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Abstract
This paper describes a unified global constraint to model scheduling problems with unary resources, i.e., each resource can
process only a single activity at a time. In addition, the constraint enforces sequence-dependent transition times between
activities. It often happens that activities are grouped into families with zero transition times within a family. Moreover, some
of the activities might be optional from the resource viewpoint (typically in the case of alternative resources). The global
constraint unifies reasoning with both optional activities and families of activities. The scalable filtering algorithms we discuss
keep a low time complexity of O(n · log(n) · log( f )), where n is the number of tasks on the resource and f is the number of
families. This results from the fact that we extend theΘ-tree data structure used for theUnary Resource constraint without
transition times. Our experiments demonstrate that our global constraint strengthens the pruning of domains as compared with
existing approaches, leading to important speedups. Moreover, our low time complexity allows maintaining a small overhead,
even for large instances. These conclusions are particularly true when optional activities are present in the problem.

Keywords Constraint programming · scheduling · Global constraint · Unary resource · Transition times · Optional activities ·
Scalability

1 Introduction

Over the last decades, constraint programming has been suc-
cessfully applied to solve scheduling problems (Baptiste et al.
2006; Baptiste et al. 2001), while substantial improvements
are still ongoing (Laborie 2018; Laborie et al. 2018).One rea-
son for this success is the incorporation of operation research
techniques into global constraints. In addition to easing the
modeling process, they improve solution times by capturing
and efficiently solving subproblems of the main problem.
This paper describes a unified global constraint to model
unary resources with transition times and optional activities.
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Unary resourceswith sequence-dependent transition times
(also called set-up times) for non-preemptive activities are
common in real-life scheduling problems. One example is
quay crane scheduling in container terminals (Zampelli et al.
2013), where the crane is modeled as a unary resource and
transition times represent the moves of the crane on the
rail between positions where it loads or unloads contain-
ers. A second example is the continuous casting scheduling
problem (Gay et al. 2014), where a set-up time is required
between production programs. Figure 1 illustrates aminimal-
istic example of two activities running on a unary resource
with transition times.

Although efficient propagators have been designed for
the standard unary resource constraint (UR) (Vilım 2007),
transition time constraints between activities generally make
the problem harder to solve because the existing propaga-
tors do not take them into account. A propagator for the
unary resource constraint with transition times (URTT) was
recently introduced (Dejemeppe et al. 2015) as an extension
to Vilím’s algorithms, in order to strengthen the filtering in
the presence of transition times.

Unfortunately, the additional filtering quickly drops in the
case of a sparse transition timematrix, which typically occurs
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Fig. 1 Two possible schedules for two activities A1 and A2 running on
the same unary resource with transition times. They can never overlap
in time, so either activity A2 starts after activity A1 has completed,
or A1 starts after activity A2 has completed. Moreover, a minimum
transition time (represented by the arrows) must occur between the end
of an activity and its successor. Notice that the value of the transition
depends on the processing order of the activities

when activities are grouped into families with zero transition
times within a family. The reason for a weak filtering with
sparse matrices is that it is based on a shortest path problem
with free starting and ending nodes and a fixed number of
edges. The length of this shortest path drops in the case of zero
transition times. In addition, while Vilím algorithms allow
us to cope with optional activities, the approach from Deje-
meppe et al. (2015) does not support them.

The main contribution of the present paper is to intro-
duce a generalized unary resource with transition times that
unifies filtering rules and algorithms such that they con-
sider family-based transition times and optional activities.
The main asset of our approach is its scalability: we obtain
strong filtering while keeping a low time complexity of
O(n. log(n). log( f )), for n activities and f families. In gen-
eral f � n, hence the theoretical complexity is very close to
that of the propagators in Vilım (2007) and Dejemeppe et al.
(2015). The filtering is experimentally tested on instances
of the job-shop problem with sequence dependent transition
times (JSPSDTT), although it can be used for any type of
problems, e.g., with other kinds of objective function than the
makespanminimization.Wefirst consider the casewhere it is
known prior to search on which machine the activities must
be executed, and then the more general case where activi-
ties must be executed by exactly one of a set of alternative
machines. The results show that our propagator improves the
resolution time over existing approaches and is more scal-
able.

Related work As described in a recent survey (Allahverdi
et al. 2008), scheduling problems with transition times can
be classified in different categories. First, the activities can
be grouped in batches (i.e., a machine allows several activ-
ities of the same batch to be processed simultaneously).
Transition times may exist between successive batches.
A constraint programming (CP) approach for batch prob-
lems with transition times is described in Vilım (2007).

Secondly, the transition times may be sequence-dependent
or sequence-independent. Transition times are said to be
sequence-dependent if their durations depend on both activi-
ties betweenwhich theyoccur. Transition times are sequence-
independent if their durations depend only on the activity
after which they take place. The problem category we study
in this paper is non-batch sequence-dependent transition time
problems.

Over the years, many CP approaches have been developed
to solve such problems (Focacci et al. 2000; Artigues et al.
2004; Wolf 2009; Grimes and Hebrard 2010; Dejemeppe
et al. 2015). For instance, in Artigues et al. (2004), a traveling
salesman problem with time window (TSPTW), relaxation
is associated to each resource. The activities used by a
resource are represented as vertices in a graph, and edges
between vertices are weighted with the corresponding tran-
sition times. The TSPTW obtained by adding time windows
to vertices from bounds of corresponding activities is then
resolved. If one of the TSPTW routes is found unsatisfiable,
then the corresponding node of the search tree is pruned.
A similar technique is used in Artigues and Feillet (2008)
with additional propagators, which are, to the best of our
knowledge, the state of the art propagators when families
of activities are present. Grimes and Hebrard proposed an
efficient solution to job shop with transition times prob-
lems by using a simple lightweight CPmodel combined with
restarts and weighted degree search heuristics (Grimes and
Hebrard 2010). Recently, a bounded dynamic programming
approach (Ozolins 2018) has improved the state of the art of
standard benchmarks of the job shop with transition times
problem.

Paper outline Section 2 provides the background required to
read the paper. The content is then described in a top-down
fashion: Sect. 3 describes the filtering rules for the unary
resource with transition times and the different algorithms to
apply those rules. Then, we explain in Sect. 4 the data struc-
tures required by the filtering algorithms. They rely on lower
bounds for the minimum total transition time that must hold
in a given set of activities. We discuss those lower bounds in
Sect. 5. Finally, Sect. 6 compares the results of the different
existing approaches for the unary resource with transition
times on various applications.

2 Background

Non-preemptive scheduling problems are usuallymodeled in
CP by associating three variables to each activity i : si , ci , and
pi 1 representing, respectively, the starting time, completion
time, and processing time of i . These variables are linked

1 In this paper we assume without loss of generality that pi is constant.
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Fig. 2 Example of a transitionmatrix tt and its induced transition graph

together by the following relation: si+pi = ci .Dependingon
the problem, the scheduling of the activities can be restricted
by the availability of different kinds of resources required
by the activities. In this paper, we are interested in the unary
resource (sometimes referred to as machine or disjunctive
resource) and the propagators associated to a single unary
resource. Let T be the set of activities requiring the unary
resource. The unary resource constraint prevents any two
activities in T from overlapping in time:

∀i, j ∈ T : i �= j �⇒ (ci ≤ s j ) ∨ (c j ≤ si )

Transition times The unary resource can be generalized
by requiring transition times between activities. They are
described by a square transition matrix tt in which tti, j ,
the entry at line i and column j , represents the minimum
amount of time between the activities i and j when i directly
precedes j . We assume that transition times respect the trian-
gular inequality. That is, inserting any activity between two
activities never decreases the transition time between these
two activities: ∀i, j, k ∈ T : tti, j ≤ tti,k + ttk, j .

The unary resource with transition times constraint
imposes the following relation:

∀i, j ∈ T : i �= j �⇒ (ci + tti, j ≤ s j ) ∨ (c j + tt j,i ≤ si )
(URTT)

An example of a transition matrix is given in Fig. 2, where
we can notice that it is not symmetric (e.g., tt1,2 = a �= c =
tt2,1 in Fig. 2). As exemplified, it induces a transition graph
that will be used in the forthcoming sections.

Family-based transition times When transition times are
present, it is often the case that activities are grouped into
families on which the transition times are expressed. For-
mally, we denote by Fi the family of activity i and by F the
set of all families. Moreover, for a given set of activities Ω ,
we write FΩ = {Fi | i ∈ Ω}. In a family-based setting, the
transition times are described as a square family transition
matrix ttF of size |F |. The transition time between two activ-

ttF =
(
0 a
b 0

)
1

2

ab tt =

⎛
⎜⎜⎜⎝

0 0 a a a
0 0 a a a
b b 0 0 0
b b 0 0 0
b b 0 0 0

⎞
⎟⎟⎟⎠

Fig. 3 Example of a family transition matrix ttF , its induced family
transition graph, and the expanded transition matrix tt for five activities
with F1 = F2 = 1 and F3 = F4 = F5 = 2

ities i and j is the transition time between their respective
families Fi and Fj , and it is zero if Fi = Fj :2

∀i, j ∈ T : tti, j = ttFFi ,Fj
∧

(
Fi = Fj �⇒ ttFFi ,Fj

= 0
)

(1)

Given a set of activities, their families and a transition
matrix between families, ttF one can expand ttF into a tran-
sitionmatrix between activities tt. tt is then larger and sparser
than ttF . An example of this expansion is given in Fig. 3,
where the family transition graph induced by ttF is also illus-
trated. Notice that tt = ttF is the special case occurringwhen
each activity is in its own family.

Optional activities Some activities can optionally be used by
the resource, i.e., it is unknown a priori if a given optional
activity must be processed by the resource in the final sched-
ule. This case typically occurs when an activity must run
on one of several alternative resources (Focacci et al. 2000),
or when so-called conditional time-intervals (Laborie and
Rogerie 2008) are available in the solver. Following Vilím’s
notation, we call R the set of regular activities (known to be
running on the resource) and O the set of optional activities,
with R ∪ O = T and R ∩ O = ∅.

To model optional activities, an additional boolean vari-
able vi is used to represent the fact that the activity i is used
by the machine. We define R = {i ∈ T : vi }. The unary
resource with transition times constraint involving optional
activities imposes the following relation:

∀i, j ∈ T : i �= j ∧ vi ∧ v j �⇒ (ci + tti, j ≤ s j ) ∨ (c j + tt j,i ≤ si )
(URTTO)

Precedence graph The precedence graph G = 〈T , E〉 is
a data structure (Brucker 1999; Focacci et al. 2000) used

2 A more general case is when a positive transition ttFf , f must occur
between activities of the same family f . In this case, one can fall back to
zero transition timeswithin a family, assuming ttFf , f ≤ ttFf ′, f ∀ f ′ ∈ ttF .
One can artificially: (1) increase the duration of activities of the family f
with ttFf , f ; and (2) decrease the transition times from family f by ttFf , f .
Yet, one cannot always perform this trick, so we keep the hypothesis in
the rest of the paper that ttFf , f = 0.
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to maintain the precedences between activities of a given
resource. In this graph, each vertex represents a given activ-
ity, and there is a directed edge from a vertex i to vertex j if
and only if activity i precedes activity j , i.e., ci+tti, j ≤ s j . In
Barták and Čepek (2010), the authors describe propagation
rules for the precedence graphwhile taking optional activities
into account.

One can use the precedence graph to make search deci-
sions by adding edges in order to impose precedences
between activities. A recent CP approach (Grimes and
Hebrard 2010) demonstrated experimentally that branching
on the precedences can be effective,3 using smart search tech-
niques based on a domain/weighted-degree heuristic, rather
than sophisticated propagators.

Finally, from a filtering perspective, additional prece-
dences can be detected by computing the transitive closure
of the graph.

Bounds of a set of activities Ω The earliest starting time of
an activity i is denoted esti and its latest starting time is
denoted lsti . The domain of si is thus the interval [esti ..lsti ].
Similarly, the earliest completion time of i is denoted ecti
and its latest completion time is denoted lcti . The domain of
ci is hence the interval [ecti ..lcti ]. These definitions can be
extended to a set of activities Ω . For instance, estΩ is the
earliest time when any activity in Ω can start and ectΩ is the
earliest time when all activities in Ω can be completed. We
also define pΩ = ∑

j∈Ω p j to be the sum of the processing
times of the activities in Ω . While one can directly compute
estΩ = min

{
est j : j ∈ Ω

}
and lctΩ = max

{
lct j | j ∈ Ω

}
,

it is NP-hard (Vilım 2007) to compute the exact values of
ectΩ and lstΩ . Instead, one usually computes a lower bound
for ectΩ and an upper bound for lstΩ , as we will see in this
paper.

3 Global filtering rules and propagation
algorithms

This section first describes the inference rules of the unary
resource without transition times. Those rules are then
extended in order to handle transition times.We also describe
the different algorithms in order to compute them efficiently.
The data structures required by the algorithms are described
in Sect. 4.

3.1 Filtering rules for the unary resource

The filtering rules presented in Vilım (2007) for the UR con-
straint fall into several categories known as Overload Check-

3 The approach of Grimes and Hebrard (2010) does not actually use
a precedence graph structure explicitly, but reifies the precedence con-
straints and branches on the associated boolean variables.

ing (OC), Detectable Precedences (DP), Not-First/Not-Last
(NF/NL), and Edge Finding (EF). They are valid for the gen-
eral definition of ectΩ of the earliest completion time of a
set of activities Ω ⊆ T . However, since the computation of
its exact value is NP-hard, their implementation relies on an
efficient computation of a lower bound ectLB0Ω , defined as:

ectLB0Ω = max
Ω ′⊆Ω

{estΩ ′ + pΩ ′ } (2)

To define the different rules, we use the notation ectΩ ,
although ectLB0Ω is used in practice, as we will use a stronger
lower bound under the presence of transition times later in
this paper. Each rule has a symmetric counterpart for lstΩ
that can easily be retrieved from the given definitions.4

Overload checking This rule tries to detect an inconsistency
given the current domains. Intuitively, for a set of regular
activities Ω ⊆ R, if the earliest completion time is found
to be larger than the latest completion time, an infeasibility
is detected. Additionally, if Ω is extended with an optional
activity i such that there would be an inconsistency, we know
that the activity cannot be executed by themachine. Formally,
we have:

∀Ω ⊆ R,∀i ∈ (T \Ω) : ectΩ∪{i} > lctΩ∪{i} �⇒ ¬vi
(OC)

Notice that if i ∈ R and vi = false, the constraint is
infeasible.

Detectable precedences This rule detects new precedences
between pairs of activities. The reasoning uses the set of
activities DPrec(R, i) that can be detected as preceding a
given activity i based on the current domains. It is defined as:

DPrec(R, i) = { j �= i ∈ R : ecti > lst j } (DPrec)

The inference rule states that the earliest start time of an
activity i must at least be the earliest completion time of
the set of activities that are detected as preceding i , that is
DPrec(R, i). Formally:

∀i ∈ T : vi �⇒ esti ← max(esti , ectDPrec(R,i)) (DP)

Notice that only the activities known to be running on the
resource can be used to update other activities, hence the use
ofDPrec(R, i) and notDPrec(T , i). In the contrary case, all
activities (including optionals) can be updated.

Precedences that do not belong to DPrec(R, i), but
nevertheless must be respected, are called non-detectable

4 Practical implementations apply the symmetric rules by applying the
original rules on mirrors of the original activities. The mirror activity
m of an activity i is modeled with the variables sm = −ci , cm = −si
and pm = pi .
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precedences (Vilım 2007). They originate from the problem
itself or branching decisions.Non-detectable precedences are
not enforced by the DP rule but with binary propagators or a
propagator based on a precedence graph.

Not-lastWhen a given activity i has a latest starting time that
is strictly smaller than the earliest completion time of a set
of regular activities Ω , this activity cannot be scheduled as
the last one of the set Ω ∪ {i}. Its latest completion time can
therefore be reduced to the maximum latest start time of the
activities in Ω:

∀Ω ⊆ R,∀i ∈ (T \Ω) : vi ∧ ectΩ > lsti (NL)

�⇒ lcti ← min(lcti ,max
j∈Ω

lst j )

Edge finding This rule detects new edges in the precedence
graph: if adding an activity i to a set of activities Ω leads
to an earliest completion larger than the latest completion of
the set, then the activity i must succeed the activities in Ω:

∀Ω ⊆ R,∀i ∈ (T \Ω) : vi (EF)

∧ ectΩ∪{i} > lctΩ �⇒ esti ← max(esti , ectΩ))

Update of domains of optional activities Except in the case
of the Overload Checking rule, the domain of an optional
activity is updated only when it is known to be running on
the resource (i.e., vi = true). However, the inference about
the domain of this activity if it is running on the resource can
be useful to other inference rules. Therefore, the domain is
not updated until vi = true, but the inference on the domain
if the activity runs on the resource is saved internally and used
by all inference rules. Example 1 illustrates a case where this
is beneficial.

Example 1 Let us consider four activities, as represented in
Fig. 4. Green activities are regular activities, while A3 is
optional. If the DP rule is applied to the set {A1, A2, A3}
and A3 is a regular activity, est3 will be updated to 9 (see
the red bracket). A3 is optional, so we only save this update
internally. If the OC rule is applied to the set {A3, A4} with
est3 = 9 instead of est3 = 6, one can deduce that v3 = false.

Filtering limitation due to transition times Under the pres-
ence of transition times, the rules can be improved, as
illustrated in Example 2. In the next section, we strengthen
the lower bound of ectΩ so that it takes the transition times
into account.

Example 2 Consider a set of three regular activities Ω =
{1, 2, 3} as shown in Fig. 5. Consider also, for simplicity,
that all pairs of activities from Ω have the same transition

t0 5 10

A1

A2

A3

A4

Fig. 4 The inference that can be made on optional activities must be
communicated to other inference rules. Activity A3 is optional and the
others are regular. The DP rule applied to the set {A1, A2, A3} leads to
est3 = 9. Applying the OC rule the set {A3, A4} with that information
allows inferring v3 = false

t0 5 10 15

A1

A2

A3

Fig. 5 Example illustrating the missed failure detection of OC when
not considering transition times

time tti, j = 3∀i, j ∈ {1, 2, 3}. The OC rule detects a failure
when ectLB0Ω > lctΩ . The lower bound is:

ectLB0Ω = estΩ +
∑
i∈Ω

pi = 0 + 5 + 5 + 3 = 13

As we have lctΩ = maxi∈Ω lcti = lct2 = 17, the
OC rule from Vilım (2007), combined with the transition
times binary decomposition (Eq. URTTO), does not detect
a failure. However, as there are three activities in Ω , at
least two transitions occur between these activities and it
is actually not possible to find a feasible schedule. Indeed,
taking these transition times into account, one could compute
ectΩ = 13 + 2 · tti, j = 13 + 2 · 3 = 19 > 17 = lctΩ , and
thus detect the failure.

3.2 Extending the filtering rules with transition
times

Let ΠΩ be the set of all possible permutations of activities
in Ω . For a given permutation π ∈ ΠΩ , where π(i) is the
activity taking place at position i , we can define the total time
spent by transition times, ttπ , as follows:
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ttπ =
|Ω|−1∑
i=1

ttπ(i),π(i+1)

A lower bound for ectΩ that considers transition times can
then be defined as:

ectLB1Ω = max
Ω ′⊆Ω

{
estΩ ′ + pΩ ′ + min

π∈ΠΩ′
ttπ

}
(3)

Unfortunately, computing this value is NP-hard, as comput-
ing the optimal permutation π ∈ Π minimizing ttπ amounts
to solving a traveling salesman problem. Since embedding an
exponential algorithm in a propagator is generally impracti-
cal, a looser lower bound should be used instead.

For each possible subset of cardinality k ∈ [0..|T |], we
compute the smallest transition time permutation on the set
T of all activities requiring the resource:

tt(k) = min
{Ω ′⊆T : |Ω ′|=k}

{
min

π∈ΠΩ′
ttπ

}
(4)

For each k, the lower bound computation thus requires one
to find the shortest node-distinct (k−1)-edge path between
any two nodes of the transition graph (see Sect. 2), which
is also NP-hard, as the traveling salesman problem can be
reduced to this problem when k = |T |. Since one has to
solve |T |NP-hard problems in pre-computation (one for each
cardinality k), we proposed in Dejemeppe et al. (2015) vari-
ous lower bounds to achieve the computation in polynomial
time. They are described in Sect. 5. Notice that we have
tt(0) = tt(1) = 0.

Our final lower bound formula for the earliest completion
time of a set of activities, making use of pre-computed lower
bounds on transition times, is:

ectLB2Ω = max
Ω ′⊆Ω

{
estΩ ′ + pΩ ′ + tt

(|Ω ′|)} (5)

The different lower bounds of ectΩ can be ordered as follows:

ectLB0Ω ≤ ectLB2Ω ≤ ectLB1Ω ≤ ectΩ

Limitation An important limitation of this approach arises
in the context of sparse transition matrices, which typically
occurs when activities are grouped in families (see Sect. 2).
Indeed, when there exists a node-distinct path with K zero-
transition edges, we have: tt(k) = 0 ∀k ∈ [0 . . . K +1]. The
pruning achieved by the propagator is then equivalent to one
of the original algorithms fromVilım (2007), which has been
shown to perform poorly when transition times are involved
(see Dejemeppe et al. 2015). This is illustrated in the next
example.

Example 3 Consider again the three activities Ω = {1, 2, 3}
shown in Fig. 5 with activity 1 belonging to family F1,
activity 2 to family F2, and activity 3 to family F3. The
transition times are equal to 3 between activities from dif-
ferent families and equal to 0 between activities of the same
family. Assume that 3 additional activities (not represented)
also belong to family F1. Since the transition times between
any pair of activities from a same family is 0, we have that
tt(2) = tt(3) = 0 and ectLB2Ω = 13 = ectLB0Ω , hence the OC
of Dejemeppe et al. (2015) is unable to detect the failure.

To cope with this limitation, we will use a stronger lower
bound by counting the number of different families present
in a set Ω of activities instead of the cardinality of Ω . This
amounts to finding the shortest node-distinct (k−1)-edge
path in the family transition graph (see Sect. 2) instead of
the transition graph. Counting the number of families results
in nonzero lower bounds even for small sets, assuming that
there are no zero transition times between families. Formally,
Eq. (5) is replaced by:

ectLB3Ω = max
Ω ′⊆Ω

{
estΩ ′ + pΩ ′ + tt(|FΩ ′ |)} (6)

where FΩ = {Fi | i ∈ Ω}. The term tt(|FΩ ′ |) in Eq. (6) is
pre-computed using the same lower bounds as before, but
using ttF instead of tt. Notice that if tt = ttF , we have
ectLB2Ω = ectLB3Ω .

Lemma 1 In the presence of families, ectLB2Ω ≤ ectLB3Ω .

Proof The family transition graph induced by ttF is isomor-
phic to a subgraph of the transition graph induced by tt, and
any (shortest) path induced by ttF has a corresponding valid
path induced by tt. Moreover, a shortest path of exactly k
edges induced by tt has a length that is at most equal to a
shortest path of exactly k edges induced by ttF . ��

3.3 Adapting the algorithms

We adapt the original algorithms of Vilım (2007) in order to
consider transition times. Most of the modifications actually
impact the underlying Θ-tree and Θ-Λ-tree data structures
(described in Sect. 4), hence, the algorithms are similar to
the original ones. In our opinion, this is a strength of our
approach. The algorithms described in this section apply the
rules given in Sect. 3.1. As mentioned in Sect. 3.1, counter-
parts of those rules can be applied using the same algorithms
onmirror activities. Importantly, one must also transpose the
transition matrix.

NotationWedenote by ect∗Θ a lower bound of ectLB3Θ thatwill
be used by the different algorithms. We describe in Sect. 4.1
the Θ-tree data structure that is used to compute this value.
Moreover, following Vilím’s notation, we will use a specific
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set of gray activitiesΛ ⊆ T such thatΛ∩Θ = ∅. For a given
set Θ , this set is used to evaluate how ectΘ would evolve if
one of the gray activities of Λ were to be added to the set Θ .
Formally, we are interested in computing

ect(Θ,Λ) = max(ectΘ, ectΘ∪{i}, i ∈ Λ)

If ∃i ∈ Λ : ectΘ∪{i} > ectΘ , we say the gray activity i is
responsible for the value ectΘ∪{i}. Responsible activities are
used in the Overload Checking and the Edge-Finding algo-
rithms described in this section. We discuss how to find the
responsible activity inSect. 4.2.Oncemore,we actually com-
pute a lower bound of ect(Θ,Λ), written ect

∗
(Θ,Λ). Section 4.2

describes the Θ-Λ-tree data structure used to compute this
value efficiently.

Overload checking The checker (see Algorithm 3.1) goes
over each activity in non-decreasing order of lcti . For each
activity, if it is not yet known if it will be executed by the
resource (verified by checking the size of the domain of the
variable vi in line 3), it is added to the set Λ (line 4) and
the next activity is considered. If the activity must run on
the resource, it is added to the set Θ . The OC rule is then
applied: if the earliest completion time of the current setΘ is
larger than the latest completion time of the activity i we just
added toΘ , the activity i cannot be executed on the machine.
Since i is not optional, a feasible schedule cannot be found
(see lines 7–9). The current optional activities in Λ are then
possibly updated in lines 10–14: as long as it is possible to
find an optional activity o such that adding it toΘ would lead
to an overload, it is inferred that o cannot be executed by the
machine, and o is removed from Λ.

Algorithm 3.1: Overload Checker
1 (Θ,Λ) ← (∅,∅)

2 for i ∈ T in non-decreasing order of lcti do
3 if |D(vi )| > 1 then
4 Λ ← Λ ∪ {i} /* i is still optional. */
5 else if vi then
6 Θ ← Θ ∪ {i} /* i is known to be used by

the machine. */
7 if ect∗Θ > lcti then
8 return ⊥ /* Infeasibility detected. */
9 end

10 end
11 while ect∗(Θ,Λ) > lcti do
12 o ← optional (gray) activity responsible for ect∗(Θ,Λ)

13 vo ← false /* o cannot run on the
machine. */

14 Λ ← Λ \{o}
15 end
16 end

Detectable precedencesAlgorithm 3.2 describes how the DP
inference rule canbe applied. It first sorts the regular activities
by non-decreasing order of latest start time and inserts them
into a queue Q (line 2).5 Then, it traverses all the activities
(including optional ones as they can be updated): for each
activity i , as long as its earliest completion time is strictly
larger than the latest start time of the first activity j in Q, j
is removed from the queue and added to the set Θ . Once this
is done, Θ is the set DPrec(R, i) (see DPrec), and we can
apply the DP rule (line 9). Moreover, as transition times are
involved, the minimal transition from any family Fj ∈ FΘ

to the family Fi can also be added as it was not taken into
account in the computation of ect∗Θ . This transition is the
minimal one from any family Fj ∈ FΘ to Fi , because we
do not know which activity will be just before i in the final
schedule. The detectable precedence update rule becomes:

est′i ← max

{
est′i , ect∗Θ + min

f ∈FΘ

ttFf ,Fi

}
(DPUR)

Notice that the value min
f ∈FΘ

ttFf ,Fi can only be available in

O(1) if it was pre-computed for any subset of families, which
is exponential in |F | and therefore problematic if there are
many families. It can also be computed in linear time, but it
would increase the time complexity of the overall algorithm.
In practice, the implementation canmake use of theminimum
transition from any family f ∈ F\Fi if Fi /∈ FΘ , and 0
otherwise.

When no transition times are involved, detected prece-
dences are all eventually propagated, i.e., i precedes j if and
only if est j ≥ ecti and lcti ≤ lst j (see Vilım 2007). In our
case, this is not guaranteed: if a precedence is detected for a
given pair of activities i and j , it is not ensured that after prop-
agationwewill have est j ≥ ecti+tti, j and lcti ≤ est j−tti, j .
The reason is that ect∗Θ uses a lower bound on the transition
times in Θ . One must therefore rely on branching (e.g., on
the precedence graph) to ensure a given detected precedence
is completely propagated.

Not-last The NL inference rule can be applied with Algo-
rithm 3.3, similarly to Algorithm 3.2: a queue Q is filled with
regular activities,6 and all activities (regular and optional) are
then traversed in non-decreasing order of latest completion
time. For each activity i , activities from Q having a larger

5 Alternatively, as proposed in Vilım (2009a, b) in the case of the Edge-
Finding algorithm, one could consider all activities of T and pretend
the latest start time of optional activities amounts to +∞. All activities
Footnote 5 continued
(including optionals) are then inserted in Q and the rest of the algorithm
remains unchanged.
6 Or as for the Detectable Precedence algorithm, one can pretend the
latest start time of optional activities amounts to +∞ and insert all of
them in Q.
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Algorithm 3.2: Detectable Precedences

1 Θ ← ∅
2 Q ← queue of all regular activities r ∈ R in non-decreasing
order of lstr

3 j ← Q.peek()
4 for i ∈ T in non-decreasing order of ecti do
5 while ecti > lst j do
6 Θ ← Θ ∪ { j}
7 Q.pop()
8 j ← Q.peek()
9 end

10 est′i ← max

{
esti , ect∗Θ \{i} + min

f ∈FΘ

ttFf ,Fi

}

11 end
12 for i ∈ T do
13 esti ← est′i
14 end

latest starting time than the latest completion time of i are
removed from the queue and added to the setΘ (lines 5–8).Θ
is then the set of activities with a latest starting time strictly
smaller than the latest completion time of i . The NL rule
can then be applied (lines 9–11). An analogous reinforce-
ment to the DP rule due to transition times can be applied
when updating lcti (see line 10).

Algorithm 3.3: Not-Last

1 lct′i ← lcti ,∀i ∈ T
2 Θ ← ∅
3 Q ← queue of all regular activities r ∈ R in non-decreasing
order of lstr

4 j ← Q.peek()
5 for i ∈ T in non-decreasing order of lcti do
6 while lcti > lst j do
7 Θ ← Θ ∪ { j}
8 Q.pop()
9 j ← Q.peek()

10 end
11 if ect∗Θ \{i} > lsti then

12 lct′i ← min

{
lct′i , lst j − min

f ∈FΘ

ttFFi , f

}

13 end
14 end
15 for i ∈ T do
16 lcti ← lct′i
17 end

Edge finding Unlike the previous algorithms, Algorithm 3.4
starts with a set Θ filled with all regular activities. We also
directly fill the set Λ with the optional activities7 so that

7 Notice that this is equivalent to what is proposed in Vilım (2009a, b).
The author suggests handling optional activities by modifying the input
data rather than the algorithm: lcto is assumed to be+∞ for all optional
activities o ∈ O .

their domain can be updated but they can never be used to
update other activities (since they will not be in the set Ω in
the EF rule). A queue Q of regular activities sorted in non-
increasing order of latest completion time is also initialized.
The algorithm traverses this queue and the activities in Θ

are progressively removed from Θ and added to the set Λ of
gray activities. For each activity j popped out of the queue
Q, the algorithm first checks for an overload before j is
removed from Θ (lines 5–7). This is equivalent to what is
done in Algorithm 3.1 for regular activities, so it is actually
facultative. The activity j is then grayed: It is transferred from
Θ to Λ. This means it is no longer in the set Θ we consider,
but it will be part of the activities used to infer what would
happen if one of them were added to Θ . Lines 10–14 apply
the EF rule to the current gray activities such that ect∗(Θ,Λ) >

lct j : as long as adding one of the gray activities would imply
an overload (i.e., condition in line 10 is verified), we identify
whichgray activity i is responsible for this potential overload,
we update its earliest start time, and remove it from Λ. The
EF rule is strengthened using transition times similarly to
the DP and NL rules.

Algorithm 3.4: Edge Finding

1 (Θ,Λ) ← (R, O)

2 Q ← queue of all regular activities r ∈ R in non-increasing
order of lctr

3 j ← Q.peek()
4 while |Q| > 1 do
5 if ect∗Θ > lct j then
6 return ⊥
7 end
8 (Θ,Λ) ← (Θ \ { j} ,Λ ∪ { j})
9 Q.pop()

10 j ← Q.peek()
11 while ect∗(Θ,Λ) > lct j do
12 i ← gray activity responsible for ect∗(Θ,Λ)

13 est′i ← max

{
esti , ect∗Θ + min

f ∈FΘ

ttFf ,Fi

}

14 Λ ← Λ \{i}
15 end
16 end
17 for i ∈ T do
18 esti ← est′i
19 end

Precedence graph propagator Algorithm 3.5 uses the prece-
dence graph data structure (see Sect. 2). It relies on the
topological order of all known precedences (i.e., edges in
the digraph) since if i precedes j in the topological order of
the precedence graph, the earliest start time of i cannot be
influenced by the domain of s j and c j . Algorithm 3.5 first
builds a queue Q of activities in topological order of the
precedence graph. It then traverses Q and, for each activity
i , it applies the pairwise rule URTTO for all its successors
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in the precedence graph. In addition, if a successor j of an
activity i is known to be running on the resource (i.e., v j is
true), then one can use j to update the latest completion time
of the activity i (see lines 6–8).

Important note Notice that when transition times are
involved, this algorithm is mandatory in order to ensure the
pruning is complete: because we use a lower bound of the
earliest completion time of a set of activities Θ in the other
algorithms (ect∗Θ ), they are not sufficient to ensure correct-
ness of a given (partial) assignment of all si , ∀i ∈ T .

Algorithm 3.5: Precedence Graph Propagation

1 Q ← queue of all regular activities r ∈ R in topological order in
the precedence graph G

2 while |Q| > 1 do
3 i ← Q.pop()
4 foreach successor s of i in G do
5 ests ← max{ests , ecti + tti,s}
6 if vs then
7 lcti ← min{lcti , lsti − tti,s}
8 end
9 end

10 end

Complexities Sect. 4 describes data structures that allow us
to retrieve ect∗Θ in O(1) while addition/removal of an activ-
ity to/from Θ is performed in O(log(|T |) · log(|F |)). All
algorithms but the Precedence Graph, therefore, have a time
complexity of O(|T | · log(|T |) · log(|F |)). The precedence
graph propagator runs in O(|T |2).

4 Extending the -tree and --tree data
structures

To efficiently use the sets Θ and Λ, the algorithms described
in Sect. 3.3 rely on the so-called Θ-tree and Θ-Λ-tree data
structures, introduced by Vilím. Those structures are used to
efficiently and incrementally compute ect∗Θ and ect∗Θ for sets
of activities Θ and Λ. This section describes how those can
be extended to handle (family-based) transition times.

4.1 Extended -tree

A Θ-tree is a balanced complete binary tree in which each
leaf represents an activity from a setΘ and each internal node
n gathers information about the set of activities represented
by the leaves under this node, denoted Leaves(n). We write
l(n) for the left child of n and r(n) for the right one. Leaves
are ordered in non-decreasing order of the earliest start time
of the activities: for two activities i and j , if esti < est j , then
the leaf representing i is at the left of the leaf representing j .

The main value stored in a node n is the lower bound of
ectLeaves(n), denoted ect∗n . To be able to compute this value
incrementally upon insertion or deletion of an activity in the
Θ-tree, one needs to maintain additional values.

Without any transition times involved, Vilím has shown
(Vilım 2007) that by defining ect∗n = ectLB0Leaves(n), it suffices
to store additionally pn = pLeaves(n). In a leaf n representing
an activity i , one can compute pn = pi and ect∗n = ecti . In
an internal node n, one can compute:

pn = pl(n) + pr(n)

ect∗n = max
{
ect∗r(n), ect

∗
l(n) + pr(n)

}

Hence, the values depend only on the values stored in the
two children.

In our case, we would like instead to define ect∗n =
ectLB3Leaves(n) in order to take (family-based) transition times
into account. However, this value cannot easily be com-
puted incrementally, so we compute a lower bound, i.e.,
ect∗n ≤ ectLB3Leaves(n). In addition to ect∗n , one needs to store
not only pn , but also Fn = FLeaves(n), the set of the fam-
ilies of the activities in Leaves(n). In a leaf n representing
an activity i , one can compute pn = pi , ect∗n = ecti , and
Fn = {Fi }. In an internal node n, one can compute:

pn = pl(n) + pr(n)

Fn = Fl(n) ∪ Fr(n)

ect∗n = max

{
ect∗r(n)

ect∗l(n) + pr(n) + tt
(∣∣Fr(n)\Fl(n)

∣∣ + 1
)

Intuitively, ect∗n is maximized either by considering only
activities in r(n), or by adding to ect∗l(n) the processing times
and (a lower bound of) the transition times due to activities in
r(n). In the latter case, only additional families are counted
to compute the lower bound on transition times, that is, the
families that are present in the right child but not in the left
one. Hence, the cardinality of the set Fr(n)\Fl(n) is consid-
ered. Notice we always add one family to the count because
of the definition of tt(k) (remember tt(0) = tt(1) = 0).

Before we prove this lower bound is correct, let us prove
in Lemma 2 a property of the function tt(k).

Lemma 2 ∀i ∈ [0..|T |], k ∈ [0 . . . i] : tt(i) ≥ tt(k) +
tt(i − k + 1)

Proof The optimal path popt in the transition graph leading
to the value tt(i) can be split into two subpaths:

– popt[1...k] with k − 1 edges. Its total length is greater than or
equal to tt(k) (as tt(k) is the minimum), the length of the
optimal path with k − 1 edges.

– popt[k...i] with i − k edges. Its total length is greater than
or equal to tt(i − k + 1), the length of the optimal path
with i − k edges.
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Therefore tt(n) = popt[1...k] + popt[k...i] ≥ tt(k) + tt(i − k + 1).��

Lemma 3 ∀ node n in a Θ-tree: ect∗n ≤ ectLB3Leaves(n)

Proof By induction. If n is a leaf representing activity i , then
ect∗n = ecti = ectLB3{i} . Otherwise, our induction hypothesis

is that ect∗l(n) ≤ ectLB3Leaves(l(n)) and ect∗r(n) ≤ ectLB3Leaves(r(n)).

Let us call ΩLB3 ⊆ Leaves(n) the optimal set to compute
ectLB3Leaves(n). For space reasons, we write L(Ω) to denote
Leaves(Ω).

One can consider two cases:

– ect∗n = ect∗r(n). We have ect∗r(n) ≤ ectLB3L(r(n)) (by induc-

tion) and ectLB3L(r(n)) ≤ ectLB3L(n) (by definition). Therefore,

ect∗n ≤ ectLB3L(n).

– ect∗n = ect∗l(n) + pr(n) + tt
(|Fr(n) \ Fl(n)| + 1

)
. Then, we

have:

ect∗n ≤ ectLB3L(l(n)) + pr(n) + tt
(|Fr(n) \ Fl(n)| + 1

)

(by induction)

= max
Ωl⊆L(l(n))

{
estΩl + pΩl

+tt
(|FΩl |

)} + pr(n) + tt
(|Fr(n) \ Fl(n)| + 1

)

= max
Ωl⊆L(l(n))

{estΩl + pΩl∪L(r(n))

+ tt
(|FΩl |

) + tt
(|Fr(n) \ Fl(n)| + 1

)}
= max

Ωl⊆L(l(n))
{estΩl∪L(r(n)) + pΩl∪L(r(n))

+ tt
(|FΩl |

) + tt
(|Fr(n) \ Fl(n)| + 1

)}
(since estΩl = estΩl∪L(r(n)))

≤ max
Ωl⊆L(l(n))

{estΩl∪L(r(n)) + pΩl∪L(r(n))

+ tt
(|FΩl∪L(r(n))|

)}
(by Lemma 2)

≤ ectLB3L(n)

(by definition)

��
Complexity We use bitsets to represent the set of families in
each node. The space complexity of the Θ-tree is therefore
O(|T | · |F |). The set operations we use are union, intersec-
tion, difference and cardinality. Using bitsets and assuming
|F | ≤ 64, the first three operations are O(1) and the last is
O(log(|F |))with a binary population count8 (Warren 2013).
The time complexity of insertion and deletion of an activity
in the Θ-tree is therefore O(log(|T |) · log(|F |)).
Example 4 Let us consider the activities presented in Fig. 6
(left). The family transition matrix ttF is given in Fig. 6

8 Some processors also have a dedicated machine instruction.

1 3 2 4
est 0 15 25 30
p 10 10 20 25
F 1 2 3 3

ttF =

⎛
⎝ 0 10 15

5 0 10
5 15 0

⎞
⎠

tt(k) k
0 0
1 0
2 5
3 15

Fig. 6 Four activities and their families (left), transition times for the
families (center), and pre-computed lower bounds for the transition
times (right)

(center). The pre-computed values of tt(k) are reported in
Fig. 6 (right). Figure 7 illustrates the extended Θ-tree when
all activities are inserted. Note that the value at the root of
the tree is indeed a lower bound since we have ect∗Θ = 75 ≤
ectLB3Θ = 80 ≤ ectΘ = 85.

4.2 Extended --tree

Algorithms3.1 and3.4 require an extensionof the originalΘ-
tree, called Θ-Λ-tree (Vilım 2007). In this extension, leaves
are marked as either white or gray. White leaves represent
activities in the set Θ and gray leaves represent activities
that are in a second set, Λ, with Λ ∩ Θ = ∅. In addition to
ect∗n , a lower bound to the ect of Θ , a Θ-Λ-tree also aims
at computing ect∗n , which is a lower bound to ect(Θ,Λ), the
largest ect obtained by including one activity fromΛ intoΘ:

ect(Θ,Λ) = max
i∈Λ

ectΘ∪{i}

In addition to pn , ect∗n , Vilím’s original Θ-Λ-tree also main-
tains pn and ect

∗
n , respectively, corresponding to pn and ect∗n ,

if a single gray activity i ∈ Λ in the sub-tree rooted at nmax-
imizing ectLeaves(v)∪{i} is included.

Our extension to the Θ-Λ-tree is similar to the one out-
lined in Sect. 4.1 for the Θ-tree: in addition to the previous
values, each node also stores pn and Fn in order to compute
the lower bound ect∗n .

Adapting the rules for theΘ-Λ-tree requires cautionwhen
families are involved. In Vilım (2007) and Dejemeppe et al.
(2015), the rules only implicitly use the information about
which gray activity is considered in the update. In our case,
the rules must consider explicitly where the responsible gray
activity (i.e., the gray activity maximizing ect∗ at the root
node) is located. Hence, when a node n is updated, one first
updates ect∗n with the rule:

ect∗n = max

⎧⎨
⎩
ect∗l(n) + pr(n) + tt

(|Fr(n) \ Fl(n)| + 1
)

(Case A)
ect∗l(n) + pr(n) + tt

(|Fr(n) \ Fl(n)| + 1
)

(Case B)
ect∗r(n) (Case C)

Case A occurs when it is (locally) considered that the
gray responsible activity that maximizes ect∗n is among
Leaves(l(n)). Cases B and C correspond to the opposite
case (i.e., the responsible activity is among Leaves(r(n))).
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Fig. 7 A Θ-tree when all
activities of Fig. 6 are inserted ect∗ = max{70, 25 + 45 + 5} = 75

p = 20 + 45 = 65
F = {1, 2, 3}

ect∗ = max{55, 45 + 25 + 0} = 70
p = 20 + 25 = 45
F = {3}

ect∗ = 55
p = 25
F = {3}
est4 = 30

ect∗ = 45
p = 20
F = {3}
est2 = 25

ect∗ = max{25, 10 + 10 + 5} = 25
p = 10 + 10 = 20
F = {1, 2}

ect∗ = 25
p = 10
F = {2}
est3 = 15

ect∗ = 10
p = 10
F = {1}
est1 = 0

Fig. 8 A Θ-Λ-tree when all
activities of Fig. 6 are inserted
and activities 3 and 4 are gray

ect∗ = max{45, 10 + 20 + 5} = 45
p = 10 + 20 = 30
F = {1, 3}
ect∗ = max{70, 10 + 45 + 5, 25 + 20 + 5} = 70
p = 10 + 45 = 55
F = {1, 3}

ect∗ = max{45 + 0 + 0,−∞} = 45
p = 20 + 0 = 20
F = {3}
ect∗ = max{55, 45 + 25 + 0, 45 + 0 + 0} = 70
p = 20 + 25 = 45
F = {3}

ect∗ = −∞
p = 0
F = {}
ect∗ = 55
p = 25
F = {3}
est4 = 30

ect∗ = 45
p = 20
F = {3}
ect∗ = 45
p = 20
F = {3}
est2 = 25

ect∗ = max{10 + 0 + 0,−∞} = 10
p = 10 + 0 = 10
F = {1}
ect∗ = max{25, 10 + 10 + 5, 10 + 0 + 0} = 25
p = 10 + 10 = 20
F = {1, 2}

ect∗ = −∞
p = 0
F = {}
ect∗ = 25
p = 10
F = {2}
est3 = 15

ect∗ = 10
p = 10
F = {1}
ect∗ = 10
p = 10
F = {1}
est1 = 0

Depending on which value gets assigned to ect∗n , the values
Fn and pn of the node n are updated as follows:

Fn =
{
Fl(n) ∪ Fr(n) if (Case A)
Fl(n) ∪ Fr(n) otherwise

pn =
{
pl(n) + pr(n) if (Case A)
pl(n) + pr(n) otherwise

If a leaf n represents an activity i , then we simply have
ect∗n = ecti , pn = pi , and Fn = {Fi }. The rules for pn , ectn ,
and Fn are as presented in Sect. 4.1, but one must also define,
for a gray leaf n, ect∗n = −∞, pn = 0, and Fn = ∅.
Example 5 Let us reconsider the activities from Fig. 6. Fig-
ure 8 illustrates a Θ-Λ-tree where all activities have been
inserted, but where activities 3 and 4 have been grayed.
Notice that activity 4 is the gray responsible one (since
70 > 25 + 20 + 5) and therefore p = 55 and F = {F1, F3}
in the root node.

As for the extendedΘ-tree introduced inSect. 4.1, the time
complexity for the insertion and the deletion of an activity is

Table 1 Worst-case time complexities of operations on the Θ-Λ-tree

Operation Time complexity

(Θ,Λ) ← (∅,∅) O(1)

(Θ,Λ) ← (R, O) O(|T | · log(|T |) · log(|F |))
(Θ,Λ) ← (Θ \ {i} ,Λ ∪ {i}) O(log(|T |) · log(|F |))
Θ ← Θ ∪ {i} O(log(|T |) · log(|F |))
Λ ← Λ \{i} O(log(|T |) · log(|F |))
ect∗Θ > lcti O(1)

ect∗(Θ,Λ) > lcti O(1)

O(log(|T |) · log(|F |)). Table 1 summarizes the complexities
of all operations on the Θ-Λ-tree.

4.3 Strengthening ect∗2 and ect
∗
(2,3)

The value ect∗Θ is a lower bound for ectLB3Θ . One can actually
strengthen the value computed with the Θ-tree to get a value
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closer to ectLB3Θ . An idea from Brucker and Thiele (1996)
and Vilım and Barták (2012) that is also used in Artigues
and Feillet (2008) is to pre-compute the exact minimum total
transition time for every subset of families.9

For a subset of families F ′ ⊆ F , let tt
(F ′) denote the

minimum total transition time used for any activity set Θ

such that FΘ = F ′. Assuming tt (FΘ) is accessible inO(1),
each time we access to the value ect∗Θ in the algorithms of
Sect. 3.3, we can also compute

ecttspΘ = estΘ + pΘ + tt (FΘ)

without changing the complexity of the algorithms. The value
tt (FΘ) must be pre-computed for all subsets of families, so
this is tractable only if there are few families10, as it requires
solving many traveling salesman problems of increasing
sizes. Moreover, it is necessary to store 2|F | integers in an
array. One can then use the bitset representation of a given
set F ′ ⊆ F as an index in the array in order to access the
value inO(1). The value estΘ can be easily maintained in the
Θ-tree, and the values pΘ and FΘ can be obtained in O(1)
in the root node of the Θ-tree.

The value ecttspΘ can be larger than ect∗Θ because it uses
tt (FΘ) instead of tt(|FΘ |). This typically occurs when
ecttspΘ = ectLB3Θ . On the contrary, ecttspΘ might be smaller
than ect∗Θ since ecttspΘ always considers all activities in Θ ,
but never a subset Θ ′ ⊂ Θ . Yet, ect∗Θ can rely on a subset
Θ ′ ⊂ Θ such that estΘ + pΘ < estΘ ′ + pΘ ′ . Hence, the
algorithms in Sect. 3.3 should use the maximum of those two
values instead of ect∗Θ in order to strengthen the filtering.

One can also consider the family of the updated activity:
similarly to tt

(F ′), let us write tt (Fi → F ′) the minimum
transition time when the processing starts with some activity
of the family Fi ∈ F ′, and tt

(F ′ → Fi
)
when it completes

with an activity of the family Fi ∈ F ′. We can pre-compute
these values for every set of families F ′ ⊆ F and every
family Fi ∈ F ′ with a dynamic program running inΘ(|F |2 ·
2|F |) and requiring Θ(|F | · 2|F |) of memory. For instance,
for tt

(
Fi → F ′), one defines:

{
tt (Fi → {Fi }) = 0 ∀Fi ∈ F
tt

(
Fi → {F ′ ∪ Fi }

) = min
Fj∈F ′{ttFFi ,Fj

+ tt
(
Fj → F ′)} ∀F ′ ⊂ F ,∀Fi ∈ F\F ′

In the case of Detectable Precedences, Eq. DPUR finally
becomes:

9 The approach can also be used for sets of activities. The description
focuses here on families since it was initially used in the context of
family-based transition times.
10 Typically maximum 10.

est′i ← max

{
est′i , ect∗Θ + min

f ∈FΘ

ttFf ,Fi , estΘ + pΘ + tt (FΘ → Fi )

}

The same idea can be used to strengthen ect∗(Θ,Λ):

ecttsp(Θ,Λ) = min{estΘ, estr } + pΘ∪{r} + tt
(
FΘ∪{r}

)

where r is the gray responsible activity (see line 11 in
Sect. 3.4). A subtle point is that the responsible activity r
is not accessible from the Θ-Λ-tree as for ect∗(Θ,Λ), so we

should iterate over all r ′ ∈ Λ to maximize ecttsp(Θ,Λ). We

therefore use the responsible activity of ect∗(Θ,Λ) to compute

ecttsp(Θ,Λ).

5 Lower bounds on theminimum total
transition of a set of activities

In this section, we describe different lower bounds (Deje-
meppe et al. 2015) for Eq. 4, recalled hereafter:

tt(k) = min
{Ω ′⊆T : |Ω ′|=k}

{
min

π∈ΠΩ′
ttπ

}

For each k, one has to find the shortest node-distinct
(k−1)-edge path between any two nodes of the (family)
transition graph (see Sect. 2), which is NP-hard, as the trav-
eling salesman problem can be reduced to this problemwhen
k = |T |. Even though tt(k) is to be pre-computed, it is
desirable to have polynomial pre-computation, which jus-
tifies the use of the lower bounds explained in this section. A
more detailed description can be found inDejemeppe (2016);
we summarize them here so that the paper is self-contained.
Notice that the lower bounds do not dominate each other, so
the final lower bound for a given cardinality k will be themax-
imumbetween the different lower bounds for this cardinality.

Minimum weight forest This lower bound consists of finding
the set of k − 1 edges with a minimum cost. Basically, we

use Kruskal’s algorithm (Kruskal 1956) to prevent cycles in
our selection. As soon as k −1 edges have been selected, the
algorithm is stopped. The result being a minimum weight
forest in the general case; it is a lower bound of our original
problem since it does not ensure obtaining a simple path in
the graph.
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Shortest walk A dynamic program can be used to compute a
lower bound on theminimum transition in a set of cardinality
k. The idea is to compute a shortest walk with k − 1 edges
in the transition graph. Formally, we define SW(k′, i) as the
shortest walk with k′ edges from any node to node i . To
compute this value for all number of edges k′ and every node
i , we rely on the following O(k · T 2) dynamic program:

SW(0, i) = 0,∀i ∈ [1..T ]
SW(k + 1, i) = min

j
SW(k, j) + tti, j ,∀i ∈ [1..T ]

The lower bound for a given cardinality k is, finally:

min
i

SW(k, i)

Notice this lower bound ensures the solution to be a walk
in the graph, but it does not prevent cycles. However, as
suggested in Christofides et al. (1981), one can strengthen
the bound by avoiding 1-cycles, i.e., cycles of the form
i → j → i .

Minimum assignment A lower bound based on a minimum
assignment problem was proposed by Brucker and Thiele
(1996): two sets containing all the nodes of the transition
graph are constructed and a minimum assignment of k edges
is searched for, that is, the edges always link an activity of
one set with an activity of the other set. One can model this
problem as a minimum-cost maximum-flow problem in a
manner similar to the reduction of a minimum weight bipar-
tite matching.

Lagrangian relaxation To find the shortest simple path with
k edges in the transition graph, one can add a source (node
0) and a sink node (node n + 1) to the transition graph so that
the edges from the source node to all nodes (but the sink one)
and the edges from the nodes (except the source one) to the
sink node have a transition of zero. Then, one can solve the
problem by searching for the shortest path from the source
to the sink with k + 2 edges. This can be solved with the
following integer linear program:

minimize
∑
i

∑
j

tti, j · xi, j (CARD)

such that
∑
j

x0, j −
∑
j

x j,0 = 1

∑
j

xn+1, j −
∑
j

x j,n+1 = −1

∑
j

xi, j −
∑
j

x j,i = 0

∑
i

∑
j

xi, j = k

xi, j ∈ {0, 1}

This problem isNP-hard, therefore,we solve aLagrangian
relaxation instead: we remove the edge cardinality constraint
(i.e., Eq. CARD) and penalize its violation in the objective
function.Without the cardinality constraint, the shortest path
can be computed with the Bellman–Ford algorithm (Bellman
1956; Moore 1959), which is also able to detect a negative
cycle. If this occurs, we use a classic linear relaxation instead
of using the Bellman–Ford algorithm.

Exact shortest path for every subset Using the definitions
given in Sect. 4.3, one can compute the best possible lower
bound based on the cardinality of a set of activities/families.
We compute the value of the shortest path for every subset,
and for each cardinality k, we take the smallest shortest path
of all subsets of cardinality k:

tt(k) = min
|F ′|=k

tt
(F ′)

The other lower bounds described before are upper-
bounded by this approach.However, it is not polynomial, so it
can only be used for problems with a few activities/families.

6 Experimentations

We split our evaluation into two parts: First, we consider the
case where there are no optional activities, which has been
more widely studied in the literature. The experiments were
conducted on JSPSDTT instances. Second, we consider the
same problem with alternative machines that are modeled
using optional activities from the resource point of view.

Setting We used AMD Opteron processors (2.7GHz), the
Java 8Runtime Environment and the constraint solverOscaR
(OscaR Team 2012). The memory consumption was limited
to 4GB.

Replay evaluation In order to derive fair and representative
conclusions about the propagators only (i.e., by removing the
effects of the search heuristic), we used theReplay evaluation
methodology (Van Cauwelaert et al. 2015, 2017). First, for
each instance, a baseline model is used to generate a search
tree. This baseline model is, among the different compared
approaches, the one that prunes the fewest domains. Once
the search tree is generated, it is replayed separately with
each model. A replay basically consists in reapplying the
exact same sequence of modifications to the constraint store
(e.g., the branching constraints) that were used to generate
the search tree with the baseline model.

The performance of those replays is then used to con-
struct so-calledperformance profiles (Dolan andMoré 2002),
which we built with a public web tool (Van Cauwelaert et al.
2016) made available to the community.11 Performance pro-

11 Accessible at http://sites.uclouvain.be/performance-profile/.
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files are cumulative distribution functions of a performance
metric ratio τ . In our case, τ is a ratio of either time or num-
ber of backtracks. In the case of time, the function is defined
as:

Fm(τ ) = 1

|I|

∣∣∣∣∣∣

⎧
⎨
⎩i ∈ I : timereplay(m, i)

min
m′∈M

timereplay(m′, i)
≤ τ

⎫
⎬
⎭

∣∣∣∣∣∣
(7)

where I is the set of considered instances, m is a model and
M is the set of all models. The function is similar for the
number of backtracks.

A performance profile that is above the other ones in its
graphical representation shows a higher performance than
the others. This specific representation allows us to have a
global understanding at a glance of the actual performances
of a propagator over a full set of instances.

Let us, for example, consider a performance profile with
a performance metric ratio τ representing the time needed to
replay instances using a given propagator. If this performance
profile has a point in (30% of instances, 2.5), it means that
for 30% of the considered instances, the propagator takes at
most 2.5 times as much time as the baseline model.

6.1 Experimentations without optional activities

6.1.1 Problem instances

We have used two sets of instances. First, we used the
standard t2ps instances from Brucker and Thiele (1996).
However, there are only 15 of them, and we wanted to evalu-
ate instances with more families, jobs, and machines in order
to challenge the scalability of the different approaches. We
therefore generated a new set of 315 instances, here referred
to as uttf, with up to 50 jobs, 15 machines and 30 families.
The transition times between two families were randomly
picked between 5 and 50, and duration of activities were
randomly taken between 10 and 100.12

State-of-the-art filtering with families

Based on the definition of tt
(
Fi → {F ′}), two propagators

are introduced in Artigues and Feillet (2008):

– A DP-like propagator called UpdateEarliestStart
running in
O(n2 · log(n)).

– An EF-like propagator called PrimalEdgeFinding run-
ning in O(|F | · n2).

12 The instances are available at
http://becool.info.ucl.ac.be/resources/uttf-instances.

Although the filtering obtainedwith these propagators can be
stronger than their counterparts from Vilım (2007) and our
extensions, the time complexity of the propagators is quite
high as compared to O(n · log(n) · log(|F |)). In addition,
they do not make use of a Not-First/Not-Last rule and the
pre-computation of the minimum exact transition times for
every subset of a family is tractable only for small (typically
less than 10) values of |F |.

6.1.2 Compared propagators

We compare models with the following propagators for
Eq. (URTTO):

– decomp: binary decomposition of Equation (URTT) only.
– urtt: propagators for URTT from Dejemeppe et al.
(2015).

– artex: propagators of Artigues and Feillet (2008) using
exact values for tt (F), tt (F → F) and tt (F → F).

– artlb: propagators of Artigues and Feillet (2008) adapted
to make use of cardinality-based lower bounds from
Sect. 5 for tt (F), tt (F → F) and tt (F → F).

– urttf ex: propagators introduced in this paper making
use of the exact values for tt(|F |) computed with
minF ′:|F ′|=|F | tt

(F ′).
– urttf lb: propagators introduced in this paper making use
of lower bounds of Sect. 5 for tt(|F |).

6.1.3 Replay evaluation

To generate the search trees, the Conflict Ordering Search
(Gay et al. 2015) was used, as it has been shown to be a good
search strategy for scheduling problems. The baseline model
wasdecomp. The generation lasted for 300s, andwe enforced
a timeout of 1800s for the replay. The running times reported
here do not take into account the pre-computation step since
they are negligible (generally less than 2s and max 10s).

6.1.4 Results on the t2ps instances

Figures 9 and10provide the performance profiles for the time
and number of backtracks, respectively. Figure 10 shows that,
interestingly, urttf lb prunes exactly asmuch as urttf ex . This is
due to the fact that our lower bounds are here able to compute
the same values than minF ′:|F ′|=|F | tt

(F ′). This suggests
that we often do not have to compute the exact values for
tt (F)with the resource-consuming dynamic program,which
is interesting since it is not tractable when there are many
families. We can see that from a time perspective (Fig. 9),
our approach is the fastest for∼80% of the instances (urttf ex
being here equivalent to urttf lb, see the function in τ = 1 in
Fig. 9). But our approach is also robust, as the other instances
(i.e., the remaining 20%) are solved within a factor τ < 2
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Fig. 9 Performance profiles on
t2ps instances for the time
metric
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Fig. 10 Performance profiles on
t2ps instances for the number of
backtracks metric
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compared to the best model for those remaining instances.
Considering the number of backtracks, our approach gener-
ally achieves less pruning than artex (not more than three
times), but substantially more than urtt. This lack of pruning
as compared to artex is compensated in practice by the low
time complexity. Although not reported, we tried to combine
urttf ex and artex and the performances were close to those of
artex alone, thus inducing only a small overheadwhen urttf ex
does not provide additional pruning.

6.1.5 Results on the uttf instances

First of all, we consider the approaches artex and urttf ex
that were unable to solve (i.e., times out by default) the 120
instances (out of 315) with 20 families or more, since the
pre-computation becomes too expensive in terms of CPU
and memory usage according to our 4Gb limitation.

Figures 11 and 12 provide the time performance profiles
for the instances with strictly less than and with more than
20 families, respectively. Figure 11 shows that our approach
still outperforms the other ones, although it is the fastest on
a smaller percentage of instances than for the t2ps instances.
The instances being less structured, the gain in pruning is
weaker as compared to the decomposition. However, our
method catches up very quickly; for example, it is at most
∼ 1.3 and 2 times slower than the best approach for almost
60% and 80% of the instances, respectively. Another inter-
esting point is that urttf ex and urttf lb have very similar time
performances, while the values for tt(k) were here generally
different (not reported here). This means that computing the
exact values for tt (F) is not mandatory13 when used with

13 Still, if it is available at a low cost, it can be beneficial to use it.
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Fig. 11 Performance profiles on
uttf instances with strictly less
than 20 families for the time
metric
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Fig. 12 Performance profiles on
uttf instances with more than 20
families for the time metric
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our propagators, which is profitable since we also target scal-
ability in terms of number of families.

Regarding the instances with more than 20 families
(Fig. 12), our approach is significantly better than the other
ones, as we are the fastest on almost 70% of the instances and
it is at most four times slower than the best approach on the
remaining instances. This teaches us that whenmore families
are involved, our approach is both efficient and robust.

6.2 Experimentations with optional activities

Optional activities are typically used when modeling prob-
lems in which activities can be processed on a set of a
alternative resources. Hence, in order to experiment with our
approach when optional activities are involved, we experi-
mented on JSPSDTTwith alternative resources. In particular,
we used an approach that consists in duplicating a times

the activities and the resources of an original job-shop prob-
lem (Focacci et al. 2000). For each of the original activities,
exactly one of its duplicates must then be executed on its cor-
responding duplicated machine. This amounts to solving the
same problem as the original one, but with the additional lib-
erty of choosing on which one of the a alternative machines
an activity will be executed.

Formally, for a given activity i and a duplications, we
write ik the kth duplicate of activity i . To ensure that one and
only one of the alternative machines is used by the activity
i , we force one and only one of the a duplicates ik to be used
by its corresponding duplicated machine:

∃ ! k ∈ [1, a] : vik

Moreover, the job precedences between activities must
be respected by all duplicates, i.e., if there is a precedence
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Fig. 13 Performance profiles on
generated instances of the
job-shop problem with two
alternative resources
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Fig. 14 Performance profiles on
generated instances of the
job-shop problem with three
alternative resources
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between two activities i and j in the original problem, then
we must have:

∀k ∈ [1, a] ∀k′ ∈ [1, a] : k �= k′ �⇒ cik ≤ s jk′

Search heuristic To our knowledge, few search heuristics are
actually devoted to the presence of optional activities. For
our evaluation, we used a strategy from Barták that avoids
taking decisions about optional activities that will actually
not be executed in the final schedule (Barták 2008; Cappart
et al. 2018). This is important, as it prevents the search from
exploring the exact same schedule several times.

The heuristic has two levels: On the first level, it decides
whether an activity i is valid or not, i.e., it branches on vi .
On the left branch, it imposes vi = true and will then branch
using the second level, as explained hereafter. On the right
branch, vi = false is posted and the activity i will not be

considered deeper in the tree; another activity j �= i will
then be considered to be branched on using the first level.
In the second level, precedences between i and all activities
j : ¬(v j = false) (i.e., still possibly running on the same
resource) will be imposed, until nomore precedences involv-
ing i can be decided. The first level of branching is then used
with a different activity j .

To decide which activity should be branched on first, the
activity with the smallest est is chosen (ties are broken by
smallest duration and ect). Finally, once all decisions have
been made, one can assign all activities to their est , since the
objective is here to minimize the makespan.

SettingsWe generated 100 instances similar to the five small
t2ps instances, i.e., with 10 jobs, 5 machines and 5 fami-
lies. The instances were kept small because duplicating the
alternatives already increased the search space substantially.
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The models we compared are the same ones as before, but
using the approach from Artigues et al., as they do not deal
with optional activities. Our approach uses lower bounds for
tt(|F |). We also consider an additional model, called urV ,
that uses the filtering from Vilím.

We also used the Replay evaluation: the generation lasted
at most 300s and we filtered out instances that were solved
within less than a second.

Results First, we consider the problem with two alternative
resources. The results are given in Fig. 13. A first observa-
tion is that urttf lb is almost always the fastest and it solves
all instances in τ < 2, which makes our approach appealing.
Interestingly, one can also see that the profiles of the other
approaches are, in this case, quite similar. Finally, for∼10%
of the instances, urttf lb provides a speed-up of ∼ 32 as com-
pared to the other approaches (see the profiles in τ = 32 in
Fig. 13).

Let us now consider the results (given in Fig. 14) when we
have three alternative resources. While our approach is still
clearly the best one for similar reasons, one can now better
separate decomp, urV , and urtt: urV is better than decomp
and urtt is better than urV . Still, urtt and urV are close to each
other and tend to converge. This shows, again, the benefits
of reasoning with families of activities.

7 Conclusion

This paper has extended the algorithms and data structures
for the unary resource, taking into account family-based
transition times in order to perform additional propagation.
The method also handles optional activities so that one
can model more general problems (e.g., involving alterna-
tive resources). The original data structures and algorithms
have been adapted accordingly. The approach is lightweight
from both the time and space perspectives. Experiments con-
ducted on the JSPSDTT have demonstrated that our work
provides a substantial gain and is quite robust to changes
in instance characteristics (e.g., number of activities and
families).

We would like to consider other types of problems (e.g.,
the traveling salesman problem with time windows) and
combine this work with the use of good lower bounds in
a branch-and-bound setting. More importantly, when there
are no families defined a priori in an instance, we want to
study the benefit of first creating them by means of clus-
tering algorithms and then using the filtering introduced in
this paper. This approach might prove to be helpful when the
intra-cluster transition times are significantly smaller than
the inter-cluster ones.
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