
bility of the operators.

5.2.2 Discussion of performance

For the computational experiment, we let the genetic algo-
rithm run for 30 s on each instance.The testswere executedon
the STEVIN HPC-UGent Supercomputer (Processor archi-
tecture: 2x18-core Intel Xeon Gold 6140, clock speed 2.3
GHz). The left hand side of Fig. 8 shows the improvement
divided by the total improvement found after 30 s. The right
hand side shows the same data, but with the first 2 s of run-
ning time truncated, allowing a more nuanced comparison
of the improvement profiles. A first observation is that for
the sets BY10, RCMPSPLIB and 6_60, the GA improves
quickly, but stabilises relatively fast. This indicates that the
algorithm can quickly find good solutions which can almost
not be improved any further, even after a long time search-
ing. The other three datasets prove to be more difficult, as the
genetic algorithm keeps finding considerable improvements
in later time slots. The figure suggests that the improvement
potential of the algorithm on the dataset 24_60 is not com-
pletely exploited after 30 s.

To support the previous observations, we set up a sec-
ond experiment where the initial population consisted of 200

123

322 Journal of Scheduling (2020) 23:301–325

Fig. 8 Improvement profile genetic algorithm

Table 13 Time to beat best PR

Dataset Time % Outperformed

BY10 1.94 93

MPSPLIB 7.71 62

RCMPSPLIB 1.76 85

6_60 1.80 98

12_60 4.73 93

24_60 13.79 82

random activity lists and measured how much time the GA
needed to obtain a solution with the same objective function
value as the best priority rule for an instance, with a maxi-
mum running time of 30 s. Table 13 shows the average time
the algorithm needed to surpass the best priority rule and the
percentage of instances forwhich it outperformed the priority
rule after 30 s.

The table shows that the randomly initialised version of
the GA needs much more time to match the best priority rule
on the datasets MPSPLIB, 12_60 and especially on 24_60
in comparison with the others. This confirms the observation
from the previous experiment that these three datasets are the
most challenging for more advanced algorithms. The second
column shows that MPSPLIB contains (relatively speaking)
themost instances forwhich theGAcould not outperform the
PR, followed by 24_60 and RCMPSPLIB. Furthermore, the
table shows that decoupled priority rules provide invaluable
knowledge formore advanced heuristics, especiallywhen the
instances become more challenging.

6 Conclusion

This paper provides an overview of the existing multi-
project measures and benchmark datasets and proposes a
new dataset. Furthermore, decoupled versions of the single-
project schedule generation schemes are presented and

evaluated on all available datasets for the basic variant of
the RCMPSP.

Our literature review revealed a positive trend towards
reproducibility and comparability in multi-project literature,
which improves the consistency of conclusions made by
researchers. The existing summary measures were reviewed,
and three adaptations were proposed: (1) NARLF was mod-
ified to NARLF′, (2) SP was used to describe the network
structure, and (3) σ 2

UF was calculated in a more general man-
ner.

In Sect. 3, we applied the multi-project approach to prior-
ity rule-based scheduling, resulting in the decoupled schedule
generation schemes. Our computational experiments showed
that decoupled scheduling schemes are valuable because of
two reasons. First, they can easily be used by practitioners to
improve the quality of their schedules. Second, these schemes
can be implemented as building blocks in more advanced
algorithms. Our second computational experiment showed
that this is very important when the instances become more
difficult to solve.

In Sect. 4, we reimplemented the generation procedure
of Browning and Yassine (2010b). Using the reimplemented
procedure, we proposed new datasets that complement the
existing data in two ways: a wider range of parameter com-
binations and portfolios with a wider variety of SP values.
Adding this variation to our datasets leads to new insights
regarding the best performing priority rules. Furthermore,
two of the three sets proved to be challenging for the genetic
algorithm that we implemented. During the generation pro-
cess, we observed that the feasible ranges for the NARLF′
and UF values depend on the network structure and the port-
folio size.

The computational experiments in Sect. 5 provided
insights into the performance of the different priority rules.
For the APD objective, the best activity PR’s are MINLST,
MINSLKd and MINLFT. For the datasets with projects
that have similar SP values, the project PR’s MINTWR,
MINTWK and MAXWK performed best, while MINCP

123

Journal of Scheduling (2020) 23:301–325 323

and MINSP performed better on the datasets where the SP
varies more over projects. Furthermore, we observed that the
project PR has the strongest impact on the performance of
the scheduling schemes. This confirms the insights fromAsta
et al. (2016) that good solutions approximate a total order on
the projects.

For the PDEL objective, we found that the decoupled
schemes were slightly worse on the existing sets, but were
better on our own datasets. This confirms again that our
datasets include cases that are absent in the existing sets.
Additionally, these results show that even for the single-
project objective PDEL, decoupled scheduling outperforms
single-project priority rules. The best activity PR’s are the
same as for APD, but the best project PR’s are now MAX-
TWR and MINWK. The choice of project PR is still impor-
tant, but has a smaller impact than for APD. Furthermore, for
PDEL the parallel scheduling scheme is consistently better
than the serial one.

We identify the followingopportunities for future research.
A first opportunity is to explore additional summary mea-
sures for the RCMPSP that either determine PR performance
or that have fewer dependencies, which would facilitate the
construction of full factorial test designs. A second possi-
ble research avenue is to investigate whether the decoupled
scheduling approach also performs well on other objective
functions or on extensions of the basicRCMPSP.Third, in the
spirit of theMISTA 2013 challenge, more advanced schedul-
ing algorithms could be designed that incorporate decoupled
scheduling as a building block.

Acknowledgements Weacknowledge the support provided by the Spe-
cial Research Fund (BOF Grant No. DOC014-18 Van Eynde) and
the National Bank of Belgium for providing the first author with a
pre-doctoral fellowship. The computational resources (Stevin Super-
computer Infrastructure) and services used in this work were provided
by the VSC (Flemish Supercomputer Center), funded by Ghent Univer-
sity, FWO and the Flemish Government department EWI.

Appendix: Summarymeasures

Measure Formula Notes

Network measures

C
A′−A′

min
A′
max∗ −A′

min

NC
An
j

|I j |+2 The average number of non-redundant arcs per node, including dummiesa

NPL
|I j |
L j

The average number of activities in parallel

OS
Arj

|I j |∗(|I j |−1)/2 The ratio of the number of arcs (excluding dummies) and the theoretical
number of arcsb

SP
L j−1
|I j |−1 The ratio of the longest chain in the network and the total number of

activities
Resource measures

ARLF 1
CPj

∑r j+CPj
t=r j

∑
i∈I j

∑
k∈Hi j

Zi j t Xi j t

(
ri jk
|Hi j |

)

AUF 1
S

∑S
s=1

Wsk
ls Rk

S is the number of intervals, Wsk the total resource demand for resource k
in interval s and ls the length of the interval

Load Rk|J |·dk dk is the duration of an activity with resource demand for type k

MAUF 1
MES

∑MES
s=min j∈J r j

Wsk
ls Rk

Similar to AUF, with ls = 1

σ 2
UF

∑
k∈K (UF−UFk)2

|K |

MUF maxk∈K
∑

j∈J
∑

i∈I j ri jk di j
Rk MES

The ratio of the earliest start schedule resource requirements and the
available resources

NARLF 1
|J |∗CPmax

∑
j∈J

∑r j+CPj
t=r j

∑
i∈I j

∑
k∈Hi j

Zi j t Xi j t

(
ri jk
|Hi j |

)

NARLF′ 1
|J |∗CPmax

∑
j∈J

∑r j+CPj
t=r j

∑
i∈I j

∑
k∈Hi j

Z ′
t Xi j t

(
ri jk
|Hi j |

)

RC 1
|K |

∑
k∈K

rk
Rk

Where rk is the average resource requirement, when it is required by an
activity

RF

∑
j∈J

∑
i∈I j |Hi j |

|K | ∑ j∈J |I j | The average percentage of resource types that an activity requires

RS
Rk−rmin

k
rmax
k −rmin

k
The resource strength. rmin

k is the maximum demand for resource k over
all activities, rmax

k the peak demand for type k in the unconstrained
earliest start schedule

aAn
j is the number of non-redundant arcs in the network of project j , including dummy arcs

bAr
j is the total number of redundant and non-redundant arcs in de network of project j , excluding dummy arcs

123

324 Journal of Scheduling (2020) 23:301–325

References

Adhau, S., Mittal, M., & Mittal, A. (2012). A multi-agent system for
distributed multi-project scheduling: An auction-based negotia-
tion approach. Engineering Applications of Artificial Intelligence,
25(8), 1738–1751.

Adhau, S., Mittal, M., & Mittal, A. (2013). A multi-agent system
for decentralized multi-project scheduling with resource transfers.
International Journal of Production Economics, 146(2), 646–661.

Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., & Parkes, A. J. (2016).
Combining monte-carlo and hyper-heuristic methods for the
multi-mode resource-constrained multi-project scheduling prob-
lem. Information Sciences, 373, 476–498.

Beşikci, U., Bilge, Ü., & Ulusoy, G. (2013). Resource dedication
problem in a multi-project environment. Flexible Services and
Manufacturing Journal, 25(1–2), 206–229.

Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource con-
strained multi-project scheduling and resource portfolio problem.
European Journal of Operational Research, 240(1), 22–31.

Browning, T. R., & Yassine, A. A. (2010a). A random generator of
resource-constrained multi-project network problems. Journal of
Scheduling, 13(2), 143–161.

Browning, T. R., & Yassine, A. A. (2010b). Resource-constrained
multi-project scheduling: Priority rule performance revisited.
International Journal of Production Economics, 126(2), 212–228.

Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2017). Resource
constrained multi-project scheduling: A priority rule based evolu-
tionary local search approach. InG. Leu, H.K. Singh,&S. Elsayed
(Eds.), Intelligent and evolutionary systems (pp. 75–86). Canberra,
Australia: Springer.

Chen, P.-H., & Shahandashti, S. M. (2009). Hybrid of genetic algo-
rithm and simulated annealing formultiple project schedulingwith
multiple resource constraints. Automation in Construction, 18(4),
434–443.

Chiu, H. N., & Tsai, D. M. (2002). An efficient search procedure for
the resource-constrained multi-project scheduling problem with
discounted cash flows.ConstructionManagement and Economics,
20(1), 55–66.

Confessore, G., Giordani, S., & Rismondo, S. (2007). A market-based
multi-agent systemmodel for decentralizedmulti-project schedul-
ing. Annals of Operations Research, 150(1), 115–135.

Davis, E. W. (1975). Project network summary measures constrained-
resource scheduling. AIIE Transactions, 7(2), 132–142.

Deckro, R. F., Winkofsky, E., Hebert, J. E., & Gagnon, R. (1991). A
decomposition approach to multi-project scheduling. European
Journal of Operational Research, 51(1), 110–118.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). Rangen:
A random network generator for activity-on-the-node networks.
Journal of scheduling, 6(1), 17–38.

Dumond, J., & Mabert, V. A. (1988). Evaluating project scheduling
and due date assignment procedures: An experimental analysis.
Management Science, 34(1), 101–118.

Elmaghraby, S. E. (1977). Activity networks: Project planning and con-
trol by network models. New York: Wiley.

Geiger, M. J. (2017). A multi-threaded local search algorithm and com-
puter implementation for the multi-mode, resource-constrained
multi-project scheduling problem. European Journal of Opera-
tional Research, 256(3), 729–741.

Gonçalves, J. F., Mendes, J. J., & Resende, M. G. (2008). A genetic
algorithm for the resource constrained multi-project scheduling
problem. European Journal of Operational Research, 189(3),
1171–1190.

Hartmann, S. (1998). A competitive genetic algorithm for resource-
constrained project scheduling. Naval Research Logistics (NRL),
45(7), 733–750.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and exten-
sions of the resource-constrained project scheduling problem.
European Journal of operational research, 207(1), 1–14.

Homberger, J. (2007). A multi-agent system for the decentralized
resource-constrained multi-project scheduling problem. Interna-
tional Transactions in Operational Research, 14(6), 565–589.

Homberger, J. (2012). A (μ, λ)-coordination mechanism for agent-
based multi-project scheduling. OR Spectrum, 34(1), 107–132.

Kolisch, R.,&Sprecher, A. (1997). Psplib-a project scheduling problem
library: Or software-orsep operations research software exchange
program. European Journal of Operational Research, 96(1), 205–
216.

Krüger, D., & Scholl, A. (2009). A heuristic solution framework for
the resource constrained (multi-) project scheduling problem with
sequence-dependent transfer times. European Journal of Opera-
tional Research, 197(2), 492–508.

Krüger, D., & Scholl, A. (2010). Managing and modelling general
resource transfers in (multi-) project scheduling. OR Spectrum,
32(2), 369–394.

Kumanan, S., Jose, G. J., & Raja, K. (2006). Multi-project scheduling
using an heuristic and a genetic algorithm. The International Jour-
nal of Advanced Manufacturing Technology, 31(3–4), 360–366.

Kurtulus, I. (1985). Multiproject scheduling: Analysis of scheduling
strategies under unequal delay penalties. Journal of Operations
Management, 5(3), 291–307.

Kurtulus, I., & Davis, E. (1982). Multi-project scheduling: Categoriza-
tion of heuristic rules performance. Management Science, 28(2),
161–172.

Lawrence, S. R., & Morton, T. E. (1993). Resource-constrained
multi-project scheduling with tardy costs: Comparing myopic,
bottleneck, and resource pricing heuristics. European Journal of
Operational Research, 64(2), 168–187.

Lee, Y.-H., Kumara, S. R., & Chatterjee, K. (2003). Multiagent based
dynamic resource scheduling for distributed multiple projects
using a market mechanism. Journal of Intelligent Manufacturing,
14(5), 471–484.

Liberatore, M. J., & Pollack-Johnson, B. (2003). Factors influencing
the usage and selection of project management software. IEEE
transactions on Engineering Management, 50(2), 164–174.

Lova, A., Maroto, C., & Tormos, P. (2000). A multicriteria heuristic
method to improve resource allocation in multiproject scheduling.
European Journal of Operational Research, 127(2), 408–424.

Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and
heuristic rules performance in resource-constrained multiproject
scheduling. Annals of Operations Research, 102(1–4), 263–286.

Maroto, C., Tormos, P., & Lova, A. (1999). The evolution of software
quality in project scheduling. In J. Weglarz (Ed.), Project schedul-
ing (pp. 239–259). Boston, MA: Springer.

Mittal, M., & Kanda, A. (2009). Two-phase heuristics for scheduling of
multiple projects. International Journal of Operational Research,
4(2), 159–177.

Payne, J. H. (1995). Management of multiple simultaneous projects: A
state-of-the-art review. International Journal of Project Manage-
ment, 13(3), 163–168.

Pérez, E., Posada, M., & Lorenzana, A. (2016). Taking advantage of
solving the resource constrained multi-project scheduling prob-
lemsusingmulti-modal genetic algorithms.SoftComputing,20(5),
1879–1896.

Singh, A. (2014). Resource constrained multi-project scheduling with
priority rules and analytic hierarchy process. Procedia Engineer-
ing, 69, 725–734.

Song, W., Kang, D., Zhang, J., & Xi, H. (2017). A multi-unit com-
binatorial auction based approach for decentralized multi-project
scheduling. Autonomous Agents and Multi-agent Systems, 31(6),
1548–1577.

123

Journal of Scheduling (2020) 23:301–325 325

Toffolo, T. A., Santos, H. G., Carvalho, M. A., & Soares, J. A.
(2016). An integer programming approach to the multimode
resource-constrained multiproject scheduling problem. Journal of
Scheduling, 19(3), 295–307.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., & Tavares, L. V.
(2008). An evaluation of the adequacy of project network gener-
ators with systematically sampled networks. European Journal of
Operational Research, 187(2), 511–524.

Vázquez, E. P., Calvo, M. P., & Ordóñez, P. M. (2015). Learning pro-
cess on priority rules to solve the RCMPSP. Journal of Intelligent
Manufacturing, 26(1), 123–138.

Vercellis, C. (1994). Constrained multi-project plannings problems: A
Lagrangean decomposition approach. European Journal of Oper-
ational Research, 78(2), 267–275.

Wang, X., Chen, Q., Mao, N., Chen, X., & Li, Z. (2015). Proactive
approach for stochastic rcmpsp based on multi-priority rule com-
binations. International Journal of Production Research, 53(4),
1098–1110.

Wang, Y., He, Z., Kerkhove, L.-P., &Vanhoucke,M. (2017). On the per-
formance of priority rules for the stochastic resource constrained
multi-project scheduling problem.Computers and Industrial Engi-
neering, 114, 223–234.

Wauters, T., Kinable, J., Smet, P., Vancroonenburg,W., Berghe, G. V., &
Verstichel, J. (2016). The multi-mode resource-constrained multi-
project scheduling problem. Journal of Scheduling, 19(3), 271–
283.

Wauters, T., Verbeeck, K., De Causmaecker, P., & Berghe, G. V. (2015).
A learning-based optimization approach to multi-project schedul-
ing. Journal of Scheduling, 18(1), 61–74.

Yang, K.-K., & Sum, C.-C. (1993). A comparison of resource allocation
and activity scheduling rules in a dynamic multi-project environ-
ment. Journal of Operations Management, 11(2), 207–218.

Yang, K.-K., & Sum, C.-C. (1997). An evaluation of due date, resource
allocation, project release, and activity scheduling rules in a multi-
project environment. European Journal of Operational Research,
103(1), 139–154.

Zheng, Z., Shumin, L., Ze, G., & Yueni, Z. (2013). Resource-constraint
multi-project scheduling with priorities and uncertain activity
durations. International Journal of Computational Intelligence
Systems, 6(3), 530–547.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Description
	2.2 Extensions
	2.3 Existing multi-project measures
	2.4 Existing benchmark sets

	3 Decoupled schedule generation schemes
	3.1 The parallel decoupled SGS
	3.2 The serial decoupled SGS

	4 Data generation
	4.1 Reimplementation of generation procedure
	4.2 Evaluation of the generation procedure
	4.3 Dataset generation

	5 Computational results
	5.1 Evaluation priority rules
	5.1.1 APD
	5.1.2 PDEL

	5.2 Metaheuristic
	5.2.1 Description of genetic algorithm
	5.2.2 Discussion of performance

	6 Conclusion
	Acknowledgements
	Appendix: Summary measures
	References

