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Abstract

In this paper, a variant of the vehicle routing problem with mixed backhauls (VRPMB) is presented, i.e. goods have to be
delivered from a central depot to linehaul customers, and, at the same time, goods have to be picked up from backhaul
customers and brought to the depot. Both types of customers can be visited in mixed sequences. The goods to be delivered
or picked up are three-dimensional (cuboid) items. Hence, in addition to a routing plan, a feasible packing plan for each
tour has to be provided considering a number of loading constraints. The resulting problem is the vehicle routing problem
with three-dimensional loading constraints and mixed backhauls (3L-VRPMB). The simultaneous transport of linehaul and
backhaul items presents a particular challenge of the problem. We consider two different loading variants in order to avoid
any reloading during the tour: (i) rear loading with separate linehaul and backhaul sections and (ii) loading at a long side. In
order to solve the problem, we propose a hybrid metaheuristic consisting of a reactive tabu search for the routing problem and
different packing heuristics for the loading problem. Numerical experiments are reported with benchmark instances from the
literature for the one-dimensional VRPMB to examine the performance of the routing algorithm and with newly generated
instances for the 3L-VRPMB.

Keywords Vehicle routing - Backhauls - Tabu search - Packing

1 Introduction

In 2010, the average empty running rate—i.e. the share of
trucks driving without transporting any goods—in the Euro-
pean Union amounted to 24% de Angelis (2011). This occurs,
for example, if vehicles return empty from their deliveries.
By incorporating the pickup of goods (backhauling) dur-
ing the tours into the logistics system, empty runs can be
reduced which subsequently leads to a reduction in travelled
distances, fuel consumption and CO; emission. Therefore,
vehicle routing problems (VRPs) with backhauls also gain
increasing attention in research.

While backhaul problems can be modelled in different
variants (cf e.g. Parragh et al. (2008); Irnich et al. (2014)),
this paper will be focused on the (VRPMB). In this problem
variant, goods have to be either delivered to customers (/ine-
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haul) or picked up from them (backhaul). The sequence of
linehaul and backhaul customers within a tour can be chosen
arbitrarily.

Moreover, we aim to provide a more realistic modelling
of the transportation of (bulky) goods which are of a size
that cannot be neglected to ensure feasibility when planning
the routes. Therefore, the transported goods are assumed to
be three-dimensional (3D) cuboid items. Each solution of
the problem must, thus, be equipped with a feasible packing
plan per route. A particular challenge of the problem is to
transport linehaul and backhaul items simultaneously on the
same vehicle. In order to avoid any reloading during a tour,
two different loading approaches are considered: (i) loading
from the rear side with horizontal separation of the load-
ing space into a delivery section and a pickup section and
(i) loading from one long side. The side from which items
are loaded and unloaded is subsequently called loading side.
The resulting problem belongs to the group of VRPs with
three-dimensional loading constraints (3LVRPs) which was
introduced by Gendreau et al. (2006).

We propose a hybrid algorithm for solving the three-
dimensional VRPMB. The underlying routing problem is
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solved with a reactive tabu search (RTS) based on the
approach of Nagy et al. (2013). In order to solve the packing
subproblem, different packing heuristics have been imple-
mented which can be chosen alternatively. They were tested
and compared concerning their performance.

The remainder of this paper is organized as follows: a
detailed problem description is presented in Sect. 2. In Sect. 3,
an overview of the relevant literature is given. The proposed
RTS and the packing heuristics are described in Sect. 4. In
Sect. 5, the experiment setup is described, and the results are
presented and analysed. Finally, the paper concludes with a
summary and an outlook to future research in Sect. 6.

2 Problem description

Let G = (N, E) be a weighted, directed graph with the node
set N = {0, 1, ..., n}, where node O represents the depot and
thenodes 1, .. ., nrepresent the n customer locations, and the
edge set E = {(i, j) :i,j € N,i # j}. The customers are
divided into / linehaul customers and b backhaul customers,
iee N = {0,1,...,n} = {0,1,....,0, 1+ 1,...,1 + b}.
Furthermore, let ¢;; be the cost corresponding to edge (i, j) €
E.

A set I; = {1,...,m;} of m; cuboid items (boxes) is
assigned to each customeri (i € N\{0}) which mustbe either
delivered to them (linehaul) or picked up from them (back-
haul). Each item 7;; (i € N\{0}, k € I;) has a known length
lik, width w;i, height h;; and weight d;; and is assigned with
a fragility flag f; indicating whether it is fragile (fix = 1)
or not (fix = 0). The entire cargo, given by the set of boxes
of all n customers, might be strongly heterogeneous (nearly
as many box types as boxes), weakly heterogeneous (many
boxes, few box types) or even homogeneous. vy,x identical
vehicles are available with a given weight capacity D and a
three-dimensional cuboid loading space of length L, width
W and height H. All vehicles can be loaded and unloaded
either from the rear or from one long side (see below).

A solution for the problem must contain information about
the allocation of customers to routes, the customer sequences
of the routes and the corresponding packing plans.

A packing plan P contains placements for one or more
items. It is feasible if it fulfils the following conditions: (P1)
all items lie entirely within their loading space, (P2) any two
items which are placed simultaneously in one loading space
must not overlap, and (P3) all items must be placed orthog-
onally to the loading space edges. Moreover, the following
additional packing constraints must be adhered to [cf. Gen-
dreau et al. (2006)]:
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(PC1) Fixed vertical orientation The items can be rotated
by 90° on the horizontal plane, but the height dimen-
sions are fixed.

(PC2) Vertical stability Each item must be supported by a
given percentage o by the top faces of other items or
the container floor (see Sect. 5.1).

(PC3) Fragility A non-fragile item cannot be placed on top
of a fragile item, whereas fragile items can be placed
on top of any other item.

(PC4) LIFO The last-in, first-out constraint requires that
the items are loaded and unloaded solely by straight
movements towards the loading side. Therefore, it
must be ensured that the (un-)loading is not blocked
by items that are delivered later or have already been
picked up.

Let/; and [, be two linehaul customers and b and b;
two backhaul customers. Assuming /1 precedes [ ina
given route, no item of /; must be positioned between
the loading side and any item of customer /; or above
such item. Analogously, if b1 precedes b> in a route,
no item of b can be positioned between the loading
side and any item of customer b, or above such item.
Furthermore, if b precedes /1 in a route, no item of
b1 may be placed between the loading side and any
item of /; or above such item. In addition, no item
of /1 can be placed between the loading side and any
item of by or above such item.

The orientation constraint (PC1) often occurs if techni-
cal devices, e.g. household appliances, are to be transported.
Constraint (PC2) is also called static stability constraint and
prevents boxes from falling down onto the container floor (see
Bortfeldt and Wascher (2013)). By the fragility constraint
(PC3), the stacking of boxes is restricted because of their
limited load bearing strength. The stability and fragility con-
straint occur in different variants; see, for example, Paquay
et al. (2017, p. 1583).

The LIFO policy (PC4) implies that the reloading of
any item during the route is forbidden. Therefore, this con-
straint is particularly challenging considering that linehaul
and backhaul items are transported simultaneously. Two
alternative loading approaches are applied here in order to
avoid any reloading effort.

In the first variant, double-decker vehicles are used. These
vehicles are rear-loaded (the loading side is the rear side), and
the loading space is separated horizontally so that two sep-
arate compartments are available for each type (linehaul or
backhaul). This way, the LIFO constraint must not be con-
sidered w.r.t. a mixture of linehaul and backhaul items. It is
assumed that both compartments are of the same size. In the
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Fig.1 Side loading

following, this variant will be referred to as loading space
partition (LSP).

Secondly, side loading (SL) is applied for which so-called
tautliners are used. These vehicles can only be loaded and
unloaded from the side (the loading side is one long side).
An example is illustrated in Fig. 1. By loading linehaul (light
grey) and backhaul (dark grey) items from opposing sides
(cabin and rear side), space is created for backhaul items
when linehaul items are unloaded. Ly and Lgy represent
the loading lengths (i.e. maximum front edge) of all linehaul
and backhaul items, respectively, which are currently in the
loading space. In order to avoid any overlapping, the sum of
both lengths must not exceed L. The LIFO constraint must
be considered as above ensuring that the (un-)loading is not
blocked. In the example in Fig. 1, items 2 and 3 must not
be delivered after item 1. Moreover, the constraint must also
be considered along the length axis ensuring that the unload-
ing of linehaul items successively creates space for backhaul
items. Therefore, item 4 may not be delivered after item 1.

Since we assume uniform vehicles, only one of the loading
approaches can be applied for a problem instance, i.e. all
vehicles in any generated solution have to be loaded either
by the LSP approach or by the SL approach.

A feasible route R is a sequence of locations (0, iy, ..., iy, ,
0) which fulfils the following conditions: (R1) it starts and
ends at the depot, (R2) it comprises each customeri € R\{0}
exactly once, (R3) the total weight of all items transported
simultaneously does not exceed the vehicle weight capacity
D, and (R4) a feasible packing plan Py, exists for all linehaul
customers in R at the beginning of the tour and a feasible
packing plan Pp exists for all backhaul customers at the end
of the tour.

Let v be the number of used vehicles in a solution. Assum-
ing each vehicle travels exactly one tour, a solution consists
of aset of v triples (R;, Py, P ) containing a route R; for
each vehicler (r = 1, ..., v) and the corresponding packing
plans P, 1 and P; p. A solution is feasible if (S1) all routes R,
and packingplans P; 1, P g (t =1, ..., v) arefeasible, (S2)
each packing plan P; 1 (P p) contains all of the respective
linehaul (backhaul) items (and no others) of all customers
visitedin R; (t = 1, ..., v), (S3) each customer i € N\{0}

is assigned to exactly one route, and (S4) the number of used
vehicles v does not exceed the number of available vehicles
Umax. Moreover, a feasible solution for the problem with SL
approach must also adhere to the restriction (S5) that the line-
haul and backhaul items that are transported simultaneously
at any given moment in a route R; (f = 1,...,v) do not
overlap, i.e. the sum of the lengths L1y and Ly must never
exceed L (see above).

A feasible solution is to be found that minimizes the total
travel distance (TTD). The problem can be classified as a
3L-VRP with mixed backhauls (3L-VRPMB).

3 Literature review

The 3L-VRPMB has so far only been considered once,
namely by Reil et al. Reil et al. (2018). The following lit-
erature review is focused on the one-dimensional VRPMB
and problem variants of the 3L-VRP. In addition, some rel-
evant studies about the VRP with two-dimensional loading
constraints are shortly mentioned.

3.1 Vehicle routing problem with mixed backhauls

The (one-dimensional) VRPMB has been studied inten-
sively in the past decades. Straightforward heuristic solution
approaches were primarily used in the beginning. They
include, for example, Savings and insertions heuristics
(Golden et al. 1985; Casco et al. 1988), or cluster-first-
route-second heuristics (Halse 1992). In the recent past, the
trend shifted towards the use of metaheuristics. One of the
first metaheuristics for the VRPMB was presented by Wade
and Salhi (2004) who suggested an ant colony optimization
(ACO) approach. A hybrid approach presented in Crispim
and Brandio (2005) consists of a tabu search (TS) and a
variable neighbourhood descent heuristic. An adaptive large
neighbourhood search (ALNS) for a great variety of VRPs
with backhauls has been described in Ropke and Pisinger
(2006). More recently, a reactive tabu search (RTS) to solve
the VRPMB was proposed in Nagy et al. (2013) and serves
as the base for the solution approach presented in this paper.
In addition, a problem variant is also considered in Nagy
et al. (2013) where a mixture of linehaul and backhaul cus-
tomers in a tour is only allowed if a given percentage of
the vehicle capacity is available. Hence, if the percentage
equals 100%, the VRP with clustered backhauls (VRPCB)
is considered, i.e. all linehaul customers have to be visited
before the backhaul customers within a tour. Further recent
approaches include ACO (Wassan et al. 2013), adaptive local
search (Avci and Topaloglu 2015) and evolutionary algo-
rithms (Garcia-Ngjera et al. 2015).

@ Springer



74

Journal of Scheduling (2020) 23:71-93

3.2 Vehicle routing problems with loading
constraints

The capacitated VRP (CVRP) with three-dimensional load-
ing constraints (3L-CVRP) was first presented by Gendreau
et al. (2006), who also introduced the above-mentioned con-
straints regarding the packing subproblem. Subsequently, the
problem was studied by various researchers (e.g. Tarantilis
et al. (2009); Fuellerer et al. (2010); Bortfeldt (2012)). The
3L-VRP with time windows was first dealt with by Moura
(2008) and Moura and Oliveira (2009). They consider two
objective criteria. Namely, the TTD and the number of tours
as common in research regarding VRPs with time windows
(VRPTW). Furthermore, the maximization of the utilized
volume as another optimization objective is considered in
Moura (2008). The 3L-CVRP with a heterogeneous vehicle
fleet is addressed in Wei et al. (2014).

The routing problem is usually tackled with a metaheuris-
tic approach, e.g., genetic algorithm (Moura 2008; Miao et al.
2012), TS (Gendreau et al. 2006; Tarantilis et al. 2009; Wang
etal. 2010; Maetal. 2011; Wisniewski 2011; Zhu et al. 2012;
Tao and Wang 2015) or ACO (Fuellerer et al. 2010). Since
solving the packing problem requires comparatively much
computing time as the packing procedure is called very fre-
quently, the packing problem is often solved by applying
simple construction heuristics, e.g. based on bottom-left and
touching area heuristics. More complex packing approaches
are, for example, applied by Bortfeldt (2012) (tree search) or
Zhang et al. (2015) (local-search-based approach). Further-
more, an exact approach for solving the routing subproblem
and a GRASP algorithm for solving the packing problem for
the obtained routes is used in Escobar-Falcon et al. (2016).

So far, the underlying VRP was mainly assumed to be a
CVRP or VRPTW. Variants with pickup and delivery have
not been studied intensely yet. The 3L-VRP with clustered
backhauls (3L-VRPCB) is approached in Bortfeldt et al.
(2015) where ALNS and variable neighbourhood search are
used for the routing problem and a tree search procedure
is applied to the packing problem. The pickup and delivery
problem with three-dimensional loading constraints is stud-
ied in Bartok and Imreh (2011) and Minnel and Bortfeldt
(2016). Here, goods are transported from a loading location
to an unloading location (that are not the depot).

Different variants of 3L-VRPs with backhauls and time
windows, among them the 3L-VRPMB, are tackled in Reil
et al. (2018). The authors propose a two-phase approach fol-
lowing the principle “packing first, routing second”. That is,
first for each customer a truck segment is filled by the cus-
tomer’s boxes by means of a TS packing procedure. In the
second phase, the remaining routing task is done with an evo-
lutionary strategy and a TS. The heuristic is able to cope with
large instances with up to 1000 customers and 50,000 boxes.
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In addition, VRPs with backhauls have been studied
considering two-dimensional (2D) loading constraints, e.g.
Dominguez et al. (2015) (clustered backhauls), Pinto et al.
(2015) (mixed backhauls) or Zachariadis et al. (2016) (simul-
taneous delivery and pickup). In Pinto et al. (2015) and
Zachariadis et al. (2016), variants with simultaneous trans-
portation of linehaul and backhaul items are considered
where rearrangements are not allowed.

A detailed overview of the literature on VRP with two-
and three-dimensional loading constraints is provided in Pol-
laris et al. (2015). Packing problems, related constraints and
algorithms that are partially of relevance for 3L-VRPs are
reviewed in Bortfeldt and Wéscher (2013).

4 Hybrid solution approach

Being a generalization of the CVRP, the 3L-VRPMB is also
an NP-hard optimization problem (cf. e.g. Toth and Vigo
(2014)). In order to find high-quality solutions within reason-
able computing time, a metaheuristic framework is applied
to solve the routing problem. As in many previous works, the
packing problem is tackled with construction heuristics. In
the following subsections, both parts of the solution proce-
dure will be described.

4.1 Reactive tabu search

The routing problem is solved with a reactive tabu search
(RTS) based on the work of Nagy et al. (2013). The rough
outline of the procedure is depicted in Fig. 2. It starts with
the initialization of the search (initial solution, tabu list). In
each iteration, a neighbour of the current solution s is gener-
ated by applying a selected move m;. Usually, in tabu search
algorithms the best non-tabu move is used or a tabu move if
it satisfies an aspiration criterion. However, we work with a
candidate list CL here, consisting of ncr. (ncr > 1) moves.
In general, the move m; to be applied to the current solution
s is chosen at random from the candidate list. Tabued moves
held in the tabu list are expressed in terms of a customer i
and a tour ¢ so that i must not be inserted into ¢ for a number
of iterations given by the tabu tenure tt.

Reactive elements are included in the tabu list manage-
ment changing the tabu tenure based on the search progress.
In each iteration, a reinitialization of the tabu search can also
be triggered. Otherwise, a local optimization procedure is
applied to the current solution s after the application of the
move m;. The components of the RTS are described in detail
in the following subsections.
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1: procedure REACTIVE TABU SEARCH(in: instance data,
parameters, out: best solution spest)

initialize tabu search

S := Spest ‘= Sinit > initialize current solution s and
best found solution spest
4 while stopping criterion is not met do
5: determine move m for current solution s
6: s:=s@dmsg > realize move mg
7.
8

if f(s) < f(Spest) then

: Sbest := S > update best found solution
9: end if
10: update tabu list T'L
11: if no reinitialization then
12: apply local optimization to s
13: end if

14:  end while
15: end procedure

Fig.2 Reactive tabu search

4.1.1 Initialization of the search

Two different construction heuristics are applied alterna-
tively to generate the initial solution in order to test their
impact on the performance of the RTS.

On the one hand, we use the modified Sweep heuristic
as in Nagy et al. (2013). This heuristic extends the classical
Sweep heuristic of Gillett and Miller (1974) by leaving the
20% of the customers that are closest to the depot out of the
procedure to form single-stop tours. In doing so, poor quality
solutions should be avoided and these customers should be
left to the RTS algorithm to find the best-fitting routes [see
Wassan et al. (2008); Nagy et al. (2013)].

In addition, the Savings heuristic of Clarke and Wright
(1964) is also applied in order to construct initial solutions.
In this case, all customers are included into the construction
process. Initially, they form single-stop tours and are suc-
cessively merged according to the Savings criterion until no
further merging is possible.

At the very beginning of the solution procedure, the tabu
search is initialized with an empty tabu list (TL := ¢), and
a tabu tenure tt := ttjyjt, countys := 0 and ma := 0. The
variables countys and ma serve for the reactive operations
(see below).

4.1.2 Neighbourhood structures and moves

The two inter-route move types used in Nagy et al. (2013)
are applied here. Shift moves remove one customer from one
tour and reinsert the customer into another (which can also be
an empty tour). Swap moves remove two customers from dif-
ferent tours and reinsert them into the tours of the respective
other customer. A move consists of one (Shift) or two (Swap)
customer movements. Each customer movement is charac-
terized by a customer to be moved, a source tour, a target
tour and a target position. Hence, the swapped customers are

not necessarily inserted into the previous (source) position
of the respective other customer but can be inserted into any
position. Analogously, any position can be considered for the
Shift moves. For example, shifting customer i from tour #;
into tour 7, at position py, and shifting customer i from tour
t] into tour #, at position p, are two different moves. This
approach is contrary to the original approach of Nagy et al.
(2013) who always insert a customer into its best position in
the target tour.

Furthermore, in Nagy et al. (2013), the whole neighbour-
hood is evaluated, i.e. each customer and each target tour are
considered for the Shift moves and each pair of customers
in different tours for the Swap moves. In contrast, we aim to
omit potentially unpromising moves in order to save comput-
ing time while maintaining the solution quality. As relevant
criterion, we use the distance A(?q, 1) between two tours 7;
and 7, which is calculated using the minimum and maximum
x- and y-values of the coordinates of the customers included
in the respective tours:

A(t1, ) = | max | min x;, min x; | — min | max x;, max x;
i€R;, i€R}, = i€R],

+ [ max | min y;, min y; | — min | max y;, max y; | | .
ieR,’l isR[z ieR,’] ieR,’2

Here, R;, stands for the set of customers served in tour
t; (i = 1,2) excluding the depot (Rt’i = R;\{0} [see
Sect. 2]). Negative distance values indicate two intersecting
tours and offer more potential for improvement than pairs of
tours that are further away from each other. Only #pmax of
all tour pairs with the smallest distances A (¢, f2) are consid-
ered. fpmax is a predefined parameter.

4.1.3 Determining a move for the current solution

In each iteration, a move m; is determined to construct a new
solution from the current one according to s := s @ my. In
order to determine my, in a first step, a candidate list CL is
generated as depicted in Fig. 3 (lines 7 to 22).

In the beginning, the set of all moves M for solution s is
generated. All of these moves are then examined. In the end,
CL contains up to ncr, moves m that lead to feasible solutions
s' := s @ m. The feasibility check has the following aspects:

— all tours of a feasible solution s’ must not exceed the
vehicle weight capacity D and volume capacity V (V =
L-W-H),

— feasible packing plans P; 7 and P; p must exist for all
tours ¢ of s’. This includes (S5) in the case of SL.

CL contains the best non-tabu moves leading to feasible solu-
tions. In addition, a tabu move m that yields a new best
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solution s’ := s @ m with f(s") < f(spest) is also accepted
for CL, i.e. aspiration by objective is applied.

When the candidate list CL is completely generated, the
move m; is determined as follows:

(1) If CL is empty (including only dummy moves, see
Fig. 3), the tabued move with the shortest remaining tabu
tenure is chosen as mig, i.e. aspiration by default is used.

(2) If CL is not empty and the solution s" := 5 @ Mpes
(see Fig. 3, line 26) is a new best solution, m; is set to
Mpest; clearly, the best move mpeg 1s the move for which
f(s & m) gets minimal.

(3) If CLis not empty and there is no new best solution, the
move my is selected randomly from CL.

Hence, by not necessarily selecting the best neighbour of
s, a diversification mechanism is introduced into the search.

4.1.4 Tabu list management

The tabu list contains all customer movements that are cur-
rently tabu, i.e. the information which customers must not
be inserted into which tours, as well as the iteration number
in which the respective moves are allowed again. The tabu
tenure tt determines how long a movement is set tabu. If a
Shift move removing customer i from tour ¢ was applied in
the current iteration, any move that inserts i into ¢ would
be tabu for tt iterations. If a Swap move was applied, two
movements must be set tabu—one for each customer-tour
combination affected: if customer i; from #; was swapped
with customer iy from tour #,, then any move inserting i}
into #1 or iy into t is not allowed for the next tt iterations.

Three operations to adapt the search can be carried out
within the RTS, namely increasing and decreasing of the tabu
tenure tt, and reinitialization of the search. These operations
are described in detail in Table 1 (see also Nagy et al. (2013)).

The parameter Gap M ax is handled as a constant in Nagy
et al. (2013). The results could be improved, though, by
taking the size of the instance into account. If an instance
contains many customers, there are more possibilities for
the algorithm to move around a local optimum and to
avoid tabued moves. Therefore, we determine this value as
GapMax = Agqp - 4/n. In addition, a maximum tabu tenure
ttmax = Ay - 7 is considered. Agy, and Ay are predefined
parameters.

4.1.5 Local optimization

At the end of an iteration, two post-optimization procedures
are utilized. They are applied only to the tours affected in
the current iteration. The first routine is a sequence of intra-
route shifts. That is, a customer is moved to another position
within the tour if this shift leads to a TTD reduction. This is
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done iteratively for all customers in the tour until no further
improvement is achieved.

In the second routine, the visiting sequence of the cus-
tomers in a tour is reversed if this reduces the maximum load
of aroute. In Nagy et al. (2013), the utilization of the capacity
is taken into account for this purpose since they consider the
one-dimensional case. Here, the maximum loading length
needed for linehaul and backhaul items that are simultane-
ously transported (cf. Fig. 1) is reduced if possible. By this
means, an additional customer might be visited in the given
route.

4.1.6 Tour number reduction

The heuristics for the construction of the initial solution can
lead to solutions with more than vy, tours. In order to guide
the search towards solutions that do not violate the maximum
tour number constraint, objective function values of solutions
with more than vy, tours are penalized. A penalty term
(p - cmax - max(0, v — vmax)) is added to the TTD. p is a
fixed parameter, cmax 1S the maximum distance between any
two customers (cmax = max(; j)ek ¢ij), and v is the number
of vehicles used in the respective solution. The factors cmax
and p serve to ensure a sufficiently large penalty.

Furthermore, in connection with the Shift move, a cus-
tomer can only be moved into an empty tour if less than vy,
tours are used in the current solution.

4.1.7 Stopping criteria

The algorithm has to run for at least itery,;, iterations. How-
ever, the search may continue beyond it erpy iterations if the
last improvement was less than iteryq_jmpr ago. Then, it stops
after iterpo_jmpr iterations without improvement.

4.2 Packing heuristics

Three different variants of the deepest-bottom-left-fill (DBLF)
heuristic have been integrated into the RTS. It was originally
developed for 2D packing (Baker et al. 1980; Hopper 2000)
and extended to 3D packing (Karabulut and Inceoglu 2005).
The DBLF variants are described here for the 3D container
loading problem (3DCLP). In the 3D-CLP, a subset of a set
of 3D (cuboid) items has to be packed into one container
of fixed dimensions such that the filling rate is maximized.
Below, we adapt these heuristics to ensure the feasibility of a
route w.r.t. the packing subproblem within the 3L.-VRPMB.

4.2.1 DBLF heuristics for the 3D container loading problem
The first variant of the DBLF heuristic that we consider is

based on the DBLF implementation presented by Karabulut
and Inceoglu (2005) (and by Hopper (2000) for the 2D case).
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procedure DETERMINE_MOVE(in: current solution s, best solution sp.s¢, instance data, parameters, out: move m)

> init. move with shortest remaining tabu tenure 6

> current move replaces My orst

Df(3®mbest)§f(s®m)rvm€CL

1:

2 initialize set of all moves M

3:  mg := dummy move for initialization of CL with f(s ® mgq) = oo
4: Maworst = M4

5: MTabuShort = Md, 6(mTabuSho'r’t) =00

6: CL is initialized with nc, dummy moves mg

7 for all moves m € M do

8: s’ =s®m

9: if (m is not tabu and f(s’) < f(s @ Mworst)
10: or f(s') < f(spest) then

11: if s’ is feasible then

12: CL:=CLU{m},CL:=CL\ {muworst}
13: determine new My orst

14: end if

15: else

16: if m is tabu then

17: if 6(m) < 6(mTabuSh0Tt) then

18: if s’ is feasible then mrapushort := m end if
19: end if
20: end if
21: end if
22: end for
23: if C'L contains only dummy moves then
24: Ms = MTabuShort
25: else
26: determine best move mpest € CL
27: if f(s® Mmpest) < f(Svest) then mg := mpest
28: else select ms € CL,ms # mq at random
29: end if
30: end if
31: end procedure

> initialize worst move in C'L

> generate neighbour s’ of s

> aspiration by objective

> aspiration by default

> without dummy moves

Fig.3 Determination of move m

Table 1 RTS updating RTS operation

Triggering event/condition

Actions

1. Increasing tabu tenure

2. Decreasing tabu tenure

3. Reinitialization of the search

(i) Currently generated solution
s(it) is copy of old solution
s(it_old) and

(ii) CopyGap := it — it_old <
GapMax, i.e. a copy was
generated after too few iterations.

(i) Currently generated solution
s(it) is not a copy of any older
solution and

(ii) No. of iterations since last tt
change is greater than moving
average (ma) of CopyGap over
all iterations since last
(re-)initialization

— For each generated solution s(it),
n(s) is defined as the number of
iterations if_old for which
s(it) = s(it_old), i.e. s(it) is a
copy of a former solution

—1If n(s) exceeds the limit 7,y ,
the counter for often-repeated
solutions count is increased by
one

— A reinitialization of the search is
triggered if count,s exceeds the
threshold countors, max

— tt ;= min(tt - Pinc, ttmax) (ttis
increased by a factor ¢jpc > 1,
but at most up to ttyax)

—ma := 0.1CopyGap + 0.9ma

— tt ;= max(tt - Pgec, 1) (ttis
decreased by a factor ¢gec < 1,
but at most down to 1)

-TL:=¢

— tt, countyrs, and ma are set back
to their initial values (see above)

— an old solution is selected at
random to be the new initial
solution
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In the approach of Karabulut and Inceoglu (2005), items are
packed according to a given sequence. If an item cannot be
placed feasibly in a container, it is skipped. Moreover, the
spatial orientation is provisionally assumed to be fixed. The
priorities for the placement are to position the items as far
as possible to the back, (then) to the bottom and (then) to
the left of the loading space. In implementations of the DBL
heuristic, the final placement is often found using a slid-
ing technique. On the contrary, the Fill method allows to fill
gaps by keeping track of all possible placement positions and
places each item in the deepest, bottom-most, left-most avail-
able position. The different approaches are depicted in Fig. 4.
(For the sake of simplicity, the figures in this section show
2D problems). In the case of the Fill approach (Fig. 4a), the
potential positions are defined by the top-left-back, bottom-
right-back, and bottom-left-front corners of already placed
items. The positions are sorted based on the deepest-bottom-
left priority which is indicated by the numbers 1-5 in the
example figure. It is successively tested whether the place-
ment in the respective positions would be feasible. The tests
terminate as soon as a feasible position was identified or all
positions have been tested. The position that is nearest to the
bottom and (then) nearest to the left and where the placement
would be feasible is position 2. Hence, the gap could be filled
which is not possible by sliding the item from the top-right
corner (Fig. 4b). After a successful placement test for a given
position, an item is (if possible) further moved starting from
that position as far as possible towards the back, the bottom
and the left. In the example in Fig. 4a, the final position of
the item would be position 2’.

The second implementation variant extends the placement
test of the heuristic presented above and is subsequently
called DBLF*. A position where an item cannot be placed
feasibly is not considered any further in the DBLF approach.
On the contrary, sliding an item into one direction is consid-
ered during the placement in the variant DBLF* (regardless
of whether a feasible placement is already possible with-
out the sliding). That way, a feasible placement could result
from an otherwise infeasible position. The DBLF priority is
applied to the sliding, too. That is, first, sliding towards the
back, then towards the bottom and then towards the left is
tested. If sliding is possible towards one direction, the other
ones are not regarded any more. As before, further move-
ments towards the back, bottom and left can be conducted
after the placement test was successful.

An example is illustrated in Fig. 5. Testing the placement
in position 2 according to the DBLF approach would lead
to an infeasible placement (Fig. 5b). The item would overlap
with other items. Thus, the next position would be tested now.
However, considering sliding for position 2 would lead to a
placement further to the bottom which is feasible (Fig. 5c).

The third variant is a combination of the original DBLF
implementation and DBLF" in which the sliding of DBLF*
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(a) bottom-left-fill (BLF)

left

bottom
(b) bottom-left (BL)

Fig.4 Comparison between BLF and BL approach

is only used once the original DBLF procedure cannot find a
feasible placement for an item. The variant is subsequently
called DBLF-Comb and is outlined in Fig. 6. The func-
tions placement_DBLF and placement_DBLF™ represent
the respective procedure in which the feasibility of a place-
ment is tested.

Furthermore, variants of the TA heuristic [e.g. Lodi et al.
(1999)] were also implemented and tested but led to worse
results than the DBLF variants. Therefore, they will not be
described in further detail here.

4.2.2 Adaption of the DBLF heuristics to the 3L-VRPMB

In order to apply the three packing heuristics to the packing
subproblem described in Sect. 2, the following modifications
have been made:

— In the 3L-VRPMB, each item has two possible spatial
orientations. Therefore, the following placement rule is
applied: if placing an item in a given position with the
first orientation fails, the same position is tested again
with the second orientation.

— Only those placements are accepted where the geo-
metrical constraints [(P1)—(P3)] as well as the packing
constraints vertical stability, fragility and LIFO are sat-
isfied.
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left

1

bottom

(a) Placed items with potential posi-
tions

left

bottom
(b) Without consideration of sliding

left

bottom

(¢) With consideration of sliding

Fig.5 Comparison between BLF and BL approach

— In order to facilitate finding a feasible packing plan for a

given route, the following sequence of items is chosen:
the first items to be placed are the ones of the last (first)
customers to be visited in the case of linehaul (backhaul)
customers. The items of one customer are sorted by the
item fragility (non-fragile items first), breaking ties by
non-increasing volume, breaking ties by non-increasing
length and breaking ties by non-increasing width.

The packing problem to be solved is the orthogonal pack-
ing problem (OPP), i.e. the objective is not to maximize
the filling rate but to load all items belonging to a route
feasibly into the loading space. Thus, the procedure is
aborted as soon as one item cannot be placed feasibly in
any available position.

79
1: procedure DBLF-CoMB(in: instance data, sequence
of items I, out: packing plan)

2:  initialize sorted set of positions P := {(0,0,0)}

3 for i :=1 to |I| do

4: current item item := I(z)

5 placed := false > binary variable stating whether

an item could be placed feasibly or not

6: for p:=1to |P| do

7 if placement_DBLF (item, p) is feasible then

8: placed := true, p’ := p, break

9: end if

10: end for

11: if placed = false then

12: for p:=1 to |P| do

13: if placement_DBLEF (item, p) is feasible then
14: placed := true, p’ := p, break

15: end if

16: end for

17: end if

18: if placed = true then

19: place item in P(p’) (with sliding if necessary)
20: move item as far as possible towards the back,

bottom, left

21: update P
22: end if
23:  end for
24: end procedure

Fig.6 DBLF-Comb

— For the SL approach, the heuristics were modified. The

LIFO restriction as described above must be considered
along the width axis of the loading space in order to
avoid rearrangements when (un-)loading items. More-
over, it should also be considered along the length axis
in order to guarantee that the unloading of linehaul items
gradually decreases Ly and, thus, creates space for the
backhaul items (see Fig. 1). However, simply extending
the restriction in this manner resulted in packing patterns
asin Fig. 7a. Let the visiting sequence here be {4, 3, 2, 1}.
Items of neither customer 3 nor 4 can be placed behind
item I, (from the view of the unloading side). In order
to avoid such gaps, the placement priorities have been
adjusted for the SL: with first priority, an item is to be
placed as close as possible towards the origin of the load-
ing space, where the distance is defined as the sum of
length and width coordinate of a given placement posi-
tion. Subsequently, the DBLF rule is applied again, i.e.
ties are broken by non-increasing length coordinate, then
by height coordinate and then by width coordinate. This
rule results in patterns like in Fig. 7b where items tend to
be stacked first and then to be arranged towards the side
from which they are loaded (cabin or rear side).
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(b) Modified placement rule

Fig.7 Example packing patterns for side loading

4.3 Integration of routing and packing

The packing procedure is executed in order to check whether
the items transported on a tour can be packed feasibly accord-
ing to the above-formulated packing constraints. In the course
of a packing check, (generally) two packing plans—one for
the linehaul items and one for the backhaul items of a tour—
are determined. Moreover, in the case of the SL approach, the
procedure tests whether linehaul and backhaul items would
overlap at any stop of the route according to the generated
packing plans (see restriction (S5), Sect. 2).

A packing check is made when a route is tested for feasi-
bility (see Fig. 3). Feasibility tests are conducted whenever
a new solution is generated, i.e. during the generation of
the initial solution, during the generation of neighbour solu-
tions and in connection with the local optimization. Firstly,
it is checked whether the items transported simultaneously
exceed the weight and volume capacity of the vehicle at any
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stop of the tour. If this is not the case, the packing proce-
dure is called. Note that not every neighbour of the current
solutions is tested for feasibility during the TS. Only if the
corresponding move can potentially be added to the candi-
date list, the routes affected by the move are tested. That
way, the efficiency is increased significantly (cf. Fig. 3, lines
11,18).

In the course of the packing procedure, the maximum load-
ing length of a packing plan is determined. This is needed
(i) for the tests regarding the SL approach, and (ii) for the
second routine of the local optimization (reverse operator).

The application of the packing procedure is usually com-
putationally very expensive. Therefore, a cache is used which
stores routes that have already been tested for packing fea-
sibility. The cache is organized as a map with a maximum
size of 1,000,000 elements. The oldest route in the map is
removed if the size is exhausted.

5 Computational experiments
5.1 Benchmark instances
5.1.1 One-dimensional instances

In order to make sure the implemented routing approach
is working properly, it was applied to one-dimensional
(1D) benchmark instances and the results were compared
to the ones obtained by recently published methods for
the VRPMB. Three instance sets were used. Two of them,
namely GJB89 and TV97, were originally proposed for the
VRPCB by Goetschalckx and Jacobs-Blecha (1989) and Toth
and Vigo (1997), respectively. Later these sets were used as
VRPMB instances in Halse (1992) and Wade (2002) by relax-
ing the delivery-before-pickups assumption. At the same
time, the “fixed fleet” restriction of the original instances,
i.e. constraint (S4) in our problem formulation, was dropped.
This specification of the VRPMB instance sets GJB89 and
TV97 has been maintained in all further VRPMB papers (see
Wassan et al. (2008), p. 154 and Wassan et al. (2013)), and
we will also observe it. As a consequence, the GJB89 set
for the VRPMB includes only 46 instances (not 62 as for
the VRPCB) while the TV97 set has 33 instances as in the
original version. In the set GJB89, the number of customers
varies between 25 and 150 customer locations and there are
50%, 66% or 80% linehaul customers. The instances of the
set TV97 have 21 to 100 customer locations and the shares
of linehaul customers are the same as in set GJB89. Finally,
the third set (SN99) was generated by Salhi and Nagy (1999)
for the VRPMB. This set consists of 42 instances with 50—
199 customer locations with 10%, 25% and 50% backhaul
customers. Again, there is no constraint in the set SN99 with
regard to the number of vehicles (routes). Note that we con-
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sider only those 21 instances that do not include tour length
limits and drop times.

5.1.2 Three-dimensional instances

New 3L-VRPMB instances were generated which cover dif-
ferent features of the problem. The number of customers is
set to 20, 60 and 100, and the share of linehaul customers
to 50% and 80%. The locations of the customers were deter-
mined randomly. Moreover, we keep the total number fixed to
200 items so that the number of items per customer depends
on the number of customers in an instance (5—15 for n = 20,
2-5 for n = 60, 1-3 for n = 100).

We consider different levels of heterogeneity with respect
to the items, that is, instances were generated with 3, 10 or
100 different item types. The edge dimensions and weights of
each item type were generated randomly. There are instances
with large items and instances with small items. The length
and width of large items were uniformly randomly generated
in the intervals [0.2L, 0.6L] and [0.2W, 0.6 W], respectively
(cf. Gendreau et al. (2006)). The height of an item was
determined in the interval [0.2H, 0.5H]. The factor 0.5 was
chosen for the upper limit of the interval to ensure that the
items can be placed inside the partitioned loading space (cf.
Sect. 2). For instances with 20 customers, only small items
are considered, since all large items of one customer would
nearly completely fill the loading space due to the com-
paratively large number of items per customer. The length
(respectively, width and height) of small items is generated
in the interval [0.1L, 0.3L] (respectively, [0.1W, 0.3W] and
[0.1H,0.3H]). In addition, instances with mixed item size
were also generated which have ca. 50% small items and
50% large items. Any instance with mixed items results by
merging an instance with small items and an instance with
large items where both instances share the same characteris-
tics (except item size).

The weight (in weight units (WU)) of an item type was
randomly generated between 0.001[?,/—3] - hboxvol[VU]
and 0.01 [%] - vol[V U], where vol is the item’s volume
(in volume units (VU)). 20%, but at least one, of the item
types is fragile. The loading space dimensions are L = 60,
W = 25, H = 30 and the weight capacity D = 200. The
percentage « in the stability constraint (PC2) is set to 75%.

For the 3D instances, constraint (S4) on the available
number of vehicles vmax 1S in force. vmax is determined by
applying the Savings heuristic to the instances. The resulting
number of routes is used as vyax . This way, feasible solutions
regarding the vehicle constraint (S4) are ensured.

Taking into account the variation of the customer number,
percentage of linehaul customers, item size and heterogeneity
of items, there are 42 feature combinations. For each com-
bination, 10 instances were generated randomly resulting in
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Table2 Parameter settings
Parameter Value Parameter Value
CcoUNtmax 6 P
itermin 1500 Tmax 3
iterno_impr 200 Atls
ncL 3 A gap 50
tlsinit 1 Pinc 1.1
I Pmax 30% Pdec 1.1

420 3L-VRPMB instances, among them 120 instances con-
tain a mix of small and large items.

The 3L-VRPMB instances as well as our best solutions can
be found online at http://www.mansci.ovgu.de/Forschung/
Materialien.html. In addition, the well-known 27 3L-CVRP
instances introduced in Gendreau et al. (2006) were used for
a numerical comparison.

5.2 Parameter setting

The parameter settings were mostly adapted from Nagy et al.
(2013). The values for the newly introduced parameters were
determined in pretests with a set of test instances taken from
the three sets for the VRPMB. Their settings are given in
Table 2.

5.3 Computational results

The hybrid algorithm was implemented in C++, and the
experiments were conducted on a Haswell system with up
to 3.2 GHz and 16 GB RAM per core.

5.3.1 One-dimensional instances

The RTS in combination with the Savings procedure for the
construction of the initial solutions will be referred to as
RTS_Sav in the following. The combination with the Sweep
heuristic shall be called RTS_Sweep. Moreover, we consider
the combination of RTS_Sav and RTS_Sweep, denoted as
RTS_Comb, where first RTS_Sav and then RTS_Sweep are
applied each with the same parameter setting. Due to some
random components in the algorithm, five runs for each vari-
ant of the RTS were conducted for each instance. The results
for the 1D instances are summarized in Tables 3 and 4. Note
that only 45 GJB89 instances are considered here as one of
the compared methods (Wassan et al. (2008)) does not pro-
vide results for one instance.

For each instance set, the obtained solutions are compared
to the best solutions of Nagy et al. (2013) (NWS13) and the
best known solutions from the literature (BKS). Furthermore,
an analogue comparison is done with a second well perform-
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ing VRPMB method; in the case of the instance sets GJB89
and TV97, the RTS by Wassan et al. (2008) (WNAOS) is
taken while the ALNS by Ropke and Pisinger (2006) is used
for the (reduced) set SN99.

In the first column of Table 3, the instance set and the RTS
variant are indicated. The columns Dev-best (2—4) contain
for each compared method and BKS the average percentage
deviation of the best found TTD per instance from the best
TTD of the compared method and the BKS, respectively. The
columns Dev-avg (5-7) contain for each compared method
and BKS the average percentage deviation of the average
obtained TTDs over five runs per instance from the best TTD
of the compared method and the BKS, respectively. For each
instance set and each compared method (including our RTS),
the number of used vehicles over all instances per set is calcu-
lated. Note that in the BKS case the number of used vehicles
is calculated using the solutions with best TTD values. The
columns Dec-veh (8-10) contain for each compared method
and BKS the difference of the sums of used vehicles over
all instances of a set between our RTS and the compared
method and the BKS, respectively. Negative values indicate
lower numbers of used vehicle in the solutions provided by
the RTS.

In the first two columns of Table 4, the instance sets and
related numbers of instances are given. In the third column,
the numbers of new best solutions provided by the proposed
RTS are indicated while the last three columns show the aver-
age run times per instance (in seconds).

The comparison of best solutions in terms of total travel
distance can be summed up as follows where only our com-
bined RTS is considered. Compared to the method provided
in Nagy et al. (2013) (NWS13), an improvement of —1.21%
could be reached by our RTS over all 99 instances (note that
negative values indicate that our results are better than results
of acompared method). Taking the sets GIB89 and TV97, our
RTS is slightly better than the method proposed in Wassan
et al. (2008) (WNAO08) with a mean improvement of —0.5%.
Among the compared methods, only the ALNS presented in
Ropke and Pisinger (2006) (RP06) is clearly dominating our
method, for instance set SN99 with an improvement of 1.59
%.

The number of used vehicles (or routes) represents a sec-
ond optimization criterion that is often taken into account
in vehicle routing problems. Our combined RTS achieves
mostly the same numbers of vehicles as the compared meth-
ods. Significant differences only occur compared to the
ALNS proposed in Ropke and Pisinger (2006) (the numbers
of vehicles used by the ALNS of Ropke and Pisinger (2006)
were picked up from Nagy et al. (2013), p. 212). In total, 80
vehicles less are used in the solutions of RTS_Comb.

The deviations of our best solutions from the BKS (see
Table 3, column 4) indicate RTS_Sav produces better results
than RTS_Sweep. The difference amounts to 0.66%-points
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over all 99 instances. Applying the Savings heuristic instead
of or combined with the Sweep heuristic did enable us to
improve the results obtained by Nagy et al. (2013).

However, Table 4 makes clear that this improvement was
only possible on the cost of higher run times. Note that Nagy
et al. (2013) state that less than a minute was needed for
the majority of the instances. Nevertheless, the run times
for all variants of our RTS seem to be acceptable. Finally,
the numbers of new best solutions in Table 4 prove that the
RTS performs relatively well for the well-known VRPMB
instance sets.

5.3.2 Three-dimensional instances

The test of the hybrid algorithm deals with three different
aspects. First, as the final hybrid algorithm must be equipped
with a packing heuristic, the available packing heuristics
were initially tested and compared. Second, the impact of the
initial solution construction heuristic as well as of the load-
ing approach is studied. Third, a numerical comparison with
the 3L-VRPMB heuristic by Reil et al. (2018) is conducted.
The parameter settings determined with the one-dimensional
instances were also applied to the 3D case. Third, a numeri-
cal comparison with the 3L-VRPMB heuristic by Reil et al.
(2018) as well as the 3L-CVRP heuristics by Gendreau et al.
(2006) and Zhang et al. (2015) is conducted.

Determination of the best packing heuristic

For this purpose, a test set of 30 out of 420 instances
was formed. The instances were chosen at random from the
instances with small and large items so that all remaining fea-
ture attributes (number of customers, number of item types,
etc.) are combined.

To determine the best packing heuristic, we compare six
variants of the hybrid algorithm with the Savings heuristic
which differ regarding the used packing heuristic and the
loading approach. Each of the available packing heuristics
(DBLF, DBLF+ and DBLF-Comb) is combined with each
loading approach (loading space partition (LSP) and side
loading (SL)). Each of the selected instances was run five
times with each of the six variants. In Table 5, the obtained
TTD results for each of the variants are compared to the
best found solutions over all six hybrid algorithm variants.
Per variant, the table contains the average (Dev-avg) and
maximum (Dev-max) percentage deviations of the obtained
TTDs from the best found ones.

The best results were obtained with the SL approach and
the DBLF heuristic. However, in combination with LSP,
DBLF-Comb produced better results than the plain DBLF
heuristic. Hence, the respective results were examined in
more detail with the conclusion that DBLF seems to work
better for instances with small items whereas the combina-
tion dominates in the case of large items. Therefore, in the
final tests, the packing heuristic is chosen depending on the
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Table 3 RTS results for 1D instances (A)
Set/variant Total travel distance No. of used vehicles
Dev-best (%) Dev-avg (%) Diff-veh
GJB89 NWS13 WNAO08 BKS NWS13 WNAO08 BKS NWS13 WNAO08 BKS
RTS_Sav —0.30 -0.19 0.51 0.18 0.29 0.99 1 1 4
RTS_Sweep 0.26 0.37 1.08 1.22 1.33 2.05 0 0
RTS_Comb —-0.67 —0.56 0.14 0.70 0.81 1.52 0 0 3
TV97 NWS13 WNAO08 BKS NWS13 WNAO08 BKS NWS13 WNAO08 BKS
RTS_Sav —0.47 0.06 0.45 0.23 0.77 1.16 -2 -2 -2
RTS_Sweep —0.60 -0.07 0.32 0.01 0.55 0.94 0 0 0
RTS_Comb —-0.93 —0.41 —0.02 0.12 0.66 1.05 0 0 0
SN99 NWS13 RP06 BKS NWS13 RP06 BKS NWS13 RP06 BKS
RTS_Sav —2.24 2.18 225 —1.75 2.68 2.76 -2 —82 —17
RTS_Sweep —0.34 4.27 4.34 0.25 4.89 4.97 0 —80 —15
RTS_Comb —2.80 1.59 1.67 -0.75 3.79 3.86 0 —80 —15
Table 4 RTS results for 1D Set # New best solutions (TTD) Run time (s)
instances (B)
RTS_Sav RTS_Sweep RTS_Comb
GJB89 45 18 188.0 215.8 403.8
TV97 33 12 108.4 89.6 198.0
SN99 21 0 491.6 523.8 1015.4
Total 99 30 223.7 236.8 460.5

Table 5 Comparison of packing heuristics (TTD)

Packing heuristic Dev-avg(%) Dev-max(%)

LSP SL LSP SL
DBLF 18.7 1.3 44.8 6.7
DBLF* 18.1 5.0 42.3 10.8
DBLF-Comb 17.0 2.6 42.3 8.5

item sizes: DBLF for small items and DBLF-Comb for large
items. DBLF is also used in later experiments for instances
with mixed items.

Impact of initial solution heuristic and loading approach

To study these issues, experiments were conducted with
all 420 instances each of which was solved five times by
four variants of the hybrid algorithm. These variants result
by using both loading approaches combined with both ini-
tial solution heuristics. The combined variant of the hybrid
algorithm is not applied here (as in the 1D case) since the run
time effort would be presumably too high.

The results are presented first in Tables 6 and 7. They
contain in the first three columns a description of the different
instance groups. Then, for each of the four variants of the
hybrid algorithm mean values of average and best obtained

TTDs over five runs and of related numbers of used vehicles
are indicated.

Reading the last lines of the tables, one can realize that the
Savings heuristic performs better than the Sweep heuristic
and the SL approach dominates the LSP approach. Never-
theless, a more detailed presentation regarding the impact of
the initial solution heuristic and loading approach should be
given in the next two tables.

The results regarding the initial solution construction
heuristics are summarized in Table 8. The results obtained
with RTS_Sav and the respective loading approaches serve as
a benchmark here. The column Dev-avg contains the average
percentage deviations of the TTDs obtained with RTS_Sweep
from the average benchmark TTDs aggregated over both
loading approaches.

The results support the findings from the 1D tests (Table 3)
indicating that RTS_Sav slightly outperforms RTS_Sweep.
The TTDs obtained with RTS_Sweep deviate on average
0.77% from the TTDs obtained with RTS_Sav.

Table 9 provides a comparison of the two different loading
approaches. Here, the results obtained with LSP were used as
benchmark for each initial solution heuristic. In the table, the
average deviations (Dev-avg) of the SL solutions (w.r.t. the
TTDs) from the LSP solutions (aggregated over both initial
solution heuristics) and the average numbers of used vehi-
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Table 6 Results for the hybrid

algorithm with the Savings Instances Sav/LSP Sav/SL
heuristic and both loading n Items LH (%) TTD-avg TTD-best v TTD-avg TTD-best v
approaches
20 Small 50 367.04 366.64 2.7 346.04 343.90 2.0
80 401.18 400.43 3.6 353.63 353.18 2.5
60 Small 50 549.95 544.88 2.9 545.37 540.87 2.6
80 566.99 563.76 34 537.60 533.50 2.7
Mixed 50 1,077.01 1, 066.51 11.9 816.10 807.62 7.7
80 1,334.40 1,325.68 19.3 847.65 834.50 9.7
Large 50 1,573.87 1,562.13 20.7 1,101.09 1,092.30 11.9
80 2,022.44 2,011.67 31.3 1,298.59 1,285.89 15.9
100 Small 50 685.88 680.90 2.9 687.96 683.54 2.8
80 702.45 698.03 3.6 685.00 678.90 2.9
Mixed 50 1, 090.95 1,081.76 10.7 931.25 917.19 7.2
80 1,444.22 1,437.70 19.6 1,027.11 1,016.23 10.0
Large 50 1,585.90 1,575.95 18.7 1,250.00 1,229.68 12.3
80 2,108.14 2,099.73 30.8 1,443.52 1,426.37 16.1
Total 1,107.08 1,100.32 12.7 846.24 837.16 6.1
:fglz:rei;mR:/si?ﬁt:hiorsgileeelll)ybrld Instances Sweep/LSP Sweep/SL
heuristic and both loading n Items LH (%) TTD-avg TTD-best v TTD-avg TTD-best v
approaches
20 small 50 367.78 366.44 2.8 345.64 344.12 2.1
80 401.24 400.83 3.6 353.87 353.24 2.4
60 Small 50 551.42 545.58 2.8 546.09 540.00 2.5
80 566.95 560.60 3.6 542.49 536.93 2.7
Mixed 50 1,078.80 1,068.71 12.3 851.58 836.66 7.6
80 1,338.70 1,329.14 18.3 959.12 944.74 10.1
Large 50 1,569.51 1,559.37 20.6 1,112.69 1,103.81 12.1
80 2,019.70 2,010.20 31.4 1,309.97 1,297.87 16.5
100 Small 50 693.47 683.28 2.7 692.96 683.51 2.8
80 708.73 701.24 35 692.43 683.84 2.8
Mixed 50 1,113.41 1, 100.76 10.6 959.65 942.53 8.6
80 1,465.85 1,453.70 19.2 1,109.79 1,093.22 11.4
Large 50 1,592.64 1,578.37 19.3 1,275.86 1,246.34 12.5
80 2,118.04 2,105.98 30.4 1,465.13 1,443.13 16.3

Total

1,112.46 1,103.75 12.2 872.66 860.71 6.4

cles of the best solutions (v-best) are reported. Furthermore,
the average computing times (in seconds) are listed in the
columns “Run times (s)”.

Not surprisingly, much better results can be obtained with
the SL approach. The respective TTDs are on average about
16% lower than the TTDs obtained with the LSP and less
vehicles are needed. These results could be expected as the
SL approach allows making use of the whole loading space,
whereas half of it is left empty at least at the very beginning
and the very end of a tour if the loading space is separated.
However, differences can be observed among the different
instance classes. The SL approach seems to be particularly
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beneficial if the items are large (as smaller items can be placed
more easily also within a smaller loading space), and if the
share of linehaul and backhaul items is unequal. Moreover,
the differences decrease with an increasing number of cus-
tomers, i.e. with a decreasing number of items per customer.

Moreover, the hybrid algorithm with the LSP requires less
computing time than the variant with the SL approach. Two
reasons can be identified. Firstly, checking feasibility for the
SL approach takes longer because the two generated packing
plans need to be compared for each backhaul stop of a tour
to avoid any overlapping of linehaul and backhaul items.
Secondly, the SL approach allows to form longer tours which
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Table 8 Results for 3D instances: Initial solution construction heuris-
tics

Instances Dev-avg (%)]
n Items RTS_Sweep from RTS_Sav
20 small 0.05
60 Small 0.36
Mixed 0.57
Large 0.13
100 Small 0.98
Mixed 2.10
Large 1.20
Total 0.77

also require a higher packing effort. Independently of the
loading approach, it can be observed that the computing times
increase with the size of the underlying VRP, i.e. with the
number of customers, and that the computing times depend
on the item sizes. Instances with large items can be solved
much faster than instances with small items. In the case of
small items, much more customers can be merged into one
tour (resulting in more items per tour) which requires higher
efforts for the packing checks.

Numerical comparison with the 3L-VRPMB heuristic by
Reil et al. Reil et al. (2018)

For the numerical comparison, 128 of the 3L-VRPMB
instances introduced above were selected among the 420
instances. Thirty-two instances were chosen at random from
the instances with 20 customers. As mentioned above, those
contain only instances with small items. Forty-eight instances
were chosen at random for instances with 60 and with 100

customers. More instances were selected for those instance
groups as they contain instances with small, mixed and large
items.

The heuristic by Reil et al. (2018) (RBM18) is able to
work with different loading approaches and strategies. In
this comparison, the side loading approach is taken which
turned out to be the strongest available loading approach
for the 3L-VRPMB(TW) (see Reil et al. (2018), p. 14). The
observed constraints for packing and routing are similar to
the RTS heuristic; in particular, a supporting rate of 75% in
constraint (PC2) is required for the heuristic by Reil et al.
(2018), too. The RTS heuristic is applied with the Savings
heuristic and with both loading approaches. Since only one
run of the procedure of Reil et al. (2018) was performed on
each selected instance, we randomly chose the result of one
run (out of five) of the RTS on each one of those instances
for comparison purposes.

Tables 10 and 11 contain the results of the comparison
which are again organized by instance groups. In the first
two columns of Table 10 and 11, the instance groups are
characterized. In the following nine columns of Table 10, for
each of the compared methods, average values per instance
group are given for the total travel distance, the number of
used vehicles and the run time (in seconds). In the last four
columns of Table 11, the minimum and average deviations
per instance group of the total travel distances gained by the
heuristic of Reil et al. (2018) to the ones yielded by RTS(LSP)
and RTS(SL) are listed. Negative values indicate better solu-
tions obtained by Reil et al. (2018).

Both hybrid RTS variants (LSP and SL) perform consid-
erably better than the heuristic by Reil et al. (2018) for the
given set of instances in terms of total travel distance as well

Table9 Results for 3D

instances: Loading approaches Instances Dev-avg(%) v-best Run time (s)
n Items LH(%) Of SL from LSP LSP SL LSP SL
20 Small 50 —5.39 2.8 2.1 8.1 22.3
80 —11.37 3.6 2.5 6.0 23.6
60 Small 50 —0.84 2.9 2.6 246.9 286.7
80 —4.57 3.5 2.7 150.9 247.6
Mixed 50 —20.61 12.1 8.0 18.8 31.9
80 —28.33 17.9 9.9 14.9 27.8
Large 50 —28.99 20.3 11.8 10.7 15.9
80 —35.32 30.5 16.1 12.5 12.8
100 Small 50 0.13 2.9 2.8 1,778.2 1,719.0
80 —2.36 3.6 2.9 1,088.1 1, 606.4
Mixed 50 —13.70 11.0 8.2 117.7 214.9
80 —25.49 17.3 10.9 66.6 123.2
Large 50 —20.33 19.0 13.0 43.7 71.3
80 —30.88 29.2 16.6 32.3 53.9
Total —16.19 12.6 7.9 256.8 318.4
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Table 10 Results for 3D instances: Comparison with Reil et al. (2018) (A)

Instances RBM18 RTS (LSP) RTS (SL)

n Items TTD v Run time (s) TTD v Run time (s) TTD v Run time (s)

20 Small 462.9 4.6 481.8 385.2 32 31.0 351.9 2.3 90.7

60 Small 813.2 8.2 482.4 568.2 34 399.8 543.3 2.8 731.4
Mixed 1,851.2 26.8 723.4 1, 140.6 13.6 26.9 871.2 8.6 46.4
Large 2,501.8 38.5 963.4 1,753.0 24.4 23.1 1,189.7 13.8 26.1

100 Small 994.7 9.9 483.2 688.4 3.1 2,314.5 685.8 2.8 3,015.8
Mixed 2,088.8 28.0 545.6 1,360.5 15.9 153.9 1,050.2 10.2 167.1
Large 3,441.9 49.7 866.1 2,068.5 27.3 70.5 1,498.7 16.8 63.3

Total 1,519.8 20.4 619.5 1,011.4 11.2 433.9 798.8 7.1 598.1

Table 11 Results for 3D instances: Comparison with Reil et al. (2018)
B)

Instances Deviation of RBM18 from RTS (%)

n Items Min (LSP) Min (SL) Avg(LSP) Avg(SL)

20 Small —4.70 18.04 20.80 31.53

60 Small 27.11 31.64 43.18 49.89
Mixed 21.80 58.91 64.03 112.81
Large —14.74 45.02 44.84 110.02

100 Small 20.42 21.61 44.47 45.12
Mixed 5.18 32.98 52.44 96.86
Large —0.38 84.61 70.08 130.68

Total 6.74 37.38 44.48 74.05

as number of used vehicles while the running times are com-
parable. In the heuristic of Reil et al. (2018), each customer of
aroute has a special compartment, i.e. segment of the loading
space, that is filled exclusively by the boxes of this customer.
In the instances used here, very often a customer has only few
and/or small boxes. In this case, the volume of a customer
compartment cannot be utilized very well. Hence, more vehi-
cles (or routes) and also longer travel distances are needed
for transporting all the goods. It is our belief that for dif-
ferently constructed instances the compared heuristic could
perform better. This is proven by those instances in which
the heuristic by Reil et al. (2018) achieved better results than
the RTS (see Table 11, column 3). On the other hand, our
instances do reflect situations where individuals make pur-
chases in department stores consisting of few or small things
and therefore make sense. We can conclude that—as in other
vehicle routing areas—several heuristics with different abil-
ities are necessary to cover the full range of requirements.

Numerical experiments on the instances of Gendreau et
al. Gendreau et al. (2006)

Finally, the RTS was applied to the well-known 3L-CVRP
instances of Gendreau et al. (2006). In this regard, its results
are compared to those of Gendreau et al. (2006) and Zhang

@ Springer

etal. (2015). The latter have developed an evolutionary local
search which proved to be one of the best approaches for the
3L-CVRP to date.

Table 12 presents the results of these experiments.
Instance information is provided in the first columns [name,
number of customers (), total number of items (m), max-
imum number of vehicles (vmax)]. The RTS heuristic was
applied with both the Savings and Sweep heuristic and with
both loading approaches. For the rear loading approach, the
loading space separation was omitted as a 3L-CVRP instance
does not contain any backhaul customers.

In Table 12, the TTD and number of routes (v) of the best
solutions among all runs are listed. In addition, the average
run times are given in seconds (¢ (s)). For the comparison
with the approaches from the literature, the best TTDs and
average run times of Gendreau et al. (2006) and Zhang et al.
(2015) are presented as well as the deviations of the TTDs
provided by the RTS from the TTDs of the comparison pro-
cedures.

As can be seen, our approach achieves slightly better solu-
tions than the ones of Gendreau et al. (2006). The local
search of Zhang et al. (2015) provides considerably better
results. The RTS does outperform the approach of Zhang
et al. (2015) in one case (E016-05m). However, it must
be noted that the RTS did not achieve to find a solution
where the vehicle number restriction is satisfied. The found
solution requires one vehicle more than allowed. As men-
tioned above, the only mechanism to handle this restriction
is the penalization of additional tours. For the presented
instances, this approach seems to be insufficient as the max-
imum number of vehicles is often violated by the best found
solutions.

An advantage of our approach is, though, that moderate
solutions are provided rather fast requiring on average only
about 9 seconds of run time.
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6 Conclusions

Transporting linehaul and backhaul goods in the same tours
can be a useful mean to reduce empty running trucks, trav-
elled distances, fuel consumption and, in consequence, to
reduce costs. Although the integration of backhauls into
the VRP was studied frequently in the research, the trans-
ported goods and available capacities were mostly consid-
ered to be one-dimensional. Applying solutions obtained
by solving such problems could turn out to be infeasi-
ble when the transported goods are bulky. Therefore, we
present a 3L-VRPMB which includes not only the back-
hauls into the VRP but also three-dimensional loading
constraints so that, for example, load stability or load-
ing sequences can be considered. In order to solve it, a
hybrid algorithm consisting of a reactive tabu search (which
was originally developed for the one-dimensional VRPMB)
combined with a packing construction heuristic was imple-
mented.

The procedure was tested for both one-dimensional and
three-dimensional test instances. The one-dimensional tests
indicate that the implemented RTS is comparable to the orig-
inal approach. Moreover, a second heuristic for constructing
initial solutions was applied which led to further improve-
ments of the results.

New instances were generated for the 3L-VRPMB and dif-
ferent packing construction heuristics were implemented and
compared. The final hybrid algorithm combined the RTS with
variants of the deepest-bottom-left-fill approach. Since line-
haul and backhaul customers can be visited in any sequence
in the VRPMB, linehaul and backhaul items are (partly)
transported simultaneously. In the hybrid approach, this is
realized by two different loading approaches which ensure
that any reloading during a tour is avoided. They include rear-
loaded vehicles with horizontally separated loading spaces
into linehaul and backhaul sections, and side-loaded vehi-
cles. The best results—in terms of both total travel distance
and number of tours—were obtained with the side loading
approach.

A comparison has been conducted with the 3L-VRPMB
heuristic by Reil et al. (2018). In this comparison, our hybrid
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algorithm performed considerably better than the method of
Reil et al. (2018) in terms of total travel distance and num-
ber of routes. This may have been caused partially by the
use of benchmark instances for which the method of Reil
et al. (2018) is less suitable. In addition, the hybrid RTS
heuristic was compared to further heuristics presented in the
literature using the 3L-CVRP instances of Gendreau et al.
(2006). In terms of solution quality, the RTS is comparable
to the approach of Gendreau et al. (2006). The local search
of Zhang et al. (2015) performs significantly better. Yet, our
approach is able to provide moderate solutions in rather small
run times.

The mixture of linehaul and backhaul items within a
route leads to the application of the presented loading
approaches. Both face limitations which could be tackled
further in future research regarding the 3L-VRPMB. For
example, the side loading approach could provide more
flexibility if a mixture of linehaul and backhaul items
along the length axis of the loading space was allowed.
This would make packing more complicated but might
lead to better utilization of the loading space and, thus,
better solutions. Future studies on the 3L-VRPMB and
other VRPs with backhauls should also integrate further
and more complicated packing constraints, e.g. axle weight
constraints, to cope with even more difficult real-world situ-
ations.

Appendix

Followingly, the detailed results of the one-dimensional tests
are presented. Tables 13, 14 and 15 state the instance charac-
teristics in the first columns. The columns “BKS” contains
the TTD and the number of vehicles (v) of the best known
solution from the literature. The next columns contain the
best found solutions (TTD-best) of our RTS and the number
of vehicles corresponding to the best solution (v-best). The
last column states whether the best solution was obtained in
connection with the Sweep (Sw) heuristic, the Saving (Sav)
heuristic, or both.
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Table 13 Results RTS for GJB89 instance set

Instance BKS RTS-Comb

Name n LH (%) TTD v TTD-best v-best init
Al 25 80 223,085 8 223,088 8 both
A2 25 80 169,497 5 169,500 5 both
A3/A4 25 80 142,032 3 142,034 3 both
Bl 30 66 232,430 7 232,436 7 both
B2 30 66 179,194 5 179,194 4 Sav
B3 30 66 145,699 3 145,702 3 both
Cl 40 50 237,100 7 237,110 7 both
c2 40 50 196,833 5 196,683 5 Sw
C3/C4 40 50 164,794 3 164,891 3 both
D1/D2 38 80 307,109 11 307,110 11 both
D3 38 80 220,700 7 220,751 7 both
D4 38 80 182,496 5 182,928 5 both
El 45 66 220,742 7 220,742 7 both
E2 45 66 190,084 4 190,049 4 Sav
E3 45 66 182,804 4 181,941 4 Sav
F1/F2 60 50 243,599 6 244,353 6 Sav
F3 60 50 212,296 4 212,296 4 Sw
F4 60 50 200,964 4 198,709 4 Sav
Gl 57 80 297,707 10 297,656 10 Sav
G2 57 80 234,653 6 234,101 6 Sw
G3/G4 57 80 213,757 5 212,748 5 both
G5 57 80 202,610 4 200,521 4 Sav
G6 57 80 188,823 3 188,696 3 Sw
H1 68 66 235,269 6 236,427 6 Sav
H2 68 66 214,908 5 213,732 5 Sav
H3/H4 68 66 202,971 4 204,794 4 both
H5/H6 68 66 201,896 4 196,446 4 Sav
11 90 50 320,703 9 320,217 10 Sav
12 90 50 272,621 7 276,519 7 Sav
13/14/15 90 50 238,245 5 237,662 5 Sw
I 94 80 330,235 10 324,265 10 Sav
12 94 80 292,698 8 294,004 8 Sav
I3 94 80 249,931 6 255,195 6 Sav
J4 94 80 257,895 6 275,311 7 Sav
K1 113 66 352,253 10 352,729 10 Sw
K2/K3 113 66 317,004 8 317,274 8 Sav
K4 113 66 294,848 7 293,621 7 Sw
L1 150 50 394,414 10 395,803 11 Sav
L2/L3 150 50 360,018 8 365,189 9 Sw
L4/L5 150 50 337,620 7 335,186 7 Sav
M1/M2 125 80 360,897 10 366,426 10 Sav
M3 125 80 335,486 9 336,753 9 Sw
M4 125 80 300,225 7 305,428 7 Sav
NI1/N2 150 66 370,690 10 365,724 10 Sav
N3/N4 150 66 349,516 9 352,064 9 Sav
NS5/N6 150 66 319,811 7 315,475 7 Sav

Bold values indicate a better solution than the best known solution
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Table 14 Results RTS for TV97
instance set
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Instance BKS RTS-comb

Name n LH (%) TTD v TTD-best v-best init
EIL22_2 21 50 324 3 326 3 Both
EIL22_3 21 60 341 3 342 3 Both
EIL22_5 21 80 341 3 342 3 Both
EIL23_2 22 50 526 2 527 2 Both
EIL23_3 22 60 526 2 527 2 Both
EIL23_5 22 80 514 2 514 2 Both
EIL30_2 29 50 417 2 419 2 Both
EIL30_3 29 60 475 3 484 3 Sav
EIL30_5 29 80 475 3 478 3 Sw
EIL33_2 32 50 680 3 681 3 Sw
EIL33_3 32 60 680 3 681 3 Both
EIL33_5 32 80 686 3 687 3 Sw
EIL51_2 50 50 466 3 465 3 Sw
EIL51_3 50 60 491 4 491 4 Sw
EIL51_5 50 80 497 4 497 4 Sav
EIL76a_2 75 50 670 6 666 6 Sav
EIL76a_3 75 60 719 7 704 7 Sav
EIL76a_5 75 80 759 8 760 9 Sav
EIL76b_2 75 50 768 8 757 8 Sav
EIL76b_3 75 60 826 10 831 10 Sav
EIL76b_5 75 80 904 12 897 12 Sw
EIL76¢c_2 75 50 629 5 626 5 Sw
EIL76¢_3 75 60 663 6 660 6 Sw
EIL76¢_5 75 80 697 7 695 7 Sav
EIL76d_2 75 50 608 4 602 4 Sw
EIL76d_3 75 60 627 5 627 5 Sw
EIL76d_5 75 80 653 6 646 6 Sav
EIL101a_2 100 50 730 5 739 4 Sw
EIL101a_3 100 60 754 6 756 6 Sw
EIL101a_5 100 80 789 7 795 7 Sav
EIL101b_2 100 50 861 8 854 8 Sw
EIL101b_3 100 60 923 10 931 10 Sw
EIL101b_5 100 80 969 11 966 11 Sav

Bold values indicate a better solution than the best known solution
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Table 15 Results RTS for SN99 instance set

Instance BKS RTS-comb

Name n L H (%) TTD v TTD-best v-best init
CMTO1H 50 50 462 3 466 3 Sw
CMTO01Q 50 75 490 4 490 4 Sw
CMTOIT 50 90 520 5 520 5 Sw
CMTO02H 75 50 661 6 666 6 Sw
CMTO02Q 75 75 732 8 733 8 Sw
CMTO2T 75 90 783 9 785 9 Sw
CMTO3H 100 50 701 5 723 5 Sw
CMTO03Q 100 75 747 6 754 6 Sav
CMTO3T 100 90 798 7 802 7 Sav
CMTO04H 150 50 829 7 870 7 Sav
CMT04Q 150 75 915 9 932 9 Sav
CMTO4T 150 90 993 11 1023 11 Sav
CMTO5H 199 50 983 20 1041 10 Sav
CMTO05Q 199 75 1118 20 1157 13 Sav
CMTO5T 199 90 1278 15 1280 16 Sw
CMTI11H 120 50 818 4 847 4 Sav
CMTI11Q 120 75 939 6 944 6 Sav
CMTIIT 120 90 999 7 1007 7 Sav
CMTI12H 100 50 629 5 638 5 Sw
CMT12Q 100 75 729 7 749 8 Sav
CMTI12T 100 90 788 9 788 9 Sav
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