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Abstract
We consider the competitive multi-agent scheduling problem on a single machine, where each agent’s cost function is to
minimize its total weighted late work. The aim is to find the Pareto-optimal frontier, i.e., the set of all Pareto-optimal points.
When the number of agents is arbitrary, the decision problem is shown to be unary NP-complete even if all jobs have the
unit weights. When the number of agents is two, the decision problems are shown to be binaryNP-complete for the case in
which all jobs have the common due date and the case in which all jobs have the unit processing times. When the number of
agents is a fixed constant, a pseudo-polynomial dynamic programming algorithm and a (1 + ε)-approximate Pareto-optimal
frontier are designed to solve it.

Keywords Scheduling · Single machine · Multi-agent · Late work · Approximate Pareto-optimal frontier

1 Introduction

1.1 Problem description

The problemof single-machine schedulingwithmulti-agents
to minimize total weighted late work can be stated as fol-
lows. Assume that there are m agents, called agent Ax for
x ∈ {1, 2, . . . ,m}, where each agent competes to sched-
ule its own set of independent and non-preemptive jobs on
a single machine. Agent Ax has to schedule the job set
J (x) = {J (x)

1 , J (x)
2 , . . . , J (x)

nx }. Let n be the total number
of all jobs, i.e., n = n1 + n2 + · · · + nm , and J be the set
of all jobs, i.e., J = J (1) ∪ J (2) ∪ · · · ∪ J (m). Note that
J (x) ∩ J (x ′) = ∅ when x �= x ′. All jobs are simultane-
ously available at time zero, and we call the jobs of agent
Ax the x-jobs. Each job J (x)

j is characterized by a processing

time p(x)
j , a weight w

(x)
j , and a due date d(x)

j . We assume

that all parameters p(x)
j , w

(x)
j , and d(x)

j are known integers.
Given a feasible schedule σ of the n jobs, the completion
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time of job J (x)
j is denoted by C (x)

j (σ ), and the late work of

job J (x)
j is defined as Y (x)

j (σ ) = min{T (x)
j (σ ), p(x)

j }, where
T (x)
j (σ ) = max{0,C (x)

j (σ ) − d(x)
j } is the tardiness of job

J (x)
j . Note that the late work Y (x)

j (σ ) is the amount of pro-

cessing performed on job J (x)
j after its due date d(x)

j in σ .

If there is no confusion, we simply use C (x)
j , T (x)

j and Y (x)
j

to denote C (x)
j (σ ), T (x)

j (σ ) and Y (x)
j (σ ), respectively. As in

Potts and Van Wassenhove (1991), job J (x)
j is said to be

early if Y (x)
j = 0; job J

(x j )
j is said to be partially early if

0 < Y (x)
j < p(x)

j ; job J (x)
j is said to be late if Y (x)

j = p(x)
j . A

job which is either early or partially early is also called non-
late. Each agent Ax desires tominimize its total weighted late
work

∑
w

(x)
j Y (x)

j (σ ), which relies on its own jobs’ comple-
tion times only.

In the general competitive multi-agent scheduling prob-
lem, each agent Ax desires to minimize its own scheduling
criterion Fx . Let CO denote that the m agents are competi-
tive on the machine. Following the three-field classification
scheme in Agnetis et al. (2014), we use the following
approaches to describe the different types of multi-agent
scheduling problems.

• Decision problem P1: 1|CO, Fx ≤ Kx , x = 1, 2, . . . ,
m|−. The problem is to determine whether there exists
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a feasible schedule σ with Fx (σ ) ≤ Kx for x ∈
{1, 2, . . . ,m}.

• Restricted optimization problem P2: 1|CO,

Fx ≤ Kx , x = 2, 3, . . . ,m|F1. The problem is to
determine a feasible schedule σ such that F1(σ ) is min-
imized subject to the restriction that Fx (σ ) ≤ Kx for
x ∈ {2, 3, . . . ,m}.

• Linear combination optimization problem P3: 1|CO|
∑m

j=1 λx Fx . The problem is to determine a feasible
schedule σ to minimize a linear combination of the m
criteria,

∑m
j=1 λx Fx , where λx is a positive real number

for x ∈ {1, 2, . . . ,m}.
• Pareto optimization problem P4: 1|CO|
P(F1, F2, . . . , Fm). The problem is to determine all
the Pareto-optimal points and, for each Pareto-optimal
point, provide a corresponding Pareto-optimal sched-
ule. A feasible schedule σ is called Pareto-optimal
(or efficient) if there exists no other schedule σ ′ such
that Fx (σ ′) ≤ Fx (σ ) for all x = 1, 2, . . . ,m and at
least one of the m inequalities is strict. In this case,
(F1(σ ), F2(σ ), . . . , Fm(σ )) is called a Pareto-optimal
point. The set (referred to asPOF) of all Pareto-optimal
points is called the Pareto-optimal frontier.

Remark 1.1 It is observed that (i) solving problem P4 also
solves problems P1 − P3 as a by-product; (ii) problem P4 is
at least as difficult as problem P1; (iii) problem P2 is at least
as difficult as problem P1.

In this paper, we seek to investigate the Pareto opti-
mization of the multi-agent scheduling problem in which
each agent desires to minimize its total weighted late work.
Using the above notation, the problem can be denoted by
1|CO|P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ).
One real-life application of the above-described schedul-

ing model arises in the production and delivery of goods that
are perishable or time sensitive in the manufacturing indus-
try. Assume that these goods (jobs) belong to m different
customers (agents), and each of them is associated with a
given due date. Since the jobs have a short life span, all parts
of a job that are finished after the given due date are useless
and it is modeled with the late work. In addition, the disposal
of a job that cannot be finished before its given due date has
to be dealt with a discounted price or results in a remanufac-
turing cost, which is always proportionate to its late work.
From the perspective of each customer, it is interested in
minimizing its own total weighted late work. While from
the perspective of the decision maker, in order to reduce the
global financial loss or increase the customers’ satisfaction,
it needs to determine a feasible schedule to satisfy all cus-
tomers’ requirements or make a trade-off between the goals
of different customers. Therefore, the above-described situ-
ation can be modeled as a Pareto optimization problem in

which each agent desires to minimize its total weighted late
work.

1.2 Literature review

The above-described scheduling model falls into the cate-
gory of late work scheduling and the category of multi-agent
scheduling.

The late work scheduling has received much attention in
the past three decades. Applications of late work schedul-
ing models have been found in different industry situa-
tions, and these include information collection in control
systems (Blazewicz 1984), optimization of land cultiva-
tion in agriculture domain (Blazewicz et al. 2004), bugs
detecting in software development (Sterna 2011), sensi-
tive cargos transportation in the shipping industry (Liu
et al. 2018), and so on. The late work scheduling prob-
lem was initiated by Blazewicz (1984). By exploiting the
method of linear programming, he showed that the pre-
emptive parallel-machine problem P|r j , pmtn| ∑w j Y j is
polynomially solvable. Potts and Van Wassenhove (1991)
showed that the problem 1||∑ Y j isNP-hard and proposed
a pseudo-polynomial dynamic programming (DP) algorithm.
They also presented an O(n log n)-time algorithm for the
problem 1|pmtn|∑Y j . Potts and Van Wassenhove (1992)
further designed a branch-and-bound algorithm and two fully
polynomial time approximation schemes (FPTASs) for the
problem 1||∑ Y j . Kovalyov et al. (1994) devised an FPTAS
for the weighted problem 1||∑ w j Y j . Hariri et al. (1995)
showed that the problem 1|pmtn|∑w j Y j can be solved
in O(n log n) time, and they further showed that the prob-
lems 1|d j = d| ∑ w j Y j and 1|p j = p| ∑w j Y j can be
solved in O(n) and O(n3) time, respectively. Blazewicz et al.
(2004) showed that the problem O2|d j = d| ∑ w j Y j is
binary NP-hard and presented a pseudo-polynomial algo-
rithm for it. They also presented polynomial algorithms for
the problems O2|d j = d| ∑ Y j and O|r j , pmtn| ∑w j Y j ,
respectively. Blazewicz et al. (2005) showed that the prob-
lem F2|d j = d| ∑ w j Y j is binaryNP-hard and presented a
pseudo-polynomial algorithm for it. Blazewicz et al. (2007)
designed a pseudo-polynomial algorithm to solve the prob-
lem J2|d j = d, n j ≤ 2| ∑w j Y j . Yin et al. (2016) presented
two pseudo-polynomial algorithms and an FPTAS for the
problem 1|MA|∑ Y j , where MA denotes that the machine
has to undergo a fixed maintenance activity. Chen et al.
(2016) investigated a common due date scheduling problem
on parallel–identical machines with the late work criterion.
They showed that the problem P2|d j = d| ∑ Y j is binary
NP-hard and the problem P|d j = d| ∑ Y j is unary NP-
hard. Moreover, a constant competitive ratio algorithm is
given for the online version of maximizing the total early
work, where the early work of a job is defined as the amount
of processing executed before the due date. Sterna and Czer-
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niachowska (2017) showed that there exists no polynomial
approximation algorithm with finite performance guarantee
for the problem P2|d j = d| ∑ Y j and designed a polynomial
time approximation scheme for the problem of maximizing
the total early work. Chen et al. (2017) showed that the prob-
lem F3|d j = d| ∑ w j Y j is unary NP-hard and proposed a
particle swarm optimization algorithm for the general flow-
shop problem with learning effect. Piroozfard et al. (2018)
proposed a multi-objective evolutionary algorithm for the
problem of minimizing the total carbon footprint and total
late work criterion in a flexible job shop environment. Ger-
stl et al. (2019) addressed a scheduling problem with the
objective of minimizing the total late work on a proportion-
ate flow shop. They presented pseudo-polynomial algorithms
for the case in which the late work refers to the last opera-
tion of the job and the case in which the late work refers to
all the operations on all machines. Chen et al. (2019b) stud-
ied the single-machine scheduling problem with deadlines
to minimize the total weighted late work, i.e., 1|d̄ j | ∑ w j Y j .
They showed that the problem is unary NP-hard even if all
jobs have the unit weights, the problem is binary NP-hard
and admits a pseudo-polynomial algorithm and an FPTAS
if all jobs have a common due date. The reader may refer
to the surveys of Leung (2004), Sterna (2011), and Shioura
et al. (2018) for more relevant and detailed discussion of this
aspect.

The multi-agent scheduling, in which different agents are
competing for the usage of common processing resource
and each agent wants to optimize a cost function that
depends on its own jobs’s completion times, has found
numerous applications in various industrial situations such
as data packets transmission in telecommunication network
(Arbib et al. 2004), preventive maintenance scheduling in
manufacturing and service industries (Leung et al. 2010),
aircraft landings in air traffic management (Agnetis et al.
2014), optimizing product consolidation operations of a
cross-docking distribution center (Kovalyov et al. 2015),
and so on. This line of research has been surveyed by
Perez-Gonzalez and Framinan (2014) and Agnetis et al.
(2014), so we only review the results that are related to
our study. The multi-agent scheduling was originally pro-
posed by Baker and Smith (2003) and Agnetis et al. (2004),
in which the considered criteria include maximum cost
function fmax (e.g., makespan Cmax and maximum late-
ness Lmax), total (weighted) completion time

∑
(w j )C j ,

and number of tardy jobs
∑

Uj . Baker and Smith (2003)
studied the linear combination optimization problem on a
single machine, while Agnetis et al. (2004) addressed the
restricted optimization and the Pareto optimization problems
in single-machine, flow-shop, and open-shop environments.
Ng et al. (2006) showed that the problem 1|CO,

∑
U (2)

j ≤
K2| ∑C (1)

j is NP-hard under high-multiplicity encoding

and provided a pseudo-polynomial algorithm for it. Leung et
al. presented a pseudo-polynomial algorithm for the problem
1|CO,

∑
C (2)

j ≤ K2| ∑ T (1)
j . Recently, Chen et al. (2019a)

showed that the problem 1|CO,
∑

U (2)
j ≤ K2| ∑C (1)

j is
binary NP-hard even if the jobs of agent A1 have the equal
processing times.

Next, we review some works on scheduling problems
with more than two agents. Cheng et al. (2006) showed that
the problem 1|CO,

∑
w

(x)
j U (x)

j ≤ Kx , x = 1, 2, . . . ,m|−
is unary NP-complete when the number m of agents is
arbitrary, and proposed anFPTAS for itwhenm is a fixed con-
stant. Agnetis et al. (2007) provided polynomial algorithms
for problems 1|CO, f (x)

max ≤ Kx , x = 2, 3, . . . ,m| f (1)
max

and 1|CO, f (x)
max ≤ Kx , x = 2, 3, . . . ,m|∑C (1)

j . Lee

et al. (2009) considered the problem 1|CO,
∑

C (x)
j ≤

Kx , x = 2, 3, . . . ,m|∑C (1)
j and reduced it to a multi-

objective shortest-path problem, which implies that the
problem 1|CO,

∑
C (2)

j ≤ K2| ∑C (1)
j admits an FPTAS.

Yin et al. (2017) designed pseudo-polynomial time algo-
rithms for the problems 1|CO,DIF,MA, γ (x) ≤ Kx , x =
2, 3, . . . ,m|∑(αd(1)

j + w
(1)
j U (1)

j ), where γ (x) ∈ { f (x)
max,

∑
C (x)

j ,
∑

w
(x)
j U (x)

j } and DIF means that the jobs are
assigned different due dates with no restrictions. Yuan
(2017) solved the open problem1|CO|∑m1

x=1 λx (
∑

J (x)
j ∈J (x)

U (x)
j ) + ∑m

x=m1+1 λxC
(x)
max in the literature by presenting a

polynomial algorithm when m is a fixed constant. Li et al.
(2018) showed that the problem 1|CO,

∑
J (x)
j ∈Ux

w
(x)
j ≥

Kx , x = 1, 2, . . . ,m|− is unary N P-complete when m is
arbitrary, and presented a pseudo-polynomial algorithm and
an FPTAS for the general proportionate flow-shop problem
when m is a fixed constant, where Ux denotes the set of just-
in-time x-jobs. More results on multi-agent scheduling can
be found in Agnetis et al. (2014), Yuan (2016), and Yuan
et al. (2020).

To the best of our knowledge, the only researches that
study late work criterion in the framework of multi-agent
scheduling are Wang et al. (2017), Zhang and Wang (2017),
Liu et al. (2018), and Zhang and Yuan (2019). Specifi-
cally, Wang et al. (2017) proposed two pseudo-polynomial
algorithms and a branch-and-bound algorithm to solve the
problem 1|CO, L(2)

max ≤ K2| ∑ Y (1)
j . Zhang and Wang

(2017) presented a polynomial algorithm for the prob-
lem 1|CO, p(1)

j = p(1), f (2)
max ≤ K2| ∑w

(1)
j Y (1)

j and a

pseudo-polynomial algorithm for the problem1|CO, f (2)
max ≤

K2| ∑w
(1)
j Y (1)

j . Liu et al. (2018) extended the problem of
Wang et al. (2017) by introducing a sum-of-processing-
times-based learning effect. Zhang and Yuan (2019) showed
that the problem 1|CO, d(1)

j = d,C (2)
max ≤ K2| ∑ Y (1)

j is
binary NP-hard.

123



500 Journal of Scheduling (2020) 23:497–512

1.3 Our contribution

Seeking to explore the theoretically challenging and prac-
tically relevant problem, the contribution of this paper is
fivefold.

• We propose an interesting and practical multi-agent
schedulingmodel in which each agent wants to minimize
its total weighted late work.

• We show that the un-weighted problem 1|CO,
∑

Y (x)
j ≤

Kx , x = 1, 2, . . . ,m|− is unary NP-complete when m
is arbitrary.

• We show that the two-agent problems 1|CO, d(x)
j =

d,
∑

Y (x)
j ≤ Kx , x = 1, 2|− and 1|CO, p(x)

j =
1,

∑
w

(x)
j Y (x)

j ≤ Kx , x = 1, 2|− are both binary NP-
complete.

• When m is a fixed constant, we develop an exact
pseudo-polynomial DP algorithm for the problem 1|CO|
P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ).
This generalizes the algorithms of Kovalyov et al. (1994)
and Hariri et al. (1995) for the single-agent problem 1||
∑

w j Y j .
• Let ε > 0 and m be a fixed constant. We design a (1 +

ε)-approximate Pareto-optimal frontier for the problem
1|CO|P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ).

The remaining part of this paper is organized as follows.
In Sect. 2, we prove the binaryNP-completeness of the deci-
sion problems for two special cases in the two-agent setting
and the strongNP-completeness of the decision problem in
the multi-agent setting. In Sect. 3, we develop an exact DP
algorithm for the problem under study. In Sect. 4, we design
a (1+ε)-approximate Pareto-optimal frontier for it when the
number of agents is a fixed constant. In Sect. 5, we conclude
the paper and suggest some directions for future research.

2 Complexity analysis

When there is a single agent, Potts and Van Wassenhove
(1991) showed that the problem 1||∑ Y j is NP-hard even
if there are only two distinct due dates, while Hariri et al.
(1995) presented O(n)-time and O(n3)-time algorithms for
the problems 1|d j = d| ∑w j Y j and 1|p j = p| ∑ w j Y j ,
respectively. In the following, we show that the prob-
lems 1|CO, d(x)

j = d,
∑

Y (x)
j ≤ Kx , x = 1, 2|, and

1|CO, p(x)
j = 1,

∑
w

(x)
j Y (x)

j ≤ Kx , x = 1, 2|, are both

binary NP-complete, and the problem 1|CO,
∑

Y (x)
j ≤

Kx , x = 1, 2, . . . ,m|, is unary NP-complete when m is
arbitrary.

Theorem 2.1 Problem 1|CO, d(x)
j = d,

∑
Y (x)
j ≤ Kx , x =

1, 2|− is binary NP-complete.

Proof The proof uses the reduction from the binary NP-
complete SUBSET SUM problem (Garey and Johnson
1979), which can be defined as follows:
SUBSET SUM Given r positive integers b1, b2, . . . , br and
an integer bound B, does there exist a subset S1 ⊂ S :=
{1, 2, . . . , r} such that ∑ j∈S1

b j = B?
Given an arbitrary instance I of the SUBSET SUM prob-

lem,weconstruct an instanceI ′ of the problem1|CO, d(x)
j =

d,
∑

Y (x)
j ≤ Kx , x = 1, 2|− as follows:

• m = 2 agents and n = 2r jobs, where J (x) =
{J (x)

1 , J (x)
2 , . . . , J (x)

r } for x = 1, 2.

• The processing times are defined by p(x)
j = b j for x =

1, 2 and j = 1, 2, . . . , r .
• The common due date is defined by d(x)

j = d = 2B for
x = 1, 2 and j = 1, 2, . . . , r .

• The threshold values are defined by K1 = K2 =∑r
j=1 b j − B.

We first show that if instance I has a solution, then
there exists a feasible schedule σ for instance I ′ with∑r

j=1 Y
(x)
j (σ ) ≤ Kx , x = 1, 2. LetS1 be a solution ofI such

that
∑

j∈S1
b j = B. Define O = {J (x)

j : j ∈ S1, x = 1, 2}.
We construct a feasible schedule σ for I ′ as follows: The jobs
inO are sequenced in an arbitrary order, followed by the jobs
in J \O also sequenced arbitrarily. It can be easily checked
that

∑r
j=1 Y

(1)
j (σ ) = ∑r

j=1 Y
(2)
j (σ ) = ∑r

j=1 b j − B.
Conversely, we show that if instance I ′ has a feasible

scheduleσ with
∑r

j=1 Y
(x)
j (σ ) ≤ Kx for x = 1, 2, then there

exists a solution to instance I. Let σ be a feasible schedule
of I ′ with

∑r
j=1 Y

(x)
j (σ ) ≤ Kx for x = 1, 2. Then, we have

r∑

j=1

Y (1)
j (σ ) +

r∑

j=1

Y (2)
j (σ ) ≤ K1 + K2. (1)

However, the total amount of processing performed after d is
at least (

∑r
j=1 p

(1)
j +∑r

j=1 p
(2)
j )−d = 2(

∑r
j=1 b j − B) =

K1 + K2. Thus, we have

r∑

j=1

Y (1)
j (σ ) +

r∑

j=1

Y (2)
j (σ ) ≥ K1 + K2. (2)

From (1) and (2), we deduce that

r∑

j=1

Y (1)
j (σ ) =

r∑

j=1

Y (2)
j (σ ) =

r∑

j=1

b j − B. (3)
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DefineO1 = { j : C (1)
j (σ ) ≤ d} andO2 = { j : C (2)

j (σ ) ≤
d}. Recalling that the jobs are non-preemptive and p(x)

j = b j

for x = 1, 2, and j = 1, 2, . . . , r , from (3), we can conclude
that either

∑
j∈O1

b j = B or
∑

j∈O2
b j = B. Therefore, the

instance I has a solution. ��
When all jobs have the unit processing times and the

due dates are integers, Blazewicz et al. (2004) showed
that in all machine setting, the problem with the total
(weighted) number of tardy jobs criterion is equivalent
to the one with the total (weighted) late work criterion
in the single-agent case. Obviously, this equivalent rela-
tion also holds in the multi-agent case. Oron et al. (2015)
showed that the problem 1|CO, p(x)

j = 1,
∑

w
(x)
j U (x)

j ≤
Kx , x = 1, 2|−is binary NP-complete, and the problem
1|CO, p(x)

j = 1|P(
∑

w
(1)
j U (1)

j ,
∑

U (2)
j ) can be solved in

O(max{n1 log n1, nn2}) time. Hence, the following results
hold.

Theorem 2.2 Problem 1|CO, p(x)
j = 1,

∑
w

(x)
j Y (x)

j ≤
Kx , x = 1, 2|− is binary NP-complete.

Theorem 2.3 Problem 1|CO, p(x)
j =1|P(

∑
w

(1)
j Y (1)

j ,
∑

Y (2)
j ) can be solved in O(max{n1 log n1, nn2}) time.

When m is a fixed constant, Cheng et al. (2006) pro-
vided an O(n

∏m
x=1 Kx )-time algorithm for the problem

1|CO,
∑

w
(x)
j U (x)

j ≤ Kx , x = 1, 2, . . . ,m|−. Clearly,
their algorithm can be easily adapted for the problem
1|CO|P(

∑
w

(1)
j U (1)

j ,
∑

w
(2)
j U (2)

j , . . . ,
∑

w
(m)
j U (m)

j ).
Hence, the following result holds.

Theorem 2.4 Problem 1|CO, p(x)
j = 1|P(

∑
w

(1)
j V (1)

j ,
∑

w
(2)
j V (2)

j , . . . ,
∑

w
(m)
j V (m)

j ) is binaryNP-hard and can

be solved in O(n
∏m

x=1
∑nx

j=1 w
(x)
j ) time when m is a fixed

constant.

Theorem 2.5 Problem 1|CO,
∑

Y (x)
j ≤ Kx , x = 1, 2, . . . ,

m|− is unary NP-complete when m is arbitrary.

Proof The proof uses the reduction from the unary NP-
complete 3-PARTITIONproblem (Garey and Johnson1979),
which can be defined as follows:
3-PARTITION Given 3r positive integers b1, b2, . . . , b3r
and an integer bound B such that

∑3r
j=1 b j = r B, and

B/4 < b j < B/2 for j = 1, 2, . . . , 3r , can the index
set S = {1, 2, . . . , 3r} be partitioned into r disjoint subsets
S1,S2, . . . ,Sr (i.e., S1 ∪S2 ∪· · ·∪Sr = S and Si ∩Sk = ∅
for i �= k), such that

∑
j∈Si

b j = B and |Si | = 3 for
i = 1, 2, . . . , r?

Given an arbitrary instance I of the 3-PARTITION prob-
lem,wefirst re-index the3r numbers inI such thatb1 ≤ b2 ≤
· · · ≤ b3r . An instance I ′ of the problem 1|CO,

∑
Y (x)
j ≤

Kx , x = 1, 2, . . . ,m|−is constructed as follows:

• m = r + 1 agents and n = 3r2 + 1 jobs, where J (x) =
{J (x)

1 , J (x)
2 , . . . , J (x)

3r } for x = 1, 2, . . . , r , and J (r+1) =
{J (r+1)

1 }.
• The processing times are defined by p(x)

j = �1 + b j

for x = 1, 2, . . . , r , j = 1, 2, . . . , 3r , and p(r+1)
1 = 1,

where �1 = 3r2B.
• The due dates are defined by d(x)

j = (r − 1)( j�1 + λ j )

for x = 1, 2, . . . , r , j = 1, 2, . . . , 3r , and d(r+1)
1 =

3r(r−1)�1+r(r−1)B+1,whereλ j = b1+b2+· · ·+b j .
• The threshold values are defined by Kx = 3�1 + B for

x = 1, 2, . . . , r and Kr+1 = 0.

To simplify the argument, write Pj = �1 + b j and
Dj = (r − 1)( j�1 + λ j ), which denote the common pro-

cessing time and due date of job J (x)
j for x = 1, 2, . . . ,m

and j = 1, 2, . . . , 3r . Moreover, for each subset Q ⊆ J =⋃r+1
x=1 J (x), let P(Q) = ∑

J (x)
j ∈Q p(x)

j be the total process-

ing time of all jobs in Q. Then, we have

P(J ) =
r∑

x=1

3r∑

j=1

p(x)
j + p(r+1)

1

=
r∑

x=1

3r∑

j=1

(�1 + b j ) + 1

= r2(3�1 + B) + 1. (4)

We first show that if I has a solution, then there exists
a feasible schedule σ for I ′ with

∑nx
j=1 Y

(x)
j (σ ) ≤ Kx for

x = 1, 2, . . . , r + 1. Let S1,S2, . . . ,Sr be a solution of I
such that |Si | = 3 and

∑
j∈Si

b j = B for i = 1, 2, . . . , r .

Define T = {J (x)
j : j ∈ Sx , x = 1, 2, . . . , r}. We construct

a feasible schedule σ for I ′ as follows: The jobs inJ \T are
sequenced in non-decreasing order of their due dates (EDD),
followed by the jobs in T sequenced arbitrarily. For each j =
1, 2, . . . , 3r , define O j = {J (x)

i : J (x)
i ∈ J \ T and d(x)

i ≤
Dj }. Since the processing time of each job in O j \ O j−1 is
Pj and |O j | = (r − 1) j , we have

P(O j ) =
∑

J (x)
i ∈O j

p(x)
i

= (r − 1)
j∑

i=1

Pi = (r − 1)
j∑

i=1

(�1 + bi )

= (r − 1)( j�1 + λ j ) = Dj . (5)

This implies that all jobs in O j\O j−1 are scheduled from
time Dj−1 to Dj for j = 1, 2, . . . , 3r , where O0 = ∅.

Recall that λ3r = b1 + b2 + · · · + b3r = r B. Then, we
have
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C (r+1)
1 (σ ) = P(J \T ) = P(O3r ) + p(r+1)

1

= (r − 1)(3r�1 + λ3r ) + 1 = d(r+1)
1 . (6)

This implies that job Jr+1
1 is also early.

Combining the above discussion, we know that all the jobs
inJ \T are early and all the jobs inT are late in σ . Therefore,
the total late work of agent Ax (x = 1, 2, . . . , r ) is

3r∑

j=1

Y (x)
j (σ ) =

∑

j∈Sx

Y (x)
j (σ )

=
∑

j∈Sx

Pj =
∑

j∈Sx

(�1 + b j ) = 3�1 + B = Kx ,

and the total late work of agent Ar+1 is 0 = Kr+1.
Conversely, we show that if I ′ has a feasible schedule σ

with
∑nx

j=1 Y
(x)
j (σ ) ≤ Kx for x = 1, 2, . . . , r+1, then there

exists a solution to I. Let σ be a feasible schedule for I ′ with
∑nx

j=1 Y
(x)
j (σ ) ≤ Kx for x = 1, 2, . . . , r +1. Then, we have

∑

J (x)
j ∈J

Y (x)
j (σ ) =

r+1∑

x=1

nx∑

j=1

Y (x)
j (σ ) ≤

r+1∑

x=1

Kx = r(3�1+B).

(7)

However, the total amount of processing performed after
d(r+1)
1 is at least P(J ) − d(r+1)

1 = r(3�1 + B). Thus, we
have

∑

J (x)
j ∈J

Y (x)
j (σ ) ≥ P(J ) − d(r+1)

1 = r(3�1 + B) =
r+1∑

x=1

Kx .

(8)

Recall that
∑nx

j=1 Y
(x)
j (σ ) ≤ Kx for x = 1, 2, . . . , r + 1.

From (7) and (8), we deduce that

3r∑

j=1

Y (x)
j (σ ) = Kx = 3�1 + B for x = 1, 2, . . . , r , (9)

and

Y (r+1)
1 (σ ) = 0. (10)

Let T be the set of all late jobs in σ . From the above
discussion, the following three results immediately hold.

Observation 1 Job J (r+1)
1 is early in σ and it is scheduled

from D3r to d
(r+1)
1 .

Observation 2 All jobs scheduled before time D3r in σ are
early and no partially early jobs exist. In particular, P(T ) =
∑

J (x)
j ∈J Y (x)

j (σ ) = r(3�1 + B).

Observation 3 The total processing time of the late jobs of
agent Ax , x = 1, 2, . . . , r , is 3�1 + B, i.e., P(T ∩J (x)) =
∑

J (x)
j ∈T ∩J (x) Pj = 3�1 + B.

W.l.o.g., we can assume that the jobs in J \T are sched-
uled inEDDorder.Also, from the construction of the instance
I ′ and Observation 3, we can deduce that |T ∩J (x)| = 3 for
x = 1, 2, . . . , r .

Recall that b1 ≤ b2 ≤ · · · ≤ b3r . We can define an unique
index sequence (θ1, θ2, . . . , θh) that satisfies the following
conditions:

(i) 0 = θ0 < θ1 < θ2 · · · < θh = 3r;
(11)

(ii) bθi+1 = bθi+2 = · · · = bθi+1 , i = 0, 1, . . . , h − 1;
(12)

(iii) b1 = bθ1 < bθ2 < · · · < bθh = b3r . (13)

Note that h = 1 if and only if b1 = b2 = · · · =
b3r . For each g = 1, 2, . . . , 3r , set Fg = {J (x)

j : x =
1, 2, . . . , r , j = 1, 2, . . . , g} and Tg = T ∩ Fg . We next
show the following observation.

Observation 4 |Tθl | = θl for l = 1, 2, . . . , h.

Proof of Observation 4 Notice that |Tθh | = |T3r | = |T | =
3r = θh always holds. Then, the result holds if h = 1.
Suppose in the following that h ≥ 2, implying b3r > b1. We
only need to show that |Tθl | = θl for l = 1, 2, . . . , h − 1.

Recall that p(x)
j = Pj = �1 + b j < �1 + B for x =

1, 2, . . . , r , j = 1, 2, . . . , 3r .
Suppose to the contrary that |Tθl | < θl for some l with

l = 1, 2, . . . , h − 1. Since P(Fθl ) = ∑
J (x)
j ∈Fθl

p(x)
j =

∑r
x=1

∑θl
j=1 Pj=r(θl�1 +λθl ) and P(Tθl )=

∑
J (x)
j ∈Tθl

p(x)
j

< (θl − 1)(�1 + B) < θl�1 + λθl , we have

P(Fθl\Tθl ) = P(Fθl )−P(Tθl ) > (r−1)(θl�1+λθl ) = Dθl ,

which contradicts the definition of Tθl . As a consequence,
|Tθl | ≥ θl for l = 1, 2, . . . , h − 1.

Suppose to the contrary that |Tθl | > θl for some l with
l = 1, 2, . . . , h−1. Since T = (Tθ1\Tθ0)∪ (Tθ2\Tθ1)∪· · ·∪
(Tθh\Tθh−1) and |T | = 3r , we have

P(T ) =
h∑

g=1

∑

J (x)
j ∈Tθg \Tθg−1

Pj

=
h∑

g=1

(|Tθg | − |Tθg−1 |)bθg + 3r�1

=
h∑

g=1

(
(|Tθg | − θg) − (|Tθg−1 | − θg−1)

)
bθg
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+
h∑

g=1

(θg − θg−1)bθg + 3r�1

=
h−1∑

g=1

(
(|Tθg | − θg)(bθg − bθg+1)

) +
3r∑

j=1

b j + 3r�1

< r(3�1 + B),

which contradicts Observation 2. This completes the proof
of Observation 4. ��

From (11)–(13) and Observation 4, we know that there
are exactly ρg = |Tθg | − |Tθg−1 | = θg − θg−1 late jobs in
Tθg\Tθg−1 with the same processing time Pθg = �1 +bθg for
g = 1, 2, . . . , h.

For each g = 1, 2, . . . , h, do the following: Label the ρg

late jobs in Tθg\Tθg−1 arbitrarily, say Jg,1, Jg,2, . . . , Jg,ρg .
Denote by z(g, k) the agent index such that Jg,k ∈ J (z(g,k))

for k = 1, 2, . . . , ρg . It can be observed that jobs Jg,k
and J (z(g,k))

θg−1+k both belong to the same agent Az(g,k) for

k = 1, 2, . . . , ρg . (Note that Jg,k and J (z(g,k))
θg−1+k may be the

same job.) Write X(g) = {J (z(g,k))
θg−1+k : k = 1, 2, . . . , ρg}.

Then, all the jobs in X(g) have the same processing time
Pθg = �1 + bθg . Set X = X(1) ∪ X(2) · · · ∪ X(h).

Moreover, let 
 : T → X be defined as 
(Jg,k) =
J (z(g,k))
θg−1+k for g = 1, 2, . . . , h, k = 1, 2, . . . , ρg; and � :

X → S be defined as �(J (z(g,k))
θg−1+k ) = θg−1 + k for g =

1, 2, . . . , h, k = 1, 2, . . . , ρg . Clearly, both functions 
 and
� are one to one.

Define Sx = { j : J (x)
j ∈ X } for all x = 1, 2, . . . , r .

From the above discussion andObservation 3,we deduce that
S1,S2, . . . ,Sr form a partition of S such that

∑
j∈Sx

b j =
B and |Sx | = 3 for x = 1, 2, . . . , r . Therefore, the 3-
PARTITION instance I has a solution. ��

Corollary 2.6 Problem 1|CO|P(
∑

w
(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . .,
∑

w
(m)
j Y (m)

j ) with m being arbitrary is
unary NP-hard even if all jobs have the unit weights.

3 An exact algorithm

In this section, for problem 1|CO|P(
∑

w
(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ), we first provide two key
structural properties of the Pareto-optimal solutions and then
we design an exact DP algorithm for solving it.

Lemma 3.1 For any Pareto-optimal point, there exists a cor-
responding Pareto-optimal schedule in which all jobs are
processed contiguously from time zero until the last job is
completed.

Proof The result holds since the criteria of all agents are
regular and all jobs are simultaneously available at time zero.

��

Based on the result of Lemma 3.1, an optimal schedule
can be characterized by a sequence of early and partially
early jobs of all agents which we call a non-late sequence
(referred to as NLS); the late jobs can then be appended to
this sequence in an arbitrary order.

In the remainder part of this paper, we assume that the
jobs in J are indexed from J1 to Jn in the EDD order, such
that d1 ≤ d2 ≤ · · · ≤ dn , and wi ≥ wk if i < k, xi = xk
and di = dk , where x j is the agent index such that J j ∈
J (x j ) for j = 1, 2, . . . , n. Note that, according to the above
indexing rule, the x-jobs of agent Ax (x = 1, 2, . . . ,m) with
the same due date are indexed in the non-increasing order
of their weights, while the jobs of different agents with the
same due date can be indexed arbitrarily.

Under a givenNLS, job J j is said to be I-deferred (from
its EDD position) if it is sequenced after a job Jk with a
due date larger than d j , i.e., d j < dk ; and it is said to be
II-deferred (from its EDD position) if it is sequenced after a
job Jk with j < k, x j �= xk and d j = dk . For convenience,
we allow a deferred job in aNLS to be early. The following
result is very critical to establish the ordering of the jobs in
an optimal NLS.

Lemma 3.2 For any Pareto-optimal point, there exists a cor-
responding Pareto-optimalNLS σ which has the following
two properties:

(i) jobs of the same agent with the same due date are
sequenced in the non-increasing order of their weights
in σ , and

(ii) for each job J j in σ , at most one job Jk having an index
smaller than j , i.e., k < j , appears after J j in σ .

Proof Consider a Pareto-optimal NLS σ which violates
property (i). Then, there exist two jobs Ji and Jk in σ such
that Ji is sequenced before Jk , where xi = xk , di = dk
and wi < wk . Write xi = xk ≡ x . Clearly, job Ji
is early in σ , i.e., Yi (σ ) = 0; since if it were partially
early, job Jk would be late. First, assume that Yk(σ ) ≥
pi . We can obtain another NLS σ ′ from σ by removing
job Ji from σ so that it is deemed to be late. Then, we
have Yi (σ ′) = pi and Yk(σ ′) = Yk(σ ) − pi . Moreover,
all other jobs’ completion times will not increase in σ ′.
Thus, we obtain that

∑
w

(x)
j Y (x)

j (σ ′) − ∑
w

(x)
j Y (x)

j (σ ) ≤
wi Yi (σ ′) + wkYk(σ ′) − wi Yi (σ ) − wkYk(σ ) = pi (wi −
wk) < 0, and

∑
w

(y)
j Y (y)

j (σ ′) ≤ ∑
w

(y)
j Y (y)

j (σ ) for all
y ∈ {1, 2, . . . , x − 1, x + 1, . . . ,m}. However, this contra-
dicts the fact that σ is a Pareto-optimal NLS. Therefore,
we must have 0 ≤ Yk(σ ) < pi . Now we can obtain
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another NLS σ ′′ from σ by removing job Ji from its orig-
inal position in σ and inserting it immediately after job
Jk . Clearly, Yk(σ ′′) = 0 and Yi (σ ′′) = Yk(σ ). Moreover,
only job Ji has a later completion time in σ ′′ than in σ .
Thus, we obtain that

∑
w

(x)
j Y (x)

j (σ ′′) − ∑
w

(x)
j Y (x)

j (σ ) ≤
wi Yi (σ ′′)+wkYk(σ ′′)−wi Yi (σ )−wkYk(σ ) = Yk(σ )(wi −
wk) ≤ 0, and

∑
w

(y)
j Y (y)

j (σ ′′) ≤ ∑
w

(y)
j Y (y)

j (σ ) for all
y ∈ {1, 2, . . . , x − 1, x + 1, . . . ,m}. This shows that σ ′ is
also a Pareto-optimalNLS. By repeating this argument, we
can eventually obtain a Pareto-optimal NLS in which jobs
of the same agent with the same due date are sequenced in the
non-increasing order of their weights. This proves property
(i).

Assume in the following that σ is a Pareto-optimalNLS
which satisfies property (i), i.e., jobs of the same agent with
the same due date are sequenced in the non-increasing order
of their weights, but violates property (ii). Select the last job
J j of σ that is sequenced before some jobs Jk and Jl , where
k < j and l < j . W.l.o.g., we can assume that job Jk is
sequenced before job Jl in σ , i.e., J j ≺ Jk ≺ Jl in σ . From
the indexing rule, we have dk ≤ d j and dl ≤ d j . Notice
that either dh < d j or dh = d j and xh �= x j for h = k, l.
Because Jl is early or partial early in σ , we haveCk(σ ) < dl .
This implies that Ck(σ ) < d j . We can obtain another NLS
σ ′ from σ by removing J j from its original position in σ

and inserting it immediately after Jk . Clearly, job J j is still
early in σ ′ since C j (σ

′) = Ck(σ ) < d j . Moreover, all jobs’
completion timeswill not increase inσ ′ except J j . Therefore,
σ ′ is also a Pareto-optimalNLS. It is observed that property
(i) still holds for σ ′ since J j is the last job that does not satisfy
property (ii). By repeating this argument, we can eventually
obtain a Pareto-optimalNLS with the required property (ii).
The lemma follows. ��

A schedule of {J1, J2, . . . , Jn} is called standard if it sat-
isfies the properties stated in Lemmas 3.1 and 3.2. We will
only consider standard schedules in the remaining part of this
paper.

We next proceed with the design of our DP algorithm
(referred to asH1). Our algorithm generalizes the algorithms
of Kovalyov et al. (1994) and Hariri et al. (1995) for solving
the single-agent problem 1||∑w j Y j .

By exploiting the structural properties stated in Lem-
mas 3.1 and 3.2 for standard schedules, algorithm H1 is
proposed, using the state representation, to solve the problem
by finding the set of all (partial) efficient schedules. Recall
that the jobs are indexed in the EDD order J1, J2, . . . , Jn by
the above indexing rule. In our algorithm, jobs are consid-
ered in the indexed EDD order. In a schedule σ , each job Jk
may be scheduled either late or non-late. In the case that Jk
is non-late in σ , it either appears in its EDD position or is
deferred. If job Jk is deferred (I-deferred or II-deferred) to
be sequenced after a job J j in σ , where j > k, Lemma 3.2

guarantees that all non-late jobs among Jk+1, Jk+2, . . . , J j
are sequenced in EDD order.

Definition 3.3 In a schedule σ of {J1, J2, . . . , Jn}, job Jk is
called strictly deferred with respect to job J j if 1 ≤ k ≤
j ≤ n, Jk is a deferred job, and C j ′(σ ) < Ck(σ ) for some
job J j ′ with j + 1 ≤ j ′ ≤ n.

From Definition 3.3, if J j is a deferred job, then J j is also
strictly deferred with respect to itself. From 3.1 and 3.2, we
have the following lemma.

Lemma 3.4 In every standard schedule of {J1, J2, . . . , Jn},
for each job J j , there is at most one strictly deferred job
with respect to job J j . Moreover, if some job other than J j is
strictly deferred with respect to job J j , then J j is either an
early job or a late job, or equivalently, J j is not a partially
early job.

For each j ∈ {1, 2, . . . , n}, we use � j to denote the
set of all schedules σ of the jobs in {J1, J2, . . . , J j } such
that σ is a partial schedule of some standard schedule σ ′ of
{J1, J2, . . . , Jn}, i.e., σ is obtained from σ ′ by deleting the
jobs J j+1, J j+2, . . . , Jn . Each schedule σ ∈ � j determines
a unique state S(σ ) = ( j, t,U1, . . . ,Um, k) such that: (i)
k ∈ {0, 1, . . . , j} and Jk is strictly deferred with respect to
job J j if k �= 0; (ii) the completion time of the non-late jobs
among {J1, J2, . . . , J j }\{Jk} is t ; and (iii) the total weighted
late work for the x-jobs of {J1, J2, . . . , J j }\{Jk} is Ux for
x = 1, 2, . . . ,m. Note that if k = 0, there is no strictly
deferred job with respect to job J j ; and if k ∈ {1, 2, . . . , j},
then job Jk is deferred and should be sequenced immedi-
ately after some job Jh with h ∈ { j + 1, . . . , n}. We will
use L j = {S(σ ) : σ ∈ � j } to denote the set of all states
determined by the schedules in � j . Moreover, we initially
set L0 = {(0, 0, 0, . . . , 0, 0)}. Note that the weighted late
work of any job J j , j = 1, 2, . . . , n, when it is completed at
a specified time point u, is given by

� j (u) =
⎧
⎨

⎩

0, if u ≤ d j ;
w j (u − d j ), if d j < u < d j + p j ;
w j p j , if u ≥ d j + p j .

(14)

Principle of algorithmHHH1 For each index j ∈ {1, 2, . . . , n},
the state set L j can be generated from L j−1. In fact, given a
state ( j, t∗,U∗

1 , . . . ,U∗
m, k∗) ∈ L j , there must be a schedule

σ j ∈ � j such that

S(σ j ) = ( j, t∗,U∗
1 , . . . ,U∗

m, k∗). (15)

Let σ j−1 be the schedule of {J1, J2, . . . , J j−1} which is
obtained from σ j by deleting job J j . Clearly, we have
σ j−1 ∈ � j−1. Let

123



Journal of Scheduling (2020) 23:497–512 505

S(σ j−1) = ( j − 1, t,U1, . . . ,Um, k) ∈ L j−1. (16)

Four different scenarios related to job J j are analyzed as
follows:

Case 1 Job J j is late inσ j . Then, t∗ = t and k∗ = k.More-
over, the contribution of job J j to the objective value of agent
Ax j in σ j is � j (∞) = w j p j . Thus, U∗

x j = Ux j + � j (∞)

and U∗
x = Ux for x ∈ {1, 2, . . . ,m}\{x j }. It follows

that the state ( j, t∗,U∗
1 , . . . ,U∗

m, k∗) ∈ L j is given by
( j, t,U1, . . . ,Ux j−1,Ux j + � j (∞),Ux j+1, . . . ,Um, k).

Case 2 Job J j is deferred in σ j . Then, job J j is strictly
deferred with respect to itself in σ j . This means that
k∗ = j . Thus, the definitions of S(σ j−1) and S(σ j ) imply
that the state ( j, t∗,U∗

1 , . . . ,U∗
m, k∗) ∈ L j is given by

( j, t,U1, . . . ,Um, j). Note that this case occurs only if k = 0
and t < d j .

Case 3 Job J j is non-late and not deferred in σ j , and
moreover, job Jk (if k �= 0) is strictly deferred with respect
to job J j in σ j . Then, k∗ = k, t∗ = t + p j is the completion
time of job J j in σ j , and the contribution of job J j to the
objective value of agent Ax j is � j (t + p j ) = w j max{t +
p j − d j , 0} in σ j . Thus, the state ( j, t∗,U∗

1 , . . . ,U∗
m, k∗) ∈

L j is given by ( j, t + p j ,U1, . . . ,Ux j−1,Ux j + � j (t +
p j ),Ux j+1, . . . ,Um, k). Note that this case occurs only if
either k = 0 and t < d j , or k > 0 and t + p j < dk .

Case 4 1 ≤ k < j and job Jk is sequenced immediately
after job J j in σ j . Then, k∗ = 0, job J j is early in σ j , the
completion time of job Jk is t + p j + pk in σ j , and the
contribution of job Jk to the objective value of agent Axk
is �k(t + p j + pk) = wk max{t + p j + pk − dk, 0} in
σ j . It follows that the state ( j, t∗,U∗

1 , . . . ,U∗
m, k∗) ∈ L j is

given by ( j, t+ p j + pk,U1, . . . ,Uxk−1,Uxk +�k(t+ p j +
pk),Uxk+1, . . . ,Um, 0), where k∗ = 0 holds since there are
no deferred jobs with respect to J j in σ j . Note that this case
occurs only if k > 0 and t + p j < dk .

To further reduce the state space of algorithm H1, the
following elimination property is provided.

Lemma 3.5 For any two states ( j, t,U1,U2, . . . ,Um, k) and
( j, t ′,U ′

1,U
′
2, . . . ,U

′
m, k) in L j with t ≤ t ′ and Ux ≤ U ′

x
for x = 1, 2, . . . ,m, the second state can be eliminated from
L j .

Proof The property holds since any extension of the latter
state to a complete schedule σ ′, the corresponding extension
of the former state yields a scheduleσ with

∑
w

(x)
j Y (x)

j (σ ) ≤
∑

w
(x)
j Y (x)

j (σ ′) for x = 1, 2, . . . ,m, while the reverse is not
true. ��

Our DP algorithm H1 consists of n iterations in which
it constructs some sets of states. The algorithm is initial-
ized by setting L0 = {(0, 0, 0, . . . , 0, 0)} and L j = ∅ for
j = 1, 2, . . . , n. In the j-iteration, the state space L j will

be dynamically generated from L j−1, j = 1, 2, . . . , n. Now
the algorithm H1 is given as follows.

Algorithm H1: For problem 1|CO|P(
∑

w
(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ).

Step 1. [Initialization] Set L0 = {(0, 0, 0, . . . , 0, 0)},
L j = ∅ for j = 1, 2, . . . , n and j := 0.
Step 2. [Generation] If j < n, set j := j + 1. Do the
following:

Step 2.1. For each ( j −1, t,U1, . . . ,Um, k) ∈ L j−1,
do the following:
(1) Set L j ← L j ∪ {( j, t,U1, . . . ,Ux j−1,Ux j +

� j (∞),Ux j+1, . . . ,Um, k)} unconditionally;
(2) If k = 0 and t < d j , set L j ← L j ∪

{( j, t,U1, . . . ,Um, j)};
(3) If [k = 0 and t < d j ] or [k > 0 and

t + p j < dk], set L j ← L j ∪ {( j, t +
p j ,U1, . . . ,Ux j−1,Ux j + � j (t + p j ),

Ux j+1, . . . ,Um, k)};
(4) If k > 0 and t + p j < dk , set L j ← L j ∪

{( j, t + p j + pk,U1, . . . ,Uxk−1,Uxk + �k(t +
p j + pk),Uxk+1, . . . ,Um, 0)}.

Step 2.2. [Elimination] For any two states ( j, t,U1,

U2, . . . ,Um, k) and ( j, t ′,U ′
1,U

′
2, . . . ,U

′
m, k) in L j

with t ≤ t ′ and Ux ≤ U ′
x for x = 1, 2, . . . ,m, elimi-

nate the latter one.

Step 3. [Refinement] For any two states (n, t,U1,U2,

. . . ,Um, 0) and (n, t ′,U ′
1,U

′
2, . . . ,U

′
m, 0) in Ln with

Ux ≤ U ′
x for x = 1, 2, . . . ,m, eliminate the latter one.

Step 4. [Result] Set R = {(U1,U2, . . . ,Um) : (n, t,
U1,U2, . . . ,Um, 0) ∈ Ln}. For each efficient point
(U1,U2, . . . ,Um) ∈ R, obtain the correspondingPareto-
optimal schedule by backtracking.

In algorithm H1, each job J j is considered in succession
in the EDD order, and all possible decisions are discussed in
Step 2.1. Lemma 3.4 demonstrates that there is at most one
strictly deferred job with respect to J j in the j-iteration. The
case that J j is late (Case 1) is dealt with in Step 2.1-1. The
case that J j is deferred (Case 2) is handled in Step 2.1-2.
The case that J j is non-late and not deferred and the strictly
deferred job Jk with 1 ≤ k < j (if it exists) is not sequenced
immediately after J j (Case 3) is considered in Step 2.1-3.
The case that the deferred (but not strictly deferred) job Jk
with 1 ≤ k ≤ j −1 is sequenced immediately after J j (Case
4) is examined in Step 2.1-4. The [Elimination] procedure
in Step 2.2 and the [Refinement] procedure is guaranteed by
Lemma 3.5.

Remark 3.6 In the n-iteration of algorithm H1, for each
state (n − 1, t,U1, . . . ,Um, k) ∈ Ln−1, we only need to
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consider two cases. Specifically, if k = 0, we can set
Ln ← Ln ∪ {(n, t + pn,U1, . . . ,Uxn−1,Uxn + Φn(t +
pn),Uxn+1, . . . ,Um, 0)}; else if k > 0 and k + pn < dk , we
can set Ln ← Ln ∪ {(n, t + pn + pk,U1, . . . ,Uxk−1,Uxk +
Φk(t + pn + pk),Uxk+1, . . . ,Um, 0)}.

Let UBx be an upper bound on the objective value of agent
Ax for x = 1, 2, . . . ,m. Because sequencing all the x-jobs
late is a feasible schedule, we can setUBx = ∑

J j∈J (x) w j p j

for x = 1, 2, . . . ,m.

Theorem 3.7 Problem 1|CO|P(
∑

w
(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j ,

. . . ,
∑

w
(m)
j Y (m)

j ) can be solved by algorithm H1 in

O(n2
∏m

x=1 UBx ) time. When m is a fixed constant, it is
pseudo-polynomial.

Proof The optimality of algorithm H1 follows from the
fact that it implicitly enumerates all the schedules that
meet the optimal properties in Lemmas 3.1–3.5. We next
discuss the time complexity of H1. In Step 1, it takes
O(n) time for initialization. In Step 2, for each state
( j, t,U1,U2, . . . ,Um, k) ∈ L j , 0 ≤ Ux ≤ UBx for
x = 1, 2, . . . ,m, and k ≤ j . Due to the elimination rule,
at most O(n

∏m
x=1 UBx ) distinct states in L j are retained.

Moreover, out of each state in L j−1, at most three new states
are generated in L j . Therefore, the construction of list L j in
Step 2 requires at most O(n

∏m
x=1 UBx ) time, which is also

the time needed for the elimination procedure. Because the
refinement procedure requires O(

∏m
x=1 UBx ) time and Step

2 is repeated n times, the overall running time of algorithm
H1 is given by O(n2

∏m
x=1 UBx ). ��

To facilitate the understanding, we give in “Appendix”
a numerical example to illustrate the execution of algo-
rithm H1 for problem 1|CO|P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j ,

. . . ,
∑

w
(m)
j Y (m)

j ).

4 (1+ �)-approximate Pareto-optimal
frontier

Since the problem 1|CO,
∑

Y (x)
j ≤ Kx , x = 1, 2, . . . ,m|−

is already unary NP-complete when m is arbitrary, and
its two special cases 1|CO, d(x)

j = d,
∑

Y (x)
j ≤ Kx , x =

1, 2, . . . ,m|− and1|CO, p(x)
j = 1,

∑
w

(x)
j Y (x)

j ≤ Kx , x =
1, 2|− are both binary NP-complete, we consider the
approximate Pareto-optimal frontier, which was first intro-
duced by Papadimitriou and Yannakakis (2000).

A (1 + ε)-approximate Pareto-optimal frontier is a set
(referred to as POFε) of m-vectors such that for each
η = (η1, η2, . . . , ηm) ∈ POF , there exists an η′ =
(η′

1, η
′
2, . . . , η

′
m) ∈ POFε with η′

x ≤ (1 + ε)η for x =
1, 2, . . . ,m, and there exists a feasible solution s′ with
Fx (s′) = η′

x for x = 1, 2, . . . ,m.

Letm ≥ 2 be a fixed constant and ε > 0. Next we convert
algorithmH1 into a (1+ε)-approximate Pareto-optimal fron-
tier. The main idea is based on the improvement of algorithm
H1 by eliminating some special states from the search space
in each iteration and reducing the size ofL j to a polynomial-
size state set L̃ j at the end of the j th iteration.

Algorithm H2: A (1 + ε)-approximation for
1|CO|P(

∑
w

(1)
j Y (1)

j , . . . ,
∑

w
(m)
j Y (m)

j ).

Step 0. [Partition] For x = 1, 2, . . . ,m, partition the
interval [0,UBx ] into ξx + 1 subintervals I (x)

0 , I (x)
1 , . . . ,

I (x)
ξx

such that I (x)
0 = [0, 1), I (x)

r = [(1+ε)
r−1
n , (1+ε)

r
n )

for 1 ≤ r ≤ ξx−1, and I (x)
ξx

= [(1+ε)
ξx−1
n ,UBx ], where

ξx = n�log1+ε UBx� = O( n
ε
logUBx ).

Step 1. [Initialization] Set L̃0 = {(0, 0, 0, . . . , 0, 0)},
L̃ j = ∅ for j = 1, 2, . . . , n and j := 0.
Step 2. [Generation] If j < n, set j := j + 1.

Step 2.1. Perform the same operations as Step 2.1 of
algorithm H1.
Step 2.2. [Elimination] For any two states ( j, t,U1,

U2, . . . ,Um, k) and ( j, t ′,U ′
1,U

′
2, . . . ,U

′
m, k) in L̃ j

in which (U1,U2, . . . ,Um) and (U ′
1,U

′
2, . . . ,U

′
m)

fall within the same m-dimensional boxes I (1)
r1 ×

I (2)
r2 × · · · × I (m)

rm with t ≤ t ′, eliminate the latter
one.

Step 3. [Refinement] For any two states (n, t,U1,U2,

. . . ,Um, 0) and (n, t ′,U ′
1,U

′
2, . . . ,U

′
m, 0) in L̃n with

Ux ≤ U ′
x for x = 1, 2, . . . ,m, eliminate the latter one.

Step 4. [Result] Set R̃ = {(U1,U2, . . . ,Um) : (n, t,U1,

U2, . . . ,Um, 0) ∈ L̃n}. For each point (U1,U2, . . . ,Um)

∈ R̃, obtain the corresponding approximate schedule by
backtracking.

Lemma 4.1 For any eliminated state ( j, t,U1,U2, . . . ,

Um, k) ∈ L j , algorithm H2 finds a state ( j, t̃, Ũ1, Ũ2, . . . ,

Ũm, k) ∈ L̃ j such that t̃ ≤ t and Ũx ≤ (1 + ε)
j
n Ux for

x = 1, 2, . . . ,m.

Proof Correctness of the result is proved by induction over
j = 1, 2, . . . , n. Note that the three states (0, 0, 0, . . . , 0,
Φ1(∞), 0, . . . , 0, 0), (0, 0, 0, . . . , 0, 1), (0, p1, 0, . . . , 0,
Φ1(p1), 0, . . . , 0, 0), which correspond to the cases where
job J1 is late, deferred, and scheduled early or partially early,
respectively, are generated in L1 and L̃1 in the first iteration,
and no one is eliminated in H2. Then, we have L̃1 = L1.
Thus, the result is correct for j = 1.

Inductively, we assume that j ≥ 2 and the result is correct
for i = 1, 2, . . . , j − 1. Then, for each i ∈ {1, 2, . . . , j − 1}
and each eliminated state (i, t,U1,U2, . . . ,Um, k) ∈ Li ,
there exists a state (i, t̃, Ũ1, Ũ2, . . . , Ũm, k) ∈ L̃i such that
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t̃ ≤ t and Ũx ≤ (1 + ε)
i
n Ux for x = 1, 2, . . . ,m. We have

to show that the result is correct for i = j in the sequel.
Let ( j, t,U1,U2, . . . ,Um, k) ∈ L j be an eliminated state.

W.l.o.g., we can assume that job J j is a 1-job, i.e., x j = 1.
When implementing H1, the state ( j, t,U1,U2, . . . ,Um, k)
is introduced from some state ( j−1, t ′,U ′

1,U
′
2, . . . ,U

′
m, k′)

∈ L j−1. From the induction hypothesis, we know that there

exists a state ( j − 1, t̃ ′, Ũ ′
1, Ũ

′
2, . . . , Ũ

′
m, k′) ∈ ˜L j−1 such

that

t̃ ′ ≤ t ′, (17)

and

Ũ ′
x ≤ (1 + ε)

j−1
n U ′

x for x = 1, 2, . . . ,m. (18)

Depending on different state transitions, the following four
cases have to be distinguished.

Case 1 ( j, t,U1,U2, . . . ,Um, k) = ( j, t ′,U ′
1 + Φ j (∞),

U ′
2, . . . ,U

′
m, k′). This implies that job J j is late. Recall

that ( j − 1, t̃ ′, Ũ ′
1, Ũ

′
2, . . . , Ũ

′
m, k′) ∈ ˜L j−1. Then, the state

( j, t̃ ′, Ũ ′
1 + Φ j (∞), Ũ ′

2, . . . , Ũ
′
m, k′) is generated in the j-

iteration of H2 just before the elimination procedure. It
follows directly from the elimination procedure in H2 that
there exists a state ( j, t̃, Ũ1, Ũ2, . . . , Ũm, k′) ∈ L̃ j such that

t̃ ≤ t̃ ′ ≤ t ′ = t, (19)

Ũ1 ≤ (1 + ε)
1
n (Ũ ′

1 + Φ j (∞))

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

1 + Φ j (∞))

≤ (1 + ε)
j
n U1, (20)

and

Ũx ≤ (1 + ε)
1
n Ũ ′

x

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

x )

= (1 + ε)
j
n Ux for x = 2, 3, . . . ,m, (21)

where the above inequalities follow from inequalities (17)–
(18). Since k = k′, the result holds for the j-iteration in this
case.

Case 2 ( j, t,U1,U2, . . . ,Um, k) = ( j, t ′,U ′
1,U

′
2, . . . ,

U ′
m, j). This implies that job J j is deferred, k′ = 0 and t ′ <

d j . Recall that ( j − 1, t̃ ′, Ũ ′
1, Ũ

′
2, . . . , Ũ

′
m, k′) ∈ ˜L j−1 and

t̃ ′ ≤ t ′. Then the state ( j, t̃ ′, Ũ ′
1, Ũ

′
2, . . . , Ũ

′
m, j) is generated

in the j-iteration ofH2 just before the elimination procedure.
It follows directly from the elimination procedure inH2 that
there exists a state ( j, t̃, Ũ1, Ũ2, . . . , Ũm, j) ∈ L̃ j such that

t̃ ≤ t̃ ′ ≤ t ′ = t, (22)

and

Ũx ≤ (1 + ε)
1
n Ũ ′

x

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

x )

= (1 + ε)
j
n Ux for x = 1, 2, . . . ,m, (23)

where the above inequalities follow from inequalities (17)–
(18). Since k = j , the result holds for the j-iteration in this
case.

Case 3 ( j, t,U1,U2, . . . ,Um, k) = ( j, t ′ + p j ,U ′
1 +

Φ j (t ′+ p j ),U ′
2, . . . ,U

′
m, k′). This implies that job J j is non-

late and not deferred and the strictly deferred job Jk′ (k′ < j),
if it exists, is not sequenced immediately after job J j . Recall

that ( j−1, t̃ ′, Ũ ′
1, Ũ

′
2, . . . , Ũ

′
m, k′) ∈ ˜L j−1 and t̃ ′ ≤ t ′. Then,

the state ( j, t̃ ′ + p j , Ũ ′
1 + Φ j (̃t ′ + p j ), Ũ ′

2, . . . , Ũ
′
m, k′) is

generated in the j-iteration ofH2 just before the elimination
procedure. It follows directly from the elimination procedure
inH2 that there exists a state ( j, t̃, Ũ1, Ũ2, . . . , Ũm, k′) ∈ L̃ j

such that

t̃ ≤ t̃ ′ + p j ≤ t ′ + p j = t, (24)

Ũ1 ≤ (1 + ε)
1
n (Ũ ′

1 + Φ j (̃t ′ + p j ))

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

1 + Φ j (t
′ + p j ))

≤ (1 + ε)
j
n U1, (25)

and

Ũx ≤ (1 + ε)
1
n Ũ ′

x

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

x )

= (1 + ε)
j
n Ux for x = 2, 3, . . . ,m, (26)

where the above inequalities follow from inequalities (17)–
(18) and Φ j (·) is a non-decreasing function. Since k = k′,
the result holds for the j-iteration in this case.

Case 4 ( j, t,U1,U2, . . . ,Um, k) = ( j, t ′ + p j +
pk′ ,U ′

1, . . . ,U
′
xk′−1

,U ′
xk′ + Φk′(t ′ + p j + pk′),U ′

xk′+1
, . . . ,

U ′
m, 0). This implies that the deferred (but not strictly

deferred) job Jk′ is sequenced immediately after job J j and
t ′ + p j < dk′ ≤ d j , where 0 < k′ < j . Recall that ( j −
1, t̃ ′, Ũ ′

1, Ũ
′
2, . . . , Ũ

′
m, k′) ∈ ˜L j−1 and t̃ ′ + p j ≤ t ′ + p j <

dk′ . Then, the state ( j, t̃ ′ + p j + pk′ , Ũ ′
1, . . . ,

˜U ′
xk′−1

,˜U ′
xk′ +

Φk′ (̃t ′ + p j + pk′), ˜U ′
xk′+1

, . . . , Ũ ′
m, 0) is generated in the

j-iteration of H2 just before the elimination procedure. It
follows directly from the elimination procedure in H2 that
there exists a state ( j, t̃, Ũ1, Ũ2, . . . , Ũm, 0) ∈ L̃ j such that

t̃ ≤ t̃ ′ + p j + pk′ ≤ t ′ + p j + pk′ = t, (27)
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Ũx ≤ (1 + ε)
1
n Ũ ′

x

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

x )

= (1 + ε)
j
n Ux for x = 1, . . . , xk′ − 1, xk′ + 1, . . . ,m,

(28)

and

˜Uxk′ ≤ (1 + ε)
1
n (˜U ′

xk′ + Φk′ (̃t ′ + p j + pk′))

≤ (1 + ε)
1
n ((1 + ε)

j−1
n U ′

xk′ + Φk′(t ′ + p j + pk′))

≤ (1 + ε)
j
n Uxk′ , (29)

where the above inequalities follow from inequalities (17)–
(18) and Φ j (·) is a non-decreasing function. Since k = 0,
the result holds for the j-iteration in this case.

Combining the above four cases, the lemma holds. ��

Theorem 4.2 Let m ≥ 2 be a fixed constant and let ε > 0.
Algorithm H2 finds a (1 + ε)-approximate Pareto-optimal
frontier for problem 1|CO|P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ) in O( n
m+2

εm
�m

x=1 logUBx ) time.

Proof Let (η1, η2, . . . , ηm) be an arbitrary Pareto-optimal
point on the Pareto-optimal frontier. By Theorem 3.7, algo-
rithm H1 will find a Pareto-optimal schedule which corre-
sponds to a feasible state (n, t,U1,U2, . . . ,Um, 0) ∈ Ln

withUx = ηx for x = 1, 2, . . . ,m. FromLemma 4.1, if it has
been eliminated during the execution of algorithm H2, then
there exists a non-eliminated state (n, t̃, Ũ1, Ũ2, . . . , Ũm, 0) ∈
L̃n such that Ũx ≤ (1 + ε)

n
n Ux = (1 + ε)Ux for x =

1, 2, . . . ,m. From the execution of H2, we know that there
exists a state (η′

1, η
′
2, . . . , η

′
m) ∈ R̃ such that η′

x ≤ Ũx ≤ (1+
ε)ηx for x = 1, 2, . . . ,m.Hence, it follows that algorithmH2

finds a (1+ε)-approximate Pareto-optimal frontier for prob-
lem 1|CO|P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j , . . . ,
∑

w
(m)
j Y (m)

j ).
We next discuss the time complexity of H2. In Step 0,

it takes O(
∑m

x=1 n�log1+ε UBx�) = O( n
ε

∑m
x=1 logUBx )

time to partition the intervals and Step 1 needs O(n)

time for initialization. Since [0,UBx ] is partitioned into
O( n

ε
logUBx ) subintervals, due to the elimination proce-

dure, there are at most O( n
m+1

εm
�m

x=1 logUBx ) distinct states

in L̃ j . Moreover, out of each state in ˜L j−1, at most three
new states are generated in L̃ j . Therefore, the construction

of list L̃ j in Step 2 requires at most O( n
m+1

εm
�m

x=1 logUBx )

time, which is also the time needed for the elimination
procedure. Because the refinement procedure in Step 3
requires O( n

m

εm
�m

x=1 logUBx ) time and Step 2 is repeated
n times, the overall running time of algorithmH2 is given by
O( n

m+2

εm
�m

x=1 logUBx ). ��

5 Conclusions

In this paper, we investigate a scheduling problem with m
competitive agents on a single machine in which each agent
seeks to minimize its own total weighted late work. The
goal is to find the Pareto-optimal frontier and identify a
Pareto-optimal schedule for each Pareto-optimal point on the
Pareto-optimal frontier. We show that (i) whenm is arbitrary,
the problem is unary NP-hard, and (ii) when m is two, the
problems are binaryNP-hard for the twocaseswhere all jobs
have the common due date and all jobs have the unit process-
ing times. We develop a pseudo-polynomial algorithm and
a (1 + ε)-approximate Pareto-optimal frontier when m is a
fixed constant.

For future research, we suggest several interesting direc-
tions as follows:

• Generalizing our work to different machine settings such
as the flow-shop, open-shop, or parallel machines.

• Designing the effective meta-heuristic algorithm for the
unary NP-hard problem 1|CO|P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j

Y (2)
j , . . . ,

∑
w

(m)
j Y (m)

j ) when m is arbitrary.
• Analyzing the multi-agent problem for the case where
job preemption is allowed.

• Studying the more general case of non-disjoint sets of
jobs among different agents.
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Appendix

Example Consider a two-agent scheduling problem 1|CO|
P(

∑
w

(1)
j Y (1)

j ,
∑

w
(2)
j Y (2)

j ), in which J 1 = {J (1)
1 , J (1)

2 },
J 2 = {J (2)

1 , J (2)
2 , J (2)

3 }, and the corresponding job parame-
ters are given in Table 1.

Before executing algorithmH1, the jobs are first indexed
in the EDD order, see Table 2.

Table 1 Job data of the problem set

J xj J (1)
1 J (1)

2 J (2)
1 J (2)

2 J (2)
3

pxj 2 4 3 2 3

dxj 3 7 4 7 7

wx
j 1 3 2 4 3
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Table 2 The indexed job data of the problem set

J j J1 (J (1)
1 ) J2 (J (2)

1 ) J3 (J (1)
2 ) J4 (J (2)

2 ) J5 (J (2)
3 )

p j 2 3 4 2 3

d j 3 4 7 7 7

w j 1 2 3 4 3

In the sequel, we apply algorithmH1 to solve this numer-
ical example.
Step 1 [Initialization] Set L0 = {(0, 0, 0, 0, 0)}, L j = ∅ for
j = 1, 2, . . . , 5 and j := 0.

Step 2 [Generation] For j = 1, L1 = {(1, 0, 2, 0, 0),
(1, 0, 0, 0, 1), (1, 2, 0, 0, 0)}, see Table 3 for the generation
process.

For j = 2, L2 = {(2, 0, 2, 6, 0), (2, 0, 2, 0, 2), (2, 3, 2,
0, 0), (2, 0, 0, 6, 1), (2, 2, 0, 6, 0), (2, 2, 0, 0, 2), (2, 5, 0,
2, 0)}, see Table 4 for the generation process.

For j = 3, L3 = {(3, 0, 14, 6, 0), (3, 0, 2, 6, 3), (3, 4, 2,
6, 0), (3, 0, 14, 0, 2), (3, 3, 14, 0, 0), (3, 3, 2, 0, 3), (3, 7, 2,
0, 0), (3, 0, 12, 6, 1), (3, 2, 12, 6, 0), (3, 2, 0, 6, 3), (3, 6, 0,
6, 0), (3, 2, 12, 0, 2), (3, 5, 12, 2, 0), (3, 5, 0, 2, 3), (3, 9,
6, 2, 0)}, see Table 5 for the generation process.

Table 3 Generation of L1 from
L0

State in L0 Case 1 Case 2 Case 3 Case 4

(0, 0, 0, 0, 0) (1, 0, 2, 0, 0) (1, 0, 0, 0, 1) (1, 2, 0, 0, 0) –

Table 4 Generation of L2 from
L1

State in L1 Case 1 Case 2 Case 3 Case 4

(1, 0, 2, 0, 0) (2, 0, 2, 6, 0) (2, 0, 2, 0, 2) (2, 3, 2, 0, 0) –

(1, 0, 0, 0, 1) (2, 0, 0, 6, 1) – – –

(1, 2, 0, 0, 0) (2, 2, 0, 6, 0) (2, 2, 0, 0, 2) (2, 5, 0, 2, 0) –

Table 5 Generation of L3 from
L2

State in L2 Case 1 Case 2 Case 3 Case 4

(2, 0, 2, 6, 0) (3, 0, 14, 6, 0) (3, 0, 2, 6, 3) (3, 4, 2, 6, 0) –

(2, 0, 2, 0, 2) (3, 0, 14, 0, 2) – – –

(2, 3, 2, 0, 0) (3, 3, 14, 0, 0) (3, 3, 2, 0, 3) (3, 7, 2, 0, 0) –

(2, 0, 0, 6, 1) (3, 0, 12, 6, 1) – – –

(2, 2, 0, 6, 0) (3, 2, 12, 6, 0) (3, 2, 0, 6, 3) (3, 6, 0, 6, 0) –

(2, 2, 0, 0, 2) (3, 2, 12, 0, 2) – – –

(2, 5, 0, 2, 0) (3, 5, 12, 2, 0) (3, 5, 0, 2, 3) (3, 9, 6, 2, 0) –

Table 6 Generation of L4 from
L3

State in L3 Case 1 Case 2 Case 3 Case 4

(3, 0, 14, 6, 0) (4, 0, 14, 14, 0) (4, 0, 14, 6, 4) (4, 2, 14, 6, 0) –

(3, 0, 2, 6, 3) (4, 0, 2, 14, 3) – (4, 2, 2, 6, 3) (4, 6, 2, 6, 0)

(3, 4, 2, 6, 0) (4, 4, 2, 14, 0) (4, 4, 2, 6, 4) (4, 6, 2, 6, 0) –

(3, 0, 14, 0, 2) (4, 0, 14, 8, 2) – (4, 2, 14, 0, 2) (4, 5, 14, 2, 0)

(3, 3, 14, 0, 0) (4, 3, 14, 8, 0) (4, 3, 14, 0, 4) (4, 5, 14, 0, 0) –

(3, 3, 2, 0, 3) (4, 3, 2, 8, 3) – (4, 5, 2, 0, 3) (4, 9, 8, 0, 0)

(3, 7, 2, 0, 0) (4, 7, 2, 8, 0) – – –

(3, 0, 12, 6, 1) (4, 0, 12, 14, 1) – (4, 2, 12, 6, 1) (4, 4, 13, 6, 0)

(3, 2, 12, 6, 0) (4, 2, 12, 14, 0) (4, 2, 12, 6, 4) (4, 4, 12, 6, 0) –

(3, 2, 0, 6, 3) (4, 2, 0, 14, 3) – (4, 4, 0, 6, 3) (4, 8, 3, 6, 0)

(3, 6, 0, 6, 0) (4, 6, 0, 14, 0) (4, 6, 0, 6, 4) (4, 8, 0, 10, 0) –

(3, 2, 12, 0, 2) (4, 2, 12, 8, 2) – – –

(3, 5, 12, 2, 0) (4, 5, 12, 10, 0) (4, 5, 12, 2, 4) (4, 7, 12, 2, 0) –

(3, 5, 0, 2, 3) (4, 5, 0, 10, 3) – – –

(3, 9, 6, 2, 0) (4, 9, 6, 10, 0) – – –
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Table 7 Generation of L5 from
L4

State in L4 Case 1 Case 2 Case 3 Case 4

(4, 0, 14, 14, 0) (5, 0, 14, 23, 0) – (5, 3, 14, 14, 0) –

(4, 0, 14, 6, 4) – – – (5, 5, 14, 6, 0)

(4, 2, 14, 6, 0) (5, 2, 14, 15, 0) – (5, 5, 14, 6, 0) –

(4, 0, 2, 14, 3) – – – (5, 7, 2, 14, 0)

(4, 2, 2, 6, 3) – – – (5, 9, 8, 6, 0)

(4, 4, 2, 14, 0) (5, 4, 2, 23, 0) – (5, 7, 2, 14, 0) –

(4, 4, 2, 6, 4) – – – –

(4, 6, 2, 6, 0) (5, 6, 2, 15, 0) – (5, 9, 2, 12, 0) –

(4, 0, 14, 8, 2) – – – (5, 6, 14, 12, 0)

(4, 2, 14, 0, 2) – – – –

(4, 3, 14, 0, 4) – – – (5, 8, 14, 4, 0)

(4, 5, 14, 0, 0) (5, 5, 14, 9, 0) – (5, 8, 14, 3, 0) –

(4, 5, 2, 0, 3) – – – –

(4, 9, 8, 0, 0) (5, 9, 8, 9, 0) – – –

(4, 0, 12, 14, 1) – – – –

(4, 2, 12, 6, 1) – – – –

(4, 2, 12, 14, 0) (5, 2, 12, 23, 0) – (5, 5, 12, 14, 0) –

(4, 2, 12, 6, 4) – – – (5, 8, 12, 10, 0)

(4, 4, 12, 6, 0) (5, 4, 12, 15, 0) – (5, 7, 12, 6, 0) –

(4, 2, 0, 14, 3) – – – (5, 9, 0, 20, 0)

(4, 4, 0, 6, 3) – – – –

(4, 6, 0, 14, 0) (5, 6, 0, 23, 0) – (5, 9, 0, 20, 0) –

(4, 6, 0, 6, 4) – – – –

(4, 8, 0, 10, 0) (5, 8, 0, 19, 0) – – –

(4, 2, 12, 8, 2) – – – –

(4, 5, 12, 2, 4) – – – –

(4, 7, 12, 2, 0) (5, 7, 12, 11, 0) – – –

For j = 4, L4 = {(4, 0, 14, 14, 0), (4, 0, 14, 6, 4),
(4, 2, 14, 6, 0), (4, 0, 2, 14, 3), (4, 2, 2, 6, 3), (4, 6, 2, 6, 0),
(4, 4, 2, 14, 0), (4, 4, 2, 6, 4), (4, 0, 14, 8, 2), (4, 2, 14, 0, 2),
(4, 3, 14, 0, 4), (4, 5, 14, 0, 0), (4, 5, 2, 0, 3), (4, 9, 8, 0, 0),
(4, 0, 12, 14, 1), (4, 2, 12, 6, 1), (4, 2, 12, 14, 0), (4, 2, 12,
6, 4), (4, 4, 12, 6, 0), (4, 2, 0, 14, 3), (4, 4, 0, 6, 3), (4, 6, 0,
14, 0), (4, 6, 0, 6, 4), (4, 8, 0, 10, 0), (4, 2, 12, 8, 2), (4, 5,
12, 2, 4), (4, 7, 12, 2, 0)}, see Table 6 for the generation pro-
cess, where the underlined states are eliminated in Step 2.2.

For j = 5, L5 = {(5, 0, 14, 23, 0), (5, 3, 14, 14, 0),
(5, 2, 14, 15, 0), (5, 5, 14, 6, 0), (5, 9, 8, 6, 0), (5, 4, 2,
23, 0), (5, 7, 2, 14, 0), (5, 6, 2, 15, 0), (5, 9, 2, 12, 0), (5, 8,
14, 3, 0), (5, 7, 2, 14, 0), (5, 2, 12, 23, 0), (5, 5, 12, 14, 0),
(5, 4, 12, 15, 0), (5, 7, 12, 6, 0), (5, 6, 0, 23, 0), (5, 8, 0,
19, 0)}, see Table 7 for the generation process (note that we
do not need to consider the case where job J5 is deferred as
it is the last job), where the underlined states are eliminated
in Step 2.2.

Step 3 [Refinement] L5 = {(5, 8, 0, 19, 0), (5, 9, 2, 12, 0),
(5, 9, 8, 6, 0), (5, 8, 14, 3, 0)}.
Step 4 [Result] The Pareto-optimal frontier isR = {(0, 19),
(2, 9), (8, 6), (14, 3)}.

• The Pareto-optimal schedule corresponding to (0, 19) is
J (1)
1 ≺ J (1)

2 ≺ J (2)
2 ≺ J (2)

1 ≺ J (2)
3 ;

• The Pareto-optimal schedule corresponding to (2, 12) is
J (1)
2 ≺ J (2)

2 ≺ J (2)
3 ≺ J (1)

1 ≺ J (2)
1 ;

• The Pareto-optimal schedule corresponding to (8, 6) is
J (2)
2 ≺ J (2)

3 ≺ J (1)
2 ≺ J (1)

1 ≺ J (2)
1 ;

• The Pareto-optimal schedule corresponding to (14, 3) is
J (2)
1 ≺ J (2)

2 ≺ J (2)
3 ≺ J (1)

1 ≺ J (1)
2 ;

where the underlined jobs are late in the corresponding
Pareto-schedule.
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