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Abstract
We address single-machine scheduling problems for which the actual processing times of jobs are subject to various effects,
including a positional effect, a cumulative effect and their combination. We review the known results on the problems to
minimize the makespan, the sum of the completion times and their combinations and identify the problems for which an
optimal sequence cannot be found by simple priority rules such as Shortest Processing Time (SPT) and/or Longest Processing
Time (LPT). Typically, these are problems to minimize the sum of the completion times under a deterioration effect, and we
verify under which conditions for these problems an optimal permutation is V-shaped (an LPT subsequence followed by an
SPT subsequence). We demonstrate that previously used techniques for proving that an optimal sequence is V-shaped are
not properly justified. We use the corrected method to describe a wide range of problems with a pure positional effect and a
combination of a cumulative effect with a positional effect for which an optimal sequence is V-shaped. On the other hand, we
show that even the refined approach has its limitations.

Keywords Scheduling · Single machine · Positional effect · Cumulative effect · Total completion time · V-shaped

1 Introduction

Since the early 1990s, there has been a considerable inter-
est in enhanced scheduling models in which the processing
times of jobs are affected by their locations in the sched-
ule. Mathematically, this is formalized in terms of various
time-changing effects. In this paper, we clarify the status
of a number of single-machine problems with various time-
changing effects.

We consider scheduling problems with changing times in
which the jobs of set N = {1, 2, . . . , n} are to be processed
on a single machine. Each job j ∈ N is associated with its
“normal” processing time p j . It is convenient to think of
normal processing times as the time required under normal
processing conditions of the machine, which might change
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during the processing, thereby affecting the actual processing
times.

In the literature on scheduling with changing processing
times, traditionally there is a distinction between so-called
deterioration effects and learning effects. Informally, under
a deterioration effect, the later a job is placed in a schedule,
the longer it takes to process it. This phenomenon is often
found inmanufacturing: If a machine loses its initial process-
ing quality, it increases the actual processing times of some
later scheduled jobs. Under a learning effect, the opposite is
observed: The later a job is scheduled, the shorter its actual
processing time is. To illustrate a learning effect, a machine
may be thought of as a human operator who gains experience
during the process, which leads to a certain processing time
reduction.

Consideration of time-changing effects should not be lim-
ited to monotone effects only, such as deterioration and
learning. For example, if a human operator processes jobs on
certain equipment, then during the process that equipment
might be subject to wear and tear, i.e., it might deteriorate
with time, however, the operator simultaneously gains addi-
tional skills by learning from experience. This gives rise to
a combined effect which has a non-trivial influence on the
actual processing times.
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Time-changing effects are represented by explicit formu-
lae for how the actual processing time of a job is affected.
There are three main types of so-called pure effects stud-
ied in the literature, which in accordance with the recent
monograph Strusevich and Rustogi (2017) can be informally
classified as follows:

– Positional effects the actual processing time of a job is a
function of its normal processing time and the position
it takes in a schedule; see a focused survey by Rustogi
and Strusevich (2012b) and a discussion in Agnetis et al.
(2014);

– Start time-dependent effects the actual processing time
of a job is a function of its normal processing time and
its start time in a schedule; see the book Gawiejnowicz
(2008) which gives a detailed exposition of scheduling
models with this effect;

– Cumulative effects the actual processing time of a job
depends on its normal processing time and a function
of the normal processing times of previously scheduled
jobs; see Kuo and Yang (2006a, b), where a similar effect
is introduced.

In this paper, we mainly focus on job-independent posi-
tional effects and cumulative effects, as well as on their
combinations.

If job j is sequenced in position π(r) of permutation
π = (π(1), π(2), . . . , π (n)), its completion time is denoted
either by C j (π) or by Cπ(r), whichever is more convenient.
Let�(π) denote an objective function to beminimized. Pop-
ular objective functions include the maximum completion
time Cmax (π), also known as the makespan; the sum of the
completion times F (π) = ∑

j∈N C j , also known as the total
completion time; and a more general function ξCmax + η
∑

C j , with nonnegative coefficients ξ and η.
Given a permutation π = (π(1), . . . , π (n)) of jobs, let

the actual processing time of a job j = π(r) scheduled in
position r , 1 ≤ r ≤ n, be denoted by p j (r). It follows that

Cmax (π) =
∑

j∈N
p j (r),

F (π) =
∑

j∈N
C j (π) =

∑

j∈N
(n − r + 1) p j (r). (1)

A job-dependent positional effect is given by

p j (r) = p j g(r), j ∈ N , 1 ≤ r ≤ n, (2)

where g(r) is called a (job independent) positional factor.
The values g(r), 1 ≤ r ≤ n, form an array of positional
factors that is common for all jobs. If array g(r), 1 ≤ r ≤ n,
is monotone non-decreasing (or non-increasing), then we
have a situation of positional deterioration (or of positional

learning, respectively). For themost general job-independent
positional effect, we make no assumption regarding the
monotonicity of array g(r), 1 ≤ r ≤ n. It is often assumed
that g(1) = 1, which guarantees that for a job that is
sequenced first, i.e., in position r = 1, the actual processing
time is equal to its normal time. We denote the single-
machine problems of minimizing an objective function �

subject to the effect (2) by 1|p j (r) = p j g(r)|�.
One of the most general variants of a pure cumulative

effect defines p j (r) as

p j (r) = p j f (Pr ) , (3)

where

Pr =
r−1∑

h=1

pπ(h)

is the sum of the normal processing times of the earlier
sequenced jobs.

In (3), f is a continuous differentiable function, common
to all jobs. In the case of learning, f : [0,+ ∞) → (0, 1] is
a non-increasing function, while in the case of deterioration,
f : [0,+∞) → [1,+∞) is a non-decreasing function.
The actual processing time of job j under an effect that

combines a cumulative effect with a general job-independent
positional effect is given by

p j (r) = p j f (Pr ) g(r), (4)

where array g(r), 1 ≤ r ≤ n, is a monotone sequence that
defines a positional effect. It is assumed that in (3) and (4),
the equalities f (0) = 1 and g(1) = 1 hold, which guarantee
that for the job which is the first in the processing sequence,
the actual processing time is equal to its normal time.

We denote the single-machine problems of minimizing
an objective function � subject to the effects (3) and (4)
by 1|p j (r) = p j f (Pr )|� and 1|p j (r) = p j f (Pr )g(r)|�,
respectively.

Quite often a permutation of jobs that defines an optimal
schedule is found by applying a priority rule, i.e., by sorting
the jobs in accordancewith certain priorities. Themost popu-
lar rules are the LPT and SPT rules. Recall that if the jobs are
numbered in accordance with the Shortest Processing Time
(SPT) rule then

p1 ≤ p2 ≤ · · · ≤ pn, (5)

while if they are numbered in accordance with the Longest
Processing Time (LPT) rule, then

p1 ≥ p2 ≥ · · · ≥ pn . (6)
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A permutation of jobs π = (π(1), π (2) , . . . , π (n)) is
called V-shaped with respect to p j if it is either mono-
tone (non-decreasing or non-increasing) or consists of a
non-increasing subsequence followed by a non-decreasing
subsequence. Often an optimal permutation belongs to the
class of V-shaped sequences, and it is quite common to see
the term “V-shaped” in the title of papers; see, e.g.,Mosheiov
(1991). One of the main reasons for interest in V-shaped
sequences is that their number is 2n−1, which, while still
exponential with respect to the number of jobs, is much less
than n!.

This paper is organized as follows. In Sect. 2, we consider
the problems 1|p j (r) = p j g(r)|� with a pure positional
effect, where� ∈ {Cmax,

∑
C j , ξCmax+η

∑
C j }. Review-

ing this well-studied class of problems, we stress that some
of the problems 1|p j (r) = p j g(r)| ∑C j with a positional
deterioration effect cannot be solved by a priority rule. Tra-
ditionally, in scheduling with variable processing times, if
a solution algorithm is not known, “the second best thing”
would be to establish some property of an optimal sequence,
e.g., the V-shapeness. We describe the refined procedure that
may convert a given permutation to a V-shaped permutation
without increasing the value of the function. We give condi-
tions when such a procedure leads to an optimal V-shaped
sequence. We show that these conditions hold if g is a con-
cave function of r , a polynomial function g(r) = ra , a > 0,
and an exponential function g(r) = γ r−1, γ > 1. On the
other hand, the established conditions need not hold for a
convex function g(r).

In Sect. 3, we review the problems 1|p j (r) = p j f (Pr )
g(r)|� with a combined effect. While some of these prob-
lems accept an optimal sequencing policy based on either the
SPT or LPT rule, problem 1|p j (r) = p j f (Pr )| ∑C j with a
pure cumulative deterioration effect given by a concave func-
tion f , including a polynomial function f (Pr ) = (1+ Pr )A,
0 < A < 1, is not solvable by a priority rule. Refining this
result, we show that for this problem, an optimal permutation
is not even V-shaped.

In Sect. 4, we look at the problems in which the cumu-
lative effect is normalized, i.e., function f does not just
depend on Pr , the sum of normal processing times of the
jobs sequenced prior to position r , but on the ratio Pr/P ,
where P is the sum of all processing times. By contrast with
problem 1|p j (r) = p j f (Pr )| ∑C j with a non-normalized
deterioration effect given by a concave function f , problem
1|p j (r) = p j f (Pr/P)| ∑C j with a normalized cumulative
effect is solvable by the SPT rule under certain condi-
tions which, for example, hold for polynomial functions f .
For problem 1|p j (r) = p j f (Pr/P)g(r)| ∑C j , we estab-
lish conditions for an optimal permutation to be V-shaped.
Although the conditions hold for a wide range of problems,
they do not hold for the model in which both functions f and
g are polynomial. The latter problem has been studied by Lu

et al. (2015), where relying on a wrong proof technique, the
authors claim that the problem admits an optimal V-shaped
sequencing policy.

Section 5 contains concluding remarks. In particular, we
emphasis that if our refined technique for proving the V-
shapeness of an optimal permutation fails for some problems
that does not mean that such problems do not admit an opti-
mal V-shaped sequencing policy. It only implies that more
advanced methods have to be used for proving or disproving
the V-shapeness of an optimal permutation.

2 Pure positional effects: algorithms and
V-shapeness

In this section, we consider a range of problems 1|p j (r) =
p j g(r)|� with a pure positional effect (2) to minimize a
function � ∈ {Cmax,

∑
C j , ξCmax + η

∑
C j }.

In the general case, array g(r), 1 ≤ r ≤ n, does not have
to be monotone. However, we pay special attention to the
positional learning effect defined by

1 = g(1) ≥ g(2) ≥ · · · ≥ g(n), (7)

and the positional deterioration effect

1 = g(1) ≤ g(2) ≤ · · · ≤ g(n). (8)

Informal illustrative examples of positional effects are
given, e.g., in Rustogi and Strusevich (2012b). Consider a
situation in which in a manufacturing shop, there are several
parts that need a hole of the same diameter to be punched
through by a pneumatic punching unit. Ideally, the time that
is required for such an operation depends on the thickness
of the metal to be punched through, and this will determine
normal processing times for all parts. In reality, however,
an unavoidable gas leakage occurs after each punch, due to
which the punching unit loses pressure, so that a positional
deterioration effect is observed.

We start with a brief review of the results on problem
1|p j (r) = p j g(r)|�. A systematic exposition of the rele-
vant material is contained in Chapter 7 of the monograph
Strusevich and Rustogi (2017). Then, we focus on problem
1|p j (r) = p j g(r)| ∑C j , which under an arbitrary deterio-
ration effect does not admit solution by a priority rule. We
derive conditions on the positional factors g(r), 1 ≤ r ≤ n,
which guarantee that an optimal permutation is V-shaped.

2.1 Polynomial-time algorithms: a review

Most of the problems related to 1|p j (r) = p j g(r)|� can be
solved in polynomial time by reducing them to the classical
problem of minimizing a linear form over permutations. For
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completeness, we present the latter problem and an algorithm
for its solution below.

Given two arrays a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) such that

b1 ≥ b2 ≥ · · · ≥ bn (9)

holds, then for a permutation π = (π(1), π(2), . . . , π(n)),

a linear form is defined by

L (π) =
n∑

j=1

aπ( j)b j . (10)

In order tominimize the linear form (10), we need to find a
permutation ϕ = (ϕ(1), ϕ(2), . . . , ϕ(n)) of the components
of array a such that the inequality

L (ϕ) =
n∑

j=1

aϕ( j)b j ≤ L (π) =
n∑

j=1

aπ( j)b j (11)

holds for any permutation π . The classical result established
in Hardy et al. (1934) asserts that an optimal permutation ϕ

can be found by the following algorithm.

Algorithm Match
Input: Two (unsorted) arrays a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn)
Output: A permutation ϕ = (ϕ(1), ϕ(2), . . . , ϕ(n)) that
satisfies (11)

Step 1. If required, renumber the components of array b
so that (9) holds.
Step 2. Output a permutation ϕ such that

aϕ(1) ≤ aϕ(2) ≤ · · · ≤ aϕ(n) (12)

holds.

Algorithm Match requires O (n log n) time. Simple as it
is, the algorithm still plays an important role in optimiza-
tion over permutations, including scheduling applications
discussed in this paper. Methodologically, it is also quite
important, since one of the proofs of its correctness given
in Hardy et al. (1934) is based on the so-called pairwise
interchange argument, which has become a popular proof
technique, its variants being used in this paper.

For � ∈ {Cmax,
∑

C j , ξCmax + η
∑

C j }, problems that
we denote by 1|p j (r) = p j g(r)|� reduce to minimizing a
linear form that can be generically written as

�(π) =
n∑

r=1

W (r)pπ(r) + �, (13)

where the values W (r) are positional weights that depend
only on the position r , 1 ≤ r ≤ n, of a job in sequence
π. A permutation that minimizes function �(π) of the form
(13) over all permutations of jobs of set N can be found by
Algorithm Match which requires O(n log n) time. It follows
from the structure of Algorithm Match that:

– if the sequenceW (r), 1 ≤ r ≤ n, of positional weights is
not monotone, then an optimal permutation can be found
by matching smaller components of the array of the posi-
tional weights to larger components of the other array of
processing times;

– if the sequenceW (r), 1 ≤ r ≤ n, of positional weights is
monotone non-decreasing, then an optimal permutation
can be found by ordering the jobs in accordance with the
LPT priority rule applied to the normal processing times
p j ;

– if the sequence W (r), 1 ≤ r ≤ n, of positional weights
ismonotone non-increasing, then an optimal permutation
can be found by ordering the jobs in accordance with the
SPT priority rule applied to the normal processing times
p j .

Surprisingly, the fact that problem 1|p j (r) = p j g(r)|�
for an arbitrary array g(r), 1 ≤ r ≤ n, of positional factors
is solvable in O(n log n) time was established only in the
critical review by Rustogi and Strusevich (2012b). Research
on scheduling problems with job-independent positional
effects conducted before Rustogi and Strusevich (2012b) had
had several limitations. First, authors focused on monotone
effects only, such as learning and deterioration; moreover,
these two types of effects were considered separately despite
their similarities. Second, assumptions on the exact shape
of positional factors were made (i.e., polynomial or expo-
nential), despite the fact that many results would hold for
an arbitrary array of positional factors. Third, the choice of
solution approaches included only simple priority rules, such
as the LPT and/or the SPT rules, while the possible use of
Algorithm Match was neglected.

For problem 1|p j (r) = p j g(r)|Cmax, the makespan can
be written as

Cmax(π) =
n∑

r=1

pπ(r)g(r),

which satisfies (13) with W (r) = g(r), 1 ≤ r ≤ n, and
� = 0. The following statement from Rustogi and Struse-
vich (2012b) summarizes the status of problem 1|p j (r) =
p j g(r)|Cmax.

Theorem 1 Problem 1|p j (r) = p j g(r)|Cmax under a gen-
eral positional effect (2) reduces to minimizing a linear form
(13) with W (r) = g(r), 1 ≤ r ≤ n, and � = 0, and is
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solvable in O(n log n) time by Algorithm Match. In the case
of a learning effect (7), an optimal permutation is obtained in
O(n log n) time by renumbering the jobs in the SPT order. In
the case of a deterioration effect (8), an optimal permutation
is obtained in O(n log n) time by renumbering the jobs in the
LPT order.

For an effect given by a general array g(r), 1 ≤ r ≤ n,
Theorem 1 is proved in Rustogi and Strusevich (2012b).
For special cases of the general position deterioration effect,
optimality of the LPT rule has been established for the poly-
nomial deterioration effect defined by the positional factors

g(r) = r A, 1 ≤ r ≤ n, A > 0 (14)

in Mosheiov (2005) and for the exponential deterioration
effect defined by the factors

g(r) = γ r−1, 1 ≤ r ≤ n, γ > 1 (15)

in Gordon et al. (2008). Similarly, optimality of the SPT
rule has been established for the polynomial learning effect
defined by the positional factors

g(r) = r A, 1 ≤ r ≤ n, A < 0, (16)

in Mosheiov (2001) and for the exponential learning effect
defined by the factors

g(r) = γ r−1, 1 ≤ r ≤ n, 0 < γ < 1. (17)

by Gordon et al. (2008).
For problem 1|p j (r) = p j g(r)| ∑C j , it follows from (1)

that the objective function can be written as

F (π) =
n∑

j=1

C j (π) =
n∑

r=1

Cπ(r) =
n∑

r=1

g(r)(n−r+1)pπ(r),

(18)

which satisfies (13) with W (r) = (n − r + 1)g(r), 1 ≤ r ≤
n. Thus, an optimal schedule can be found by Algorithm
Match, and this will take O(n log n) time; see Rustogi and
Strusevich (2012a, b). Surprisingly, for problem 1|p j (r) =
p j g(r)| ∑C j with a deterioration effect (8), no polynomial
algorithm faster than O(n3) time, via a reduction to a full
form linear assignment problem, had been known prior to
Rustogi and Strusevich (2012a, b).

For problem 1|p j (r) = p j g(r)| ∑C j , if the factors g(r),
1 ≤ r ≤ n, are non-increasing, i.e., satisfy (7), then we have
a learning effect. In this case, for any r , 1 ≤ r ≤ n − 1, we
have that g(r) ≥ g(r + 1) and n − r + 1 > n − (r + 1) + 1,
so that

W (1) ≥ W (2) ≥ · · · ≥ W (n),

and an optimal solution is achieved by renumbering the jobs
in the SPT order.

Factors g(r), 1 ≤ r ≤ n, that satisfy (8) define a deterio-
ration effect. Since for any r , 1 ≤ r ≤ n − 1, we have that
g(r) ≤ g(r + 1) but n − r + 1 > n − (r + 1) + 1, we can-
not guarantee that the positional weights W (r), 1 ≤ r ≤ n,
form a monotone sequence. Thus, there is no evidence that a
solution to problem 1|p j (r) = p j g(r)| ∑C j with a deteri-
oration effect can be obtained by a priority rule.

It is straightforward to verify that problem 1|p j (r) =
p j g(r)|ξCmax + η

∑
C j reduces to minimizing the linear

form (13) with the positional weights W (r) = (ξ + (n −
r + 1)η)g(r), 1 ≤ r ≤ n. Similarly to the problem of mini-
mizing total completion time, here in the case of a positional
learning effect (7), the sequence W (r), 1 ≤ r ≤ n, is non-
increasing, so that the solution can be found by the SPT rule.
Otherwise, unless η = 0, the sequence of positional weights
need not be monotone, so that an optimal solution can be
found by Algorithm Match, but not by a priority rule.

The following statement summarizes the status of prob-
lems 1|p j (r) = p j g(r)| ∑C j and 1|p j (r) = p j g j (r)|ξ
Cmax + η

∑
C j .

Theorem 2 Under a general positional effect (2), problems
1|p j (r) = p j g(r)| ∑C j and 1|p j (r) = p j g j (r)|ξCmax +
η

∑
C j reduce to minimizing a linear form (13) with � =

0 and with W (r) = (n − r + 1)g(r), 1 ≤ r ≤ n, and
W (r) = (ξ + (n − r + 1)η)g(r), 1 ≤ r ≤ n, respectively.
Both problems are solvable in O(n log n) time by Algorithm
Match. In the case of a learning effect (7), for each of these
problems, an optimal permutation is obtained in O(n log n)

time by renumbering the jobs in the SPT order. In the case of a
deterioration effect (8), both problems do not admit a priority
rule solution for an arbitrary non-decreasing array g(r),
1 ≤ r ≤ n, of job-independent positional factors, unless
η = 0.

Problem 1|p j (r) = p j g(r)| ∑C j can be solved by a
priority rule under additional assumptions regarding posi-
tional factors g(r), 1 ≤ r ≤ n, that define a deterioration
effect. In particular, it is proved in Gordon et al. (2008)
that problem 1

∣
∣p j (r) = p j g(r)

∣
∣
∑

C j under an exponential
positional deterioration effect (15) is solvable by theLPT rule
if γ ≥ 2, while no priority rule solution exists for this prob-
lem if 1 < γ < 2. For problem 1|p j (r) = p j g(r)| ∑C j

under a polynomial deterioration effect given by (14), the
conditions on A that guarantee that the problem can be solved
either by the SPT rule or by the LPT rule are given in Chap-
ter 7.2.2 of the monograph Strusevich and Rustogi (2017).

We summarize the results on the solution algorithms for
problems 1|p j (r) = p j g(r)|� with � ∈ {Cmax,

∑
C j , ξ

Cmax + η
∑

C j } in Table 1.
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Table 1 Solution algorithms for
problems with a
job-independent positional
effect

� Factorsg(r) Algorithm

Cmax Arbitrary non-monotone Match

Cmax Arbitrary deterioration (8) LPT

Cmax Arbitrary learning (7) SPT
∑

C j Arbitrary non-monotone Match

ξCmax + η
∑

C j Arbitrary non-monotone Match
∑

C j Arbitrary learning (7) SPT

ξCmax + η
∑

C j Arbitrary learning (7) SPT
∑

C j Polynomial deterioration (14), A < log2
(

n
n−1

)
LPT

∑
C j Polynomial deterioration (14), A > log−1

2

(
n

n−1

)
SPT

∑
C j Exponential deterioration (15), γ ≥ 2 LPT

2.2 V-shapeness

In this section, we study problem 1|p j (r) = p j g(r)| ∑C j ,
provided that array g(r), 1 ≤ r ≤ n, is non-decreasing, i.e.,
satisfies (8) and defines a deterioration effect. We derive con-
ditions on g(r) which guarantee that for problem 1|p j (r) =
p j g(r)| ∑C j , there exists a V-shaped optimal permutation.

Recall that a V-shaped permutation consists of an LPT
subsequence of jobs followed by an SPT subsequence of the
remaining jobs; one of these subsequences may be empty.

Given a permutation π = (π(1), π(2), . . . , π(n)), we say
that π exhibits a peak in position r if there are three consec-
utive positions r − 1, r and r + 1, 2 ≤ r ≤ n − 1, for
which

pπ(r−1) < pπ(r) > pπ(r+1) (19)

holds. It is clear that such a structure is incompatible with
theV-shaped property. Belowwe present a generic procedure
for a possible removal of the peak at this position, without
increasing the value of the corresponding objective function.

Procedure Peak(r)
Given an instance of the problem of minimizing an objective
function �(π) and a permutation π that exhibits a peak (19)
in position r , 2 ≤ r ≤ n − 1.

Step 1. Compute G(π), the joint contribution of the jobs
π(r − 1), π(r) and π(r + 1) to the objective function
F(π).

Step 2. Create permutations π ′ and π ′′ obtained from
π by interchanging job π(r) with the adjacent jobs, i.e.,
with π(r−1) and π(r+1), respectively. ComputeG(π ′)
and G(π ′′).
Step 3. If

G(π) ≥ min{G(π ′),G(π ′′)}, (20)

then either π ′ or π ′′ is a permutation with a value of the
objective function that is at most �(π) and which does
not have a peak in position r .

This peak-removing procedure can be reapplied until
either a V-shaped permutation is obtained or a peak cannot
be removed by applying this procedure.

The following lemma is based on the application of Pro-
cedure Peak to problem 1|p j (r) = p j g(r)| ∑C j . It follows
from (18) that

G(π) = g(r − 1)(n − r + 2)pπ(r−1)

+ g(r)(n − r + 1)pπ(r)

+ g(r + 1)(n − r)pπ(r+1). (21)

Lemma 1 For problem 1|p j (r) = p j g(r)| ∑C j , let permu-
tation π = (π(1), . . . , π(r − 1), π(r), π(r + 1), . . . , π(n))

be such that for some r, 2 ≤ r ≤ n − 1, (19) holds. Let
π ′ = ((π(1), . . . , π(r), π(r − 1), π(r + 1), . . . , π(n)) and
π ′′ = ((π(1), . . . , π(r − 1), π(r + 1), π(r), . . . , π(n)) be
two permutations obtained from π by interchanging job π(r)
with one of its adjacent jobs, respectively. Then, if either

g(r − 1)

g(r)
≤ n − r + 1

n − r + 2
(22)

or

g(r)

g(r + 1)
≥ n − r

n − r + 1
(23)

holds, then (20) holds.

Proof For permutation π ′, the contribution of the three jobs
π(r − 1), π(r) and π(r + 1) to the objective function can be
written as
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G(π ′) = g(r − 1)(n − r + 2)pπ(r)

+ g(r)(n − r + 1)pπ(r−1)

+ g(r + 1)(n − r)pπ(r+1).

Compute

	′ = G(π ′) − G(π)

= (n − r + 2)g(r − 1)pπ(r)

+ (n − r + 1)g(r)pπ(r−1)

− (n − r + 2)g(r − 1)pπ(r−1)

− (n − r + 1)g(r)pπ(r)

= (n − r + 2)(pπ(r) − pπ(r−1))g(r − 1)

− (n − r + 1)(pπ(r) − pπ(r−1))g(r)

= (pπ(r) − pπ(r−1))((n − r + 2)g(r − 1)

− (n − r + 1)g(r)).

Since pπ(r) > pπ(r−1), it follows that 	′ ≤ 0 if condition
(22) holds.

Similarly, for permutation π ′′, we have that

G(π ′′) = g(r − 1)(n − r + 2)pπ(r−1)

+ g(r)(n − r + 1)pπ(r+1)

+ g(r + 1)(n − r)pπ(r),

so that

	′′ = G(π ′′) − G(π)

= g(r)(n − r + 1)pπ(r+1) + g(r + 1)(n − r)pπ(r)

− g(r)(n − r + 1)pπ(r) − g(r + 1)(n − r)pπ(r+1)

= (pπ(r) − pπ(r+1))

× ((n − r)g(r + 1) − (n − r + 1)g(r)).

Since pπ(r) > pπ(r+1), it follows that 	′′ ≤ 0 if condition
(23) holds. �	

Lemma 1 implies that for problem 1|p j (r) = p j g(r)|∑
C j , there exists a V-shaped optimal permutation for fairly

general types of deterioration effects.

Theorem 3 For problem 1|p j (r) = p j g(r)| ∑C j there
exists a V-shaped optimal permutation, provided that one
of the following holds:

(a) Function g(r) is concave non-decreasing;
(b) Function g(r) is exponential non-decreasing, i.e., satis-

fies (15);
(c) Function g(r) is polynomial non-decreasing, i.e., satis-

fies (14).

Proof To prove the theorem, we show that for each type of
positional effect (a)–(c), the conditions of Lemma 1 hold.
Notice that (n − r + 1)2 − (n − r + 2) (n − r) = 1, so that

n − r + 1

n − r + 2
>

n − r

n − r + 1
(24)

holds for all r , 2 ≤ r ≤ n−1. We have that either (22) holds
or, if it does not but

g(r)

g(r + 1)
≥ g(r − 1)

g(r)
, (25)

then

g(r)

g(r + 1)
≥ g(r − 1)

g(r)
>

n − r + 1

n − r + 2
>

n − r

n − r + 1
,

i.e., (23) holds. Thus, to prove the theorem, we show that in
each case (a)–(c), inequality (25) holds.

Case (a) If function g(r) is concave non-decreasing, then

g(r) ≥ 1

2
(g(r − 1) + g(r + 1)).

For positive W and x , suppose that g (r − 1) = W and
g(r) = W + x . Then, due to concavity of function g, we
have that g (r + 1) ≤ W + 2x , so that

g(r)

g(r + 1)
− g(r − 1)

g(r)
≥ W + x

W + 2x
− W

W + x

= x2

(W + 2x)(W + x)
> 0,

i.e., (25) holds.
Case (b) In this case, it follows from (15) that

g(r)

g(r + 1)
= g(r − 1)

g(r)
= 1

γ
,

and (25) obviously holds, as equality.
Case (c) In this case, applying (14) with A > 0, we have

that

g(r − 1)

g(r)
=

(
r − 1

r

)A

<

(
r

r + 1

)A

= g(r)

g(r + 1)
,

and (25) again holds. �	
Notice that the statement regarding Case (c) of Theorem 3

is given in Mosheiov (2005). The proof there is based on a
peak-removing process, similar to Procedure Peak(r ); how-
ever, for the three jobs π(r −1), π(r) and π(r +1) such that
(19) holds, the contributions to the objective function are not
defined correctly. Indeed, in Mosheiov (2005), it is assumed
that if the jobs π(r − 1), π(r) and π (r + 1) are processed

123



672 Journal of Scheduling (2020) 23:665–680

Table 2 Computations for
Example 1

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

Cπ(1) 1.0 1.0 2.0 2.0 3.0 3.0

Cπ(2) 3.8 5.2 3.4 6.2 4.4 5.8

Cπ(3) 12.8 11.2 12.2 9.2 10.4 8.8
∑

Cπ( j) 17.6 17.4 17.8 17.4 17.8 17.6

in this order, then their actual processing times contribute to
the objective function three times, two times and one time,
respectively. However, the contributions of actual processing
times should be computed with respect to the positions of the
jobs from the rear of the schedule, as done in the corrected
expression (21).

We conclude this section by demonstrating that Theorem3
does not hold for convex non-decreasing functions g(r).

Example 1 Consider the following instance of problem
1|p j (r) = p j g(r)| ∑C j with three jobs

p1 = 1, p2 = 2, p3 = 3.

The deterioration positional effect is defined by a convex
function g(r) = 0.6r2 − 1.4r + 1.8, so that g(1) = 1,
g(2) = 1.4 and g(3) = 3. The results of full enumeration are
presented in Table 2. We see that neither of the two optimal
permutations (1, 3, 2) and (2, 3, 1) is V-shaped.

3 Pure and combined cumulative effects:
review and V-shapeness

In this section, we turn to single-machine problems of mini-
mizing an objective function � subject to the effects (3) and
(4), i.e., to problems 1|p j (r) = p j f (Pr )|� and 1|p j (r) =
p j f (Pr )g(r)|�, respectively. One of the first versions of a
pure cumulative effect, a polynomial cumulative effect, given
by

f (Pr ) = (1 +
r−1∑

h=1

pπ(h))
A, (26)

was introduced byKuo andYang (2006a, b), who studied that
effect in the learning form, with A < 0. Studies on an effect
similar to (4) were initiated inWu and Lee (2008), also in the
learning form. Chapter 10 of the monograph Strusevich and
Rustogi (2017) presents a detailed discussion of problems
1|p j (r) = p j f (Pr )g(r)|� and 1|p j (r) = p j f (Pr )|�. In
particular, the following statement gives conditions under
which problem 1|p j (r) = p j f (Pr )g(r)|� is solvable by
the SPT rule.

Theorem 4 For problem 1|p j (r) = p j f (Pr )g(r)|� with
� ∈ {Cmax,

∑
C j , ξCmax + η

∑
C j } under an effect (4),

an optimal permutation can be found in O(n log n) time by
sorting the jobs in accordance with the SPT rule, provided
that f is convex on [0,+∞) and array g(r), 1 ≤ r ≤ n, is
non-increasing.

The conditions of Theorem 4 imply that array g(r), 1 ≤
r ≤ n, defines a positional learning effect. If function f is
defined by (26), then it is convex if either A < 0 (learning)
or A > 1 (fast deterioration).We exclude from consideration
the case that A = 0, since no cumulative effect takes place.

The case of a combined effect (4), provided that function f
is concave and the array g(r), 1 ≤ r ≤ n, is non-decreasing,
is not fully symmetric to that presented in Theorem 4, and
only the makespanCmax can be minimized by a priority rule,
this time LPT.

Theorem 5 For problem 1|p j (r) = p j f (Pr )g(r)|Cmax

under an effect (4), an optimal permutation can be found
in O(n log n) time by sorting the jobs in accordance with the
LPT rule, provided that function f is concave on [0,+∞)

and the array g(r), 1 ≤ r ≤ n, is non-decreasing.

The conditions of Theorem 5 imply that array g(r), 1 ≤
r ≤ n, defines a positional deterioration effect. If function
f is defined by (26), then it is concave if 0 < A ≤ 1 (slow
deterioration).

The results presented in Strusevich andRustogi (2017) are
summarized inTable 3, including their implication for a poly-
nomial cumulative effect (26). Here, in the second column,
we use symbols ↗ and ↘ to indicate whether the sequence
g(r), 1 ≤ r ≤ n, is non-decreasing or non-increasing,
respectively. Additionally, we write g = 1 if g(r) = 1,
1 ≤ r ≤ n.

It is stressed in Strusevich and Rustogi (2017) that the
status of the problem of minimizing total completion time
∑

C j under an effect (4) provided that the conditions of
Theorem 5 hold remains open, even if no positional effect is
applied, i.e., g(r) = 1, 1 ≤ r ≤ n. A counterexample given
in Strusevich and Rustogi (2017) shows that for a concave

polynomial deterioration effect f (Pr ) = (1+Pr )
1
2 , problem

1|p j (r) = p j f (Pr )| ∑C j can be solved neither by the SPT
nor by the LPT rule. Below, we strengthen that result and
show that for the latter problem, an optimal permutation need
not be V-shaped.
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Table 3 Results for problems
with a combined cumulative
effect (4)

Condition on f Condition on g Objective Rule

f convex g ↘ Cmax SPT

f convex g ↘ ∑
Cz

j SPT

f convex g ↘ ξCmax + η
∑

Cz
j SPT

f concave g ↗ Cmax LPT

f concave g = 1
∑

C j Open

f = (1 + Pr )A , A < 0 or A ≥ 1 g ↘ Cmax SPT

f = (1 + Pr )A , A < 0 or A ≥ 1 g ↘ ∑
Cz

j SPT

f = (1 + Pr )A , A < 0 or A ≥ 1 g ↘ ξCmax + η
∑

Cz
j SPT

f = (1 + Pr )A , 0 < A ≤ 1 g ↗ Cmax LPT

f = (1 + Pr )A , 0 < A < 1 g = 1
∑

C j Open

Table 4 Computations for
Example 2

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

Cπ(1) 1.0000 1.0000 26.0000 26.0000 27.0000 27.0000

Cπ(2) 37.7696 164.5791 31.1962 39.1838 32.2915 166.2961

Cπ(3) 180.6401 171.9275 174.0667 179.1981 172.3058 173.6446
∑

Cπ( j) 219.4097 363.5066 231.2629 219.3818 231.5973 365.9407

Example 2 Consider the following instance of problem 1|p j

(r) = p j f (Pr ) | ∑C j

p1 = 1, p2 = 26, p3 = 27.

A polynomial concave cumulative deterioration effect

f (Pr ) = (1+ Pr )
1
2 applies. The results of full enumeration

(accurate to four decimal places) are presented in Table 4.We
see that the optimal permutation (2, 3, 1) is not V-shaped.

4 Pure and combined normalized cumulative
effects

Define

P =
n∑

j=1

p j .

A cumulative effect given by the function f (X/P) :
[0, P] → [0,+∞] is called normalized. See Wu and Lee
(2008); Yin et al. (2009) where the normalized cumulative
effects are introduced. The main reason why normalized
effects are of interest is due to the fact that a normalized effect
provides a slower and smother change in actual processing
times. Non-normalized effects often lead to unacceptably
high actual processing times (in the case of deterioration)
and are seen as unrealistic.

If we set y = X
P , then f (y) : [0, 1] → [0,+∞] and

d

dx
f
( x

P

)
= 1

P
f ′ (y) ; d2

dx2
f
( x

P

)
= 1

P2 f ′′(y).

4.1 Pure cumulative normalized effect: SPT

We prove that under certain conditions problem 1|p j (r) =
p j f (Pr/P)| ∑C j with a pure cumulative deterioration
effect defined by a normalized concave function f (Pr/P)

can be solved by the SPT rule. The established conditions
hold for a popular polynomial normalized concave effect

f (
Pr
P

) = (1 + Pr
P

)A. (27)

Our proof is based on several auxiliary statements. One of
them is the Lagrange mean value theorem reproduced below.

Theorem 6 If a function f is continuous on a closed interval
[a, b], where a < b, and differentiable on the open interval
(a, b), then there exists a point ζ ∈ (a, b) such that

f (b) − f (a) = f ′(ζ )(b − a).

Theorem 6 is used to prove the following lemma.

Lemma 2 For a non-decreasing twice differentiable concave
normalized function f (X/P) : [0, P] → [0,+∞] with a
non-decreasing second derivative, define the function

ϕ(t) = B( f ((X + λt)/P) − λ f ((X + t)/P))

+ (B + 1)(λ − 1) f (X/P), (28)
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where B ≥ 0, λ > 1, 0 ≤ t ≤ P. Then, the inequality

ϕ(t) ≥ (λ − 1)

(

f

(
X

P

)

+ Bλt2

P2 f ′′
(
X

P

))

. (29)

holds for all X ∈ [0, P].
Proof If follows from Theorem 6 that there exists a ξ ∈
[t, λt] such that

f

(
X + λt

P

)

− f

(
X + t

P

)

= (λ − 1) t

P
f ′

(
X + ξ

P

)

.

We rewrite

f

(
X + λt

P

)

− λ f

(
X + t

P

)

=
(

f

(
X + λt

P

)

− f

(
X + t

P

))

− (λ − 1) f

(
X + t

P

)

= (λ − 1) t

P
f ′

(
X + ξ

P

)

− (λ − 1) f

(
X + t

P

)

= (λ − 1)

(
t

P
f ′

(
X + ξ

P

)

− f

(
X + t

P

))

,

which implies

ϕ (t) = (B + 1) (λ − 1) f

(
X

P

)

+ B (λ − 1)

(
t

P
f ′

(
X + ξ

P

)

− f

(
X + t

P

))

= (λ − 1)

(

(B + 1) f

(
X

P

)

+ B

(
t

P
f ′

(
X + ξ

P

)

− f

(
X + t

P

)))

.

Applying Theorem 6 again, we deduce that there exists a
η ∈ [0, t] such that

f

(
X

P

)

− f

(
X + t

P

)

= − t

P
f ′

(
X + η

P

)

,

so that we further rewrite

ϕ (t) = (λ − 1)

(

f

(
X

P

)

+ B

(

f

(
X

P

)

− f

(
X + t

P

))

+ Bt

P
f ′

(
X + ξ

P

))

= (λ − 1)

(

f

(
X

P

)

− Bt

P
f ′

(
X + η

P

)

+ Bt

P
f ′

(
X + ξ

P

))

.

Another application of Theorem 6, this time to the deriva-
tive function f ′, guarantees that there exists a ζ ∈ [η, ξ ] such
that

f ′
(
X + ξ

P

)

− f ′
(
X + η

P

)

= ξ − η

P
f ′′

(
X + ζ

P

)

,

which leads to

ϕ (t) = (λ − 1)

(

f

(
X

P

)

+ Bt (ξ − η)

P2 f ′′
(
X + ζ

P

))

.

By condition, f ′′ is a non-decreasing function, so that

0 > f ′′
(
X+ζ
P

)
≥ f ′′ ( X

P

)
. Besides, ξ − η < λt , so that

inequality (29) holds. �	

Theorem 7 For problem 1|p j (r) = p j f (Pr/P)| ∑C j

under a normalized deterioration effect, an optimal permu-
tation can be found in O(n log n) time by sorting the jobs
in accordance with the SPT rule, provided that function f
is concave for 0 ≤ Pr ≤ P with a non-decreasing second-
order derivative and for any y = Pr

P ∈ [0, 1], the inequality

4 f (y) + f ′′(y) ≥ 0 (30)

holds.

Proof Suppose that π = (π(1), . . . , π (r − 1) , π(r),
π (r + 1) , . . . , π(n)) is an optimal permutation for problem
1
∣
∣p j (r) = p j f (Pr/P)

∣
∣∑C j , and r , 1 ≤ r ≤ n − 1, is the

latest position (or the first from the rear of π ) such that the
pair of jobs u = π(r) and v = π (r + 1) breaks the SPT
rule, i.e.,

pπ(r) > pπ(r+1); pπ(r+1) ≤ pπ(r+2) ≤ · · · ≤ pπ(n).

Define

λ = pπ(r)/pπ(r+1). (31)

Let π ′ be the permutation obtained from π by swapping
the jobs π(r) and π(r + 1). The actual processing times of
all other jobs in sequence π ′ are not affected by the swap of
the jobs π(r) and π(r + 1).

Denote Ph = ∑h−1
i=1 pπ(i) for 1 ≤ h ≤ n and define Y

as the completion time of the job in the (r − 1)th position
in sequence π (or, equivalently, in π ′), i.e., Y = Cπ(r−1) =
Cπ ′(r−1) . For h = r , we derive that
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Cπ( j) = Cπ ′( j), j = 1, . . . , r − 1;
Cπ(r) = Y + pπ(r) f

(
Pr
P

)

;

Cπ ′(r) = Y + pπ(r+1) f

(
Pr
P

)

;

Cπ(r+1) = Cπ(r) + pπ(r+1) f

(
Pr + pπ(r)

P

)

;

Cπ ′(r+1) = Cπ ′(r) + pπ(r) f

(
Pr + pπ(r+1)

P

)

;

Cπ(r+i) = Cπ(r+1) +
r+i∑

j=r+2

pπ(r+ j) f

(
Pr+ j

P

)

,

i = 2, . . . , n − r;

Cπ ′(r+i) = Cπ ′(r+1) +
r+i∑

j=r+2

pπ(r+ j) f

(
Pr+ j

P

)

,

i = 2, . . . , n − r .

Consider the difference	 between the values of the objec-
tive functions for these two permutations, i.e.,

	 =
n∑

j=1

Cπ( j) −
n∑

j=1

Cπ ′( j).

Since there are n − r jobs in each π and π ′ after the job
in the r th position, we have that

	 = Cπ(r) − Cπ ′(r) + (n − r)
(
Cπ(r+1) − Cπ ′(r+1)

)

To prove the theorem, we show that 	 > 0. Using (31)
and the fact that λ > 1, we write

Cπ(r) − Cπ ′(r) = pπ(r) f

(
Pr
P

)

− pπ(r+1) f

(
Pr
P

)

= pπ(r+1) (λ − 1) f

(
Pr
P

)

;

and

Cπ(r+1) − Cπ ′(r+1) = Cπ(r) − Cπ ′(r)

+ pπ(r+1) f

(
Pr + pπ(r)

P

)

− pπ(r) f

(
Pr + pπ(r+1)

P

)

= pπ(r+1) (λ − 1) f

(
Pr
P

)

+ pπ(r+1) f

(
Pr + pπ(r)

P

)

− pπ(r) f

(
Pr + pπ(r+1)

P

)

= pπ(r+1)

(

(λ − 1) f

(
Pr
P

)

+ f

(
Pr + λpπ(r+1)

P

)

− λ f

(
Pr + pπ(r+1)

P

))

.

Thus, we may express 	 as

	 = pπ(r+1)

(

(n − r + 1) (λ − 1) f

(
Pr
P

)

+ (n − r) f

(
Pr + λpπ(r+1)

P

)

− (n − r) λ f

(
Pr + pπ(r+1)

P

))

.

For function ϕ defined by (28), we see that by setting
B = n − r and X = Pr , we may write

	 = pπ(r+1)ϕ
(
pπ(r+1)

)
.

Applying inequality (29) with t = pπ(r+1), λt =
pπ(r), B = n − r , X = Pr , we obtain

ϕ
(
pπ(r+1)

) ≥ (λ − 1)

(

f

(
Pr
P

)

+ (n − r) pπ(r) pπ(r+1)

P2 f ′′
(
Pr
P

))

.

Recall that in permutation π after job π(r), there are
n − r jobs with processing times equal to or larger than
pπ(r+1). Thus, P ≥ Pr + pπ(r) + (n − r) pπ(r+1), i.e.,
(n − r) pπ(r+1) ≤ P − pπ(r). It is clear that the inequal-
ity

pπ(r)
(
P − pπ(r)

)

P2 ≤ 1

4
,

holds, with the equality achieved for pπ(r) = P
2 . Since func-

tion f is concave, its second-order derivative f ′′ is negative,
and we derive

ϕ
(
pπ(r+1)

) ≥ (λ − 1)

(

f

(
Pr
P

)

+ 1

4
f ′′

(
Pr
P

))

.

The right-hand side of the above inequality is nonnegative
due to property (30), which proves the theorem. �	

An example of a function that satisfies the conditions of
Theorem 7 is a normalized polynomial function (27) with
0 < A < 1. For y = Pr/P , we obtain f (y) = (1 + y)A.
Notice that d3

dy3
(1 + y)A = A (A − 1) (A − 2) (y + 1)A−3,
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i.e., f ′′ is non-decreasing. Moreover, for any y ∈ [0, 1], we
deduce

4 f (y) + f ′′ (y) = 4 (1 + y)A + A (A − 1) (1 + y)A−2

= (1 + y)A−2
(
4 (1 + y)2 + A (A − 1)

)

≥ (1 + y)A−2
(

4 − 1

4

)

> 0,

since 4 (1 + y)2 ≥ 4 and A (A − 1) ≥ − 1
4 . Thus, the con-

ditions of Theorem 7 are satisfied and this results in the
following statement.

Corollary 1 For problem 1|p j (r) = p j f (Pr/P)| ∑C j

under a normalized deterioration effect (27)with 0 < A < 1,
an optimal permutation can be found in O(n log n) time by
sorting the jobs in accordance with the SPT rule.

On the other hand, consider a logarithmic function
f ( x

P ) = ln
(
e + 10x

P

)
, such that f (0) = 1. Function f

is concave and has a non-decreasing second-order deriva-
tive; however, inequality (30) does not hold for all y ∈
(0, 0.14623), so that Theorem 7 cannot be applied.

Observe a striking impact of the normalized effect: In
the case of a polynomial function f , problem 1|p j (r) =
p j f (Pr/P)| ∑C j with a normalized deterioration effect
is solvable by the SPT rule, while for problem 1|p j (r) =
p j f (Pr )| ∑C j with a non-normalized effect, Example 2
demonstrates that an optimal permutation does not have to
be V-shaped.

4.2 Combined cumulative normalized effects:
V-shapeness

This subsection is aimed at resolving the status of prob-
lem 1|p j (r) = p j f (Pr/P)g(r)|∑C j for a wide range
of functions that define the combined effect, including
those functions that are considered in Lu et al. (2015).
Recall that Lu et al. (2015) address problem 1|p j (r) =
p j f (Pr/P)g(r)| ∑C j and claim that for f (Pr/P) given by
a normalized polynomial function (27) with 0 < A < 1 and
g(r) = ra for a > 0, an optimal permutation is V-shaped.
However, the proof technique used in Lu et al. (2015) is based
on Mosheiov (2005) and is therefore incorrect. That leaves
the status of the problem open.

Notice that it follows from Sect. 2.2 that for problem
1|p j (r) = p j f (Pr/P)g(r)| ∑C j for an optimal permu-
tation to be V-shaped, the function g(r) that defines the
positional effect should satisfy the conditions of Lemma 1.
Our proof is split into two parts, depending on which of the
two conditions of Lemma 1 holds for position r .

Our proofs are based on applications of Procedure Peak
to problem 1|p j (r) = p j f (Pr/P)g(r)|∑C j . Also, the
proofs are based on the properties of the following function

ψ (t) = (1 − λ) f

(
X

P

)

+λμ f

(
X + t

P

)

−μ f

(
X + λt

P

)

,

(32)

where 0 ≤ X
P ≤ 1.

Lemma 3 For functionψ(t) defined by (32), such that λ > 1,
μ ≥ 1 and function f (X/P) : [0, P] → [0,+∞] is a
concave normalized function, the inequality ψ(t) ≥ 0 holds
for all nonnegative t such that X + λt ≤ P.

Proof The proof is similar to the proof of Lemma 9.1 in the
book Strusevich and Rustogi (2017). First, notice that

ψ (0) = (1 − λ) f

(
X

P

)

+ λμ f

(
X

P

)

− μ f

(
X

P

)

= (μ − 1) (λ − 1) f

(
X

P

)

≥ 0

Further, compute

dψ (t)

dt
= λμ

P
f ′

(
X + t

P

)

− λμ

P
f ′

(
X + λt

P

)

= λμ

P

(

f ′
(
X + t

P

)

− f ′
(
X + λt

P

))

> 0,

where the last inequality follows from λ > 1 and the con-
cavity of f , since the derivative of a concave function is
non-increasing. Thus, function ϕ (t) remains nonnegative for
all nonnegative t , and this proves the lemma. �	

As in Sect. 2.2, assume that a permutation π = (π(1),
π(2), . . . , π(n)) which is optimal for problem 1|p j (r) =
p j f (Pr/P) g (r) | ∑C j exhibits a peak in position r , i.e.,
(19) holds for three consecutive positions r − 1, r and r + 1,
2 ≤ r ≤ n − 1.

As earlier, for a permutation π , let Ph denote the sum
of the normal processing times of the jobs that precede job
π (h). Define G (π) as the total contribution of the three
jobs π (r − 1) , π(r) and π (r + 1) to the objective function
F (π) = ∑n

r=1 Cπ(r), so that

G (π) = f

(
Pr−1

P

)

g(r − 1)(n − r + 2)pπ(r−1)

+ f

(
Pr−1 + pπ(r−1)

P

)

g(r)(n − r + 1)pπ(r)

+ f

(
Pr−1 + pπ(r−1) + pπ(r)

P

)

×g(r + 1)(n − r)pπ(r+1). (33)

As in Procedure Peak, let π ′ and π ′′ be two permutations
obtained from π by interchanging job π(r) with the adja-
cent jobs, i.e., with π (r − 1) and π (r + 1), respectively.
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Wedemonstrate that under certain conditions, inequality (20)
holds, and therefore, the peak in position r of permutation π

can be removed.

Lemma 4 For problem 1|p j (r) = p j f (Pr/P)g(r)| ∑C j ,
let a cumulative deterioration effect be defined by a function
f that is a concave differentiable non-decreasing normal-
ized function. For a permutation π = (π(1), . . . , π(r − 1),
π(r), π(r + 1), . . . , π(n)) such that for some r, 2 ≤
r ≤ n − 1, (19) holds, let π ′ = ((π(1), . . . , π(r),
π(r − 1), π(r + 1), . . . , π(n)) be obtained from π by inter-
changing jobs π (r − 1) and π(r). Then, inequality (22)
implies that G(π) ≥ G(π ′).

Proof The total contributionof the three jobsπ (r − 1) , π(r)
and π (r + 1) to the objective function for permutation π is
given by (33), while for permutation π ′, it can be written as

G
(
π ′) = f

(
Pr−1

P

)

g(r − 1)(n − r + 2)pπ(r)

+ f

(
Pr−1 + pπ(r)

P

)

g(r)(n − r + 1)pπ(r−1)

+ f

(
Pr−1 + pπ(r) + pπ(r−1)

P

)

g(r + 1)(n − r)pπ(r+1).

To prove the lemma, we show that

	′ = G (π) − G
(
π ′) ≥ 0,

i.e., permutation π ′ is no worse than permutation π . We have
that

	′ =
(

f

(
Pr−1

P

)

g(r − 1)(n − r + 2)pπ(r−1)

+ f

(
Pr−1 + pπ(r−1)

P

)

g(r)(n − r + 1)pπ(r)

)

−
(

f

(
Pr−1

P

)

g(r − 1)(n − r + 2)pπ(r)

+ f

(
Pr−1 + pπ(r)

P

)

g(r)(n − r + 1)pπ(r−1)

)

.

Define

λ′ = pπ(r)

pπ(r−1)
;

μ′ = (n − r + 1)g(r)

(n − r + 2)g (r − 1)
.

Notice that λ′ > 1 due to the definition of position r and
μ′ ≥ 1 due to (22). Using the introduced notation, we rewrite

	′ = (n − r + 2)g (r − 1) pπ(r−1)

(
(
1 − λ′) f

(
Pr−1

P

)

+ λ′μ′ f
(
Pr−1 + pπ(r−1)

P

)

−μ′ f
(
Pr−1 + λ′ pπ(r−1)

P

))

It follows from (32) that for X = Pr−1, λ = λ′ and
μ = μ′, we can express

	′ = (n − r + 2)g (r − 1) pπ(r−1)ψ
(
pπ(r−1)

)
.

It follows from Lemma 3 that ψ (t) ≥ 0, which implies
that 	′ ≥ 0. �	

As an illustration, consider problem 1|p j (r) = p j f (Pr/
P)g(r)| ∑C j in which function f satisfies the conditions
of Lemma 4 and the positional deterioration effect is defined
by an exponential function, i.e., g (r) = γ r−1, where γ ≥ 3

2 .
We have that

μ′ = (n − r + 1)γ

(n − r + 2)
,

so that (22) holds due to

γ ≥ 3

2
≥ (n − r + 2)

(n − r + 1)
.

Thus, for the problemwith the combined effect under con-
sideration, an optimal permutation is V-shaped. The case that
1 < γ < 3

2 is left open. We only know that for 1 < γ < 3
2 ,

problem 1|p j (r) = p jγ
r−1| ∑C j with a pure positional

deterioration effect is not solvable by a priority rule, but an
optimal permutation is V-shaped, as proved in Theorem 3.

Now, we consider the more intricate case of problem
1|p j (r) = p j f (Pr/P)g(r)|∑C j assuming function g sat-
isfies condition (23).

The following lemma is an analog of Lemma 2.

Lemma 5 For functionψ(t) defined by (32), such that λ < 1,
μ ≤ 1 and function f (X/P) : [0, P] → [0,+∞] is a non-
decreasing twice differentiable concave normalized function
f (X/P) : [0, P] → [0,+∞]with a non-decreasing second
derivative, the inequality

ψ(t) ≥ (1 − λ)

(

(1 − μ) f

(
X

P

)

+ λ (1 − λ)μt2

P2 f ′′
(
X

P

))

(34)

holds for all t ≥ 0 such that X + t ≤ P.
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Proof The proof is similar to the proof of Lemma 2 and is
based on multiple applications of the Lagrange mean value
theorem, i.e., Theorem 6.

Substituting

(1 − λ) f

(
X

P

)

= (1 − λ)μ f

(
X

P

)

+ (1 − λ) (1 − μ) f

(
X

P

)

;

μ f

(
X + λt

P

)

= λμ f

(
X + λt

P

)

+ (1 − λ)μ f

(
X + λt

P

)

into (32), we obtain

ψ (t) = (1 − λ)μ f

(
X

P

)

+ (1 − λ) (1 − μ) f

(
X

P

)

+ λμ f

(
X + t

P

)

− λμ f

(
X + λt

P

)

− (1 − λ)μ f

(
X + λt

P

)

.

Combining, we rewrite

ψ (t) = (1 − λ) (1 − μ) f

(
X

P

)

+ (1 − λ)μ

(

f

(
X

P

)

− f

(
X + λt

P

))

+ λμ

(

f

(
X + t

P

)

− f

(
X + λt

P

))

.

Applying Theorem 6 to function f , we obtain

ψ (t) = (1 − λ) (1 − μ) f

(
X

P

)

− (1 − λ) λμt

P
f ′

(
X + ξ

P

)

+λμ (1 − λ) t

P
f ′

(
X + η

P

)

= (1 − λ) (1 − μ) f

(
X

P

)

+ (1 − λ) λμt

P

(

f ′
(
X + η

P

)

− f ′
(
X + ξ

P

))

,

where ξ ∈ (0, λt) , η ∈ (λt, t). Applying Theorem 6 to the
derivative function f ′, we further deduce

ψ (t) = (1 − λ) (1 − μ) f

(
X

P

)

+ (1 − λ) λμt (η − ξ)

P2 f ′′
(
X + ζ

P

)

,

where ξ ∈ (0, λt) , η ∈ (λt, t) , ζ ∈ (ξ, η).
Since η − ξ < (1 − λ) t and f is concave, i.e., f ′′ is

negative, we have

ψ (t) ≥ (1 − λ)

(

(1 − μ) f

(
X

P

)

+ (1 − λ) λμt2

P2 f ′′
(
X + ζ

P

))

.

By condition, f ′′ is non-decreasing, so that f ′′
(
X+ζ
P

)
≥

f ′′ ( X
P

)
, and therefore, (34) holds. �	

Lemma 6 For problem 1|p j (r) = p j f (Pr/P)g(r)| ∑C j ,
let a cumulative deterioration effect be defined by a function
f that is a concave twice differentiable non-decreasing nor-
malized function with a non-decreasing second derivative.
For a permutation π = (π(1), . . . , π(r − 1), π(r), π(r +
1), . . . , π(n)) such that for somer, 2 ≤ r ≤ n−1, (19) holds,
let π ′′ = ((π(1), . . . , π(r − 1), π(r + 1), π(r), . . . , π(n))

be obtained from π by interchanging jobs π(r) and π(r+1).
Then, if inequality (23) holds and additionally the inequality

(1 − μ) f (y) + μ

8
f ′′(y) ≥ 0 (35)

holds for y ∈ [0, 1] and all μ, 0 < μ ≤ 1, then G(π) ≥
G(π ′′).

Proof The total contributionof the three jobsπ (r − 1) , π(r)
and π (r + 1) to the objective function for permutation π is
given by (33), while for permutation π ′′, it can be written as

G
(
π ′′) = f

(
Pr−1

P

)

g(r − 1)(n − r + 2)pπ(r−1)

+ f

(
Pr−1 + pπ(r−1)

P

)

g(r)(n − r + 1)pπ(r+1)

+ f

(
Pr−1 + pπ(r−1) + pπ(r+1)

P

)

×g(r + 1)(n − r)pπ(r).

To prove the lemma, we show that

	′′ = G (π) − G
(
π ′′) ≥ 0,
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i.e., permutation π ′′ is no worse than permutation π . Since
Pr = Pr−1 + pπ(r−1) for permutation π , we have that

	′′ =
(

f

(
Pr
P

)

g(r)(n − r + 1)pπ(r)

+ f

(
Pr + pπ(r)

P

)

g(r + 1)(n − r)pπ(r+1)

)

−
(

f

(
Pr
P

)

g(r)(n − r + 1)pπ(r+1)

+ f

(
Pr + pπ(r+1)

P

)

g(r + 1)(n − r)pπ(r)

)

.

Define

λ′′ = pπ(r+1)

pπ(r)
;

μ′′ = (n − r)g (r + 1)

(n − r + 1)g(r)
.

Notice that λ′′ < 1 due to the definition of position r and
μ′′ ≤ 1 due to (23). Using the introduced notation,we rewrite

	′′ = g(r)(n − r + 1)pπ(r)

(
(
1 − λ′′) f

(
Pr
P

)

+ λ′′μ′′ f
(
Pr + pπ(r)

P

)

− μ′′ f
(
Pr + λ′′ pπ(r)

P

))

.

In termsof the functionψ (t) , applying (32)with X = Pr ,
t = pπ(r), λ = λ′′, μ = μ′′, we may write

	′′ = g(r)(n − r + 1)pπ(r)ψ
(
pπ(r)

)
.

Lemma 5 implies

ψ
(
pπ(r)

) ≥ (1 − λ)

(

(1 − μ) f

(
Pr
P

)

+ μ (1 − λ) pπ(r) pπ(r+1)

P2 f ′′
(
Pr
P

))

.

Notice that 1 − λ = (
pπ(r) − pπ(r+1)

)
/pπ(r) and

(1 − λ) pπ(r) pπ(r+1)

P2 =
(
pπ(r) − pπ(r+1)

)
pπ(r+1)

P2 .

Since pπ(r) ≤ P − pπ(r+1), we obtain

(
pπ(r) − pπ(r+1)

)
pπ(r+1)

P2

≤
((
P − pπ(r+1)

) − pπ(r+1)
)
pπ(r+1)

P2

=
(
P − 2pπ(r+1)

)
pπ(r+1)

P2 ≤ 1

8
,

where the last inequality holds as equality for pπ(r+1) =
P/4.

Thus, ψ
(
pπ(r)

) ≥ 0 if

(1 − μ) f

(
Pr
P

)

+ μ

8
f ′′

(
Pr
P

)

≥ 0,

which holds due to (35). This proves the lemma. �	

We now examine how the derived conditions can be applied
to a specific problem.

Considerfirst problem1|p j (r) = p j f (Pr/P)g(r)|∑C j ,
where f (Pr/P) is a normalized polynomial function (27)
with 0 < A < 1 and g(r) = ra for a > 0. As mentioned
earlier, Lu et al. (2015) claim that for that problem, an opti-
mal permutation is V-shaped, although no rigorous proof has
been given.

Based on Lemmas 4 and 6, we only need to make
sure that for y = Pr

P , function f (y) = (1 + y)A, 0 <

A < 1, satisfies the conditions of Lemma 6. Notice that
d3

dy3
(1 + y)A = A (A − 1) (A − 2) (y + 1)A−3 > 0, i.e.,

f ′′ is non-decreasing. Moreover, for any y ∈ [0, 1] and any
μ ∈ (0, 1], we deduce

(1 − μ) f (y) + 1

8
μ f ′′ (y)

= (1 − μ) (1 + y)A + 1

8
μA (A − 1) (1 + y)A−2

= (1 + y)A−2
(

(1 − μ) (1 + y)2 + 1

8
μA (A − 1)

)

.

We know that (1 + y)2 ≥ 1 and A (A − 1) ≥ − 1
4 , i.e.,

(1 − μ) f (y)+ 1
8μ f ′′ (y) ≥ 0 if (1 − μ) (1 + y)2 − 1

32μ ≥
0, i.e., μ ≤ 32

33 . This implies that the required inequality (35)
holds not for all μ, 0 ≤ μ ≤ 1, but only for 0 ≤ μ ≤ 32

33 .
In fact, we can produce a counterexample that shows that for
an instance of the problem under consideration, a peak in a
certain position r cannot be removed, since neither Lemma 4
nor Lemma 6 can be applied.

Example 3 There are n = 30 jobs, such that

p1 = p2 = . . . = p28 = 1, p29 = 90, p30 = 100.

The normalized cumulative polynomial deterioration
effect is defined by f (X/P) = √

1 + X/P , and the posi-
tional polynomial deterioration effect is defined by g(r) =
r0.6. Consider permutation π in which the longest job 30 is
in position 16 and the second longest job 29 is in position
17. Permutations π ′ and π ′′ are obtained by swapping job
30 either with the preceding job or with the job that follows,
i.e., job 29. It can be checked that
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G (π) = 28687.30

G
(
π ′) = 28690.96

G
(
π ′′) = 28704.39,

i.e., G (π) < min{G(π ′),G(π ′′)} and for r = 16 Proce-
dure Peak(r) cannot be applied. Notice that for r = 16, we
have that μ′ = 0.97451496 < 1, i.e., (22) does not hold and
Lemma 4 is not applicable. On the other hand,

μ′′ = 0.967908135 >
32

33
= 0.96969697,

so that Lemma 6 cannot be applied either.
Notice that this counterexample does not mean that for the

described instance, an optimal permutation is not V-shaped.
In fact, it can be verified by full enumeration that an optimal
solution is delivered by a SPT permutation, e.g., the one that
keeps the jobs in the order of their numbering. The example
only demonstrates that in general, an optimal permutation
cannot be derived by Procedure Peak(r) from an arbitrary
sequence of jobs, i.e., Procedure Peak(r) may fail for a par-
ticular r .We therefore need another technique, different from
simple peak removing, to verify whether an optimal permu-
tation is V-shaped or not.

5 Conclusion

In this paper, we refine the proof technique previously
employed for proving the existence of an optimal V-shaped
sequencing policy for a range of scheduling problems with
various time-changing effects such as positional, cumulative
and their combination.The refinement is achievedbypresent-
ing a corrected formula for a contribution that an individual
job makes to the objective function, typically, the sum of the
completion times.

For pure positional effects, we give conditions for an opti-
mal V-shaped policy that hold for the popular polynomial
and exponential effects, aswell as for non-monotone concave
effects. For problems under a combination of a cumulative
concave normalized effect and a positional effect, we also
derive conditions which hold for a wide range of problems.
However, they do not hold for the problem in which both
cumulative and positional effects are polynomial, which con-
tradicts the claim made by Lu et al. (2015).

The presented counterexamples show limitations of the
discussed proof technique for proving V-shapeness and show
the necessity for a more powerful method.
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