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Abstract
This paper investigates an integrated production and assembly scheduling problem with the practical manufacturing features
of serial batching and the effects of deteriorating and learning. The problem is divided into two stages. During the production
stage, there are several semi-product manufacturers who first produce ordered product components in batches, and then
these processed components are sent to an assembly manufacturer. During the assembly stage, the assembly manufacturer
will further process them on multiple assembly machines, where the product components are assembled into final products.
Through mathematical induction, we characterize the structures of the optimal decision rules for the scheduling problem
during the production stage, and a scheme is developed to solve this scheduling problem optimally based on the structural
properties. Some useful lemmas are proposed for the scheduling problem during the assembly stage, and a heuristic algorithm
is developed to eliminate the inappropriate schedules and enhance the solution quality. We then prove that the investigated
problem is NP-hard. Motivated by this complexity result, we present a less-is-more-approach-based variable neighborhood
search heuristic to obtain the approximately optimal solution for the problem. The computational experiments indicate that
our designed LIMA-VNS (less is more approach–variable neighborhood search) has an advantage over other metaheuristics
in terms of converge speed, solution quality, and robustness, especially for large-scale problems.

Keywords Variable neighborhood search · Less is more · Deteriorating effect · Learning effect · Serial-batching scheduling ·
Assembly

1 Introduction

In recent years, smart manufacturing has been experienc-
ing an explosive growth and has now become one of the
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dominant factors for enterprises to compete in the fiercer
global competition (Yang et al. 2018). The production of
many products, e.g., mobile phones, aircraft, and automo-
biles, needs to be first processed by several semi-product
manufacturers, and then it is completed by assembly manu-
facturers, as is shown in Fig. 1. It is of great significance
to make smart decisions for semi-product manufacturers
and assembly manufacturers in the manufacturing system
to reduce production duration and increase profit. To cope
with global competition, some researchers have investigated
optimization problems in assembly lines (Framinan et al.
2019), where they have proposed various solution methods
and have summarized development trends of assembly pro-
duction scheduling. In addition, Renna and Perrone (2015)
investigated manufacturing systems with multiple manufac-
turers and stated that coordinating manufacturing is very
important in today’s world. Jia and Mason (2009) consid-
ered the problem of scheduling orders in a multi-machine
manufacturing system. Most previous research has focused
on general processing without considering practical specific
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Fig. 1 The integrated scheduling problem in complex product manufacturing

production features. However, there are a number of practical
issues in a real manufacturer system, such as serial-batching
production, the learning effect, and the deteriorating effect,
which make it more difficult for decision-makers in the man-
ufacturing system to produce efficient schedules. Thus, in this
paper, we address an integrated manufacturing optimization
problem which covers various practical issues.

Classical scheduling problems assume that the process-
ing times of jobs are constant values. However, the actual
processing time of a job may increase or decrease with
changing machine efficiency and human proficiency. These
phenomena are called the deteriorating effect and the learn-
ing effect (Wang 2007). Gawiejnowicz (2008) systematically
summarized various types of deterioration effects, and he
also analyzed how these effects affect the optimal scheduling
scheme in general scheduling problems. Azzouz et al. (2018)
presented a concise overview of learning effects, provided
a classification scheme for the different scheduling prob-
lems under learning effects, and discussed the relationship
between some well-known leaning models. To solve real-
life production scheduling problems, many other researchers
have also taken the deteriorating effect and the learning
effect into consideration. Wang and Cheng (2007) studied
a single-machine scheduling problem and constructed time-
and position-based job-processing time functions. Consider-
ing that there should be an upper limit to proficiency, Wang
et al. (2017) investigated a single-machine scheduling prob-
lem with a truncated job-dependent learning effect. Yin et al.
(2017) considered deteriorating jobs in a parallel machine

scheduling problem with potential machine disruptions. Fu
et al. (2018) studied scheduling problems with deteriorating
and learning effects in an industry 4.0-based manufacturing
system.

In a batching scheduling problem, jobs are grouped into
batches and processed on the batching machine. This type of
production mode can improve the efficiency of the machine,
while a setup operation is required before the processing of
each batch to ensure the security and quality of the pro-
duction. Batching scheduling problems commonly exist in
semi-product manufacturing (Yin et al. 2016; Ahmadizar
and Farhadi 2015) and have drawn much attention in recent
years. Mor and Mosheiov (2011) investigated a two-agent
single-machine scheduling problem in the context of batch
processing. For a batching scheduling problem with trans-
portation, Yin et al. (2013) developed an efficient dynamic
programming algorithm under an assumption on the rela-
tionships between the cost parameters. Differently, Yin et al.
(2015) considered a single-machine batching scheduling
problem with rejection costs and developed algorithms with
significant improvements. Then, to solve the problem in
more complex manufacturing systems, Yin et al. (2018)
studied integrated production, inventory, and batch deliv-
ery scheduling problems with due date assignments and
two competing agents, based on which effective heuristics
were proposed. Kress et al. (2018) focused on the total
setup cost minimization problem and proposed an approx-
imately optimal algorithm to solve it in polynomial time.
Alam and Raza (2018) investigated a batching scheduling
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Table 1 Comparisons of previous related literature and the current study

Publication Assembly Batching Objective Setup time Algorithms Processing
time

LE DE

Potts et al. (1995)
√ × Makespan × Heuristic algorithms × ×

Hariri and Potts (1997)
√ × Makespan × Branch and Bound × ×

Allahverdi and Al-Anzi (2006)
√ × Makespan

√
Heuristic algorithms × ×

Shokrollahpour et al. (2011)
√ × Weighted sum of makespan × Imperialist competitive

algorithm
× ×

Wu et al. (2018)
√ × Makespan × Metaheuristic

√ ×
Luo et al. (2018)

√ × Makespan
√

Branch and Bound × ×
Pei et al. (2017) × √

Maximum earliness
√

Heuristic algorithms
√ √

Fan et al. (2018) × √
Makespan

√
Heuristic algorithms and
metaheuristics

√ √

Lu et al. (2018) × √
Makespan × Heuristic algorithms and

metaheuristics
× √

Current study
√ √

Makespan
√

Heuristic algorithms and
metaheuristics

√ √

DE deteriorating effect;LE learning effect;
√

(×) denotes that the corresponding issue is (not) considered

problem in a parallel and distributed environment. Shah-
vari and Logendran (2018) solved a hybrid flow shop
batching scheduling problem via two-stage-based hybrid
algorithms.

In the assembly scheduling literature, some papers have
analyzed makespan minimization problems within a cer-
tain factory, typically where the component production and
assembly can be finished in a single production flow line
(Liao et al. 2015). In these settings, the operator only needs
to consider the optimal schedule of the product components
on a singlemachine, and the assembly startswhenever a set of
parts is finished. However, in a global manufacturing system,
the product components are manufactured by several enter-
prises located in different places. After being processed by
the semi-product manufacturer, the product components are
delivered and assembled into the final product by an assem-
bly manufacturer. Roh et al. (2014) investigated the response
supply chain in global complexity and stated that improving
production capability is a key to the success of firms in the
global supply chain. Tao et al. (2017) analyzed the evolu-
tion of such a manufacturing system in the environment of
information technology.

There is limited existing literature on integrated schedul-
ing models considering the production, assembly, serial-
batching processing, the deteriorating effect, and the learning
effect simultaneously. Our previous research papers involved
such issues as the batching and deteriorating effects, and we
focused on the single-stage scheduling problems with multi-
ple machines or a single machine. The comparison of this
with existing publications is presented in Table 1. In Pei
et al. (2017), we studied the batching scheduling problem
with the deteriorating effect as well as the learning effect

and proposed several effective heuristics, but the assembly
process was not considered. Hence, those proposed methods
cannot solve the problem in thiswork. Lu et al. (2018) investi-
gateda coordinating production and maintenance scheduling
problem under the deteriorating effect. The assembly pro-
cess and the leaning effect are ignored in that model. This
paper contributes by considering various significant issues
in an integrated scheduling problem and proposes several
useful structural properties, based on which effective heuris-
tics and a metaheuristic are developed to make decisions for
different participants in the manufacturing system. To the
best of our knowledge, the proposed scheduling problem
in this paper has not been studied in any existing litera-
ture. However, the problem exists in real-life manufacturing
and solving the problem is significant for the realization
of smart manufacturing, which is the motivation of this
paper.

The main contributions of this work are stated as follows.

1. We formulated an integrated scheduling model which
covers production and assembly. In addition, the features
of serial-batching processing, the deteriorating effect,
and the learning effect are taken into consideration in
our model.

2. For the serial-batching scheduling problem in the pro-
duction stage, several structural properties are proposed,
based on which an optimal algorithm is developed.

3. For the assembly scheduling problem, we give some use-
ful lemmas and design a heuristic which can improve the
solution quality.

4. Since the integrated problem is proved to be NP-hard, we
develop a LIMA-VNS (less is more approach–variable
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Table 2 Notations
Notations Definitions

N The number of products

g The number of semi-product manufacturers or product components

G The number of machines in the assembly manufacturer

PI The product I , I � 1, 2, . . . , N

RI The available time for PI is the assembly stage, I � 1, 2, . . . , N

Mm The mth semi-product manufacturer, m � 1, 2, . . . , g

AMd The dth assembly machine, d � 1, 2, . . . ,G

Nd The number of products in Ad , d � 1, 2, . . . ,G

pi,m The mth product component for the PI , I � 1, 2, . . . , N , m � 1, 2, . . . , g

ti,m The normal processing time of the pi,m , I � 1, 2, . . . , N , m � 1, 2, . . . , g

t Ai,m The actual processing time of the pi,m , I � 1, 2, . . . , N , m � 1, 2, . . . , g

c The machine capacity

nm The number of batches in Mm , m � 1, 2, . . . , g

Be,m The eth batch in Mm , e � 1, 2, . . . , nm , m � 1, 2, . . . , g

se,m The setup time for Be,m , e � 1, 2, . . . , nm , m � 1, 2, . . . , g

t[ j],m The normal processing time of the j th component in Mm , j � 1, 2, . . . , N , m � 1, 2, . . . , g

t A[ j],m The actual processing time of the j th component in Mm , j � 1, 2, . . . , N , m � 1, 2, . . . , g

θ , δ The deteriorating rates for setup operations

Dm The delivery time between the mth semi-product manufacturer and the assembly
manufacturer, m � 1, 2, . . . , g

aI The normal processing time of the PI , I � 1, 2, . . . , N

a[l],d The normal processing time of the lth product in AMd , l � 1, 2, . . . , Nd , d � 1, 2, . . . ,G

aA
[l],d The actual processing time of the lth product in AMd , l � 1, 2, . . . , Nd , d � 1, 2, . . . ,G

S[l],d The setup time of the lth product in AMd , l � 1, 2, . . . , Nd , d � 1, 2, . . . ,G

Cm
max The maximum completion time for Mm , m � 1, 2, . . . , g

Ad
max The maximum completion time for AMd , d � 1, 2, . . . ,G

Amax The makespan for the assembly machines

neighborhood search) to solve the problem. The perfor-
mance of the LIMA-VNS is validated via computational
experiments.

The remainder of this paper is organized as follows: Sect. 2
gives the formulation of the considered integrated scheduling
problem. In Sects. 3 and 4, we discuss the subproblems of
the integrated model and develop heuristics to solve them,
respectively. In Sect. 5, we design a metaheuristic to solve
the integrated scheduling problem. Sect. 6 presents the results
of computational experiments and analyzes the performance
of the involvedmetaheuristics. Finally, Sect. 7 concludes and
gives some future research directions.

2 Notations and problems statement

The used notations throughout this paper and their definitions
are presented in Table 2.

The integrated scheduling problem is formulated as a two-
stage model. During the component production stage, the
product components are processed and delivered in batches.
Each semi-product manufacturer ensures that the completion
time is minimized by solving a serial-batching scheduling
problem, which is denoted as Q1. Then, during the assem-
bly stage, the assembly manufacturer aims at minimizing
the makespan under the constraints of the component fin-
ishing time and transportation, which is denoted as Q2. In
the manufacturing system, the semi-product manufacturers
first make decisions and then the assembly manufacturers
will try to minimize the makespan based on their deci-
sions. During the above scheduling period, the decisions
concern: (1) how to group product components into batches
for each semi-product manufacturer, (2) how to sequence
the batches, (3) how to assign products to the assembly
machines, and (4) how to sequence the products on each
assembly machine. The decisions (1) and (2) are for the
semi-product manufacturer, while the decisions (3) and (4)
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Fig. 2 The integrated scheduling problem with production, transportation, and assembly

are for the assembly manufacturers. The joint decisions
can improve the efficiency of the whole manufacturing
system. The two-stage formulation is consistent with the
service-oriented global manufacturing system, where differ-
ent manufacturing service providers finish the finial products
together and want to gain more profit through improving the
efficiency.

The structure of the integrated scheduling problem is
depicted in Fig. 2. We assume that there are N prod-
ucts {P1, P2, . . . , PI , . . . , PN } to be processed by g semi-
product manufacturers

{
M1, M2, . . . , Mm, . . . , Mg

}
and G

machines of an assembly manufacturer. There are g semi-
product manufacturers processing different product compo-
nents, and each of them is necessary for the final products,
i.e., themth product componentmust be processed by themth
semi-product manufacturer. Hence, each product consists of
g components

{
pI .1, pi,2, . . . , pi,m, . . . , pi,g

}
. During the

production stage, the components are finished by the semi-
product manufacturers. Each semi-product manufacturer has
a single serial-batching machine. The machine capacity is
denoted as c, which means that the number of jobs in a batch
cannot exceed c. The setup time is required to start a new
batch. Let Be.m denote the eth batch in them th semi-product
manufacturer. The setup time is formulated as in Cheng et al.
(2011):

se,m � θT , e � 1, 2, . . . , nm, m � 1, 2, . . . , g. (1)

where θ is the deteriorating rate, T denotes the starting
time, and nm is the number of batches on the machine from
the mth semi-product manufacturer. In addition, the sum-
of-processing-times-based deterioration (Liu et al. 2013) is
extended to serial-batching scheduling criteria. Denoting the
normal processing timeof the j th component onMm as t[ j],m ,
the actual processing time of the j th component on Mm is
formulated as follows:

t A[ j],m �
(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

t[ j],m,

j � 1, 2, . . . , N , m � 1, 2, . . . , g,
0∑

x�1

t A[x],m � 0. (2)

After the production stage, the finished components are
delivered to the assembly manufacturer and assembled into
final products. The capacity limitation on the delivery is
equal to that of the production machine. We assume that
there are enough vehicles to deliver each batch as soon
as it is finished in the production stage. The semi-product
manufacturers are in different places, which results in dif-
ferent delivery times. We denote the delivery time between
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the mth semi-product manufacturer and the assembly man-
ufacturer as Dm , m � 1, 2, . . . , g. Then, for the assembly
stage, each machine in the assembly manufacturer can only
assemble one product at one time. Considering that human
activities are of great significance in the assembly stage, we
use the learning model proposed in Cheng et al. (2009) to
formulate the actual assembly time of each product such
that:

aA
[l],d �

(

1 +
l−1∑

x�1

ln a[x],d

)α

a[l],d ,

l � 1, 2, . . . , Nd , d � 1, 2, . . . ,G,

0∑

x�1

ln a[x],d � 0.

(3)

where a[l],d denotes the normal processing time of the lth
product on AMd and α < 0 is the learning index. In addition,
the setup time for each product is formulated as:

S[l],d � δT , l � 1, 2, . . . , Nd , d � 1, 2, . . . ,G (4)

where δ is the deteriorating rate for the assembly process, T
denotes the starting time, and Nd is the number of products
in the dth assembly machine.

3 Structural properties and an optimal
algorithm for Q1

In this section, we focus on the serial-batching scheduling
problem in the production stage. Some structural properties
are proposed, and an optimal rule is designed to sched-
ule product components in each semi-product manufacturer.
Moreover, the completion time of the product components is
derived, which is very important for the decision making on
the assembly stage.

Lemma 1 In an optimal schedule for a certain semi-product
manufacturer, all product components are sorted in the non-
decreasing order of the normal processing times.

Proof Suppose that there are two adjacent product com-
ponents pI1,m and pI2,m in the mth semi-product manu-
facturer, where I1 � 1, 2, . . . , N and I2 � 1, 2, . . . , N ,
we consider two cases in this proof. One is that the two
product components pI1,m and pI2,m are from the same
batch, and the other is that they are from different batches.
For the first case, we assume that there exist two sched-
ules π �

{
W1, . . . , pI1,m, pI2,m, . . .

︸ ︷︷ ︸
Be,m

,W2

}
and π∗ �

{
W1, . . . , pI2,m, pI1,m, . . .

︸ ︷︷ ︸
Be,m

,W2

}
, where W1 and W2 are the

partial sequences. Let S
(
pI1,m(π)

)
and j denote the starting

time and the position of the product component pI1,m in π .
Then, we can calculate the completion time of the product
component pI2,m in π as

C
(
pI2,m (π )

)

� S
(
pI1,m (π )

)
+

(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

tI1,m

+

⎛

⎜⎜
⎝1 +

∑ j−1
x�1 t

A
[x],m +

(
1 +

∑ j−1
x�1 t

A
[x],m∑N

x�1 t[x],m

)
tI1,m

∑N
x�1 t[x],m

⎞

⎟⎟
⎠ tI2,m

� S
(
pI1,m (π )

)

+

(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

· (tI1,m + tI2,m
)

+

(
1 +

∑ j−1
x�1 t

A
[x],m∑N

x�1 t[x],m

)

∑N
x�1 t[x],m

tI1,m · tI2,m

Similarly, the completion time of the product component
pI1,m in π∗ is

C
(
pI1,m

(
π∗)) � S

(
pI2,m

(
π∗)) +

(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

· (tI1,m + tI2,m
)

+

(
1 +

∑ j−1
x�1 t

A
[x],m∑N

x�1 t[x],m

)

∑N
x�1 t[x],m

tI1,m · tI2,m .

Since S
(
pI2,m(π∗)

) � S
(
pI1,m(π)

)
, we obtain C(

pI2,m(π)
) � C

(
pI1,m(π∗)

)
.

For the second case, we take the similar expression
as in the first case but define the two different sched-
ules as π �

{
W1, . . . , pI1,m︸ ︷︷ ︸

Be,m

, pI2,m, . . .
︸ ︷︷ ︸

Be+1,m

,W2

}
and π∗ �

{
W1, . . . , pI2,m︸ ︷︷ ︸

Be,m

, pI1,m, . . . ,
︸ ︷︷ ︸

Be+1,m

W2

}
.

Then, we derive
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C
(
pI2,m (π )

)

� (1 + θ ) S
(
pI1,m (π )

)
+(1 + θ )

(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

tI1,m

+

⎛

⎜⎜
⎝1 +

∑ j−1
x�1 t

A
[x],m +

(
1 +

∑ j−1
x�1 t

A
[x],m∑N

x�1 t[x],m

)
tI1,m

∑N
x�1 t[x],m

⎞

⎟⎟
⎠ tI2,m

� (1 + θ ) S
(
pI1,m (π )

)

+

(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

· (tI1,m + tI2,m
)
+

(
1 +

∑ j−1
x�1 t

A
[x],m∑N

x�1 t[x],m

)

∑N
x�1 t[x],m

tI1,m · tI2,m + θ

(

1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

)

tI1,m .

and

C
(
pI1,m

(
π∗))

� (1 + θ)S
(
pI2,m

(
π∗)) +

⎛

⎝1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

⎞

⎠ · (tI1,m + tI2,m
)

+

(

1 +
∑ j−1

x�1 t
A
[x],m∑N

x�1 t[x],m

)

∑N
x�1 t[x],m

tI1,m · tI2,m

+ θ

⎛

⎝1 +

∑ j−1
x�1 t

A
[x],m

∑N
x�1 t[x],m

⎞

⎠tI2,m .

Hence, we have C
(
pI2,m(π)

) − C
(
pI1,m(π∗)

) � θ(
1 +

∑ j−1
x�1 t

A
[x],m∑N

x�1 t[x],m

)(
tI1,m − tI2,m

)
.

Combining the twocases, it canbederivedC
(
pI2,m(π)

) ≤
C
(
pI1,m(π∗)

)
when tI1,m ≤ tI2,m . Thus, this lemma is

proved. �

Lemma 2 In an optimal schedule for a certain semi-product
manufacturer, all batches contain c product components
except for the first batch in each semi-product manufacturer.

Proof Let Be,g and Be+1,g be two adjacent batches, where
e � 1, · · · , nm − 1. We assume that the number of
product components in Be+1,g is less than c, the last
two product components in Be,g are pI1,m and pI2,m ,
and the first product component in Be+1,g is pI3,m , i.e.,

π �
{

W1, . . . , pI1,m, pI2,m,
︸ ︷︷ ︸

Be,m

pI3,m . . .
︸ ︷︷ ︸
Be+1,m

,W2

}

. Then, we

obtain a new schedule π∗ by moving the product com-
ponent pI2,m from Be,m to Be+1,m such that π∗ �

⎧
⎪⎨

⎪⎩
W1, . . . , pI1,m︸ ︷︷ ︸

Be,m

, pI2,m, pI3,m . . .
︸ ︷︷ ︸

Be+1,m

,W2

⎫
⎪⎬

⎪⎭
. Suppose the pI1,m

is in the j th position, the completion times of pI2,m in π and
π∗ are calculated as S

(
pI3,m(π)

) � (1 + θ)C
(
pI1,m(π)

)
+

(1 + θ)

(
1 +

∑ j
x�1 t

A
[x],m∑N

x�1 t[x],m

)
tI2,m and S

(
pI3,m(π∗)

) � (1 + θ)C

(
pI1,m(π)

)
+

(
1 +

∑ j
x�1 t

A
[x],m∑N

x�1 t[x],m

)
tI2,m . Then, since the other

sequences are the same for the two schedules, it is easy to
obtainCm

max (π) > Cm
max (π

∗). Thus, it can be concluded that
this lemma holds. �

Then, based on Lemmas 1 and 2, we develop the follow-
ing schedule algorithm on product components sequencing,
batching, and batch sequencing.

Algorithm 1

Step 1. For each semi-product manufacturer, sort the product
components in the non-decreasing order of the normal processing
times.

Step 2. If N − c · ⌈ N
c

⌉
< 0, then, group the first N − c · (⌈ N

c

⌉− 1
)

product components into a batch and remove them from the list.

Step 3. Group the first c product components into a new batch and
remove them from the list.

Step 4. Repeat Step 3 until the job list is empty.

Step 5. Process the batches in the generated order and process the
product components in the non-decreasing order of the normal
processing times.

Since the computational complexity of step 1 and the steps
2–5 is O(N log N ) and O(N ), respectively, the total com-
plexity of Algorithm 1 is O(N log N ). Based on Lemmas
1 and 2, we know that Algorithm 1 can obtain the optimal
schedule for each semi-product manufacturer.

Lemma 3 For the problem Q1, the completion time of each
semi-product manufacturer is:

Cm
max �

N∑

x�1

t[x],m

N∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
N∑

x�1

t[x],m

−
f
(⌈

N
c

⌉
−1
)

∑

x�1

t[x],m

N∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

+

f
(⌈

N
c

⌉
−1
)

∑

x�1

t[x],m

+
�N/c�−1∑

z�1

(1 + θ)�N/c�−z

⎡

⎣
f (z)∑

x�1

t[x],m

f (z)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (z)∑

x�1

t[x],m

−
f (z−1)∑

x�1

t[x],m

f (z−1)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

+
f (z−1)∑

x�1

t[x],m

⎤

⎦ (5)

where

f (z) �

⎧
⎪⎪⎨

⎪⎪⎩

N − c ·
⌈
N
c

⌉
+ z · c, N − c ·

⌈
N
c

⌉
< 0, z > 0

zc, N − c ·
⌈
N
c

⌉
� 0, z > 0

0, z � 0.
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Proof Given an optimal schedule in each semi-product

manufacturer such as π �
{
B1,m, B2,m, . . . , B⌈ N

c

⌉
,m

}
,

we can derive the number of jobs in each batch based
on Lemmas 1 and 2, e.g., the number of jobs in

∣∣Be,m
∣∣

is
∣∣Be,m

∣∣ �
{
N − c · ⌈ N

c

⌉
+ c, N − c · ⌈ N

c

⌉
< 0, e � 1

c, other
.

Hence, it can be obtained that the total number of jobs
in the first e > 0 batches is

∑e
x�1

∣∣Be,m
∣∣ � f (e) �{

N − c · ⌈ N
c

⌉
+ e · c, N − c · ⌈ N

c

⌉
< 0

ec, N − c · ⌈ N
c

⌉ � 0
. Then, we can

prove this lemma using mathematical induction. First, for
e � 1, we have

C
(
B1,m

) �
f (1)∑

x�1

t[x],m

f (1)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (1)∑

x�1

t[x],m .

Assume that we have:

C
(
Be,m

) �
f (e)∑

x�1

t[x],m

f (e)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (e)∑

x�1

t[x],m

−
f (e−1)∑

x�1

t[x],m

N∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

+
f (e−1)∑

x�1

t[x],m

+
e−1∑

z�1

(1 + θ)�N/c�−z

⎡

⎣
f (z)∑

x�1

t[x],m

f (z)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (z)∑

x�1

t[x],m

−
f (z−1)∑

x�1

t[x],m

f (z−1)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

+
f (z−1)∑

x�1

t[x],m

⎤

⎦ (6)

for the batch Be,m . Then, for the batch Be+1,m , we derive its
completion time as

C
(
Be+1,m

)

� θC
(
Be,m

)
+ C

(
Be,m

)

+
f (e+1)∑

x�1

t[x],m

f (e+1)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (e+1)∑

x�1

t[x],m

−
⎡

⎣
f (e)∑

x�1

t[x],m

f (e)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (e)∑

x�1

t[x],m

⎤

⎦

�
f (e+1)∑

x�1

t[x],m

f (e+1)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (e+1)∑

x�1

t[x],m

−
f (e)∑

x�1

t[x],m

N∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

+
f (e)∑

x�1

t[x],m

+
e∑

z�1

(1 + θ)

⌈
N
c

⌉
−z

⎡

⎣
f (z)∑

x�1

t[x],m

f (z)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

−
f (z)∑

x�1

t[x],m

−
f (z−1)∑

x�1

t[x],m

f (z−1)∏

y�1

(

1 +
1

∑N
x�1 t[x],m

t[y],m

)

+
f (z−1)∑

x�1

t[x],m

⎤

⎦ .

Thus, Eq. 6 also holds for the batch Be+1,m . Combing the
above results, we can conclude that this lemma holds. �

4 Structural properties and a local search
strategy for Q2

Based on the results obtained in Sect. 3, the available time
of each product in the assembly stage is derived. Further,
under the case where products have been assigned to assem-
blymachines, we proposed a local search strategy to improve
the solution quality.

Lemma 4 For the problem Q2, the available time of each
product is

RI � max
1≤m≤g

{
Xi,e,mC

(
Be,m

)
+ Dm

}
(7)

where Xi,e,m �
{
1, i f pi,misassignedtoBe,m

0, else
.

Lemma 5 Let F(λ) � (1 + δ)(λ − 1)+(1 + c0lnλ + c0x)α −
λ(1 + c0x)α , then F(λ) ≥ 0 for δ ≥ 0, λ ≥ 1, 0 < c0 <

1,x > 1, and α < 0.

Proof The lemmas can be easily proved by analyzing the
first derivative and the second derivative of F(λ) as the proof
of Lemma 3 in Cheng et al. (2009), so we omit it here.

Lemma 6 For the problemQ2, given the assignment of prod-
ucts, if there exist two adjacent products with RI1 ≤ RI2 and
aI1 ≤ aI2 , then the PI1 should be processed preceded by PI2
in an optimal schedule.

Proof Suppose that ϕ � {
E1, PI1 , PI2 , E2

}
and ϕ∗ �{

E1, PI2 , PI1 , E2
}
are two product schedules, where E1 and

E2 are partial product sequences, RI1 ≤ RI2 , and aI1 ≤ aI2 .
We assume that ϕ∗ is an optimal schedule for the Q2 given
the assignment of products. In addition, the position of PI1
in ϕ is l. Denoting the completion time of the last product in
E1 as A(E1), the completion time of PI1 and PI2 in ϕ is

A
(
PI1 (ϕ)

) �
(

1 +
l−1∑

x�1

ln a[x],d

)α

aI1,d

+ δmax
{
A (E1) , RI1

}
+ max

{
A (E1) , RI1

}

�
(

1 +
l−1∑

x�1

ln a[x],d

)α

aI1,d

+ (δ + 1)max
{
A (E1) , RI1

}

and:

A
(
PI2 (ϕ)

) � (δ + 1)max
{
A
(
PI1 (ϕ)

)
, RI2

}
+

(

1 +
l−1∑

x�1

ln a[x],d + ln aI1,d

)α

aI2,d

� (δ + 1)max

⎧
⎨

⎩

(

1 +
l−1∑

x�1

ln a[x],d

)α

aI1,d + (δ + 1)A(E1),

(

1 +
l−1∑

x�1

ln a[x],d

)α

aI1,d

+(δ + 1)RI1 , RI2

}
+

(

1 +
l−1∑

x�1

ln a[x],d + ln aI1,d

)α

aI2,d . (8)
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Then, for the schedule ϕ∗, we also calculate the comple-
tion time of PI1 and PI2 as follows:

A
(
PI2
(
ϕ∗)) �

(

1 +
l−1∑

x�1

ln a[x],d

)α

aI2,d

+ δmax
{
A (E1) , RI2

}
+ max

{
A (E1) , RI2

}

�
(

1 +
l−1∑

x�1

ln a[x],d

)α

aI2,d

+ (δ + 1)max
{
A (E1) , RI2

}

and:

A
(
PI1
(
ϕ∗)) � (δ + 1)max

{
A
(
PI2
(
ϕ∗)), RI1

}
+

(

1 +
l−1∑

x�1

ln a[x],d + ln aI2,d

)α

aI1,d

� (δ + 1)max{
(

1 +
l−1∑

x�1

ln a[x],d

)α

aI2,d + (δ + 1)A(E1),

(

1 +
l−1∑

x�1

ln a[x],d

)α

aI2,d + (δ + 1)RI2 , RI1 }

+

(

1 +
l−1∑

x�1

ln a[x],d + ln aI2,d

)α

aI1,d . (9)

Set λ � aI2,d

aI1,d
, c0 � 1

1+
∑l−1

x�1 ln a[x],d
, and x � ln aI1,d ; then,

based on Lemma 5, we obtain

(

1 +
l−1∑

x�1

lna[x],d + ln aI2,d

)α

aI1,d + (δ + 1)

⎡

⎣
(

1 +
l−1∑

x�1

lna[x],d

)α

aI2,d

⎤

⎦

−
(

1 +
l−1∑

x�1

lna[x],d + ln aI1,d

)α

aI2,d − (δ + 1)

⎡

⎣
(

1 +
l−1∑

x�1

lna[x],d

)α

aI1,d

⎤

⎦

� aI1,d

(

1 +
l−1∑

x�1

lna[x],d

)α

[(δ + 1)

(
aI2,d
aI1,d

− 1

)

+

(

1 +
1

1 +
∑l−1

x�1 lna[x],d
ln

aI2,d
aI1,d

+
1

1 +
∑l−1

x�1 lna[x],d
ln aI1,d

)α

− aI2,d
aI1,d

(

1 +
1

1 +
∑l−1

x�1 lna[x],d
ln aI1,d

)α

]

� aI1,d

(

1 +
l−1∑

x�1

lna[x],d

)α
[
(δ + 1)(λ − 1) + (1 + c0 ln λ + c0x)

α − λ(1 + c0x)
α
] ≥ 0.

Hence, we have:
The first term in Eq. (9)≥ the first term in Eq. (8);
The second term in Eq. (9)≥ the second term in Eq. (8);
The second term in Eq. (9)≥ the third term in Eq. (8).
Thus, A

(
PI1(ϕ

∗)
) ≥ A

(
PI2(ϕ)

)
, which conflicts with the

assumption. The proof is completed.

Let R[l],d denote the available time of the lth product in
AMd . Based on Lemma 6, we design the following algorithm
to improve the solution quality in the assembly stage.

Algorithm 2

Step 1. Set l � 1.

Step 2. If R[l],d ≥ R[l+1],d and a[l],d ≥ a[l+1],d , then, go to step 3;
else, go to step 5.

Step 3. If R[l],d � R[l+1],d and a[l],d � a[l+1],d , then, go to step 5;
else, swap the products in the lth and (l + 1)th positions and go to
step 4.

Step 4. If l � 1, then, go to step 5; else, set l � l − 1 and go to step
2.

Step 5. Set l � 1 + l. If l < Nd − 1, then, go to Step 2; else, end the
algorithm.

Based on Lemma 6, it is known that Algorithm 2 can
improve the solution quality and eliminate some inappropri-
ate solutions. The computation complexity will not exceed
O(l2).

5 LIMA-VNSmetaheuristic

If RI � 0 and α � 0, the studied problem is reduced
to the NP-hard problem P||Amax (Coffman et al. 1978).
Then, we can infer that the studied problem is also NP-hard.
Hence, we develop ametaheuristic in this section to solve the
problem in a reasonable time. The VNS is a very effective
metaheuristic proposed by Mladenović and Hansen (1997).
It aims at achieving an overall optimization in the solution
space through systematically exploring different neighbor-
hood structures. There are three significant principles for the
VNS: the first principle is that a local optimal solution in one
neighborhood structure may not be the optimal solution for
another one; the second principle is that an overall optimal
solution is the optimal solution for any kinds of neighborhood
structures; and the last principle states that the local optimal
solutions are close to each other, which is summarized in
many experiments. VNS has shown a good performance in
many complex scheduling problems (Bouffard and Ferland
2007, Wen et al. 2011, Zhang et al. 2018). To increase the
diversity of solutions, other metaheuristics such as genetic
algorithms and simulated annealing are integrated into the
framework of VNS. However, Mladenović et al. (2016) sug-
gested that integrating too many operations into VNS may
not lead to better results. On the contrary, “less can yield
more” exists in many problems. Based on this idea, we have
designed a LIMA-VNS for an assembly scheduling problem
with deteriorating and learning effects. We will first intro-
duce the encoding scheme for the scheduling problem. Then,
the procedure for generating the initial solution is described.
Next, we present a simple and effective neighborhood for the
scheduling problem, and the nested version of the neighbor-
hood consists of the neighborhoods of the LIMA-VNS. This
neighborhood composition is different from much existing
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P1 flag1 P3 P2 P6 P5

1 7 3 2 6 52

flag2 P4

48
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AM1 AM2 AM3

Vector

Represetation

Schedule

Fig. 3 The solution representation for a problem instance

literature which integrates several types of complex neigh-
borhoods or heuristics into the VNS algorithm, such as in
Roshanaei et al. (2009). Finally, we give the framework of
the whole solution procedure. The neighborhood composi-
tion and framework of the algorithm both reflect the “less can
yield more” mentioned above, obtaining better results with
the most compact neighborhood and algorithm structure.

5.1 Solution representation

The metaheuristic LIMA-VNS is introduced to assign
products to the assembly machines and to find an approx-
imately optimal schedule for each machine. Thus, we use
a (N + G − 1)-dimensional vector which is comprised of
integers between 1 and N + G − 1 to express a solution in
the assembly stage. The numbers between 1 and N denote
products, while the numbers between N + 1 and N + G − 1
are flags which divide the products into G sets. The G sets
will be assigned to the G assembly machines in turn. Hence,
each number between 1 and N +G−1must appear only once
in each solution. A problem instance with 6 products and 3
machines is used to describe the solution representation in
Fig. 3.

For the given solution vector V � {1, 7, 3, 2, 6, 5, 8, 4},
7 and 8 are the two flags while 1–6 denote the 6 products.
The product on the left of 7 is assigned to the assembly
machine AM1. The product P4 is processed on the assembly
machine AM3. Products P3, P2, P6, and P5 are assigned
to the assembly machine AM2 and processed in the order
P3 → P2 → P6 → P5. The designed solution vector in
this work specifies not only to which assembly machines the
products are assigned ut also the processing order of the prod-
ucts on the assembly machines. Compared with continuous
coding, this kind of discrete coding can better take advantage
of VNS, which does not depend on complex update formu-
lae, but relies on simple and diverse neighborhood structures.
Compared with high-dimensional machine-assigned codes,
this code has lower spatial complexity.

5.2 Initial solution generation

VNS is a single trajectory metaheuristic in the same way as
simulated annealing and Tabu search (BoussaïD et al. 2013),
which indicates that a single solution V is kept during the
whole search process. Hence, the quality of the initial solu-
tion is significant for the performance of the metaheuristic.
To obtain a good initial solution for LIMA-VNS, we first
randomly generate a set which contains xmax solutions, and
Algorithm 2 will then be used to improve each solution.
Finally, the best solution among the improved solutions will
be selected as the initial solution of the metaheuristic. The
procedure for generating the initial solution is described in
Algorithm 3 as follows:

Algorithm 3

Step 1. Set x � 1.

Step 2. Set Vx � {v1, v2, . . . , vN+G−1}, X �
{1, 2, . . . , N + G − 1}, and y � 1.

Step 3. Set rand � random(1, N + G − 1), vy � X [rand].

Step 4. If rand < N + G − 1, then, set X [rand] � X [rand + 1]
and go to step 6; else, go to step 5.

Step 5. If rand > 1, then, set X [rand] � X [rand − 1] and go to
step 6; else, output Vx and end the algorithm.

Step 6. Set y � y + 1. If y > N +G − 1, then, go to step 7; else, go
to step 3.

Step 7. Perform Algorithm-2 on Vx . Set x � x + 1. If x > xmax ,
then, output the best one among the xmax solutions and end the
algorithm; else, go to step 2.

In Algorithm 3, steps 3–6 can generate a feasible solution
where each number between 1 and N +G − 1 appears once.
Additionally, Algorithm 2 is able to improve the solution
quality without generating infeasible solutions.

5.3 Neighborhood structures

The swap local search operator generates a new solution
through an interchange of solution attributes (Mladenović
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and Hansen 1997), which is regarded as a very effective
neighborhood structure in VNS. We modify this classical
local search operator according to the nature of our investi-
gated problem. Let x and y denote two integer numbers; for
an original solution V � {v1, v2, . . . , vN+G−1}, the steps of
themodified swap local search operator are shown as follows:

Algorithm 4

Step 1. Set z � random(1, N + G − 1) and y � random
(1, N + G − 1).

Step 2. If z � y, then, go back to step 1; else, go to step 3.

Step 3. If vz > N&&vy > N , then, go back to step 1; else, go to
step 4.

Step 4. Swap the two attributes such as vz and vy in V to get the
new solution V ′. Output V ′.

For the presented encoding scheme in Sect. 5.1, any inter-
change of two attributes which are both larger than N will
not change the final schedule. Hence, compared to the gen-
eral swap operator, the modified swap operator in this work
ensures that the output solution V ′ is different from the orig-
inal solution. Then, the metaheuristic can avoid unnecessary
decoding and waste of computational time. Using NEIω to
denote ω execution of the modified swap operator, we build
a set of the neighborhood structures for the LIMA-VNS.

5.4 The framework of the solution procedure

Based on Algorithms 1–4, we have designed a LIMA-VNS
and three modifications are made according to the nature
of the investigated problem and our encoding scheme. To
improve diversification searching, the first modification is to
realize the output of different schedules for the local search
operator. To improve the quality of the neighborhood solu-
tions, the second modification is the designing of Algorithm
2 based on structural properties. The last modification is that
we give an initial solution generation algorithm based on the
encoding scheme in this paper, which can output a feasible
solution of good quality. Integrating too many other heuris-
tics into VNS usually increases the number of decodes. The
decoding process takes a lot of time, especially for complex
scheduling problems such as the integrated scheduling prob-
lem in this work. Hence, these complex algorithms often
require a lot of computing time and violate the needs of
the enterprises. In our proposed algorithm, the evaluation of
solution quality is only performed once in each iteration and
the designed neighborhood structure is concise and efficient,
which means that we use fewer procedures to obtain better
results. That is the so-called “less is more algorithm.” The
pseudocode of the whole solution procedure for the investi-
gated problem is given as follows:

The pseudocode of the LIMA-VNS

Step 1. Perform Algorithm 1 to obtain the available time of each
product

Step 2. Perform Algorithm 3 to obtain the initial solution. Set
ω � 1 and i t � 0

Step 3. Select a neighborhood solution V ′ from the NEIω of V

Step 4. Apply Algorithm 2 for V ′, obtaining V ′′

Step 5. If Amax
(
V ′′) < Amax(V ), then set ω � 1 and V � V ′′,

else set ω � ω + 1

Step 6. If ω > ωmax , then set ω � 1

Step 7. Set i t � runningtimeof thealgori thm

Step 8. If i t ≤ i tmax , then go to step 3, else go to step 9

Step 9. Output V

Costa et al. (2017) stated that theVNSmetaheuristic based
on a unique neighborhood structure can be very effective and
provided the less is more approach (LIMA) on metaheuristic
design. In this paper, the modified swap local search opera-
tor is regarded as the so-called unique neighborhood structure
andwe apply it in our implementation of a LIMA-VNSmeta-
heuristic.

6 Computational experiments

In this section, we give the computational results of the devel-
oped VNS approach on the proposed scheduling problem
and a comparison with other different metaheuristics. The
selected metaheuristics in the comparative experiments have
shown good performances on various types of scheduling
problems, including VNS_R (Roshanaei et al. 2009), SA_C
(Chen et al. 2017), and TS_E (El-Yaakoubi et al. 2017). The
algorithms were coded in C++ language on an Intel Core
7-6700 with 16 G RAM, running Windows 7.

Algorithms 1 and2 are used in all themetaheuristicswhich
are compared by measuring the relative percentage deviation
(RPD) between the reported makespan and the best-known
makespan. The RPD is calculated as:

RPDalg � Amax(alg) − Amax(best)

Amax(best)
(10)

where Amax(alg) is the makespan obtained by the meta-
heuristic alg while Amax(best) denotes the best-known
solution. Since the objective is to minimize the makespan,
a smaller RPD means a better result. For each problem
instance, 20 replications are operated for all the metaheuris-
tics. Table 3 gives a summary of the attributes and levels
of the generated instances. Since our problem has not been
considered before, we surveyed real-world equipment man-
ufacturing companies to obtain the data for the complete
experiments. In order to get reasonable experimental data, we
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Table 3 Attributes and levels

Attributes Levels

Number of products N � 50, 100, 150

Number of semi-product manufacturers g � 3, 6, 9

Number of assembly manufacturers G � 2, 4, 6

The deteriorating rates for setup operations θ , δ � U [0.01, 0.1]

The normal processing time of the product
components

ti,m � U [1, 10]

The normal processing time of the products aI � U [5, 10]

The delivery time DI � U [1, 5]

also refer to the literature related to this article in recent years.
For example, based on existingworks such asRoshanaei et al.
(2009) and Ahmadizar and Farhadi (2015), the deteriorating
rates are in U [0.01, 0.1] while the normal processing times
are in U [1, 10]. Based on the relationship between process-
ing time and transportation time,we set the delivery time inU
[1, 5]. In real-world manufacturing, the assembly processing
time is more fixed and longer than the component produc-
tion time. Hence, we set the normal processing time of the
products as U [5, 10]. Based on the levels of the attributes
N , g, and G, 27 problem instances are generated. We use
the PMA(x, y, z) to denote the instance with x products, y
semi-product manufacturers, and z assembly machines.

In the experiment, we find that the metaheuristics con-
verge to a good result in 50 s, even for the problem instance
of the largest scale such as PMA(150, 9, 6), which is shown
in Fig. 4. Hence, we determine that each metaheuristic stops
iterating after 50 s for each problem instance to achieve
a fair comparison. In addition, in Fig. 4, LIMA-VNS also
shows an advantage in convergence speed over the other
three metaheuristics. Table 4 reports the summary of the
results for the metaheuristics in 27 problem instances. The
average objective value (Ave), the relative percentage devi-
ation (RPD), and the variance (VAR) measured over the
derived were calculated for each problem instance. For some
small-scale experiments, such as PMA(50, 3, 2) and PMA
(50, 3, 4), the other threemetaheuristicsmay perform aswell
as LIMA-VNS. However, for most of the problem instances,
average objective values and standard deviations obtained by
LIMA-VNS are much smaller than those obtained by oth-
ers, especially for the large-scale problem instances, e.g.,
PMA(150, 3, 4) and PMA(150, 9, 4). From Table 4, we can
conclude that LIMA-VNS results in the best solution of
Ave, VAR, and RPD among the four metaheuristics. From
Fig. 5, we can see that solutions obtained by LIMA-VNS are
gathered in the lower left corner of the coordinate system.
However, for VNS_R, SA_C, and TS_E, the distribution of
points on the graph is more dispersed compared to LIMA-
VNS. Hence, it is shown that the designed LIMA-VNS can
solve the problem stably. Based on the above computational

experiment, we can infer that the LIMA-VNS has the best
performance in converge speed, solution quality, and robust-
ness. From the results of the experiment, we can summarize
the contribution of the proposed method to real-world pro-
duction. First, the proposed intelligent scheduling algorithm
is easy to implement and can effectively improve the scien-
tific nature of decision-making. Second, our algorithm can
produce better results in a given time, that is, the applica-
tion of the algorithm can reduce production time, thereby
reducing the production and operating costs of the manufac-
turing companies. Moreover, timely delivery will increase
user satisfaction and loyalty, thus providing long-term ben-
efits for the enterprise. Finally, the LIMA-VNS is versatile
and can solve other optimization decision problems for enter-
prises.

7 Conclusion

Intelligent decision-making in complex product manufac-
turing systems is important for the realization of smart
manufacturing. This paper investigates a coordinated pro-
duction, delivery, and assembly scheduling problem with a
deteriorating effect and a learning effect. Through the discus-
sion of the problem characteristics, we propose the structural
properties for the serial-batching scheduling problem and
the assembly scheduling problem under the constraints of
component finishing time and transportation, respectively.
For the serial-batching scheduling problem, an optimization
scheduling rule has been developed to solve the problem
in polynomial time. For the assembly scheduling problem,
an improvement strategy has been proposed based on the
structural properties. Since the problem is NP-hard, we have
designed a LIMA-VNS to find an approximately optimal
solution in a reasonable time. To validate the performance
of the designed LIMA-VNS, we compare it with other
three metaheuristics from the latest literature which includes
VNS_R, SA_C, and TS_E. Via computational experiments,
we show that our approach finds the best solutions within a
given time, especially for large-scale problems. In this paper,
the designed coding scheme, neighborhood structures, and
the metaheuristic are effective and easy to implement Those
methods can be used in real-life manufacturing to increase
productivity, which in turn will improve the competitiveness
of all participants in the global manufacturing system.

There are some topics worthy of consideration in our
future work. On a theoretical level, one important future
research direction would be to model the multistage prob-
lems for the coordinating manufacturing. Another potential
direction would be to extend the LIMA-VNS to further dif-
ferent optimization problems with effective neighborhood
structures. On a practical level, we would consider the differ-
ent requests of the manufacturers, such as cost minimization,
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Fig. 4 The converge curves of the metaheuristics over time on problem PMA(150, 9, 6)

Fig. 5 Plots of distances between solutions in each replication and the best-known solution

lean production and design, more effective VNS, and heuris-
tic algorithms to improve the manufacturing efficiency.
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