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Abstract
The decisions in the operating room scheduling process related to the case mix planning, the master surgery schedule and the
nurse roster are based on the expected demand, predicted by historical data. Patients are only scheduled in the operational
phase when the actual demand is known. However, the actual patient demand may differ from the expected demand. In this
paper, we integrate the surgical case planning and scheduling problem and include the nurse re-rostering decision and nurse
assignment to specific patients in order to utilise the operating room department as efficiently as possible and maximise the
operating room profit.We propose a two-phase heuristic that uses the LP solution generated via column generation to construct
a high-quality feasible solution. Computational experiments have been conducted on a diverse artificial data set generated
in a controlled and structured manner and real-life data from the Sina Hospital (Tehran, Iran). We show that the presented
approach is able to produce (near-)optimal solutions and benchmark the procedure with other optimisation strategies and
solution methodologies.

Keywords Surgical case planning and scheduling · Nurse re-rostering · Nurse patient assignment · Column generation ·
Diving heuristic

1 Introduction

The operating room (OR) department is key in the opera-
tions of hospitals as more than 60% of hospital admissions
belong to this department accounting for about 40% of
the hospital costs (Pham and Klinkert 2008; Villarreal and
Keskinocak 2016). In order to maximise the utilisation of the
OR resources, the OR manager turns to the OR scheduling
process that consists in most hospitals of three hierarchical
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decision phases (Batun et al. 2011; Fügener et al. 2014). The
first phase concerns the distribution of the OR time between
the medical disciplines or surgeons based on the expected
patient demand, which is known as the case mix planning
problem. The second phase encompasses the master surgery
scheduling (MSS) problem and assigns a block of consec-
utive time slots in a specific operating room on a particular
day to a surgeon based upon the case mix planning. The duty
roster of the nurses working in the OR department, called
surgical nurses, is constructed based on this master surgery
schedule, which takes thus the expected patient demand into
account (Beliën and Demeulemeester 2008). According to
Guo et al. (2014), the cost of the nursing resources in the OR
department is no less than 37%. The third phase is related to
patient scheduling and is typically decomposed in two steps.
First, surgical cases are assigned to a specific day in the time
horizon (i.e. the surgical case planning (SCP) problem) and
then the planned surgeries are sequenced and assigned to a
specific time slot on that day (i.e. the Surgical Case Schedul-
ing (SCS) problem). The hierarchical structure implies that
the scheduled patients are assigned to a specific day and time
slot taking the availability of resources into account (surgeon,
OR and nurses).
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In order to maximise the utilisation of the OR depart-
ment, we integrate in this paper surgical case planning and
surgical case scheduling given a master surgery schedule to
address the surgical case planning and scheduling (SCPS)
problem. The problem arises at the operational level of deci-
sion making where the surgery demand for all disciplines is
accurate. The surgical cases are assigned to particular time
slots and rooms for the upcoming week respecting the mas-
ter surgery schedule such that the OR profit is maximised.
Note that we consider only elective surgical cases since in
practice some slack capacity is commonly reserved for emer-
gency cases by the OR manager. In addition, in order to
further improve the efficiency of the OR department, we
incorporate the re-rostering of nursing resources such that
the number of nurse shift duties over the planing horizon is
minimised. The required adaptations to the nurse rosters are
motivated by the fact that the previously announced roster is
designed based upon themaster surgery schedule (Beliën and
Demeulemeester 2008). The actual demand for a particular
surgeon or discipline, however, may differ from the expected
demand such that changes in the nurse roster are necessary
to match supply and demand for surgical nurses. In this way,
nurses may be (re-)assigned to additional or other nurse shift
duties or their shift duties may be cancelled in order to opti-
mise profit. Note that we want to keep the number of changes
as small as possible since only assignments are possible con-
form to their original roster or the nurse preferences. In this
operational phase, surgical nurses are assigned to particular
shift duties and specific surgical cases in accordance with the
patient’s needs. In this way, the minimum required number
of nurse duties can be determined in a more accurate manner
taking the differences in nurse requirements per surgery into
account.

The problem under study is formulated as a decomposed
mixed integer programming (MIP) problem thriving on two
types of column variables, i.e. (1) feasible patient schedules
for a single day and (2) the nurse duty shift assignment for
a particular nurse, day and shift characterised by specific
nurse–patient assignments. We propose a two-step heuristic
solution methodology. In the first step, we apply a column
generation algorithm and include different dedicated speed-
upmechanisms to solve the relaxed linear programming (LP)
problem. In the second step, a greedy diving heuristic is used
to drive the optimal LP solution to integrality. The proposed
methodology leads to optimal or near-optimal solutions in
a short time span. In the computational experiments, we
validate the algorithmdesign choices and benchmark the pro-
cedure with other solution methodologies. The experiments
are conducted on an artificial data set generated in a con-
trolled and structured manner and on real-life data from the
Sina Hospital (Tehran, Iran).

The remainder of the paper is organised as follows. In
Sect. 2, we discuss the related literature. In Sect. 3, we give

a detailed description and a mathematical formulation of
the problem under study. Section 4 discusses the two-phase
solution methodology. In Sect. 5, the computational exper-
iments are presented. In Sect. 6, we validate the proposed
methodology and show its benefits for a real-life case study.
Section 7 provides concluding remarks and directions for
future research.

2 Literature review

In this section, we review the related literature for the prob-
lem under study. Table 1 provides a synthesis of the relevant
literature, which is organised according to the problem def-
inition and is further discussed below. The literature on the
surgical case planning and scheduling problem is discussed
in Sect. 2.1, and the literature that considers surgical nurse
resources in the OR department is reviewed in Sect. 2.2. The
contribution of this paper is discussed in Sect. 2.3.

2.1 Surgical case planning and scheduling

There exists a vast amount of literature that concerns the plan-
ning and scheduling of patients in the OR department. The
topic has been investigated widely, and some recent litera-
ture reviews are available, i.e. (Cardoen et al. 2010;Guerriero
and Guido 2011; Van Riet and Demeulemeester 2015; Gür
2018). In the following, we discuss the relevant problem con-
text and definition, the objectives and the relevant solution
methodologies for surgical case planning and scheduling.
Problem context and definition

Surgical case planning and scheduling is organised either
according to a block or open booking system. In the block
booking system, a master surgery schedule divides the OR
timebetweendifferent (groups of) surgeons into blocks based
on the case mix planning. The surgeons plan their surgical
cases within their assigned time slots (Guerriero and Guido
2011). In the open scheduling strategy, no blocks are assigned
to the surgeons, which submit their surgical cases for the
next day(s) until their maximum number of allowed cases
is reached or until the OR capacity is filled (Magerlein and
Martin 1978). The precise surgery dates and start times are
usually determined via an online algorithm based on the
considerations of different stakeholders (e.g. surgeon, OR
resources, patient) (Zhang and Xie 2015).

Surgical case planning and scheduling is situated on the
operational planning level and is typically comprised of two
steps. In the surgical case planning, the surgical cases are
assigned to the available time blocks for a specific surgeon
coming from the master surgery schedule. This entails that
a surgery date and operating room is assigned to each surgi-
cal case (Lamiri et al. 2008; Fei et al. 2009a; Agnetis et al.
2014). In the second step, the patient schedule or sequence of
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the planned surgical cases is determined as precise surgery
start times are specified (Pham and Klinkert 2008; Cardoen
et al. 2009; Essen et al. 2012; Monteiro et al. 2015). This
step considers the assignment of patients to resources, i.e.
physical resources (such as operating rooms, equipment,
post-anaesthesia care unit recovery beds) and medical staff
(such as surgeons, nurses, anaesthetists) (Meskens et al.
2013; Di Martinelly et al. 2014; Latorre-Núñez et al. 2016).
Decisions taken in the planning step will obviously affect the
scheduling decision and the resulting solution quality. There-
fore, a significant number of authors have tried to tackle this
problem using a two-step hierarchicalmethod, which consid-
ers the planning and the scheduling problem as two different
but related sequential subproblems (Ozkarahan 1995; Guinet
and Chaabane 2003; Fei et al. 2010; Essen et al. 2012; Souki
and Rebai 2012; Vijayakumar et al. 2013; Aringhieri et al.
2015). Recently, different authors tackled the planning and
scheduling problem in an integratedmanner inwhich all deci-
sions related to the date and the start time are made together
(Roland et al. 2010; Di Martinelly et al. 2014; Doulabi et al.
2016; Di Martinelly and Meskens 2017). Research on this
topic is limited since tackling the problem in an integrated
way increases the complexity of synchronisation and thereby
the computational effort.
Objectives

SCPS is complex since the objectives of all the stakehold-
ers need to be considered. A surgical plan can be evaluated
by objectives related to productivity or patient through (e.g.
Marques et al. 2014), related to the resources, i.e. resource
cost, utilisation or the levelling of resources (e.g. Riise et al.
2016), related to the time, i.e. overtime and makespan (e.g.
Ozkarahan 1995; Fei et al. 2009a), related to the preferences
of surgeons, patient priorities and waiting time of surgical
cases (e.g. PhamandKlinkert 2008; Essen et al. 2012;Roland
and Riane 2011; Souki and Rebai 2012; Di Martinelly et al.
2014; Monteiro et al. 2015; Riise et al. 2016) and related to
the cost of the performed surgeries and closely connected the
revenues (Lamiri et al. 2008; Fei et al. 2009a). As a result,
different papers study a multi-objective optimisation prob-
lem. Cardoen et al. (2009) considered multiple objectives
related towaiting time and priority of surgical cases, resource
cost and resource levelling. Monteiro et al. (2015) proposed
a multi-objective model to minimise the makespan and the
overtime resource cost. Meskens et al. (2013) and Di Mar-
tinelly andMeskens (2017) considered overtime and surgical
team preferences. Different papers (e.g. Hadj et al. 2006;
Lamiri et al. 2008; Roland et al. 2010; Latorre-Núñez et al.
2016) consider different types of objectives and formulate
the objective function on a uniform basis in terms of costs.
As a result, minimising costs and, closely related, maximis-
ing revenues are widely studied objectives in OR scheduling.
Doulabi et al. (2016) andMarques et al. (2014) optimise their
revenues by avoiding unused capacity as they maximise the

total duration or the total number of the scheduled surgical
cases. Roland et al. (2007) minimise the opening costs of
the operating rooms and the overtime. Costs can be further
reduced by considering human resource capacity and opti-
mising the resource cost (Roland et al. 2010; Velasquez and
Melo 2006).
Solution methodology

Solving the SCPS problem to optimality in a real-life
environment is very difficult due to the long list of surgi-
cal cases and the specific combination of objective(s) and
constraints (Marques et al. 2014). The formulations for the
SCPS problem involve a huge number of binary variables
that increases exponentiallywith the problemsize and signifi-
cantly impacts the problem complexity. Moreover, large-size
problem instances require not only additional computational
effort but also some technical effort (e.g. the development
of a new model). In the literature, both exact and heuris-
tic methodologies are devised. We refer to the overview of
Samudra et al. (2016) for a comprehensive review of the
appropriate solution methodologies.

Different heuristic methodologies are developed based
upon the hierarchical structure of the problem and solve the
problem in two sequential steps, i.e. first they solve the SCP
problem, and the obtained surgical case plan is fixed and used
as input for the SCS problem (cf. supra). Vijayakumar et al.
(2013) compare an integrated methodology, which embod-
ies the simultaneous surgical case planning and scheduling,
with a hierarchical solution approach and demonstrate that
even for small-sized instances the solutions generated by
the hierarchical approach lead to more unscheduled surgi-
cal cases due to the difference between objectives in the two
aforementioned problems. The integrated approach leads to
a more detailed planning problem and increases the chance
of obtaining a stable schedule that can be successfully imple-
mented (Doulabi et al. 2016).

Different exact and heuristic methodologies, relevant for
the SCPS problem, thrive onmathematical programming and
a decomposed problem formulation (Lamiri et al. 2008; Fei
et al. 2010; Cardoen et al. 2009; Wang et al. 2014; Doulabi
et al. 2016). These studies typically reformulate the origi-
nal problem by applying the Dantzig–Wolfe decomposition
and use column generation to find the optimal linear pro-
gramming (LP) solution, based upon which a high-quality
integer solution is found. The defined column variables in
the literature lead to a different problem formulation to solve
the SCPS problem. Fei et al. (2010), Lamiri et al. (2008)
and Wang et al. (2014) define a column as a feasible plan
assigning surgical cases to one operating room on a sin-
gle day. Fei et al. (2010) utilise the obtained surgical case
plan as input to schedule the surgical cases via a genetic
algorithm. Lamiri et al. (2008) use a three-phase heuristic
solution methodology. They first apply column generation to
solve the relaxed LP model. An integer solution is obtained
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by retaining all columns with a positive integer value, assign-
ing surgical cases to specific operating rooms. The remainder
of the surgical cases are assigned heuristically, i.e. one-by-
one to the operating rooms based on their costs. The feasible
solution is further improved by adding neighbourhood search
methods such as assigning surgical cases to other operating
rooms or the pair-wise exchange of cases. Fei et al. (2009b)
and Wang et al. (2014) apply column generation to solve the
LP-relaxed problem and a diving heuristic to find a feasi-
ble integer solution. The diving heuristic repetitively fixes
particular columns and uses column generation in each iter-
ation until an integer solution is found. Cardoen et al. (2009)
model a sequenced group of surgical cases for one specific
day and surgeon as a column. Doulabi et al. (2016) define a
column as a schedule for a set of surgeries with fixed start
times in a single operating room on a given day. In their
solution methodology, they first apply column generation to
solve the LP relaxation of the reformulated model and either
heuristic principles or an exact approach is used to trans-
form the LP optimal solution into an integer solution. Their
exact approach comprises a branch-and-price with different
speed-up techniques to accelerate the branching procedure.
They indicated that closing the optimality gap for real-life
problems is time-consuming.

2.2 Nurse scheduling in the operating department

Operating room departments, and hospitals in general, suf-
fer from a shortage of nurses and overtime hours are often
inevitable. The OR manager’s role is to coordinate the surgi-
cal teams in order to perform surgical operations efficiently
and safely on time (Di Martinelly and Meskens 2017). Dif-
ferent papers related to surgical case planning and scheduling
consider the presence of nursing resources (e.g. Ogulata and
Erol 2003; Chaabane et al. 2008; Meskens et al. 2013; Xiang
et al. 2014). In its simplest form, only the maximum num-
ber of surgical nurses is considered as a resource constraint
in order to construct a feasible surgical case plan and/or
schedule (e.g. Silva et al. 2015; Latorre-Núñez et al. 2016).
Ben-Arieh et al. (2014) and Wang et al. (2015) propose a
mathematical model to determine a surgery date for surgical
cases (i.e. surgical case planning) and the required number
of surgical nurses for each shift, i.e. the nurse shift staffing
problem. Di Martinelly et al. (2014) investigated surgical
case planning and scheduling and calculated the minimum
required number of nurses for each shift. They considered six
different scenarios to deal with trade-offs between the cost
of opening operating rooms, the cost associated with nurse
salaries and overtime payments.

In order to meet the patient’s needs, some studies assign
surgical nurses directly to specific surgical cases in the
operational phase in accordance to their qualifications and
competences, which is referred to as the nurse surgical

assignment problem. There are different constraints postu-
lated in the literature related to the surgical nurse assignment
problem that resemble real-world situations. Most of these
constraints model the availability and skills of the nursing
resources (Ogulata and Erol 2003; Chaabane et al. 2008;
Meskens et al. 2013; Xiang et al. 2014). Pham and Klinkert
(2008) relate the assignment of specific nursing teams to par-
ticular surgical cases. A few studies consider multiple types
of personnel resources (e.g. technicians, nurses) and build
heterogeneous surgical teams taking their availabilities into
account (Roland et al. 2010; Roland and Riane 2011; Silva
et al. 2015; Monteiro et al. 2015). Meskens et al. (2013) and
Di Martinelly and Meskens (2017) construct these surgical
teams by additionally considering the team preferences. Note
that in the literature the surgical nurse assignment is typically
carried out in an additional optimisation step after the sur-
gical case schedule has been composed when the start times
of operations are known (Mobasher et al. 2011; Lim et al.
2016; Di Martinelly and Meskens 2017).

2.3 Contribution of this paper

The contribution of this paper is twofold. First, we consider
the surgical case planning and scheduling problem, the nurse
re-rostering and nurse assignment problem. To the best of our
knowledge, these problems have not been investigated in an
integrated model and we discuss the value of integration of
the nurse re-rostering and nurse assignment to surgical cases
in the problem definition. Second, we present a heuristic
solution methodology building upon the optimal LP solu-
tion obtained via a column generation algorithm and a diving
heuristic to drive the optimal LP solution to integrality. In the
computational experiments, we prove that this methodology
leads to (near-)optimal solutions and outperforms different
alternative solution methodologies.

3 Problem description and formulation

3.1 Problem description

For the problem under study, we assume that different deci-
sions related to the case mix planning and the master surgery
schedule are taken and that the set of elective patients for
the relevant planning horizon, i.e. the next upcoming days
or week, is defined. The master surgery schedule and the
associated nurse roster are created based on the expected
patient demand. In the operational phase, the OR manager
has an accurate knowledge of the actual patient demand for
the upcoming days or week based upon the planned surgi-
cal cases for all surgeons and medical disciplines. Due to
the operational variability, the actual patient demand can
be higher or lower than the expected demand. In order to
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resolve this issue, the OR manager has to plan and schedule
the defined set of surgical cases as efficiently as possible in
order to maximise the utilisation of the resources (OR time,
nurses) considering the following decisions, i.e.

1. The Surgical Case Planning and Scheduling problem
(SCPS)
The surgical cases are planned over the planning hori-
zon and sequenced by assigning these cases to particular
time slots. The operating rooms are available each day
for a set of time slots. Each surgery is characterised by a
deterministic surgery duration and a particular surgeon.
A surgical case needs to be carried out during the blocks
assigned to the particular surgeon stipulated by the mas-
ter surgery schedule. The blocks in the master surgery
schedule are specified by the operating surgeon, the oper-
ating room, the day and a set of time slots. Apart from a
surgeon, a surgery requires a specific number of nurses,
which can be dependent fromsurgery to surgery.All surg-
eries require exactly the same type of nurse competences
since only the surgical cases of a medical cluster are con-
sidered containing different surgeons from the same or
related disciplines. Note that the surgical team assigned
to a surgery is fixed and cannot be modified during the
surgery.

2. The Nurse Re-Rostering and Surgical Assignment prob-
lem (NRRSA)
In order to facilitate the scheduling of surgical cases to
time slots, nurses are assigned to specific duty shifts and
surgical cases in order to ensure the required number of
nursing resources are present to operate the individual
surgical cases properly. The duty shifts of nurses are re-
scheduled such that the nurse schedulematches the actual
patient demand. This implies that the set of nurses should
be re-rostered for the planning horizon, since their orig-
inal roster was based on the expected demand. In this
decision, a nurse will be assigned to shift duties either
based on the original roster or will be re-assigned to
another shift based on the nurse preferences. In this way,
the number of shift changes is kept to a minimum and
the problem can be labelled as a minimal perturbation
problem and as a nurse re-rostering problem in particular
(Moz and Pato 2003; Maenhout and Vanhoucke 2011).
The nurse re-rostering problem incorporates the changes
in the patient demand along with the original nurse roster
in the problem definition for which the solution should
be as close as possible to the original roster. Nurses are
additionally assigned to specific surgical cases in order
to accurately determine the nurse requirements for each
shift. The objective of the nurse re-rostering and surgical
assignment problem is to minimise the number of shift
duties. We further assume that the nursing resources are
homogeneous, i.e. they have all exactly the same skills.

The shift duties are organised as a set of non-overlapping,
successive shifts with a fixed start and end time.

3.2 Problem formulation

In the following, we present a mathematical model for the
SCPS-NRRSA problem. Note that the formulated model
is based on the Dantzig–Wolfe decomposition (Breu et al.
2008), where column-based variables are included instead
of the original decision variables. In the model formulation,
we make use of the following two types of columns, i.e.

– A surgical case schedule (SCS) represents the assign-
ment of surgical cases to time slots and the different
operating rooms on a particular day.

– A nurse duty assignment (NDA) indicates the assigned
surgical cases and shift duty on a particular day and shift
for a nurse.

The problem is formulated as follows:

List of symbols
Sets

I The set of surgeries (index i and ī)
N The set of nurses (index n)
D The set of days in the planning horizon (index

d)
V The set of shifts (index v)
T The set of time slots per day (index t, t̄)
R The set of operating rooms (index r )
S The set of surgeons (index s)
ϕs The set of surgical cases related to surgeon s
Jd The set of feasible surgical case schedules (SCS

columns) for day d (index j)
Qndv The set of feasible nurse duty assignments

(NDA columns) for nurse n, day d and shift v

(index q)

Parameters

nui Required number of nurses to perform surgery
i

Revi Revenue for performing surgical case i
cOR
r The cost per day for opening operating room r
cNv A cost for assigning a nurse to shift duty v
MA The maximum number of shifts that can be

assigned to a nurse
BM A large positive constant
π

μ
τ Dual price for τ th constraint of typeμ (indicated

next to the constraints)
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Column parameters

āid j 1, if surgical case i is included in the SCS j at
day d; 0, otherwise

āvidv j 1, if surgical case i is performed in shift v in the
SCS j at day d; 0, otherwise

ērd j 1, if the SCS j, day d involvesOR r; 0, otherwise

P̄
i īd j

1, if surgical case i and ī have time overlap in

the SCS j, day d; 0, otherwise
h̄indvq 1, if surgical case i is included in the NDA q for

nurse n, day d, shift v; 0, otherwise

Decision variables

xd j 1, if the surgical case schedule j is selected for
day d; 0, otherwise

yndvq 1, if the nurse duty assignment q is selected for
nurse n in shift v at day d; 0, otherwise

Master problem formulation

Max Z =
∑

id j

Revi × āid j × xd j −
∑

rd j

cOR
r × ēid j × xd j

−
∑

ndvq

cNv × yndvq (1)

The objective function (1) maximises the revenues result-
ing from the surgical cases performed and minimises the
costs related to the total number of operating rooms used and
the total number of shift duties assigned to the nurses.

∑

d j

āid j × xd j ≤ 1 ∀i π2
i (2)

∑

j

xd j ≤ 1 ∀d π3
d (3)

∑

dvq

yndvq ≤ MA ∀n π4
n (4)

∑

vq

yndvq ≤ 1 ∀n, d π5
nd . (5)

Constraint (2) stipulates that a single surgery can be carried
out at most once over the planning horizon. Constraint (3)
ensures that for each day at most one surgical case schedule
must be selected. Constraint (4) imposes that a nurse cannot
be assigned to more than MA shift duties during the plan-
ning horizon. Constraint (5) stipulates that a nurse cannot be
assigned to more than one shift per day.

∑

j

nui × āvidv j × xd j =
∑

nq

h̄indvq × yndvq

∀i, v, d π6
idv. (6)

Constraint (6) imposes that the required number of nurses are
assigned to each surgical case and links the SCPS problem
and theNRRSAproblem.The left-hand side of this constraint
indicates that the nurse requirements for shift v and day d are
generated by the surgical cases included in the selected sur-
gical case schedule. The right-hand side shows the assigned
number of nurses as a result from the selected nurse duty
assignments.

∑

ndvq

h̄indvq × h̄īndvq × yndvq ≤ BM

× (1 −
∑

j

P̄
i īd j

× xd j ) ∀i < ī, d π7
i īd

(7)

xd j ,∈ {0, 1} ∀d, j

yndvq ∈ {0, 1} ∀q, n, v, d.

(8)

Constraint (7) implies that any pair of surgical cases (i, ī)
with an overlap in the surgical case schedule j , day d (i.e.
P̄i īd j = 1) cannot not be both included in the nurse duty
assignment of a single nurse. In case the surgical cases do
not overlap (i.e. P̄i īd j = 0), a suitable upper bound value BM
is equal to nui +nuī , i.e. the maximum number of nurse duty
assignments that can include surgical case i and ī . Constraint
(8) represents the binary conditions.

4 Solutionmethodology

In this section, we discuss a column generation-based diving
heuristic solution procedure (CGD) to solve the integrated
SCPS-NRRSA problem. The procedure finds first the opti-
mal LP solution using column generation. If the LP solution
is fractional, a diving heuristic is invoked to transform the
LP solution into an integer solution. Figure 1 provides an
overview of these two steps of the solution procedure.

The first step embodies a column generation procedure
(CG), discussed in detail in Sect. 4.1, since it is computation-
ally infeasible to generate all possible surgical case schedules
and nurse duty assignments to solve the proposed model
directly (Breu et al. 2008). The column generation proce-
dure relaxes the integrality conditions and iterates between
the restricted master problem and the two pricing problems,
i.e. the surgical case schedule pricing problem and the nurse
duty assignment pricing problem, to find the optimal linear
programming (LP) solution. The restricted master problem
relaxes the integrality conditions and works only with a
restricted subset of all possible SCS and NDA column vari-
ables. Additional variables are included via the pricing step
based on the dual prices returned by the restricted master
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Fig. 1 Flow chart of the column generation-based diving heuristic solution procedure (CGD)

problem. A column is added to the restrictedmaster problem,
when the column has a positive reduced cost as we consider
a maximisation problem. The pricing step is conceived as a
three-stage procedure. In the first stage, we try to find inter-
esting SCS and NDA columns using a greedy heuristic. In
the second stage, we solve the NDA pricing problem to opti-
mality using mixed integer programming (MIP). In the third
stage, we solve the SCS pricing problem to optimality using
MIP. Whenever a column with a positive reduced cost has
been found in a particular stage, we add this column to the
restricted master problem and resolve the restricted master
problem. If no suitable column has been found in any stage,

the column generation procedure is stopped and we have
found the optimal LP solution, which is an upper bound for
the proposed problem. If the solution in this step is integer,
we have found an optimal solution for the original integer
problem. If not, we need additional steps to convert the frac-
tional solution into a high-quality integer solution. In the
second step, a greedy diving heuristic is applied to convert
the fractional solution into a feasible integer solution, which
is detailed in Sect. 4.2. The diving heuristic repetitively fixes
one or several fractional assignments in a depth-first search
without backtracking. In each node of the diving tree, the
diving heuristic focuses first on the SCS column with the
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highest fractional value and fixes surgical case assignments
to particular time slots according to the selected column. The
amount of surgical case assignments that are fixed depends
on the so-called dimension, which is a design parameter of
the diving heuristic reflecting the involved schedule compo-
nents (patient, room, day) for which assignments are fixed.
Furthermore, this fixing may be related to either the origi-
nal assignment variables considered in the pricing problem
or to the column variables considered in the master prob-
lem. This is determined by the allowed flexibility in the
search for a high-quality solution, which is a design param-
eter of the diving heuristic. When flexibility is not allowed,
the fixing is performed identically to the selected column
and no time slot assignments can additionally be included
to the selected dimension later in the diving tree. Relevant
assignment prohibition constraints are imposed avoiding the
assignment of other surgical cases to the time slots related
to the selected dimension. When flexibility is allowed, only
the original assignment variables in the chosen dimension
of the selected column are fixed and there is flexibility to
include additional surgical cases to the selected dimension
later in the tree. Whenever all SCS columns are integer, the
diving heuristic considers theNDA columnswith a fractional
value and the same logic is applied fixing the assignments of
surgical cases to specific nurses. After fixing a number of
variables, column generation is resolved to find the LP opti-
mal solution taking the diving constraints into account.When
all SCS columns and NDA columns are integer, the diving
heuristic returns an integer solution, which is the solution
returned by this procedure and a lower bound of the optimal
solution.

4.1 Column generation

In order to obtain the optimal LP solution, we relax the
integrality conditions (Eq. 8) and apply a column genera-
tion algorithm iterating between the master problem and two
pricing subproblems to identify interesting SCS and NDA
columns that should be added to the master problem. The
restricted LP master problem, defined by Eqs. (1)–(7), con-
siders only a subset of the column variables by introducing
the sets J̄d (⊂ Jd) and Q̄ndv (⊂ Qndv). Next, the col-
umn generation procedure tries to identify new schedules
to enter the basis based on the appropriate dual information
resulting from the restricted master problem (Lübbecke and
Desrosiers 2005). A column is added to J̄d (Q̄ndv) when the
column, obtained by solving the surgical (nurse duty assign-
ment) pricing problem, has a positive reduced cost (cf. Eq. 1)
(Sect. 4.1.1). When a column has been added, the master
problem is invoked again. If the pricing step does not find
a schedule to enter the basis, the column generation termi-
nates and we have found the optimal LP solution. In order to
improve the computational efficiency, we propose different

speed-up techniques in Sect. 4.1.2. In this way, we first try
to find a column in a heuristic manner. If these pricing prob-
lem heuristics are not able to come up with a column with a
positive reduced cost, the pricing problems are solved to opti-
mality via a commercial solver with a pricing cut included
to speed up the performance. The pseudocode of the column
generation procedure is presented in Algorithm 1.

Algorithm 1 Column generation
1: do
2: Solve restricted master problem
3: Solve SCS pricing problem heuristically (∀d)
4: Solve NDA pricing problem heuristically (∀n, d, v)
5: if No column found then
6: Solve NDA MIP pricing problem (∀n, d, v)
7: if No column found then
8: Solve SCS MIP pricing problem (∀d)
9: Add column with positive reduced cost to the restricted master

problem
10: while SCS or NDA column with positive reduced cost exists

4.1.1 Pricing problem

The type of decomposition used to model the master prob-
lem in Sect. 3 determines the definition and formulation of
the subproblem(s). In the proposed model formulation, two
types of column variables are utilised, each defined by a spe-
cific subproblem and pricing problem in a column generation
framework, i.e. the surgical case schedule pricing problem
and the nurse duty assignment pricing problem. In order to
formulate the subproblems, the following symbols are addi-
tionally defined, i.e.

Parameters

Astrd 1, if time slot t at day d in room r belongs to
surgeon s according to the MSS; 0, otherwise

ROSndv 1, if nurse n is assigned to shift v, day d in the
original nurse roster; 0, otherwise

Prndv 1, if nurse n has preference to work shift v, day
d; 0, otherwise

StVv Start time of shift v
EtVv Finish time of shift v
Duv Duration of shift v
ti Duration of surgery i

Decision variables

pxitrd 1, if surgery i starts at time slot t on day d in room
r on day d; 0, otherwise

aid 1, if surgical case i is selected on day d; 0, other-
wise

avidv 1, if surgical case i is performed in shift v, day d;
0, otherwise
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erd 1, if operating room r is opened on day d; 0, oth-
erwise

P
iīd

1, if surgical case i and ī overlap on day d; 0,
otherwise

hindv 1, if surgical case i is selected for nurse n, day d,
shift v; 0, otherwise

Sid Start time of surgery i on day d
Cid Finish time of surgery i on day d
w
i īd

1, if surgical case i starts before surgical case ī on
day d; 0, otherwise

uiīndv 1, if surgical cases i and ī are both included on
day d, shift v for nurse n; 0, otherwise

Note that the decision variables in the pricing problemsdefine
the parameters of the generated columns explained in Sect. 3
(e.g. aid is a binary decision variable in the pricing problem
that defines the column parameter āid j for SCS column j).

The Surgical Case Schedule pricing problem
The SCS pricing problem is used to generate a column

that represents a schedule of surgical cases in the different
operating rooms. Instead of running the pricing problem for
all days together, we decompose the pricing problem and
generate schedules for each day separately to reduce the
computational effort. The SCS pricing problem for day d
is formulated as follows

Max RCSCS
d = +

∑

i

Revi × aid −
∑

r
cOR
r × erd

−
∑

i

aid × π2
i − π3

d −
∑

iv

nui × avidv × π6
idv

−
∑

i ī

BM × Piīd × π7
i īd

(9)

∑

tr

pxitrd ≤ aid ∀i (10)

∑

i

pxi trd ≤ 1 ∀t, r (11)

∑

ī �=i

t̄=t+ti∑

t̄=t+1

px
ī t̄rd

≤ BM(1 − pxitrd ) ∀i, t, r (12)

∑

i t

pxi trd ≤ BM × erd ∀r (13)

avidv =
t=EtVv∑

t=StVv ,r

pxitrd ∀i, v (14)

Sid =
∑

tr

t × pxitrd ∀i (15)

Cid = Sid + ti ×
∑

tr

pxitrd ∀i (16)

Sīd − Sid ≤ BM × (1 − wi īd ) ∀i, ī (17)

Cīd − Sid ≤ BM × Piīd + BM × wi īd

+ BM × (2 − aid − aīd ) ∀i, ī (18)

ti × pxitrd ≤
t̄=t+ti∑

t̄=t

Ast̄rd ∀s, i ∈ ϕs , t (19)

∑

ir

nui × pxitrd ≤ (ROSndv + Pr fndv)

∀v, StVv ≤ t ≤ EtVv (20)

pxitrd , wi īd , Piīd , aid , erd ∈ {0, 1} ∀i, ī, t, r
Sid ,Cid ≥ 0 ∀i . (21)

The objective function (9) maximises the reduced cost of a
surgical case schedule. Constraint (10) stipulates that each
surgery can be performed at most once on a specific day.
Constraint (11) makes sure that at most one surgery can
be assigned to a specific time slot and room. Constraint
(12) states that a scheduled surgery cannot be interrupted
by another surgery, i.e. only one surgery can be carried out in
a specific room during a particular time slot. The total num-
ber of surgeries is a relevant upper bound in the right-hand
side of the constraint, i.e. BM = |I |. Constraint (13) assigns
surgeries to a room only if the operating room is open for
the day under consideration. The large number BM can be
operationalised by the total number of surgeries |I |.

Constraints (14)–(18) are introduced in the model formu-
lation to include the appropriate dual information from the
master problem and to generate suitable columns. Constraint
(14)finds the shift duty duringwhich the surgery is performed
based on the assigned start time slot of the surgical case.
Equations (15)–(18) determine if two surgical cases overlap.
Constraints (15) and (16) calculate the start and completion
time for each surgery. Constraint (17) calculates wi īd for
surgical cases i and ī . The value of the variable P

iīd
, which

indicates if an overlap exists between surgical cases i and ī ,
is determined in constraint (18). If surgical case i starts later
than case ī and the completion time of case ī is later than the
start time of case i , there is an overlap between the two surg-
eries, i.e. P

iīd
= 1. In case the surgical case i starts before ī

(i.e.wi ī = 1) or both surgeries are not selected, the constraint
is redundant. The large number BM can be operationalised
by the total number of time slots |T | in Constraints (17) and
(18).

Constraint (19) states that a surgery can be conducted only
when the associated surgeon is available. Constraint (20)
ensures that the scheduling of the surgical cases is in line
with the maximum available number of nurses that can be
scheduled during shift v according to the original roster and
the nurse preferences. Constraint (21) states the integrality
conditions and the domain of the variables.
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The nurse duty assignment pricing problem
The NDA pricing problem is used to generate a column

that composes a particular shift duty by assigning surgical
cases to a specific nurse. Instead of running the pricing prob-
lem once, we decompose this pricing problem and generate
schedules for each day, nurse and shift separately to reduce
the computational effort. TheNDApricing problem for nurse
n, day d and shift v is formulated as follows

Max RCNDA
ndv = −cNv − π4

n − π5
nd +

∑

i

hindv × π6
idv

−
∑

i ī

ui īndv × π7
i īd

(22)

ui īndv ≤ hindv ∀i, ī (23)

ui īndv ≤ hīndv ∀i, ī (24)

ui īndv + 1 ≥ hindv + hīndv ∀i, ī (25)
∑

i

ti × hindv ≤ Duv (26)

∑

i

hindv ≤ BM(ROSndv + Pr fndv) (27)

hindv, ui īndv ∈ {0, 1} ∀i, ī . (28)

The objective function (22) maximises the reduced cost of
the NDA column by assigning the best possible combination
of surgical cases to the considered shift duty and nurse. In
order to include the appropriate dual information from the
master problem and generate suitable columns, we calculate
if surgical cases i and ī are both included in the nurse duty
assignment, i.e. uiīndv = 1. The AND relationship between
the assignment variableshindv andhīndv ismodelledby equa-
tions (23)–(25). Constraint (26) implies that the duration of
the assigned surgical cases cannot be more than the duration
of the involved shift. Constraint (27) makes sure only nurse
duty assignments are generated for a shift duty v on day d
that is conform to the original roster or the nurse preferences
of nurse n, i.e. ROSndv+Pr fndv = 1. It is important to point
out that the nurse preferences Pr fndv determine the degree
to which the original nurse roster can be changed. Equation
(28) embodies the binary conditions of the variables.

4.1.2 CG speed-up techniques

Cut for pricing problems
When a schedule is created in the pricing step, the main

idea is to incorporate those surgical cases that are able to
improve the reduced cost of the column. For each individual
surgery i on day d and shift v, the maximum reduced cost
RCiSCSidv can be calculated based on Eq. (29), which includes
the revenue of the surgery, the relevant dual prices (π2

i , π
9
i,d )

to incorporate surgery i in the schedule and the dual prices

(
π7
i , π8

i

)
associated with the related shift v.

RCiSCSidv =Revi − π2
i − π3

d − nui × π6
idv (29)

Lemma 1 For any i, d, v : RCiSCSidv ≤ 0, scheduling surgi-
cal case i on day d during the shift v will lead to a decrease
in the reduced cost. Therefore, without losing optimality,
Eq. (30) can be added to the proposed SCS pricing prob-
lem.

∑

r

t=EtVv∑

t=StVv

pxitrd = 0 ∀ i, v, d : RCiSCSidv ≤ 0. (30)

Likewise, the reduced cost RCi NDA
idv resulting from assigning

surgery i to shift v on day d can be calculated (Eq. 31), i.e.

RCi NDA
idv = π6

idv. (31)

Therefore, without losing optimality, Eq. (32) can be added
to the proposed NDA pricing problem.

hindv = 0 ∀ i, v, d : RCii,NDA
idv ≤ 0. (32)

Heuristic procedure for generating columns
Whenever the restricted master problem has been solved,

the proposed CG starts the generation of SCS columns in a
heuristic manner. Themain idea is to incorporate those surgi-
cal cases with a negative individual reduced cost calculated
in Eq. (29). Using this insight, the heuristic SCS columns
are generated for each day separately. For each day, the algo-
rithm schedules surgical cases based on descending order
of RCiSCSidv until all surgical cases with positive RCiSCSidv are
scheduled or the capacity of operating rooms is filled. Dur-
ing the scheduling of these surgical cases, the master surgery
schedule is considered. Afterwards, the reduced cost for the
created SCS column is calculated. The columns with posi-
tive reduced cost are added to the restricted master problem.
Likewise, we used Eq. (31) to generate the heuristic NDA
columns for each nurse, day and shift.

4.2 Diving heuristic

In order to transform the optimal LP solution resulting from
the column generation into an integer solution, we propose
a diving heuristic procedure. Diving heuristics have been
successfully implemented in the literature for different appli-
cations. Joncour et al. (2010) and Sadykov et al. (2019) give
an overview of different diving techniques to find a heuristic
solution and possibly its neighbouring solutions. The diving
heuristic repetitively fixes particular assignments and uses
column generation in each iteration. The diving heuristic
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applies a depth-first searchwithout backtrackinguntil an inte-
ger solution is found by fixing at each node of the tree one
or several fractional variables to a positive integer value. For
decomposed problem formulations solved via branch-and-
price such a variable may be either an original assignment
variable, i.e. a pricing problem variable that is defined to
formulate the pricing problem, or a column variable, i.e. a
master problem variable. Once a variable is fixed, the LP is
re-optimised taking these diving constraints into account. In
this way, the diving heuristic performs a heuristic search in
an LP-based branch-and-bound tree. Algorithm 2 presents
the proposed diving heuristic procedure, which is explained
below.

Algorithm 2 Diving Heuristic (Flexibility, Dimension )
1: Run Column generation
2: while The column generation solution is fractional do
3: if The SCS columns are fractional then
4: Select SCS column j∗ with the highest fractional value
5: if Flexibility is allowed then
6: Fix pxitrd = 1 ∀i : āid j = 1 in the selected Dimension of

column j∗
7: else
8: Fix pxitrd = 1 ∀i : āid j = 1 in the selected Dimension of

column j∗
9: Fix pxitrd = 0 ∀i : āid j = 0 in the selected Dimension of

column j∗
10: else
11: Select NDA column q∗ with the highest fractional value
12: if Flexibility is allowed then
13: Fix hindv = 1 ∀i : h̄indvq = 1 in the selected Dimension

of column q∗
14: else
15: Fix hindv = 1 ∀i : h̄indvq = 1 in the selected Dimension

of column q∗
16: Fix hindv = 0 ∀i : h̄indvq = 0 in the selected Dimension

of column q∗
17: Run Column generation
18: End while

In order to determine the variables that are fixed at each
node of the tree, the algorithm focuses first on the surgi-
cal case planning and scheduling problem by selecting the
SCS column j∗ ( j∗ ∈ Jd ,∀d) over all days with a fractional
value that is closest to 1. When the surgical case schedule is
integer, the NDA column q∗ (q∗ ∈ Qndv,∀n, d, v) with a
fractional value closest to 1 is selected. This branching pri-
ority is established as in most cases an integer surgical case
schedule leads to a set of integer NDA columns. In the pro-
posed diving heuristic, these selected columns are (partially)
fixed via assigning the included surgical cases to particu-
lar time slots for SCS columns and to specific nurses for
NDA columns. In order to fix specific assignment variables
according to the selected column, the proposed diving heuris-
tic thrives on two concepts, i.e.

Dimension
The selected dimension refers to the components of the

surgical case schedule or nurse duty assignment schedule for
which variables are fixed. The dimension is defined by the
dimension characteristic and the dimension size.

– The dimension characteristic refers to the feature of the
selected SCS column j∗ or NDA column q∗ that is con-
sidered for variable fixing and may involve components
at the level of the patient, room and day for SCS columns
and components at the level of the shift forNDAcolumns.

– The dimension size is defined as the number of compo-
nents of the relevant dimension characteristic for which
variables are fixed. The components are prioritised and
selected based upon the number of surgical assignments
included, i.e. the higher the number of surgical assign-
ments, the higher the priority. E.g. if the dimension
embodies two days, two days are selected out of the
planning horizon based upon the number of surgical
assignments.

Only the surgical cases of the selected components are fixed
according to SCS column j∗ or NDA column q∗. Hence,
when the selected dimension of an SCS column is different
than a single day, we do not fix all surgical cases included
in column j∗. In contrast to traditional diving heuristics, this
feature allows us to only partially fix the assignments of the
selected column. Using this concept, we can control the num-
ber of surgical case assignments fixed at each node of the tree.
Downgrading the dimension increases the number of nodes
visited and the depth of the tree.

Figure 2 illustrates the diving tree using a patient, an
operating room and a day as the relevant dimension and a
branch-and-price tree. In these figures, the grey nodes rep-
resent the visited nodes, the black nodes refer to the best
incumbent solution found and the white nodes are indicated
in the diving trees to make the comparison with the branch-
and-price tree more apparent as these nodes are not visited in
the diving trees. The branch-and-price tree (Fig. 2a) consists
of a large number of grey nodes visited, and the branching
is typically done based on the patient level. Figure 2b repre-
sents a diving tree using one patient as relevant dimension.
Note that the diving tree visits one node on each level of
the branch-and-price tree. Figure 2c, d represents the div-
ing trees with one operating room or one day respectively
as dimension. These dimensions comprise multiple patient
assignments such that not every layer in the branch-and price
tree is visited. The diving tree in Fig. 2c thriving on the oper-
ating room as dimension has a depth of three assignments,
indicated by the number of branches with solid lines, to find
an integer incumbent solution, whereas the diving tree in
Fig. 2d using the day as dimension characteristic needs only
two assignments to find an incumbent solution.
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Fig. 2 Illustration of the visited nodes in (a) a branch-and-price tree and diving trees with dimension characteristic (b) Patient (c) Room (d) Day

Flexibility
Thevariables included in the selected dimensionmay refer

to either the involved pricing problem variables or the master
problem variable indicating whether flexibility is respec-
tively allowed or not in the further search for a heuristic
solution.

– Flexibility = OFF
In case variables are fixed according to the involvedmas-
ter variable, all surgical cases related to the selected
dimension are assigned to a particular time slot listed
by SCS column j∗, i.e. pxitrd = 1. The assignment of
other surgeries is not allowed for the considered dimen-
sion of column j∗, and relevant assignment prohibition
constraints, i.e. pxitrd = 0, are imposed. In this way,
the surgical case schedule is identical to the schedule
reflected by the selected column j∗ and additional flex-
ibility is not granted. When the dimension embodies an
entire column, i.e. a single day and all operating rooms,
the variable fixing according to the involved master vari-
ables resembles the classic diving heuristic that fixes an
entire column variable at each node of the tree.

– Flexibility = ON
In case reference is made to the involved pricing vari-
ables only, all surgery assignments to a particular time
slot listed by SCS column j∗ are fixed, i.e. pxitrd = 1.
If possible, other surgical assignments can be added to
the selected dimension in the subsequent search for an
integer solution. E.g. if the dimension involves an oper-
ating room, all surgeries performed in this operating room
according to column j∗ are fixed and other surgical cases
may be included in the surgery timetable for the operat-
ing room in subsequent nodes of the diving tree. In this
way, flexibility is installed in the composition of an SCS
column.

When an NDA column is selected, a similar reasoning can
be applied. All surgical cases listed by column q∗ related
to the selected dimension are assigned to a particular nurse,
i.e. hindv = 1. In case the variables are fixed according to
the involved master variable, no additional assignments are
allowed and assignment prohibition constraints are imposed,
i.e. hindv = 0 for all other assignments of surgical cases to
nurses.
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Table 2 Parameter settings
characterising the problem size

Parameter Description Settings

AvgI Average total number of surgical cases in the planning horizon 10–15–20–30

|R| The number of operating rooms 2–4

|V | The number of available shifts on a particular day 1–3

|T | The number of time slots on a particular day 32

|D| The number of days in the planning horizon 2

5 Computational experiments

In this section, the computational performance of the pro-
posed methodology is verified. In Sect. 5.1, we discuss the
test design by describing the test instances and parameter test
settings. Section 5.2 demonstrates the performance of every
component of the algorithm and benchmarks the proposed
procedure with an MIP model solved via the commercial
optimisation package. All mathematical models are solved
usingCPLEX12.7with default optimisation parameters. The
proposed algorithm was coded in C#, and all tests were car-
ried out on anWindows PCwith Corei3 - 2.50 GHz CPU and
4 GB RAM.

5.1 Test design

In order to study the performance of the proposed solution
approach, we construct a set of problem instances by varying
the input parameters in a systematically varied and controlled
way. The considered parameters and their settings are based
upon the observation of real-life problem environments and
preliminary experiments. Table 2 presents the parameters
characterising the problem size. For computational reasons,
we limit the number of days in the planning horizon to 2.
Note that the (limited) number of operating rooms is related
to the considered cluster of surgeons or medical disciplines
for which the resources (OR, nurse) can be exchanged.

Based on the proposed parameter settings in Table 2, we
compose a full factorial design of experiments leading to 16
different classes of instances. For each class, we generated
20 instances resulting in 320 instances in total. The other
parameters are parameterised for each instance as follows,
i.e.

Surgical cases
The surgery duration ti is determined based upon a

discrete uniform distribution from the interval [1, 4]. The
minimum (maximum) surgery duration of 1 (4) time slot(s)
is selected based on the relation with the maximum (mini-
mum) number of surgical cases carried out in the hospital
under investigation. Note that this generation is done for dif-
ferent types of surgeries together and the real-life surgery
durations could not be represented by a single continuous

(Log-Normal) distribution, whichwas proposed byDay et al.
(2012).

Surgeons
The number of surgeons |S| is uniformly selected from the

interval [|R|, |R| × |D| × BFctr ]. The lower bound repre-
sents the case where the same number of surgeons is present
on each day, equal to the number of operating rooms. The
upper bound is determined based upon the number of sur-
geons that can share an operating room, i.e. the number
of blocks on each day represented by BFctr. Based upon
real-life experience, we set BFctr equal to 2 resulting in a
morning and afternoon block (Blake and Donald 2002). The
number of surgical cases on a surgeon list are determined
randomly based on a Poisson distribution with λ = AvgI

|S| .
The sum of all patients on the surgeon lists (i.e.

∑
s |ϕs |)

results in the total number of surgical cases |I | considered.
The master surgery schedule, which characterises the

input parameter Astrd , is constructed by assigning the avail-
able time slots equally to the surgeons, i.e. |R|×|D|×|T |×BFctr

|S|
time slots per surgeon. The assignment procedure starts by
randomly selecting a surgeon, day and time slot related
to the start of a block. Starting from this time slot, the
time slots for the surgeon are chronologically assigned
in a consecutive manner. This procedure is continued
until all time slots of all surgeons have been assigned.

Nursing staff
The number of nurses |N | is uniformly selected from the

interval [|R| × |V |, |R| × |V | × |D|]. The minimum (maxi-
mum) requirednumber of nurses is |R|×|V | (|R|×|V |×|D|),
i.e. each day the same (a different) set of nurses is operat-
ing. The originally announced nurse roster (ROSndv) and the
nurse preferences (Pr fndv) are complementary defined such
that the nurses have the complete flexibility to be assigned to
any shift and day and focus is given to the minimisation of
the number of nurse shift duties. Note that this is not the case
for the experiments conducted on real-life data in Section 6.

Thework organisation of nurses is done according to non-
overlapping shifts. The duration of each shift Duv is fixed
and equals |T |

|V | . |V | shifts of equal length are created starting
from the opening time of the OR department until closing
time.
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Objective function
The objective function structure is determined in dialogue

with the visited Sina Hospital (Tehran, Iran) (cf. Sect. 6).
The relation between the different objective components is
as follows, i.e. we set the Revi = 1000, cOR

r = 100 for any
operating rooms and cNv = v ×10, which implies later shifts
are more costly than earlier shifts.

5.2 Algorithm performance

In this section, we give insight into the computational perfor-
mance of the different components of the proposed solution
methodology. In Sect. 5.2.1, we analyse and benchmark the
general performance of the CGD procedure with an MIP
model solved via the commercial solver CPLEX with a time
limit of 7200 s. TheMIP model is included in “Appendix A”.
In Sect. 5.2.2, we study the performance of the column gen-
eration and the impact of the proposed speed-up techniques.
Section 5.2.3 discusses different variants of the diving heuris-
tic in order to get insight into the required settings for diving
related to the dimension and the flexibility. In the remain-
der, we report the results on all our tests using the following
symbols, i.e.

Objx the solution value (cf. Eq. 1) obtained by proce-
dure x

%Devx the lower bound deviation percentage between
the integer solution value obtained by procedure x and
the MIP model (= (ObjM I P−Objx )

ObjM I P
)

%DevLP
x the upper bounddeviationpercentagebetween

the LP solution value obtained by procedure x and the

MIP model (=
(Obj LPMI P−Obj LPx )

Obj LPMI P
)

%Gapx the relative optimality gap between the inte-
ger solution value obtained by procedure x and the
LP solution value obtained via column generation (=
(ObjCG−Objx )

ObjCG
)

%Out Px the percentage of instances that procedure x
performs better solution than the MIP procedure
%Optx the percentage of instances solved to optimal-
ity (%Gapx = 0) by procedure x
CPUx the required computational time in seconds for
procedure x
CPU Pr

y the required computational time in seconds
for solving pricing problem of type y
#Brx number of branches of type that are added during
the procedure x
#clmny number of columns of type y added via pricing
problem
#clmnHeur

y number of columnsof type y addedbyusing

heuristic procedure (cf. Sect. 4.1.2)

with x = MI P the benchmarkMIP solution pro-
cedure using the commercial solver CPLEX solving
the model in “Appendix A”with a time limit (7,200 s)

x = CG the proposed column generation

x = DH the diving heuristic

x = CGD the proposed Column Generation
based Diving heuristic

with y = SCS related to the SCS columns

y = NDA related to the NDA columns

y = − related to both SCS and NDA
types of columns

5.2.1 General performance of CGD

We first analyse the general performance of the proposed
solution methodology and its building blocks. The results of
the computational experiments are summarised in Table 3
based on the parameters characterising the problem dimen-
sions.We display the results for the column generation (CG),
the best performing diving heuristic (DH) with a dimension
equal to one day and flexibility allowed, the entire procedure
(CGD) and the MIP model.

Table 3 shows that when the average number of patients
(AvgI ) is increased, the required CPU of the MIP solu-
tion procedure (CPUMI P ) and the proposed procedure
(CPUCGD) rises as a result of the increase in complexity
of the surgical case planning and scheduling problem. The
same effect is observed when the number of shifts (|V |) rises.
The latter can be explained by the increased complexity of
the nurse re-rostering problem as a result of the larger prob-
lem size and the objective function structure, which primarily
tries to assign nurses to the earlier shifts due to the lower cost.
Only when the number of operating rooms (|R|) increases,
the required CPU time is lower as a result of the inadequate
ORcapacity.A lower number of rooms increases the resource
tightness and the complexity of selecting the appropriate set
of surgical cases.

When analysing the performance of the column genera-
tion and the postulated decomposed problem formulation,
we observe the same effects of the problem size parame-
ters on the CPU time. A higher value for the factors AvgI
and |V | (|R|) increases (decreases) the required CPUCG .
Note that when the problem complexity is limited, the col-
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Table 3 General performance of the proposed CGD procedure

AveI |R| |V | Overall

10 15 20 30 2 4 1 3

CG

CPUCG 9 19 32 490 247 28 98 177 137

#clmn− 986 2498 3084 8607 3807 3781 2448 5140 3794

%OptCG 15% 20% 0% 0% 5% 12% 12% 5% 9%

%DevLP
CGD 4.37% 3.45% 3.70% 4.63% 4.68% 3.40% 4.80% 3.28% 4.04%

CGD

CPUCGD 22 47 105 813 397 97 196 297 247

%DevCGD 0.02% 0.02% 0.02% −0.84% −0.41% 0.02% −0.09% −0.30% −0.19%

%GapCGD 0.02% 0.02% 0.27% 0.41% 0.29% 0.08% 0.20% 0.16% 0.18%

%OptCGD 35% 45% 15% 20% 30% 28% 50% 7% 29%

MIP

CPUMI P 84 1904 1956 4752 2458 1891 1294 3054 2174

%Out PCGD 45% 50% 65% 90% 55% 70% 97% 27% 62%

umn generation finds already the optimal integer solution
for some of the instances (%OptCG ). The decomposed for-
mulation strengthens the LP formulation by more than 4%
on average (%DevLP

CGD). The computational effort to build
an integer solution using the diving heuristic starting from
the fractional LP solution can be deducted by comparing
CPUCGD with CPUCG . This effort averages 109 s over all
instances and increases with the problem complexity. The
CGD heuristic solves 29% of the instances to optimality in a
limited time span. In general, the proposed algorithm deliv-
ers solutions close to the optimal solution as the optimality
gap is on average only 0.18% (%GapCGD). The optimal-
ity gap is higher for especially those larger instances with
on average 20 or 30 surgical cases. The proposed procedure
outperforms the MIP procedure in terms of solution qual-
ity and CPU time. The average time to solve the instances
to optimality is 247 s (CPUCGD). Note that this effort is
significantly smaller compared to the MIP procedure, which
amounts on average 2174 s (CPUMI P ). In terms of solution
quality, the deviation %DevCGD equals − 0.19%, denot-
ing that on average the proposed procedure returns a better
schedule quality than the MIP procedure, although the MIP
procedure uses a time limit of 7200 s. As a result, the per-
centage of instances the proposed procedure outperforms the
MIP procedure (%Out PCGD) amounts 62% and is signifi-
cantly higher for larger instances with on average 20 or 30
surgical cases.

5.2.2 Performance of the column generation step

The impact of the speed-up techniques in the column gen-
eration step is determined via the comparison of different
variants of the proposed algorithm. Each variant excludes
one specific speed-up technique leaving the rest of the algo-

rithm unchanged. In this way, we leave out the generation of
the heuristic SCS columns (w/o Heur SCS); the generation
of the heuristic NDA columns (w/o Heur NDA); the SCS
pricing problem cut (w/o Cut SCS); and the NDA pricing
problem cut (w/o Cut NDA). We also considered a version
that includes all speed-up techniques (All). Table 4 displays
the results of these variants. Note that the results are averaged
over all instance groups.

Overall, Table 4 reveals that the removal of a speed-
up technique leads to a worse performance in terms of the
computational effort (CPUCGD) compared to the proposed
algorithm (All). The computational effort to conduct the
column generation in every node of the diving tree and in
particular in the pricing step (CPU Pr

SCS and CPU Pr
NDA) has

increased when a speed-up technique is removed. This is
in particular due to the generation of a higher number of
columns via the MIP pricing step in the column generation
process (#clmnSCS and/or #clmnNDA). If we leave out the
generation of heuristic SCS columns (NDA columns), note
that the number of columns constructed during the pricing
step rises from 54 to 185 (from 1558 to 2225). Leaving out
the SCS pricing cut (‘w/o Cut SCS’) or the NDA pricing cut
(w/o Cut NDA) increases the CPU time of the pricing step
considerably due to the search for a good column in a larger
solution space.

The exclusion of a speed-up technique has no impact on
the solution quality (%DevCGD) because of the strong per-
formance of the diving heuristic that is able to come up with
final solutions close to optimality. The removal of the fast
generation of heuristic columns (w/oHeur SCS andw/oHeur
NDA) restricts the number of eligible columns and leads to a
set of columns with similar solution quality generated via the
pricing problem. As a result, the diving heuristic is limited in
its selection in the nodes of the diving tree to find a feasible
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Table 4 Impact of speed-up
techniques

w/o w/o w/o w/o All
Heur SCS Heur NDA Cut SCS Cut NDA

CG

#clmnHeur
NDA 304 0 1955 2015 2045

#clmnNDA 2076 2225 1553 1541 1558

#clmnHeur
SCS 0 111 135 136 136

#clmnSCS 185 60 56 53 54

CPU Pr
NDA 29 53 18 64 16

CPU Pr
SCS 184 146 172 143 150

DH

#BrDH 3.44 3.46 3.46 3.16 3.23

CPUDH 73 71 112 82 84

CGD

CPUCGD 251 263 249 288 247

%DevCGD −0.19% −0.19% −0.19% −0.19% −0.19%

%GapCGD 0.18% 0.18% 0.18% 0.18% 0.18%

solution and requires more branching (BrDH ) leading to a
larger diving tree with a higher number of visited nodes.

5.2.3 Impact of the parameter settings for the diving
heuristic

In order to obtain insight into the performance of the diving
heuristic, we vary the settings for the parameters dimension
and flexibility, described in Sect. 4.2. Table 5 displays the
results for the most relevant settings, i.e.

– Dimension = All days, Flexibility = OFF
The diving heuristic selects the most fractional column
for every day and fixes these entire columns to a positive
integer value. These parameter settings result in an inte-
ger surgical case schedule in the root node of the diving
tree. Dimension = One day, Flexibility = OFF
At eachnodeof the diving tree, the divingheuristic selects
the most fractional column in the planning horizon and
assigns this entire column to a positive integer value, fix-
ing the surgical case schedule for one particular day.

– Dimension = One day, Flexibility = ON
At eachnodeof the diving tree, the divingheuristic selects
the most fractional column in the planning horizon and
assigns the surgical cases contained in this column to their
indicated time slots. Note that the surgical case schedule
of the involved day can be modified later in the diving
tree by including additional surgical cases.

– Dimension = One room, Flexibility = ON
At eachnodeof the diving tree, the divingheuristic selects
the most fractional column in the planning horizon and
assigns the surgical cases contained in this column to
their indicated time slots only for the operating room

with the highest number of surgical cases. Note that the
surgical case schedule of the involved room and day can
bemodified later in the diving tree by including additional
surgical cases.

– Dimension = One patient, Flexibility = OFF
At eachnodeof the diving tree, the divingheuristic selects
the surgical casewith the highest number of different start
times according to the columns in the LP solution. This
surgical case is assigned to the time slot indicated by the
columnwith the largest fractional value, closest to 1. This
assignment is fixed and cannot be modified in later nodes
of the diving tree.

These versions of the diving heuristic are compared with a
branch-and-price procedure that branches upon the assign-
ment of individual patients (i.e. the dimension equals one
patient). In contrast to the diving heuristic, the branch-and-
price is an optimal procedure for which backtracking is
possible. Hence, as assignments can be changed later in the
branch-and-price tree, flexibility is allowed.

Overall, Table 5 reveals that a larger dimension decreases
the computational effort (CPUCGD) as a larger dimension
decreases the number of created branches in the diving
tree and thus the number of visited nodes (#BrCGD). A
larger dimension, however, leads a lower solution quality
(%DevCGD). The solution quality is best when the dimen-
sion is set at the level of an individual patient and is worst
when the dimension embodies all days. Note that there is no
difference when the dimension is set to one day or one room.

If surgical case schedules can bemodified, i.e. flexibility is
allowed, the required computational effort increases but the
performance (%DevCGD) of the heuristic improves. Adding
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Table 5 Impact of different
dimensions and flexibility on the
diving heuristic

Diving heuristic Branch and Price

Specification

Dimension All days One day One day One room One patient One patient

Flexibility OFF OFF ON ON OFF ON

DH

#clmn− 1628 2015 3794 6391 4050 26023

#BrDH 0.0 3.3 4.2 5.3 12.9 95.5

%DevDH 0.71% 0.19% −0.19% −0.19% −0.23% −0.24%

%GapDH 1.08% 0.56% 0.18% 0.18% 0.14% 0.00%

CGD

CPUCGD 151 175 247 288 707 4024

%DevCGD 0.71% 0.19% −0.19% −0.19% −0.23% −0.24%

%GapCGD 1.08% 0.56% 0.18% 0.18% 0.14% 0.00%

flexibility increases the number of branches and the number
of columns generated.

The branch-and-price attains the optimal solution for
every instance (%GapCGD = 0.00%) and leads naturally
to the best solution quality. However, due to the large num-
ber of generated columns and created branches, theCPU time
is significantly higher (4024 s). As a result, based upon these
considerations, we propose a diving heuristic characterised
by a dimension of a single day whereas flexibility is allowed.

6 Validation on real-life case study

The performance of the proposed algorithm has been tested
and validated on a real-life case study involving the SinaHos-
pital (Tehran, Iran). The Sina Hospital is one of the largest
andmost prominent hospitals in Iran accounting for 338 beds
and more than 700 staff members. More than 7000 surgical
cases are operated each year in the operating room depart-
ment. In this section, we discuss the input data provided by
the hospital (Sect. 6.1) and the results of our experiments
(Sect. 6.2). The goal of the computational experiment on the
real-life case study is threefold. First, we want to verify if the
proposed algorithm obtains an acceptable performance when
real-life data is considered. Second, we evaluate the potential
of the proposed approach by making the comparison with
the current scheduling practices at the hospital. Third, we
demonstrate the value of integrating the surgical case plan-
ning and scheduling problem with the nurse re-rostering and
surgical case assignment by assessing the solution quality of
the integrated approach.

6.1 Input data real-life case study

The hospital has several operation wards and provided us
with information about the neurosurgery operating ward in
particular related to its organisation, surgeries and staff, i.e.

Organisation
This ward contains four operating rooms and one addi-

tional operating room for emergency surgeries. Each time
slot represents 30minutes, dividing each day in 48 time slots.
Surgical cases

The provided surgery data relate to the surgery duration
and the nurse requirements. The surgery duration, which
is represented by a number of time slots, is determined by
rounding the actual duration to the closest integer number of
time slots. The nurse requirements, obtained from real-life
data, vary case per case in the range [1, 3].
Surgeons

The master surgery schedule embodies a timetable for 21
different surgeons.
Nursing staff

There are in total 40 surgical nurses in this ward who
perform operations in three different shifts. The nurse ros-
ter is taken from the hospital. The nurse preferences were
discussed with the head nurse responsible for preparing the
nurse roster.

The obtained data are related to 10 weeks from January to
April in 2016. In accordance with the hospital manager, we
set the relevant planning horizon for the problem under study
to five days, i.e. the problem is solved on a weekly basis for
the next upcoming week. The objective function structure is
already discussed in Sect. 5.1.

6.2 Validation of the algorithm on real-life data

Table 6 shows the results for the proposed methodology
applied to the real-life case study. We present the result
for each week and the average results for all weeks. We
display the number of surgeries (|I |), the computational
effort (CPUCGD) and the solution quality via the optimal-
ity gap (%GapCGD). In addition, we make the comparison
between the proposed methodology (CGD) and the cur-
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22 rent scheduling method (‘Cur’) related to the number of

operating rooms opened (
∑

rd erd ), the number of early
nurse shift duties (

∑
nd,v=1 nxndv), the number of late nurse

shift duties (
∑

nd,v=2 nxndv), the number of night shift
duties (

∑
nd,v=3 nxndv) and the total number of shift duties

(
∑

ndv nxndv). nxndv indicates the binary assignment of
nurse n to shift v on day d.

The results reveal that the proposed methodology is able
to reach high-quality feasible solutions with an average opti-
mality gap (%GapCGD) of 0.96% in a reasonable average
computation time of 3530 s (CPUCGD). This allows us to
conclude that the CGD algorithm leads to a very satisfactory
performance taking real-life data into account. Note that the
standard MIP solver is not able to come up with a solution
because of memory problems.

Further, Table 6 allows the comparison of the solution
quality obtained by the CGD algorithm solution and the cur-
rent procedure (Cur) in the hospital under consideration. It
is important to point out that both approaches were able to
schedule all surgical cases. However, as a result of a better
planning and scheduling of the surgical cases, the proposed
CGD algorithm needs only 18 operating rooms, which is less
compared to the 22 rooms required by the current approach
of the Sina Hospital. In addition, the proposed approach suc-
cessfully leads to a smaller number of nurse shift duties
resulting from a better coordination of the operating room
resources via the combined surgical case scheduling with
nurse re-rostering and nurse duty assignment. In particular,
the proposed approach was able to significantly reduce the
number of night shift duties. Overall, we reduced the total
number of assigned shift duties from 755 to 457 over the
10 weeks demonstrating the more efficient use of operating
room resources as a result of the proposed approach.

6.3 Value of integration

The SCPS-NRRSA problem under study considers different
types of decisions related to (1) the surgical case planning and
scheduling problem (SCPS), (2) the nurse re-rostering prob-
lem (NRR) and (3) the nurse surgical assignment problem
(SA). These decisions are considered simultaneously in order
to optimise the utilisation of the resources (OR time, nurses)
via profit maximisation and to minimise the number of nurse
requirements for each shift. The latter is realised by linking
the nurse re-rostering decision to the nurse surgical assign-
ment decision such that the nurse roster is operationalised
and nurses can operate different (non-overlapping) patients
in different operating rooms instead of assigning nurses to
one more general shift duty.

As described in the literature review, these decisions are
typically not integrated and are taken in a sequential man-
ner. In order to discern the value of the integration of these
problems and to justify the definition of the problem under
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Table 7 Results for the value of
integration on real-life data

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Cur

N RR − ∑
ndv nxndv 45.7 57.6 49.9 59.3 –

SA − ∑
ndv nxndv 45.7 49 49.9 55.9 75.5

# Shift changes 0 0 12.3 14.3 0
∑

rd erd 18.2 17.9 16.1 15.6 22.4

CPUCGD 3530 1745 8242 5721 –

study, we test different degrees of integration and evaluate
four scenarios, i.e.

– Scenario 1: SCPS 	 NRR 	 SA
This scenario represents the SCPS-NRRSA problem
under study described in Sect. 3 that integrates the three
different problems in one stage.

– Scenario 2: SCPS 	 NRR | SA
In the first stage, this scenario integrates the SCPS and
NRR problem such that the nursing resources are taken
into account when scheduling the surgical cases. This
problem assigns the nurses to shift duties related to a
specific operating room. In the second stage, the nurses
are further assigned to specific surgical cases by solving
the SA problem to minimise the number of shift duties.

– Scenario 3: SCPS | NRR 	 SA
In the first stage, the surgical case schedule is com-
posed without considering the schedule of the nursing
resources. Only the size of the nursing workforce is taken
into account. In the second stage, the NRR and SA prob-
lems are solved in an integratedmanner, i.e. the originally
announced nurse roster is adapted to the composed surgi-
cal case schedule and simultaneously nurses are assigned
to specific surgical cases to minimise the number of shift
duties.

– Scenario 4: SCPS | NRR | SA
This scenario solves the three problems in a sequential
manner. In the first stage, the surgical case schedule is
composed. In the second stage, the nurses are re-rostered
according to the composed surgical case schedule. In a
third stage, the number of shift duties is minimised by
assigning the nurses to specific surgical cases.

Table 7 shows the results when applying the different sce-
narios to the real-life data and makes the comparison with
the current schedule of the hospital (Cur ). These scenarios
are evaluated based on the average number of nurse shift
duties resulting after the nurse re-rostering step (N RR −∑

ndv nxndv), the number of nurse shift duties resulting after
the nurse surgical assignment step (SA − ∑

ndv nxndv), the
number of changed nurse shift duties as a result of re-
rostering (#Shift changes), the number of operating rooms
opened (

∑
rd erd ) and the computational effort (CPUCGD).

Note that when the NRR and SA problems are solved in
an integrated manner, there is no difference in the num-
ber of shift duties, i.e. ‘N RR − ∑

ndv nxndv’ is equal to
‘SA − ∑

ndv nxndv’. The results are averaged over the 10
real-life instances.

Table 7 shows that the integration of the SCPS problem,
the NRR problem and/or the SA problem (Scenario 1, 2, 3)
reduces the number of shift duties but increases the num-
ber of operating rooms used compared to a pure sequential
approach (Scenario 4). This results from the fact that in the
sequential approach more surgical cases are assigned to one
operating room to minimise the cost of opening operating
rooms and the nursing resources are not considered. The
fully integrated approach (Scenario 1) leads to the small-
est number of nurse shift duties. Note that both Scenario
1 and 2 dominate the current schedule (Cur ) as both inte-
grated scenarios perform better in terms of number of shift
duties, number of shift changes and number of operating
rooms opened.

The value of introducing the SA problem in the problem
definition can be discerned when comparing the num-
ber of nurse shift duties after the nurse re-rostering step
(N RR − ∑

ndv nxndv) versus the number of nurse shift
duties after the nurse surgical assignment step (SA −∑

ndv nxndv). The results for scenarios 2 and 4 show that
a smaller number of nurse shift duties is installed after the
nurse surgical assignment step. The SA problem consid-
ers the start times of the surgical times to perform specific
nurse assignments whereas the NRR problem assigns nurses
only to more general shift duties. Moreover, integrating
the NRR problem and the SA problem further decreases
the number of shift duties, which can be concluded by
observing the number of nurse shift duties after the nurse
surgical assignment step of Scenario 1 (45.7) versus Sce-
nario 2 (49) and Scenario 3 (49.9) versus Scenario 4
(55.9).

When the NRR problem is not integrated with the SCPS
problem (Scenario 3 and 4), a number of shift duties needs
to be changed whereas this is not the case for Scenario 1 and
2. Hence, solving the SCPS problem in an isolated manner
will lead to the re-scheduling of nurses.
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7 Conclusion

Different decisions related to the allocation of resources in
the operating room department are based on the expected
patient demand.However, the actual patient demandmay dif-
fer from this expected demand leading to the inefficient use of
resources. In this paper, we aim to overcome these deficien-
cies by integrating the surgical case planning and scheduling
problem and include the nurse re-rostering decision in order
to utilise the operating room resources as efficiently as possi-
ble and maximise the operating room profit. To that purpose,
nurses are assigned to specific surgical cases in order to min-
imise the number of shift duties in an accurate manner. We
propose a mathematical formulation for the problem under
study and develop a two-phase heuristic procedure thriving
on column generation and a diving heuristic to drive frac-
tional solutions to integrality. The procedure is tested on a
large set of artificial problem instances that are generated in
a structured and controlled manner and are validated based
upon a real-life problem environment. We indicate that the
proposed procedure is able to obtain (near-)optimal solutions
in an acceptable time span and demonstrate the contribution
of each component in the algorithm. The CGH algorithm
outperforms the MIP solver for the larger instances in terms
of solution quality despite the fact that the running times of
the general MIP solver are significantly higher. Moreover,
we conducted a real-life case study involving the Sina Hos-
pital in Iran. The computational experiments demonstrated
the more efficient utilisation of the operating room resources
as a result of using the proposed approach and integrating
the SCPS problem with nurse re-rostering and the nurse duty
assignment problem.

Our intentions for future research are twofold. First, since
we explore the operational decision phase, we aim to incor-
porate uncertainty (e.g. the uncertain duration or arrival of
surgical cases) and propose a stochastic optimisation prob-
lem to build more robust and/or stable schedules. Second, we
aim to extend the problemdefinition to includemore resource
types on top of the considered resources in this paper, i.e. the
operating rooms and surgical nurses. In this perspective, we
aim to include the entire surgical team (surgeons, heteroge-
neous nurses, anaesthetists, etc.) and special operating room
equipment to better plan and schedule the surgical cases.

A General MIP formulation

We defined the general mathematical formulation for SCPS-
NRRSA problem in the following:

Additional decision variables

erd 1, if OR r is open on day d; 0, otherwise

nxndv 1, if nurse n is assigned to shift v, day d; 0,
otherwise

npxni 1, if nurse n is assigned to surgical case i; 0,
otherwise

Snnd Duty start time of nurse n on day d
Cnnd Duty finish time of nurse n on day d
DDiī 1, if surgical case i and ī have been performed

in a same day ; 0, otherwise

Max Z =
∑

i trd

Revi × pxitrd −
∑

r

CoRr × ei

−
∑

ndv

CoVv × nxndv (33)

∑

tdr

pxitrd ≤ 1 ∀i (34)

∑

i

pxitrd ≤ 1 ∀t, r , d (35)

∑

ī

t̄=t+ti∑

t̄=t+1

px
ī t̄rd

≤ BM(1 − pxitrd) ∀i, t, r , d (36)

∑

i t

pxitrd ≤ BM × erd ∀r , d (37)

Si =
∑

trd

t × pxitrd ∀i, t, d (38)

Ci = Si + ti ×
∑

trd

pxitrd ∀i, t, d (39)

∑

n

npxni = nui ×
∑

rdt

pxitrd ∀i (40)

Cnnd ≥ Ci − BM × (1 − npxni )

− BM × (1 −
∑

r

tpxitrd) ∀n, i, d (41)

Snnd ≤ Si + BM × (1 − npxni )

+ BM × (1 −
∑

r

tpxitrd) ∀n, i, d (42)

Cnnd ≤
∑

v

EtVv × nxndv ∀n, d (43)

Snnd ≥
∑

v

StVv × nxndv ∀n, d (44)

∑

vd

nxndv ≤ MA ∀n (45)

∑

v

nxndv ≤ 1 ∀n, d (46)

∑

r t

(pxitrd + pxī trd) − 1 ≤ DDiī ∀i, ī, d (47)
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Si ≥ Sī − BM × (1 − wi ī ) ∀i, ī (48)

(Si − Cī ) + BM × Piī
+ BM × wi ī + BM × (2 − npxni − npxnī )

+ BM × (1 − DDiī ) ≥ 0 ∀n, i, ī (49)

ti × pxitrd ≤
t̄=t+ti∑

t̄=t

Ast̄rd ∀s, i ∈ ϕs, t, d (50)

nxndv ≤ ROSndv + Pr fndv ∀n, v, d (51)

pxitrd , nxndv, npxnu, DDiī , wi ī , Piī , adid , er ∈ {0, 1}
∀i, ī, n, v, t, r , d (52)

Si ,Ci , Snnd ,Cnnd ≥ 0 ∀i (53)

For the description of the objective function (Eq. 33) and
the constraints (Eqs. 34–39), we refer to the manuscript (see
Eqs. 1), 10–16). Constraint (40) assigns nurses to particu-
lar surgeries based on the nurse requirements per surgery.
Constraints (15) and (16) calculate the start and completion
time of each surgery. Constraints (41) and (42) define the
time window during which a nurse has to be on duty. The
total number of time slots is a relevant upper bound in the
right-hand side of the constraint, i.e. BM = |T |. Based on
this time window, predefined shifts are assigned to nurses
(constraints (43) and (44)). Constraint (45) stipulates that a
nurse cannot be assigned to more than MA shifts during the
planning horizon. Constraint (46) states that a nurse cannot
have more than one shift per day.

Constraint (47) checks if two surgical cases are conducted
on the same day. Constraint (48) concerns the order of two
surgical cases. Constraint (49) stipulates that two overlap-
ping surgery should not be assigned to the same nurse. This
constraint is only relevant when both surgeries are conducted
on the same day (DDiī = 1). Constraint (50) implies that a
surgical case can only take place according to the availabil-
ity of its related surgeon. Constraint (51) imposes that nurses
can only be assigned to shift duties conform to their original
roster or nurse preferences. Constraints (52) and (53) state
the domain of the variables.
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