
Journal of Scheduling (2019) 22:691–707
https://doi.org/10.1007/s10951-019-00622-w

Single-machine scheduling with job-dependent machine deterioration

Wenchang Luo1,2 · Yao Xu2 ·Weitian Tong3 · Guohui Lin2

Published online: 19 September 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We consider the single-machine scheduling problem with job-dependent machine deterioration. In the problem, we are given
a single machine with an initial nonnegative maintenance level, and a set of jobs each with a non-preemptive processing time
and a machine deterioration. Such a machine deterioration quantifies the decrement in the machine maintenance level after
processing the job. To avoid a machine breakdown, one should guarantee a nonnegative maintenance level at any time point,
and whenever necessary, a maintenance activity must be allocated for restoring the machine maintenance level. The goal of
the problem is to schedule the jobs and the maintenance activities such that the total completion time of jobs is minimized.
There are two variants of maintenance activities: In the partial maintenance case, each activity can be allocated to increase
the machine maintenance level to any level not exceeding the maximum; in the full maintenance case, every activity must be
allocated to increase the machine maintenance level to the maximum. In a recent work, the problem in the full maintenance
case was proven NP-hard; several special cases of the problem in the partial maintenance case were shown to be solvable in
polynomial time, but the complexity of the general problem was left open. In this paper we first prove that the problem in the
partial maintenance case is binary NP-hard, thus settling the open problem; we then design a 2-approximation algorithm and
a branch-and-bound exact search algorithm. Computational experiments are conducted for the two algorithms to examine
their practical performance.

Keywords Scheduling · Machine deterioration · Maintenance · Binary NP-hard · Approximation algorithm

1 Introduction

In many scheduling problems, processing a job on a machine
causes the machine to deteriorate to some extent, and main-

An extended abstract appears in the Proceedings of ISAAC 2016.
LIPICS, Volume 64.

B Guohui Lin
guohui@ualberta.ca

Wenchang Luo
luowenchang@163.com

Yao Xu
xu2@ualberta.ca

Weitian Tong
wtong@georgiasouthern.edu

1 School of Mathematics and Statistics, Ningbo University,
Ningbo 315211, Zhejiang, China

2 Department of Computing Science, University of Alberta,
Edmonton, AB T6G 2E8, Canada

3 Department of Computer Science, Georgia Southern
University, Statesboro, GA 30460, USA

tenance activities need to be executed in order to restore the
machine capacity. Scheduling problems with maintenance
activities have been investigated extensively since the work
of Lee and Liman (1992).

A maintenance activity is normally described by two
parameters, the starting time and the duration. If these two
parameters are given beforehand, a maintenance activity is
referred to as fixed; otherwise it is called flexible. Various
scheduling models with fixed maintenance activities, in dif-
ferent machine environments and with job characteristics,
have been comprehensively surveyed bySchmidt (2000), Lee
(2004) and Ma et al. (2010).

A number of researchers have conducted studies with
flexible maintenance activities. Qi et al. (1999) consid-
ered a single-machine scheduling problem to simultaneously
schedule jobs and maintenance activities, with the objective
ofminimizing the total completion time of jobs. They showed
that the problem is NP-hard in the strong sense and pro-
posed heuristics and a branch-and-bound exact algorithm.
(Qi (2007) later analyzed the worst-case performance ratio
for one of the heuristics, the shortest processing time first

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-019-00622-w&domain=pdf
http://orcid.org/0000-0003-4283-3396

692 Journal of Scheduling (2019) 22:691–707

or SPT.) Lee and Chen (2000) studied a multiple-parallel-
machine scheduling problem where each machine must be
maintained exactly once, with the goal of minimizing the
total weighted completion time of jobs. They proved the
NP-hardness for some special cases and proposed a branch-
and-bound exact algorithm based on column generation; the
NP-hardness for the general problem is implied. Kubzin and
Strusevich (2006) considered a two-machine open-shop and
a two-machine flow-shop scheduling problem in which each
machinemust bemaintained exactly once, and the duration of
each maintenance activity depends on its starting time. The
objective is to minimize the maximum completion time of
all jobs and all maintenance activities. The authors, among
others, showed that the open-shop problem is polynomial
time solvable for quite general functions defining the dura-
tion of maintenance in its starting time; they also proved
that the flow-shop problem is binary (i.e., weakly) NP-hard
and presented a fully polynomial time approximation scheme
(FPTAS) (Kubzin and Strusevich 2006).

Returning to single-machine scheduling problems, Chen
(2008) studied the periodic maintenance activities of a
constant duration not exceeding the available period, with
the goal of minimizing the maximum completion time of
jobs (that is, the makespan). The author presented two
mixed-integer programs andheuristics; computational exper-
iments were also conducted to examine their performance.
Mosheiov and Sarig (2009) considered the problem where
a machine needs to be maintained prior to a given deadline,
with the aim of minimizing the total weighted completion
time of jobs. They showed the binary NP-hardness, and they
presented a pseudo-polynomial time dynamic programming
algorithm and an efficient heuristic. Luo et al. (2010) inves-
tigated a similar variant in which the jobs are weighted and
the duration of the maintenance is a nondecreasing function
of the starting time (which must be prior to a given deadline).
Their objective was to minimize the total weighted comple-
tion time of jobs; the authors showed the binaryNP-hardness,
and for the special case of concave duration function, they
proposed a (1 + √

2/2 + ε)-approximation algorithm for
any ε > 0. Yang and Yang (2010) considered a position-
dependent aging effect described by a power function under
maintenance activities and variable maintenance duration
considerations simultaneously; they examined two models
with the objective of minimizing the makespan, and for each
of these, they presented a polynomial time algorithm.

Scheduling on two identical parallel machines with peri-
odic maintenance activities was examined by Sun and Li
(2010), where the authors presented approximation algo-
rithms with constant performance ratios for minimizing the
makespan or minimizing the total completion time of jobs.
Xu et al. (2010) considered a case where the length of time
between two consecutive maintenance activities is bounded;
they presented an approximation algorithm for the multiple-

parallel-machine scheduling problem to minimize the com-
pletion time of the last maintenance, and for the single-
machine scheduling problem to minimize the makespan.

1.1 Problem definition

Considering machine deterioration in the real world, in
a recent work by Bock et al. (2012), a new scheduling
model subject to job-dependent machine deterioration was
introduced. In this model, the single machine must have a
nonnegativemaintenance level (ML) at any time point, spec-
ifying its currentmaintenance state. (A negativemaintenance
level indicates the machine breakdown, which is prohibited.)
We are given a set of jobs J = {Ji | i = 1, 2, . . . , n}, where
each job Ji = (pi , δi) is specified by its non-preemptive pro-
cessing time pi and machine deterioration δi . The machine
deterioration δi quantifies the decrement in the machine
maintenance level after processing job Ji . (That is, if before
the processing of job Ji , the maintenance level is ML, then
afterward the maintenance level reduces to ML − δi , which
suggests that ML has to be at least δi in order for the machine
to process job Ji .)

Clearly, to process all the jobs, maintenance activities
(MAs) need to be allocated inside a schedule to restore the
maintenance level, preventing a machine breakdown. Given
that the machine can have a maximum maintenance level
of MLmax, and assuming a unit maintenance speed, an MA
of a duration D would increase the maintenance level by
min{D,MLmax − ML}, where ML is the maintenance level
before the MA.

With an initial machine maintenance level ML0, 0 ≤
ML0 ≤ MLmax, the goal of the problem is to schedule the
jobs and necessary MAs such that all jobs can be processed
without a machine breakdown, and the total completion time
of the jobs is minimized.

There are two variants of the problem, depending on
whether one has the freedom to choose the duration of an
MA: In the partial maintenance case, the duration of each
MA can be anywhere between 0 and MLmax − ML, where
ML is the maintenance level before theMA. In the full main-
tenance case, however, the duration of every MA must be
exactly MLmax − ML, consequently increasing the mainte-
nance level to the maximum value MLmax. Let Ci denote
the completion time of job Ji , for i = 1, 2, . . . , n. In three-
field notation, the two problems discussed in this paper are
denoted as 1 | pMA | ∑

j C j and 1 | fMA | ∑
j C j , where

pMA and fMA refer to the partial and the full maintenance,
respectively.

1.2 Prior work and our contribution

Bock et al. (2012) proved that 1 | fMA | ∑
j C j is NP-hard,

evenwhen pi = p for all i orwhen pi = δi for all i , both by a

123

Journal of Scheduling (2019) 22:691–707 693

reduction from the Partition problem (Garey and Johnson
1979); while all the jobs have the same deterioration, i.e.,
δi = δ for all i , the problem can be solved in O(n log n)

time. For the partial maintenance case, Bock et al. (2012)
showed that the SPT rule gives an optimal schedule for 1 |
pMA | ∑

j C j when pi < p j implies pi + δi ≤ p j + δ j for
each pair of i and j (which includes the special cases where
pi = p for all i , δi = δ for all i , or pi = δi for all i). The
complexity of the general problem 1 | pMA | ∑

j C j was
left as an open problem. Also, to the best of our knowledge,
no approximation algorithms have been designed for either
problem.

Our main contribution in this paper is settling the binary
NP-hardness of the general problem1 | pMA | ∑

j C j . Such
NP-hardness might appear a bit surprising at first glance,
since one has so much freedom in choosing the starting
time and the duration of each MA. Our reduction is from
the Partition problem as well, using a kind of job swap
argument. This reduction is presented in Sect. 3, following
some preliminary properties we observe for the problem in
Sect. 2. In Sects. 4 and 5, we propose a 2-approximation
algorithm and a branch-and-bound exact search algorithm
for 1 | pMA | ∑

j C j , respectively. Computational experi-
ments are conducted for the two algorithms to examine their
practical performance, with the statistics reported in Sect. 5.
We conclude the paper in Sect. 6 with a discussion on the
(in-)approximability.

Lastly, we would like to point out that when the objec-
tive is to minimize the makespan Cmax, i.e., the maximum
completion time of jobs, 1 | pMA | Cmax, can be trivially
solved in O(n) time, and 1 | fMA | Cmax is NP-hard but
admits an O

(
n2(MLmax)2 log

(∑n
i=1(pi + δi)

))
time algo-

rithm based on dynamic programming (and thus admits an
FPTAS) (Bock et al. 2012).

2 Preliminaries

Given a feasible schedule π to the problem 1 | pMA |∑
j C j , which specifies the start processing time for each

job and the starting time and the duration of each MA, we
slightly abuse π to also denote the permutation of the job
indices (1, 2, . . . , n) in which the jobs are processed in order:
π = (π1, π2, . . . , πn). The following lemma is proved in
Bock et al. (2012).

Lemma 1 Bock et al. (2012) There is an optimal schedule
π to the problem 1 | pMA | ∑

j C j such that the total
maintenance duration before the processing of job Jπi equals

max
{
0,

∑i
j=1 δπ j − ML0

}
, for each i = 1, 2, . . . , n.

Lemma1 essentially states that eachMA should be pushed
back later in the schedule as much as possible until it is abso-
lutely necessary, and its duration should be minimized just

for processing the succeeding job. In the sequel, we limit our
discussion to feasible schedules satisfying these two proper-
ties. We define the separation job in such a schedule π as the
first job that requires an MA (of a positive duration).

Lemma 2 Suppose that Jπk is the separation job in an opti-
mal schedule π for the problem 1 | pMA | ∑

j C j . Then,

• the jobs before the separation job Jπk are scheduled in
the SPT order;

• the jobs after the separation job Jπk are scheduled in the
shortest sum-of-processing-time-and-deterioration first
(SSF) order;

• the jobs adjacent to the separation job Jπk satisfy

pπk−1 + min{δπk−1, δπk − δ} ≤ pπk + (δπk − δ)

≤ pπk+1 + max{0, δπk+1 − δ},

where δ = ML0 − ∑k−1
i=1 δπi is the remaining mainte-

nance level before the firstMA.

Proof Starting with an optimal schedule satisfying the prop-
erties stated in Lemma 1, one may apply a simple job swap
procedure if the job order is violated either in the prefix or
in the suffix of job order separated by the separation job Jπk .
This procedure would decrease the value of the objective,
contradicting the optimality. That is, we have (see Fig. 1 for
an illustration)

pπ1 ≤ pπ2 ≤ · · · ≤ pπk−1, and (1)

pπk+1 + δπk+1 ≤ pπk+2 + δπk+2 ≤ · · · ≤ pπn + δπn . (2)

Let δ = ML0 − ∑k−1
i=1 δπi denote the remaining mainte-

nance level before the first MA. Because δ < δπk , an (the
first) MA of duration δπk − δ needs to be performed for pro-
cessing the separation job Jπk . Since π is optimal, a swap of
the two jobs Jπk and Jπk+1 does not decrease the objective,
that is,

{
pπk + (δπk − δ) ≤ pπk+1 + (δπk+1 − δ), if δπk+1 > δ;
pπk + (δπk − δ) ≤ pπk+1, otherwise.

Similarly, a swap of the two jobs Jπk−1 and Jπk does not
decrease the objective, that is,

{
pπk−1 ≤ pπk , if δπk−1 ≥ δπk − δ;
pπk−1 + δπk−1 ≤ pπk + (δπk − δ), otherwise.

These together give

pπk−1 + min{δπk−1, δπk − δ} ≤ pπk + (δπk − δ) ≤ pπk+1

+max{0, δπk+1 − δ}. (3)

123

694 Journal of Scheduling (2019) 22:691–707

Fig. 1 An illustration of the
optimal schedule π stated in
Lemma 2, where the separation
job is Jπk ; the width of a
framebox does not necessarily
equal the processing time of a
job or the duration of an MA

�π1 π2 . . . πk−1 MA πk

�
separation

�
1st

MA πk+1 MA πk+2 . . . MA πn

This proves the lemma. ��
From Lemma 2, one can see that the separation job in an

optimal schedule is unique, in the sense that it cannot always
be “appended” to either the prefix SPT order or the suffix SSF
order. This is reflected in our NP-completeness reduction in
Sect. 3, where we force a certain scenario to happen.

3 Proving the binary NP-hardness of the
problem 1 | pMA | ∑

j Cj

Our reduction is from the classic NP-complete problem
Partition (Garey and Johnson 1979), formally defined as
follows:

Partition:
Instance: A set X of n positive integers X =
{x1, x2, . . . , xn}, with ∑n

i=1 xi = 2B.
Query: Is there a subset X1 ⊂ X such that

∑
x∈X1

x =
∑

x∈X−X1
x = B?

We abuse X to denote the instance of Partition with the
set X = {x1, x2, . . . , xn} and

∑n
i=1 xi = 2B. The corre-

sponding instance I of the problem 1 | pMA | ∑
j C j is

constructed in polynomial time, as follows:

Number of jobs: 2n + 3;
Job processing time: pn+1+i = pi =

i∑

j=1
x j ,

for i = 0, 1, 2, . . . , n,

p2n+2 = M − 2B;
Machine deterioration: δn+1+i = δi = M − 2pi ,

for i = 0, 1, 2, . . . , n,

δ2n+2 = 0;
Initial maintenance level: ML0 =

n∑

i=0
δi − 2B;

Maximum maintenance level: MLmax =
n∑

i=0
δi ;

Objective threshold: Q = Q0 + B,

where M is a large integer:

M > (4n + 8)B, (4)

and Q0 is the total completion time of jobs for an initial
infeasible schedule π0 (see Fig. 2).

We note that in the instance pn+1 = p0 = ∑0
j=1 x j =

0 due to the empty range for j . Recall that δ denotes the
remainingmaintenance level before thefirstMA. In the initial
schedule π0, we have

δ = ML0 −
n∑

i=0

δi = −2B. (5)

Thus, π0 is infeasible. The duration of the first MA is 2B,
which boosts the machine maintenance level from−2B to 0,
sufficient for processing the separation job J2n+2 (recall that
δ2n+2 = 0). The value of Q0 is calculated as follows:

Q0 =
n∑

j=0

C j +
n+1∑

j=0

C2n+2− j

=
n∑

j=0

j∑

i=0

pi + (n + 2)

⎛

⎝
n∑

j=0

p j + 2B + p2n+2

⎞

⎠

+
n∑

j=0

j∑

i=0

(p2n+1−i + δ2n+1−i)

=
n∑

j=0

(n − j + 1)p j + (n + 2)

⎛

⎝
n∑

j=0

p j + 2B + p2n+2

⎞

⎠

+
n∑

j=0

(j + 1)(pn+1+ j + δn+1+ j), (6)

whereC j is the completion time of job J j in the initial sched-
ule π0 and, in particular, C2n+2 = ∑n

j=0 p j + 2B + p2n+2.

The job order in this initial schedule π0 is (J0, J1, . . . ,
Jn, J2n+2, J2n+1, J2n, . . . , Jn+1), and the first MA precedes
job J2n+2, which is regarded as the separation job (see Fig. 2).
Before the separation job J2n+2, the machine maintenance
level is allowed to go into negative, but has to be restored
to zero just for processing J2n+2 (recall that δ2n+2 = 0);
afterward, a machine breakdown is no longer tolerated. From
ML0 = ∑n

i=0 δi − 2B, we know that π0 is infeasible due to
a machine breakdown before the first MA; we will convert it
to a feasible schedule later. The query of the decision version
of the problem 1 | pMA | ∑

j C j is whether there exists
a feasible schedule π such that the total completion time of
jobs is no more than Q = Q0 + B.

Despite the infeasibility, the initial schedule π0 has all
the properties stated in Lemma 2, with the separation job
J2n+2 at the center position. The first n + 1 jobs are in the

123

Journal of Scheduling (2019) 22:691–707 695

�J0 J1 J2 . . . Jn
2B J2n+2

�
separation

�
1st MA

δ2n+1 J2n+1
δ2n J2n . . . δn+1

�
Jn+1

Fig. 2 The initial infeasible schedule π0 for the instance I with the separation job J2n+2; π0 satisfies all properties stated in Lemma 2. All MAs
are indicated by their respective durations [for the first MA, its duration is δ2n+2 − δ = 2B, by Eq. (5)]

SPT order and the last n + 1 jobs are in the SSF order; since
δ = −2B, pn = p2n+1 = 2B, δn = δ2n+1 = M − 4B,
p2n+2 = M − 2B, δ2n+2 = 0, Eq. (3) is also satisfied due to
the value M in Eq. (4):

pn + min{δn, δ2n+2 − δ} < p2n+2 + (δ2n+2 − δ)

= p2n+1 + max{0, δ2n+1 − δ}.

In the remainder of this section, we will show that there
is a subset X1 ⊂ X of sum exactly B if and only if the initial
schedule π0 can be converted into a feasible schedule π with
a total completion time of jobs of nomore than Q = Q0+B,
through a repeated job swap procedure.

In summary, the basic idea in the reduction is as follows.
We set up the processing times and machine deterioration
in such a way that each processing time unit t of a job
increases its machine deterioration by 2t . Therefore, the
initial schedule π0 provides a lower bound of the total
completion time of jobs. Since too small a total process-
ing time for the jobs scheduled before the job J2n+2 causes
machine deterioration that is too significant, resulting in
machine breakdown, π0 is unfortunately infeasible. We thus
seek to reduce the maintenance deterioration by increas-
ing the total processing time of the jobs scheduled before
job J2n+2, through a sequence of job swaps. The equiva-
lence between the two problems results from the fact that
we can identify the existence of a Partition solution by
finding a schedule that reduces the total machine deterio-
ration before job J2n+2 in π0 by exactly 2B, which is the
absolute minimum necessary machine deterioration reduc-
tion.

Note that the two jobs Ji and Jn+1+i are identical, for
i = 0, 1, . . . , n. In any schedule with job J2n+2 at the center
position, if exactly one of Ji or Jn+1+i is scheduled before
J2n+2, then we always say that Ji is scheduled before J2n+2,
while Jn+1+i is scheduled after J2n+2. Also, when the two
jobs Ji and Jn+1+i are both scheduled before J2n+2, then
Jn+1+i precedes Ji ; when the two jobs Ji and Jn+1+i are
both scheduled after J2n+2, then Ji precedes Jn+1+i .

3.1 Proof of “if”

In this subsection, we show that if there is a subset X1 ⊂ X
of sum exactly B, then the initial infeasible schedule π0 can
be converted into a feasible schedule π with total completion
time of no more than Q = Q0 + B. We also demonstrate
the repeated job swap procedure leading to this successful
schedule π .

Suppose that the indices of the elements in the subset X1

are {i1, i2, . . . , im}, satisfying 1 ≤ i1 < i2 < · · · < im ≤ n.
Starting with the initial schedule π0, we sequentially swap
job Ji�−1 with job Jn+1+i� , for � = 1, 2, . . . ,m. Such a job
swap between Ji�−1 and Jn+1+i� is referred to as a “regular”
job swap. Let π� denote the schedule after the �th job swap.

Lemma 3 For each 1 ≤ � ≤ m,

• the schedule π� with the separation job J2n+2 satisfies
the properties in Lemma 2;

• the �th job swap decreases the total machine deteriora-
tion before the separation job J2n+2 by 2xi� ;

• the �th job swap increases the total completion time by
xi� .

Proof Recall that the two jobs Ji� and Jn+1+i� are identi-
cal. Before the �th job swap between Ji�−1 and Jn+1+i� (in
schedule π�−1), the jobs between Ji�−1 and Jn+1+i� are

π�−1 : (Ji�−1, Ji� , Ji�+1, . . . , Jn, J2n+2, J2n+1, J2n, . . . ,

Jn+1+i�+1, Jn+1+i�).

After the swap (in schedule π�), this sub-schedule
becomes

π� : (Jn+1+i� , Ji� , Ji�+1, . . . , Jn, J2n+2, J2n+1, J2n, . . . ,

Jn+1+i�+1, Ji�−1).

By simple induction, all jobs before Jn+1+i� have process-
ing times less than pi� , and thus the jobs before the separation
job J2n+2 are in SPT order; for a similar reason, the jobs after
the separation job J2n+2 are in SSF order.

123

696 Journal of Scheduling (2019) 22:691–707

By the �th job swap, the change in the total machine dete-
rioration before the separation job J2n+2 is δi� − δi�−1 =
−2(pi� − pi�−1) = −2xi� , that is, it decreases by 2xi� . There-
fore, the duration of the firstMA also decreases by 2xi� . Since
Jn always immediately precedes J2n+2 and pn < p2n+2, the
first half of Eq. (3) holds; since p2n+2 +δ2n+2 is the smallest
among all jobs, the second half of Eq. (3) holds. That is, the
schedule π� satisfies all properties in Lemma 2.

For ease of presentation, letCi denote the completion time
of job Ji in schedule π�, and let C ′

i denote the completion
time of job Ji in schedule π�−1. Compared with the schedule
π�−1 (� ≥ 1), after the �th job swap between Ji�−1 and
Jn+1+i� ,

• the completion times of jobs preceding Jn+1+i� are
unchanged; in particular, the starting processing time
Sn+1+i� of Jn+1+i� in π� and the starting processing time
S′
i�−1 of Ji�−1 in π�−1 satisfy Sn+1+i� = S′

i�−1;• Cn+1+i� −C ′
i�−1 = (Sn+1+i� + pi�)− (S′

i�−1 + pi�−1) =
pi� − pi�−1 = xi� ;

• the completion timeof each jobbetween Ji� and Jn (inclu-
sive, n − i� + 1 of them) increases by xi� ;

• the duration of the first MA decreases by 2xi� ;
• the completion time of each job between J2n+2 and

Jn+1+i�+1 (inclusive, n−i�+1 of them) decreases by xi� ;
in particular, the starting processing time Si�−1 of Ji�−1

in π� and the starting processing time S′
n+1+i�

of Jn+1+i�

in π�−1 satisfy Si�−1 = S′
n+1+i�

− xi� ;
• Ci�−1−C ′

n+1+i�
= (Si�−1+(δi�−1+pi�−1))−(S′

n+1+i�
+

(δi� + pi�)) = −xi� + (δi�−1 + pi�−1) − (δi� + pi�) =
−xi� − (pi�−1 − pi�) = 0;

• from the last item, the completion times of jobs succeed-
ing Ji�−1 are unchanged.

In summary, there are n−i�+2 jobs, eachwith completion
time that increases by xi� , and there are n − i� + 1 jobs, each
with completion time that decreases by xi� . Therefore, the
�th job swap between Ji�−1 and Jn+1+i� increases the total
completion time by xi� . This completes the proof. ��
Theorem 1 If there is a subset X1 ⊂ X of sum exactly B,
then there is a feasible schedule π for instance I with total
completion time of no more than Q = Q0 + B.

Proof Let the indices of the elements in the subset X1 be
{i1, i2, . . . , im}, such that 1 ≤ i1 < i2 < · · · < im ≤ n.
Starting with the initial schedule π0, we sequentially swap
the job Ji�−1 with job Jn+1+i� , for � = 1, 2, . . . ,m. Let π�

denote the schedule after the �th job swap, and let Q� denote
the total completion time of jobs in π�.

From Lemma 3 we know that the ending schedule πm

satisfies all the properties inLemma2.Also, the totalmachine
deterioration before the separation job J2n+2 in πm is

n∑

i=0

δi − 2
m∑

�=1

xi� =
n∑

i=0

δi − 2B = ML0,

suggesting that πm is a feasible schedule. (The first MA has
zero duration and thus becomes unnecessary.)

Moreover, the total completion time of jobs inπm is Qm =
Q0 + ∑m

�=1 xi� = Q0 + B. Therefore, the schedule πm

obtained from the initial schedule π0 through the repeated
job swap procedure is a desired one. ��

3.2 Proof of “only if”

In this subsection, we show that if there is a feasible schedule
π for the constructed instance I with total completion time
of no more than Q = Q0 + B, then there is a subset X1 ⊂ X
of sum exactly B. Assume without loss of generality that
schedule π satisfies the properties in Lemma 2.We start with
some structural properties which schedule π must have.

Lemma 4 Excluding job J2n+2, there are at least n and at
most n+1 jobs scheduled before the firstMA in the schedule
π .

Proof Recall that in Eq. (4) we set M to be a large value such
that M > (4n+8)B. Using M > (4n+6)B, it follows from
M − 4B = δn < δn−1 < · · · < δ1 < δ0 = M that the initial
machine maintenance level

ML0 =
n∑

i=0

δi − 2B > (n + 1)(M − 4B) − 2B

= nM + M − (4n + 6)B > nM .

We thus conclude that at least n jobs, excluding J2n+2

which has 0 deterioration, can be processed before the first
MA.

Nevertheless, if there weremore than n+1 jobs scheduled
before the firstMA, excluding J2n+2, then their totalmachine
deterioration would be greater than (n+2)(M −4B). Using
M > (4n + 8)B, we have

(n + 2)(M − 4B) = (n + 1)M + M − (4n + 8)B

> (n + 1)M >

n∑

i=0

δi > ML0,

contradicting the feasibility of the schedule π . ��
Lemma 5 There are at most n + 1 jobs scheduled after job
J2n+2 in schedule π .

Proof We prove the lemma by contradiction. First, noting
that the job J2n+2 has a much larger processing time than
any other job (M −2B vs. 2B), we conclude that the earliest
possible position for J2n+2 in schedule π is immediately
before the first MA. We disallow a zero duration MA, and

123

Journal of Scheduling (2019) 22:691–707 697

thus job J2n+2 can never be the separation job in π due to
δ2n+2 = 0.

If J2n+2 is scheduled after the separation job, by Eq. (2)
or the SSF rule, for every job Ji scheduled after J2n+2 we
have p2n+2 ≤ pi + δi . If J2n+2 is scheduled immediately
before the first MA, by Eq. (3), for the separation job Ji we
have p2n+2 ≤ pi + (δi − δ); by Eqs. (2) and (3), for every
other job Ji scheduled after J2n+2 we have p2n+2 ≤ pi + δi .
Therefore, the completion time of a job scheduled � positions
after job J2n+2 is at least (�+1)× p2n+2. If there were n+2
jobs scheduled after J2n+2, then the total completion time of
the last n + 3 jobs would be at least

n+2∑

�=0

(� + 1)p2n+2 = (n + 3)(n + 4)

2
p2n+2

= (n + 3)(n + 4)

2
(M − 2B).

However, using p j ≤ 2B for j
= 2n+2, one can see that
Eq. (6) is simplified as

Q0 =
n∑

j=0

(n − j + 1)p j + (n + 2)

⎛

⎝
n∑

j=0

p j + 2B + (M − 2B)

⎞

⎠ +
n∑

j=0

(j + 1)(M − p j)

= (n + 2)(n + 3)

2
M + 2

n∑

j=0

(n − j + 1)p j

≤ (n + 2)(n + 3)

2
M + 4B

n∑

j=0

(n − j + 1)

= (n + 2)(n + 3)

2
M + 2(n + 1)(n + 2)B.

Using M > (3n + 6)B,

(n + 3)(n + 4)

2
(M − 2B) ≥ Q0 + (n + 3)M

−(3n2 + 13n + 16)B > Q0 + (2n + 2)B,

that is, we would have total completion time of the last n+3
jobs in π strictly greater than Q = Q0 + B, contradicting
our assumption. ��

CombiningLemmas4 and5,wehave the following lemma
regarding the position of J2n+2 in schedule π . This conclu-
sion is to be used in the remainder of the section.

Lemma 6 In schedule π , the position of job J2n+2 has only
three possibilities:

Case 1: There are n + 2 jobs before the first MA, πn+2 =
2n + 2, and Jπn+3 is the separation job.

Case 2: There are n + 1 jobs before the first MA, Jπn+2 is
the separation job, and πn+3 = 2n + 2.

Case 3: There are n jobs before the first MA, Jπn+1 is the
separation job, and πn+2 = 2n + 2.

Proof Note that the processing time of job J2n+2 is strictly
greater than that of any other job, while the sum of its pro-
cessing time and its machine deterioration (p2n+2 + δ2n+2)
achieves the minimum among all the jobs. Because J2n+2

cannot act as the separation job due to δ2n+2 = 0, by
Lemma 2, it can only be either the last job scheduled before
the first MA or the first job scheduled after the separation job
(through possible job swaps, if necessary).

Using Lemma 4, if there are n + 2 jobs scheduled before
the first MA in π , then the last job scheduled before the first
MA, Jπn+2 , is J2n+2. The job Jπn+3 is the separation job. Such
a schedule is illustrated in Fig. 3a.

If there are n + 1 jobs scheduled before the first MA in
π , then from Lemma 5, job J2n+2 is scheduled after the first
MA, and thus it is scheduled after the separation job, which
is Jπn+2 . That is, πn+3 = n+2. Such a schedule is illustrated
in the upper part of Fig. 3b.

If there are n jobs scheduled before the first MA in π ,
then from Lemma 5, job J2n+2 is scheduled after the first
MA, and thus it is scheduled after the separation job, which
is Jπn+1 . That is, πn+2 = n+2. Such a schedule is illustrated
in Fig. 3c.

This completes the proof of the lemma. ��

Recall that the job order in the initial infeasible schedule
π0 is (J0, J1, . . . , Jn, J2n+2, J2n+1, J2n, . . . , Jn+2, Jn+1),
and the first MA is executed before the processing of job
J2n+2, which is regarded as the separation job (see Fig. 2).
In the sequel, we will again convert π0 into our target sched-
ule π through a repeated job swap procedure. During such a
procedure, the job J2n+2 is kept at the center position, and a
job swap always involves a job before J2n+2 and a job after
J2n+2.

In cases 1 and 3 of schedule π (shown in Fig. 3a and
c, respectively), job J2n+2 is at the center position (recall
that there are in total 2n + 3 jobs), and therefore the target
schedule is well set. In Case 2, as shown in the upper part of
Fig. 3b, J2n+2 is at position n + 3, not the center position;
we thus exchange J2n+2 and Jπn+2 to obtain a schedule π ′
shown in the lower part of Fig. 3b, which is the target sched-
ule with job J2n+2 at the center position. (Note that in Case
2, after we have converted π0 into π ′ through a repeated job
swap procedure, we exchange J2n+2 back to position n+3 to
obtain the final schedule π .) Our primary goal is to convert
schedule π0 through a repeated job swap procedure, keeping
job J2n+2 at the center position and keeping the first MA
immediately before job J2n+2 (to be detailed next). At the
end of this procedure, we achieve a schedule as shown in

123

698 Journal of Scheduling (2019) 22:691–707

Fig. 3 An illustration of the
three possible positions of job
J2n+2 in a feasible schedule π

π: �Jπ1 Jπ2 Jπ3 . . . Jπn+1 Jπn+2 δ̂ Jπn+3

�
J2n+2 �

1st MA

�separation

δπn+4 Jπn+4 . . . δπ2n+3 Jπ2n+3

(a) Case 1: there are n + 2 jobs before the first MA, πn+2 = 2n + 2, and Jπn+3 is the separation job.

π: �Jπ1 Jπ2 Jπ3 . . . Jπn+1 δ̂ Jπn+2 Jπn+3

�
J2n+2�

1st MA

�separation

δπn+4 Jπn+4 . . . δπ2n+3 Jπ2n+3

π′: �Jπ1 Jπ2 Jπ3 . . . Jπn+1 δ̂ Jπn+3 Jπn+2

�
J2n+2�

1st MA

�separation

δπn+4 Jπn+4 . . . δπ2n+3 Jπ2n+3

(b) Case 2: there are n + 1 jobs before the first MA, Jπn+2 is the separation job, and πn+3 = 2n + 2.
The upper figure shows the schedule π, in which the job J2n+2 is not at the center position. We
exchange the two jobs Jπn+2 and Jπn+3 to obtain the schedule π′, shown in the lower figure, in which
J2n+2 is at the center position.

π: �Jπ1 Jπ2 Jπ3 . . . Jπn
δ̂ Jπn+1 Jπn+2

�
J2n+2�

1st MA

�separation

δπn+3 Jπn+3 . . . δπ2n+3 Jπ2n+3

(c) Case 3: there are n jobs before the first MA, Jπn+1 is the separation job, and πn+2 = 2n + 2.

Fig. 4a. From this schedule, we obtain the target schedule π

as follows: In Case 1, we swap job J2n+2 and the first MA
(i.e., moving the first MA one position backward and merg-
ing it with the immediately succeeding MA). In Case 2, we
swap J2n+2 and its immediate successor MA (i.e., moving
the immediate successorMA one position forward andmerg-
ing it with the first MA). In Case 3, we swap the first MA
and its immediately preceding job (i.e., moving the first MA
one position forward).

In the target schedule π (π in Cases 1 and 3, or π ′ in Case
2), in the sequel we focus on the jobs, with the understanding
that MA’s of proper duration are inserted when needed. Let
R = {r1, r2, . . . , rm} denote the subset of indices such that
both Jr j and Jn+1+r j are among the first n + 1 jobs, where
0 ≤ r1 < r2 < · · · < rm ≤ n, and L = {�1, �2, . . . , �m}
denote the subset of indices such that both J� j and Jn+1+� j

are among the last n + 1 jobs, where 0 ≤ �1 < �2 < · · · <

�m ≤ n. Note that J2n+2 is at the center position, and thus
it must be |R| = |L|, and we let m = |R|. Clearly, all these
� j ’s and r j ’s are distinct from one another. See Fig. 4b for
an illustration.

In the repeated job swap procedure leading from the initial
infeasible schedule π0 to the target feasible schedule, the j th
job swap is the swapping of the two jobs J� j and Jn+1+r j .
The resulting schedule after the j th job swap is denoted as

π j , for j = 1, 2, . . . ,m. In Sect. 3.1, the job swap between
J� j−1 and Jn+1+� j is “regular” in the sense that � j = r j −1,
but here, � j and r j do not necessarily relate to each other. We
note that immediately after the swap, a job sorting is needed
to restore the SPT order for the prefix and the SSF order for
the suffix (see the last paragraph before Sect. 3.1 for possible
re-indexing of the jobs).

The following Lemma 7 on the j th job swap, when
� j < r j , is an extension of Lemma 3.

Lemma 7 For each 1 ≤ j ≤ m, if the scheduleπ j−1 satisfies
the first two properties in Lemma 2 and � j < r j , then

• the schedule π j satisfies the first two properties in
Lemma 2;

• the j th job swap decreases the total machine deteri-
oration before the center job J2n+2 by δ� j − δr j =
2

∑r j
k=� j+1 xk;

• the j th job swap increases the total completion time by at
least

∑r j
k=� j+1 xk; and the increment equals

∑r j
k=� j+1 xk

if and only if � j > r j−1.

Proof Note that 0 ≤ r1 < r2 < · · · < rm ≤ n, 0 ≤ �1 <

�2 < · · · < �m ≤ n, and all these � j ’s and r j ’s are distinct
from each other. Since � j < r j , we assume without loss of

123

Journal of Scheduling (2019) 22:691–707 699

Fig. 4 An illustration of the
expected schedule at the end of
the repeated job swap
procedure, and its relationship
to the target schedule π

�Jπ1 Jπ2 Jπ3 . . . Jπn
Jπn+1

−δ J2n+2

�
1st MA

�separation

δπn+3 Jπn+3 . . . δπ2n+3 Jπ2n+3

(a) The schedule achieved at the end of the repeated job swap procedure from the initial schedule π0.
In this schedule, J2n+2 is at the center position and it immediately succeeds the first MA.

�J0 J1 . . .Jr1−1
�

Jn+1+r1

Jr1 . . .
�

Jn+1+r2

Jr2 . . .
�

Jn+1+rm

Jrm . . .J2n+2

�separation

�

center position

�

Jn+1

�
Jn+2

. . .
�

Jn+�1

J�1

�
Jn+1+�1

. . .J�2

�
Jn+1+�2

. . .J�m

�
Jn+1+�m

. . .

(b) An illustration of the target schedule showing only the jobs, with the understanding that MA’s
of proper durations are inserted when needed. In the schedule, J2n+2 is at the center position; both
Jrj

and Jn+1+rj
are among the first n + 1 jobs, j = 1, 2, . . . ,m, and 0 ≤ r1 < r2 < . . . < rm ≤ n; and

both J�j and Jn+1+�j are among the last n + 1 jobs, j = 1, 2, . . . ,m, 0 ≤ �1 < �2 < . . . < �m ≤ n.

generality that r j ′−1 < � j < r j ′ for some j ′ ≤ j , that is, the
j − j ′ jobs Jn+1+r j ′ , Jn+1+r j ′+1

, . . . , Jn+1+r j−1 have been
moved to be between J� j and the center job J2n+2 in the
schedule π j−1. See Fig. 5 for an illustration of part of the
schedule π j−1, from job J� j to job Jn+1+� j .

The j th job swap between the two jobs J� j and Jn+1+r j
decreases the total machine deterioration before the center
job J2n+2 by δ� j − δr j = 2

∑r j
k=� j+1 xk .

To estimate the total completion time, we decompose the
j th job swap between the two jobs J� j and Jn+1+r j as a
sequence of r j − � j “regular” job swaps:

• a regular job swap between Jr j−1 and Jn+1+r j (marked
by * in Fig. 5),

• a regular job swap between Jr j−2 and Jn+1+r j−1 (marked
by $ in Fig. 5),

• . . .,
• a regular job swap between J� j+1 and Jn+1+� j+2,
• a regular job swap between J� j and Jn+1+� j+1 (marked
by # in Fig. 5);

that is, between the two jobs Jk and Jn+1+k+1, for k = r j −
1, r j − 2, . . . , � j + 1, � j . One clearly sees that, since J j is
the same as Jn+1+ j , the net effect of this sequence of r j −� j

regular job swaps is the job swap between J� j and Jn+1+r j .
We note that the order of these regular job swaps is important,
and guarantees that at the time of such a swap, job Jk is
positioned before the center job J2n+2, and job Jk+1 (which
is the same as, and thus can be taken as, job Jn+1+k+1) is
positioned after the center job J2n+2 (see the last paragraph
before Sect. 3.1 for possible re-indexing of the jobs). For each
such regular job swap between the two jobs Jk and Jn+1+k+1,
we can apply (almost, see below) Lemma 3 to conclude that
it increases the total completion time by at least xk+1.

From the proof of Lemma 3, the increment in the total
completion time equals xk+1 if and only if there are exactly

n − k + 1 jobs between Jn+1+k+1 and Jn (inclusive), that is,
none of the j − j ′ jobs Jn+1+r j ′ , Jn+1+r j ′+1

, . . . , Jn+1+r j−1

should have beenmoved between Jk and the center job J2n+2

in the schedule π j−1. Therefore, the j th job swap increases
the total completion time by at least

∑r j
k=� j+1 xk , and the

increment equals
∑r j

k=� j+1 xk if and only if � j > r j−1 (i.e.,

j ′ = j). This proves the lemma.

Lemma 8 For each 1 ≤ j ≤ m, if the scheduleπ j−1 satisfies
the first two properties in Lemma 2 and � j > r j , then

• the schedule π j satisfies the first two properties in
Lemma 2;

• the j th job swap increases the total machine deteri-
oration before the center job J2n+2 by δr j − δ� j =
2

∑� j
k=r j+1 xk;

• the j th job swap increases the total completion time by

at least
∑� j

k=r j+1 xk .

Proof We first prove an analog to Lemma 3 on the job swap
between the two jobs Ji�+1 and Jn+1+i� , which is called an
“inverse regular” job swap. It can be viewed as the inverse
operation of the regular job swap between the two jobs Ji�
(which is the same as Jn+1+i�) and Jn+1+i�+1 (which is the
same as Ji�+1).

Let σ ′ denote the schedule before the job swap between
Ji�+1 and Jn+1+i� , in which the jobs between Ji�+1 and
Jn+1+i� are

σ ′ : (Ji�+1, Ji�+2, . . . , Jn, J2n+2, J2n+1, J2n, . . . ,

Jn+1+i�+1, Jn+1+i�).

Let σ denote the schedule after the job swap. After re-
indexing the two jobs Jn+1+i� and Ji� and re-indexing the

123

700 Journal of Scheduling (2019) 22:691–707

�. . .#
�

J�j

. . . $
�

Jrj−2

*
�

Jrj−1

�

Jrj

�
Jrj+1

. . . Jn−1 Jn J2n+2

�separation

�

center position

#
�

Jn+1+�j+1

�
Jn+1+�j

. . .
�

Jn+1+rj+1

*
�

Jn+1+rj

$
�

Jn+1+rj−1

�

Jn+1+rj−2

. . .J2n+1 J2n . . .

Fig. 5 The repeated job swap procedure leading from the initial infeasi-
ble schedule π0 to the target schedule. The figure illustrates themoment
before the j th job swap between J� j and Jn+1+r j , where � j < r j .
The j th job swap is decomposed into a sequence of regular job swaps

between Jk and Jn+1+k+1, for k = r j − 1 (marked by *), r j − 2
(marked by $), . . ., � j + 1, � j (marked by #). If r j ′−1 < � j < r j ′ for
some j ′ ≤ j , then the j − j ′ jobs Jn+1+r j ′ , Jn+1+r j ′+1

, . . . , Jn+1+r j−1

have been moved to be between the jobs J� j and Jr j

two jobs Jn+1+i�+1 and Ji�+1, this sub-schedule becomes

σ : (Ji� , Ji�+2, . . . , Jn, J2n+2, J2n+1, J2n, . . . ,

Ji�+1, Jn+1+i�+1).

For ease of presentation, letCi denote the completion time
of job Ji in schedule σ , and letC ′

i denote the completion time
of job Ji in schedule σ ′. Compared with σ ′,

• the completion times of jobs preceding Jn+1+i� are
unchanged; in particular, the starting processing time
Sn+1+i� of Jn+1+i� in σ and the starting processing time
S′
i�+1 of Ji�+1 in σ ′ satisfy Sn+1+i� = S′

i�+1;• Cn+1+i� −C ′
i�+1 = (Sn+1+i� + pi�)− (S′

i�+1 + pi�+1) =
pi� − pi�+1 = −xi�+1;

• the completion time of each job between Ji�+2 and Jn
(inclusive, n − i� − 1 of them) decreases by xi�+1;

• the duration of the first MA increases by 2xi�+1;
• the completion time of each job between J2n+2 and

Jn+1+i�+1 (inclusive, n − i� + 1 of them) increases by
xi�+1; in particular, the starting processing time Si�+1 of
Ji�+1 in σ and the starting processing time S′

n+1+i�
of

Jn+1+i� in σ ′ satisfy Si�+1 = S′
n+1+i�

+ xi�+1;
• Ci�+1−C ′

n+1+i�
= (Si�+1+(δi�+1+pi�+1))−(S′

n+1+i�
+

(δi� + pi�)) = xi�+1 + (δi�+1 + pi�+1) − (δi� + pi�) =
xi�+1 − (pi�+1 − pi�) = 0;

• consequently, the completion times of jobs succeeding
Ji�+1 are unchanged.

The total completion time of jobs in the schedule after
this inverse regular job swap increases by at least xi�+1. Note
that the increment equals xi�+1 if and only if there are exactly
n− i� +1 jobs between J2n+2 and Jn+1+i�+1 (inclusive), that
is, none of the j−1 jobs J�1 , J�2 , . . . , J� j−1 should have been
moved between the center job J2n+2 and Jn+1+i� in schedule
π j−1.

Using the above analog ofLemma3, the rest of the proof of
the lemma is similar to the proof ofLemma7bydecomposing
the j th job swap between the two jobs J� j and Jn+1+r j as a
sequence of � j −r j “inverse regular” job swaps, between the

two jobs Jk+1 and Jn+1+k for k = � j − 1, � j − 2, . . . , r j +
1, r j . ��
Theorem 2 If there is a feasible schedule π for the instance
I with total completion time of no more than Q = Q0 + B,
then there is a subset X1 ⊂ X of sum exactly B.

Proof We start with a feasible schedule π (which is π

for Case 1 and Case 3, or π ′ for Case 2, as illustrated
in Lemma 6), which has the first two properties stated in
Lemma 2 and for which the total completion time is no more
than Q = Q0 + B.

Excluding job J2n+2 at the center position, using the
first n + 1 jobs and the last n + 1 job in π , we deter-
mine the two subsets of indices R = {r1, r2, . . . , rm} and
L = {�1, �2, . . . , �m}, and define the corresponding m job
swaps. We then repeatedly apply the job swap to convert the
initial infeasible scheduleπ0 intoπ .We calculate the follow-
ing quantities at the end of this procedure, by distinguishing
the three different cases as stated in Lemma 6.

In Case 1 (of Lemma 6), the total machine deterioration
of the first n + 1 jobs in π is

n∑

i=0

δi − 2
∑

� j<r j

r j∑

k=� j+1

xk + 2
∑

� j>r j

� j∑

k=r j+1

xk = ML0 − δ,

implying that

∑

� j<r j

r j∑

k=� j+1

xk −
∑

� j>r j

� j∑

k=r j+1

xk = B + 1

2
δ, (7)

where δ ≥ 0 is the remaining machine maintenance level
before the first MA.

On the other hand, the total completion time of jobs in
schedule π is at least

Q0 +
∑

� j<r j

r j∑

k=� j+1

xk +
∑

� j>r j

� j∑

k=r j+1

xk = Q0 + B + 1

2
δ

+2
∑

� j>r j

� j∑

k=r j+1

xk .

123

Journal of Scheduling (2019) 22:691–707 701

It follows that (1) δ = 0; (2) there is no pair of swap-
ping jobs J� j and Jn+1+r j such that � j > r j ; and (3)
�1 < r1 < �2 < r2 < · · · < �m < rm (from the third
item of Lemma 7). Therefore, from Eq. (7), for the subset
X1 = ∪m

j=1{x� j+1, x� j+2, . . . , xr j }, we have
∑

x∈X1
x = B.

That is, the instance X of the Partition problem is a yes-
instance.

In Case 2 (of Lemma 6), after all m job swaps, the first
MA immediately precedes J2n+2 and has duration −δ, since
δ2n+2 = 0, where δ ≥ 0 is the remaining machine mainte-
nance level before the first MA. J2n+2 and its immediately
succeeding MA and the following job need to be swapped to
obtain schedule π . Thus, the first two MA’s are merged (to
become the first MA), resulting in a positive duration. The
total machine deterioration of the first n+1 jobs in π (before
the first MA) is

n∑

i=0

δi − 2
∑

� j<r j

r j∑

k=� j+1

xk + 2
∑

� j>r j

� j∑

k=r j+1

xk = ML0 − δ,

implying that Eq. (7) still holds in this case.
On the other hand, the total completion time of jobs in

schedule π is at least

Q0 +
∑

� j<r j

r j∑

k=� j+1

xk +
∑

� j>r j

� j∑

k=r j+1

xk

+ (δπn+2 + pπn+2 − p2n+2) ≥ Q0 + B + 1

2
δ

+ 2
∑

� j>r j

� j∑

k=r j+1

xk .

Then, similarly to Case 1, it follows that (1) δ = 0; (2)
there is no pair of swapping jobs J� j and Jn+1+r j such
that � j > r j ; and (3) �1 < r1 < �2 < r2 < · · · <

�m < rm . Therefore, from Eq. (7), for the subset X1 =
∪m

j=1{x� j+1, x� j+2, . . . , xr j }, we have
∑

x∈X1
x = B. That

is, the instance X of the Partition problem is a yes-instance.
In Case 3 (of Lemma 6), after all m job swaps, the first

MA immediately precedes J2n+2 and has duration −δ, since
δ2n+2 = 0, where δ ≤ 0 is the remaining machine mainte-
nance level before the first MA. Therefore, Jπn+1 and the first
MA need to be swapped to obtain the schedule π . The total
machine deterioration of the first n + 1 jobs in π (before the
first MA) is

n∑

i=0

δi − 2
∑

� j<r j

r j∑

k=� j+1

xk + 2
∑

� j>r j

� j∑

k=r j+1

xk = ML0 − δ,

implying that Eq. (7) still holds in this case, except that here
δ ≤ 0.

On the other hand, the total completion time of jobs in
schedule π is at least

Q0 +
∑

� j<r j

r j∑

k=� j+1

xk +
∑

� j>r j

� j∑

k=r j+1

xk + (−δ)

≥ Q0 + B − 1

2
δ + 2

∑

� j>r j

� j∑

k=r j+1

xk .

Then, similarly toCase 1, except that here δ ≤ 0, it follows
that 1) δ = 0; 2) there is no pair of swapping jobs J� j and
Jn+1+r j such that � j > r j ; and 3) �1 < r1 < �2 < r2 <

· · · < �m < rm . Therefore, from Eq. (7), for the subset
X1 = ∪m

j=1{x� j+1, x� j+2, . . . , xr j }, we have
∑

x∈X1
x = B.

That is, the instance X of the Partition problem is a yes-
instance. ��

The following theorem follows immediately from Theo-
rems 1 and 2.

Theorem 3 The problem 1 | pMA | ∑
j C j is binary NP-

hard.

4 A 2-approximation algorithm for
1 | pMA | ∑

j Cj

Recall that in the problem 1 | pMA | ∑
j C j , we are given

a set of jobs J = {Ji , i = 1, 2, . . . , n}, where each job Ji =
(pi , δi) is specified by its non-preemptive processing time
pi and its machine deterioration δi . The machine deteriora-
tion δi quantifies the decrement in the machine maintenance
level after processing the job Ji . The machine has an ini-
tial machine maintenance level ML0, 0 ≤ ML0 ≤ MLmax,
whereMLmax is themaximummaintenance level. The goal is
to schedule the jobs and necessaryMAs of any duration such
that all jobs can be processed without a machine breakdown,
and that the total completion time of jobs is minimized.

In this section, we present a 2-approximation algorithm,
denoted as A1, for the problem. The algorithm A1 produces
a feasible schedule π satisfying the first two properties stated
in Lemma 2, suggesting that if the third property is violated,
then a local job swap can further reduce the total completion
time.

In the algorithm A1, the first step is to sort the jobs in
SSF order (and thus we assume without loss of generality
that) p1 + δ1 ≤ p2 + δ2 ≤ · · · ≤ pn + δn . In the second
step, the separation job is determined to be Jk , where k is
the maximum index such that

∑k−1
i=1 δi ≤ ML0. In the last

step, the jobs preceding the separation job Jk are re-sorted
in SPT order, denoted by (Ji1 , Ji2 , . . . , Jik−1), and the jobs
succeeding the separation job are (Jk+1, Jk+2, . . . , Jn). That

123

702 Journal of Scheduling (2019) 22:691–707

is, the solution schedule is

π = (Ji1 , Ji2 , . . . , Jik−1;MA1, Jk;MA2, Jk+1,MA3,

Jk+2, . . . ,MAn−k+1, Jn),

where MA1 = ∑k
j=1 δ j − ML0 and MAi = δk−1+i for

i = 2, 3, . . . , n − k + 1.
Letπ∗ denote an optimal schedule satisfying all properties

stated in Lemma 2, and its separation job is Jπ∗
k∗ :

π∗ =
(
Jπ∗

1
, Jπ∗

2
, . . . , Jπ∗

k∗−1
;MA∗

1, Jπ∗
k∗ ;MA∗

2, Jπ∗
k∗+1

,

MA∗
3, Jπ∗

k∗+2
, . . . ,MA∗

n−k∗+1, Jπ∗
n

)
.

Let Ci (C∗
i , respectively) denote the completion time of

job Jπi (Jπ∗
i
, respectively) in schedule π (π∗, respectively);

the makespans of π and π∗ are Cmax and C∗
max, respectively,

and (recall that ML0 <
∑n

i=1 δi)

Cmax = C∗
max =

n∑

i=1

(pi + δi) − ML0. (8)

Lemma 9 For every i ≥ k we have

n∑

j=i

(p j + δ j) ≥
n∑

j=i

(pπ∗
j
+ δπ∗

j
).

Proof Since p1+δ1 ≤ p2+δ2 ≤ · · · ≤ pn+δn ,
∑n

j=i (p j +
δ j) is the maximum sum of processing times and machine
deterioration, over all possible subsets of n − i + 1 jobs. ��
Theorem 4 The algorithm A1 is an O(n log n)-time 2-
approximation algorithm for the problem 1 | pMA | ∑

j C j .

Proof We compare the two schedules π obtained by the
algorithm A1 and π∗, an optimal schedule satisfying the
properties stated in Lemma 2. Using Eq. (8) and Lemma 9, it
is clear that Ci ≤ C∗

i for each i = n, n − 1, . . . ,max{k, k∗}.
Suppose that k < k∗; then for each i such that k ≤ i < k∗,

we have

Ci = Cn −
n∑

j=i+1

(p j + δ j)

≤ C∗
n −

n∑

j=i+1

(pπ∗
j
+ δπ∗

j
)

=
i∑

j=1

(pπ∗
j
+ δπ∗

j
) − ML0

=
i∑

j=1

pπ∗
j
−

⎛

⎝ML0 −
i∑

j=1

δπ∗
j

⎞

⎠

≤
i∑

j=1

pπ∗
j

= C∗
i .

Therefore, we haveCi ≤ C∗
i for each i = n, n−1, . . . , k.

It follows that

n∑

i=k

Ci ≤
n∑

i=k

C∗
i ≤

n∑

i=1

C∗
i = OPT. (9)

On the other hand, by SPT order, the algorithm A1

achieves a minimum total completion time of jobs of
{J1, J2, . . . , Jk−1}. One clearly sees that in the optimal
schedule π∗, the sub-total completion time of {J1, J2, . . . ,
Jk−1} is upper-bounded by OPT. Since the total completion
time of the first k jobs of schedule π is minimal, it can be
concluded that

k−1∑

i=1

Ci ≤
n∑

i=1

C∗
i = OPT. (10)

Merging Eqs. (9) and (10), we conclude that the total com-
pletion time for schedule π is

k−1∑

i=1

Ci +
n∑

i=k

Ci ≤ 2 · OPT.

This proves the performance ratio of 2. The running time
of the algorithm A1 is dominated by two times of sorting,
each taking O(n log n) time. Therefore,A1 is an O(n log n)-
time 2-approximation algorithm for the problem 1 | pMA |
∑

j C j .
In a two-job instance I = {J1 = (1, λ), J2 = (λ −

1, 1),ML0 = MLmax = λ}, where λ is sufficiently large, we
have p2 + δ2 < p1 + δ1. Therefore, the solution schedule by
the algorithm A1 is π = (J2,MA1, J1), for which the total
completion time isC2+C1 = (λ−1)+((λ−1)+1+1) = 2λ.
One can have another schedule (J1,MA1, J2), for which the
total completion time is C1 +C2 = 1+ (1+ (λ − 1) + 1) =
λ + 2. This shows that the performance ratio 2 is tight. ��

5 A branch-and-bound exact algorithm for
1 | pMA | ∑

j Cj

In this section, we briefly introduce a branch-and-bound
exact search algorithm for the problem 1 | pMA | ∑

j C j .
The key properties of an optimal schedule to be used in the
search are summarized in Lemma 2, which are heavily used
to prune the search tree in the branch-and-bound algorithm.
At the high level, we will first select a job of positive deterio-
ration as the separation job, then search for a subset of jobs of
total deterioration no more than the initial maintenance level

123

Journal of Scheduling (2019) 22:691–707 703

ML0, to be processed in SPT order before the first MA, and
lastly process the remainder of the jobs in SSF order after
the separation job, each preceded by a partial maintenance.
If the properties in Lemma 2 are all satisfied, then we achieve
a feasible schedule, which updates the current best schedule.

5.1 The description of the algorithm

We use the 2-approximation algorithm A1 to obtain a near-
optimal schedule and set the total completion time of jobs
in this schedule as the initial global upper bound, denoted
as U , on the optimum. The bound U is updated whenever a
feasible schedule is found to have a lower total completion
time.

In more algorithmic detail, we create the root node for the
search tree and n child nodes (they are level-2 nodes) each
corresponding to selecting a job as the separation job. For
the purpose of searching for a subset S of jobs with total
deterioration of no more than ML0, we re-index the jobs in
SPT order with an overhead of O(n log n) time: p1 ≤ p2 ≤
· · · ≤ pn . Consider a node in the branch-and-bound search
tree, which is a descendant of the level-2 node corresponding
to selecting Jk as the separation job, in which it has already
been decided whether each of the jobs J1, J2, . . . , J j−1 will
be in the subset S. We branch the node to two child nodes
corresponding to selecting and not selecting job J j into S,
respectively, where j
= k.

If J j is selected into S but
∑

Ji∈S δi > ML0, then the
new node is infeasible. We thus assume in the following dis-
cussion that if J j is selected into S, then ∑

Ji∈S δi ≤ ML0,
noting that an intermediate search node has to be feasible for
further branching, that is, we have

∑
Ji∈S δi ≤ ML0 before

making decision on J j .

Leaf node In either case ofS, if none of the jobs J j+1, . . . , Jn
(excluding Jk) can be squeezed before the first MA, then
the new node is a leaf node representing a schedule with
the jobs of S processed before the first MA, job Jk being
the separation job, and all the other jobs processed in SSF
order after the separation job. If the third property stated in
Lemma 2 is satisfied, then the schedule is feasible, for which
the total completion timeof jobs canbe calculated. If this total
completion time of jobs is less thanU , thenU is updated and
the corresponding schedule is saved; otherwise, the schedule
is discarded.

Intermediate node If there are jobs among J j+1, . . . , Jn
(excluding Jk) that can be squeezed before the first MA,
then we know that the total completion time of jobs in any
feasible schedule branched from this new node is greater
than or equal to the total completion time of jobs attained by
the sub-schedule σ that is defined as follows: In σ , the jobs
of S are processed in SPT order, followed by the first MA
of duration max{0, δk − δ} (where δ = ML0 − ∑

Ji∈S δi),

then by the separation job Jk , and lastly by the jobs of
{J1, J2, . . . , J j } \ (S ∪ {Jk}) in SSF order. The total com-
pletion time of jobs in the sub-schedule σ is a lower bound
on the total completion time of jobs in any feasible schedule
branched from the new node. Therefore, if this lower bound
is already larger than U , then the new node is cut off from
further search; otherwise the new node is ready for further
branching on job J j+1 (if j + 1
= k, or otherwise further
branching on job J j+2).

TerminationAt the end, when there is no more intermediate
node for further branching, we return the upper boundU and
the saved feasible schedule associated with U . The saved
schedule is optimal, and U is the minimum total completion
time of jobs.

5.2 Implementation details

We sort the jobs in SPT order of their processing time: p1 ≤
p2 ≤ · · · ≤ pn .

Let D denote a node in the branch-and-bound search tree,
which is a descendant of the level-2 node corresponding to
selecting Jk as the separation job, and in which the subset
of jobs SD = {J[1], J[2], . . . , J[nD]} ⊆ {J1, J2, . . . , J j−1}
are selected to be processed before the separation job Jk (the
jobs of {J1, J2, . . . , J j−1} \SD , excluding Jk , are processed
after Jk).

Let Δ denote the total machine deterioration before the
first MA associated with D, that is, Δ = ∑nD

i=1 δ[i], and
δ = ML0 − Δ.

Let σD denote the sub-schedule associated with the
node D, in which the jobs of SD are processed in SPT
order, followed by the first MA of duration max{0, δk − δ},
then by the separation job Jk , and lastly by the jobs of
{J1, J2, . . . , J j−1} \ (SD ∪ {Jk}) in SSF order. That is, this
sub-schedule only processes the jobs of {J1, J2, . . . , J j−1}∪
{Jk}. We note that for D, Δ ≤ ML0, and the total comple-
tion time of jobs in this sub-schedule σD is less thanU , since
otherwise D must have been cut off from the search tree.

From D, we branch as follows into atmost two child nodes
D+ j and D− j , corresponding towhether or not to process the
job J j (if j
= k) before the separation job Jk , respectively.

For D− j , the sub-schedule σD− j is generated by inserting
J j into the SSF order in the sub-schedule σD , and its total
completion time of jobs is checked againstU . D− j is cut off
from the search tree if the total completion time of jobs in
this sub-schedule σD− j is greater than or equal to U . If D− j

stays, then it inherits from D the Δ.
For D+ j , if Δ+ δ j > ML0, suggesting that job J j cannot

possibly be squeezed in before the first MA, then D+ j is
cut off from the search tree. Otherwise, the sub-schedule
σD+ j is generated by inserting J j after the SPT order in the
sub-schedule σD , and its total completion time of jobs is

123

704 Journal of Scheduling (2019) 22:691–707

checked against U . D+ j is cut off from the search tree if
the total completion time of jobs in this sub-schedule σD+ j is
greater than or equal toU . If D+ j stays, then its totalmachine
deterioration before the first MA is updated to Δ + δ j .

We have three remarks. First, if j = k, that is, J j is the
separation job, then from D we branch into at most two child
nodes by considering the job J j+1. Second,when j reaches n,
each of σD− j and σD+ j , if feasible, becomes a full schedule; it
is discarded if the third property stated in Lemma2 is violated
or its total completion time of jobs is greater than or equal
to U ; otherwise U is updated and the full schedule is saved.
Lastly, we explore the nodes in the branch-and-bound search
tree in a depth-first search (DFS) order, mainly in order to
avoid storing too many nodes in the computer memory.

5.3 Computational experiments

We denote our branch-and-bound exact search algorithm as
BnB. Clearly, the worst-case time complexity of BnB is
exponential in n. In this part, we report the computational
experiments conducted to evaluate its real performance. We
note that we performed the search in depth-first order; this
way, we save only a linear number of intermediate nodes in
the memory.

The algorithm BnB is implemented in MATLAB. All the
experiments were run on a desktop computer with a 2.5 GHz
dual core processor and 4 GB RAM. The collected times are
the actual run times for the program, in seconds.

The instances used in the experiments were generated ran-
domly in the following way. We chose to set the number of
jobs n to be 10, 20, 30, 40 and 50. The job processing time
for every job in the instances is drawn from the uniform
distribution over the real interval [1, 100], and rounded to
its closest integer; its machine deterioration is drawn from
the uniform distribution over the real interval [1,MLmax],
where MLmax is the maximum maintenance level and was

set to 50, 100 or 200. The initial maintenance level ML0 is
set to �μMLmax�, for μ = 0.1, 0.2, . . . , 1.0. For each triple
of (n,MLmax,ML0), 50 random instances were generated,
and the average run time of the algorithm BnB over these 50
instances was collected.

Recall that we use the 2-approximation algorithm A1

to obtain a near-optimal schedule and set the total com-
pletion time for jobs in this schedule as the initial global
upper bound U . For every instance, we calculate the ratio
between this initial value of U and the final value of U ,
which is the minimum total completion time of jobs. For
each triple of (n,MLmax,ML0), the average ratio over the
50 instances was collected. The average run times and the
average ratios are presented in Tables 1, 2 and 3, correspond-
ing to MLmax = 50, 100, 200, respectively, where for each
table entry, the first value is the average ratio when it is at
least 1.0001, and the second value is the average run time.
Note that in the table entries, when the average ratio is less
than 1.0001, it is deemed too insignificant to be reported and
is not included in the corresponding table entry.

From Tables 1, 2 and 3, we observe that in general, the
algorithm BnB took less time to complete when the initial
maintenance level ML0 was low. We speculate that for a low
ML0, there are fewer jobs to be scheduled before the first
MA, and thus the search tree is shorter. Consequently, the
overall size of the search tree is smaller. On the other hand,
we also observe that the algorithm BnB spent less time on
instances with large n and large MLmax. One possible expla-
nation is that for large MLmax, the maintenance activities
make a larger contribution to the total completion time, and
thus help in using the lower bound estimation to determine
the infeasibility of an early search nodewhen there are a large
number of jobs (particularly, n = 40, 50). See the branch-
ing step at the intermediate node in the description of the
algorithm.

Table 1 When MLmax = 50,
the average ratio between the
total completion time of jobs in
the schedule by the
2-approximation algorithm A1
and the minimum total
completion time of jobs by the
algorithm BnB, and the average
run times of BnB in seconds

ML0(MLmax = 50) n = 10 n = 20 n = 30 n = 40 n = 50

�0.1MLmax� 0.008 0.024 0.097 0.401 3.199

�0.2MLmax� 0.008 0.058 0.132 1.487 5.491

�0.3MLmax� 0.016 0.067 0.413 4.436 9.688

�0.4MLmax� 1.001/0.018 1.001/0.100 1.001/0.488 1.001/5.343 21.646

�0.5MLmax� 1.001/0.018 1.001/0.132 1.001/0.707 6.272 29.058

�0.6MLmax� 1.001/0.022 1.001/0.166 1.001/0.746 8.161 30.093

�0.7MLmax� 1.001/0.022 1.001/0.182 1.001/0.938 13.601 46.033

�0.8MLmax� 1.002/0.032 1.001/0.262 1.001/1.409 1.001/14.459 25.387

�0.9MLmax� 1.001/0.037 1.001/0.302 1.001/2.116 15.180 20.094

MLmax 1.002/0.044 1.001/0.352 1.001/2.847 17.704 37.599

When the average ratio is less than 1.0001, it is deemed too insignificant to be reported and is not included

123

Journal of Scheduling (2019) 22:691–707 705

Table 2 When MLmax = 100,
the average ratio between the
total completion time of jobs in
the schedule by the
2-approximation algorithm A1
and the minimum total
completion time of jobs by the
algorithm BnB, and the average
run times of BnB in seconds

ML0(MLmax = 100) n = 10 n = 20 n = 30 n = 40 n = 50

�0.1MLmax� 1.001/0.030 1.001/0.054 0.123 0.095 11.645

�0.2MLmax� 1.001/0.033 1.001/0.093 1.001/0.506 0.478 29.442

�0.3MLmax� 1.001/0.036 1.001/0.158 1.001/0.989 5.525 12.664

�0.4MLmax� 1.001/0.041 1.001/0.218 1.001/1.123 2.261 10.360

�0.5MLmax� 1.002/0.046 1.001/0.563 2.278 6.739 14.372

�0.6MLmax� 1.002/0.051 1.001/0.291 0.738 4.216 27.993

�0.7MLmax� 1.002/0.055 1.001/0.227 0.976 7.467 8.454

�0.8MLmax� 1.002/0.070 1.001/0.302 1.001/0.761 25.470 4.789

�0.9MLmax� 1.001/0.071 1.001/0.366 1.001/1.894 29.314 28.466

MLmax 1.001/0.076 1.001/0.639 1.001/2.526 25.016 18.300

When the average ratio is less than 1.0001, it is deemed too insignificant to be reported and is not included

Table 3 When MLmax = 200,
the average ratio between the
total completion time of jobs in
the schedule by the
2-approximation algorithm A1
and the minimum total
completion time of jobs by the
algorithm BnB, and the average
run times of BnB in seconds

ML0(MLmax = 200) n = 10 n = 20 n = 30 n = 40 n = 50

�0.1MLmax� 1.001/0.030 1.001/0.069 0.286 0.341 3.227

�0.2MLmax� 1.002/0.035 1.001/0.105 1.001/0.356 1.119 11.873

�0.3MLmax� 1.001/0.045 1.001/0.202 0.264 1.624 5.358

�0.4MLmax� 1.001/0.047 1.001/0.233 1.001/0.293 1.930 2.456

�0.5MLmax� 1.002/0.055 1.001/0.220 1.001/0.672 1.924 3.521

�0.6MLmax� 1.002/0.056 1.001/0.462 0.621 2.385 4.271

�0.7MLmax� 1.001/0.055 1.001/0.253 1.527 11.817 4.353

�0.8MLmax� 1.003/0.058 1.001/0.276 1.001/0.773 5.170 14.490

�0.9MLmax� 1.001/0.059 1.001/0.246 1.001/1.261 7.096 24.628

MLmax 1.001/0.063 0.274 2.612 6.306 36.257

When the average ratio is less than 1.0001, it is deemed too insignificant to be reported and is not included

Table 4 When MLmax = 50,
the average number of jobs
processed before the first MA in
the optimal schedule

ML0(MLmax = 50) n = 10 n = 20 n = 30 n = 40 n = 50

�0.1MLmax� 1.22 1.22 1.22 1.22 1.18

�0.2MLmax� 1.30 1.38 1.46 1.60 2.01

�0.3MLmax� 1.56 1.40 1.56 1.54 2.02

�0.4MLmax� 1.58 1.74 1.88 2.30 3.03

�0.5MLmax� 1.80 2.14 2.20 2.48 2.80

�0.6MLmax� 1.80 2.04 2.84 2.78 4.56

�0.7MLmax� 2.02 2.34 2.66 3.20 4.20

�0.8MLmax� 2.08 2.48 3.04 4.09 4.64

�0.9MLmax� 2.64 2.88 3.86 4.38 4.33

MLmax 2.56 3.36 3.66 5.67 5.68

The total completion time of jobs in the schedule gen-
erated by the 2-approximation algorithm A1 is generally
very close to the optimum, and in fact in more than 50%
of instances, it is already optimal. We thus recommend using
the 2-approximation algorithm A1 in practice, as its time
complexity is very low.

For every instance, we collected the number of jobs pro-
cessedbefore thefirstMA.For each triple of (n,MLmax,ML0),
the average number over the 50 instances was collected.

These average numbers are shown in Tables 4, 5, and 6, cor-
responding to MLmax = 50, 100, 200, respectively.

From Tables 4, 5, and 6, we observe that in most cases, the
average number of jobs before the first MA in the optimal
schedules correlates with the initial maintenance level ML0

and the total number of jobs. In our simulated small instances,
these numbers are all small, and thus our BnB algorithm
benefits greatly from them, evidenced by its low average run
times shown in Tables 1, 2, and 3.

123

706 Journal of Scheduling (2019) 22:691–707

Table 5 When MLmax = 100,
the average number of jobs
processed before the first MA in
the optimal schedule

ML0(MLmax = 100) n = 10 n = 20 n = 30 n = 40 n = 50

�0.1MLmax� 1.16 1.10 1.18 1.31 1.83

�0.2MLmax� 1.36 1.28 1.34 1.76 1.96

�0.3MLmax� 1.36 1.90 1.98 2.31 2.04

�0.4MLmax� 1.36 1.42 2.28 2.60 2.87

�0.5MLmax� 1.74 2.60 2.56 2.66 4.12

�0.6MLmax� 1.86 2.24 3.38 3.06 4.33

�0.7MLmax� 1.98 2.81 3.58 4.01 4.75

�0.8MLmax� 2.20 3.14 3.74 4.04 5.16

�0.9MLmax� 2.30 3.00 4.06 4.36 6.01

MLmax 2.72 3.44 4.60 4.82 7.66

Table 6 When MLmax = 200,
the average number of jobs
processed before the first MA in
the optimal schedule

ML0(MLmax = 200) n = 10 n = 20 n = 30 n = 40 n = 50

�0.1MLmax� 1.14 1.30 1.02 1.40 1.38

�0.2MLmax� 1.28 1.64 1.68 1.96 2.40

�0.3MLmax� 1.54 2.06 2.20 2.02 3.33

�0.4MLmax� 1.64 2.14 2.46 3.02 3.42

�0.5MLmax� 1.91 2.32 3.12 3.14 4.01

�0.6MLmax� 2.04 2.84 3.72 3.94 4.42

�0.7MLmax� 2.18 3.16 3.50 4.32 5.02

�0.8MLmax� 2.64 3.52 3.76 4.88 5.68

�0.9MLmax� 2.58 3.16 4.42 5.04 5.84

MLmax 2.86 3.38 4.96 5.36 6.25

6 Concluding remarks

We investigated single-machine scheduling with
job-dependent machine deterioration, recently introduced by
Bock et al. (2012), with the objective of minimizing the total
completion time of jobs. In the partial maintenance case,
we proved the binary NP-hardness for the general prob-
lem, thus addressing the open problem left in the previous
work. From an approximation perspective, we designed a
2-approximation, for which the ratio 2 is tight on a trivial
two-job instance. This 2-approximation algorithm was then
used in the design of a branch-and-bound exact search algo-
rithm, for which we conducted computational experiments
to examine its practical performance.

The 2-approximation algorithm is simple, and the com-
putational experiments show its effectiveness. It is the first
approximation algorithm presented for the problem. Our
major contribution is the non-trivial binary NP-hardness
proof, which might seem surprising at first glance, since one
has so much freedom in choosing the starting time and the
duration of the maintenance activities.

In the branch-and-bound exact search algorithm, the key is
to determine the best subset of jobs to be processed before the
first maintenance. This might look similar to the well-known

knapsack problem, by regarding the negated job processing
time as “value”, the machine deterioration as “size”, and the
initial machine maintenance level as the knapsack capacity.
However, they are quite different due to the jobs outside the
knapsack being processed in specific SSF order. As a result,
the recursive modification of the objective function is com-
plex, andwe leave the development of a generalized dynamic
programming as an open question.

Itwouldbe interesting to further explore the (in-)approxim-

ability for the problem. It would also be interesting to study
the problem in the full maintenance case, which has been
shown to be NP-hard, from the approximation algorithm per-
spective. Approximating the problem in the full maintenance
case seems more challenging, where we need to deal with
multiple bin-packing sub-problems, and the interrelationship
among them is very complex.

Acknowledgements The authors are grateful to the reviewers’ valu-
able comments which improved the manuscript. W.L. was supported
by K.C. Wong Magna Fund of Ningbo University, the China Scholar-
ship Council (Grant No. 201408330402), the Humanities and Social
Sciences Planning Foundation of the Ministry of Education (Grant No.
18YJA630077),ZhejiangProvincialNatural ScienceFoundation (Grant
No. LY19A010005), Natural Science Foundation of China (Grant No.
11971252) and the Ningbo Natural Science Foundation (Grant No.

123

Journal of Scheduling (2019) 22:691–707 707

2018A610198). W.T. was supported in part by funds from the Office of
the Vice President for Research & Economic Development at Georgia
Southern University. G.L. was supported by NSERC Canada.

References

Bock, S., Briskorn,D.,&Horbach,A. (2012). Scheduling flexiblemain-
tenance activities subject to job-dependent machine deterioration.
Journal of Scheduling, 15, 565–578.

Chen, J.-S. (2008). Scheduling of non-resumable jobs andflexiblemain-
tenance activities on a single machine to minimize makespan.
European Journal of Operation Research, 190, 90–102.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
A guide to the theory of NP-completeness. San Francisco: W. H.
Freeman and Company.

Kubzin, M. A., & Strusevich, V. A. (2006). Planning machine mainte-
nance in two-machine shop scheduling. Operations Research, 54,
789–800.

Lee, C.-Y. (2004). Machine scheduling with availability constraints. In:
J. Y.-T. Leung (Ed.),Handbook of scheduling: Algorithms, models
and performance analysis, vol. 22 (pp. 1–13).

Lee, C.-Y., & Chen, Z.-L. (2000). Scheduling jobs and maintenance
activities on parallel machines.Naval Research Logistics, 47, 145–
165.

Lee, C.-Y., & Liman, S. (1992). Single machine flow-time scheduling
with scheduled maintenance. Acta Informatica, 29, 375–382.

Luo, W., Chen, L., & Zhang, G. (2010). Approximation algorithms
for scheduling with a variable machine maintenance. In: Proceed-

ings of algorithmic aspects in information andmanagement (AAIM
2010), LNCS 6124 (pp. 209–219).

Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deter-
ministic machine availability constraints. Computers & Industrial
Engineering, 58, 199–211.

Mosheiov, G., & Sarig, A. (2009). Scheduling a maintenance activity
to minimize total weighted completion-time. Computers & Math-
ematics with Applications, 57, 619–623.

Qi, X. (2007). A note on worst-case performance of heuristics for main-
tenance scheduling problems.Discrete AppliedMathematics, 155,
416–422.

Qi, X., Chen, T., & Tu, F. (1999). Scheduling the maintenance on a
single machine. Journal of the Operational Research Society, 50,
1071–1078.

Schmidt,G. (2000). Schedulingwith limitedmachine availability.Euro-
pean Journal of Operational Research, 121, 1–15.

Sun, K., & Li, H. (2010). Scheduling problems with multiple mainte-
nance activities and non-preemptive jobs on two identical parallel
machines. International Journal of Production Economics, 124,
151–158.

Xu,D., Yin, Y., &Li, H. (2010). Scheduling jobs under increasing linear
machine maintenance time. Journal of Scheduling, 13, 443–449.

Yang, S., & Yang, D. (2010). Minimizing the makespan on single-
machine scheduling with aging effect and variable maintenance
activities. Omega, 38, 528–533.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Single-machine scheduling with job-dependent machine deterioration
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Prior work and our contribution

	2 Preliminaries
	3 Proving the binary NP-hardness of the problem 1 midpMAmidsumj Cj
	3.1 Proof of ``if''
	3.2 Proof of ``only if''

	4 A 2-approximation algorithm for 1 midpMAmidsumj Cj
	5 A branch-and-bound exact algorithm for 1 midpMAmidsumj Cj
	5.1 The description of the algorithm
	5.2 Implementation details
	5.3 Computational experiments

	6 Concluding remarks
	Acknowledgements
	References

