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Abstract
In this paper, we revisit a two-agent scheduling problem on a single machine. In this problem, we have two competing agents
A and B, which means that the job set of agent A and the job set of agent B are disjoint. The objective is to minimize the
total completion time of agent A, under the constraint that the total number of tardy jobs of agent B is no larger than a given
bound. The complexity of this problem was posed as open in Agnetis et al. (Oper Res 52:229–242, 2004). Leung et al. (Oper
Res 58:458–469, 2010a, b. https://doi.org/10.1287/opre.1090.0744ec) showed that the problem is binary NP-hard. However,
their NP-hardness proof has a flaw. Here, we present a new NP-hardness proof for this problem. Our research shows that the
problem is still NP-hard even if the jobs of agent A have a common processing time.

Keywords Two-agent scheduling · Total completion time · Total number of tardy jobs

1 Introduction

Suppose that there are two competing agents A and B,
which compete to perform their respective jobs on a com-
mon machine. For each X ∈ {A, B}, we use J (X) to denote
the set of jobs of agent X , and the jobs in J (X) are called
X -jobs. The assumption of “competing agents” means that
J (A) ∩ J (B) = ∅.

Suppose that J (A) = {J (A)
1 , J (A)

2 , . . . , J (A)
n A } and J (B) =

{J (B)
1 , J (B)

2 , . . . , J (B)
nB }. For X ∈ {A, B}, each X -job J (X)

j ∈
J (X) has a processing time p(X)

j > 0. Each B-job J (B)
j also

has a due date d(B)
j . Given a feasible schedule σ , C (X)

j (σ ) is

the completion time of J (X)
j , X ∈ {A, B}. U (B)

j (σ ) = 1 if

C (B)
j (σ ) > d(B)

j and U (B)
j (σ ) = 0 if C (B)

j (σ ) ≤ d(B)
j . For

X ∈ {A, B}, let f (X) be the scheduling criterion of agent
X which depends only on the completion times of the X -
jobs. Following the three-parameter notation introduced by
Graham et al. (1979), the constrained scheduling problem on
a single machine to minimize f (A) under the constraint that
f (B) cannot exceed an upper bound Q can be denoted by
1|| f (A) : f (B) ≤ Q.
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The classical two-agent scheduling model was first intro-
duced by Baker and Smith (2003) and Agnetis et al. (2004).
Agnetis et al. (2004) considered various constrained schedul-
ing problems for competing agents. They provided an
O(n log n)-time algorithm for problem 1||∑ C (A)

j : f (B)
max ≤

Q, an O(n log n)-time algorithm for problem 1||∑ U (A)
j :

f (B)
max ≤ Q, and an O(n3)-time algorithm for problem

1|| ∑ U (A)
j : ∑

U (B)
j ≤ Q. But the computational com-

plexity of problem 1|| ∑ C (A)
j : ∑

U (B)
j ≤ Q was posed as

open in Agnetis et al. (2004).
Ng et al. (2006) showed that problem 1||∑ C (A)

j :
∑

U (B)
j ≤ Q is NP-hard under high-multiplicity (HM)

encoding and can be solved in pseudo-polynomial time under
binary encoding. HM encoding is an encoding system which
was proposed in Hochbaum and Shamir (1991) and Clifford
and Posner (2001). Under this system, the input length of k
identical jobs of processing time p of the same type is just
O(log(k +2)+ log(p +2)). This means that the work in Ng
et al. (2006), in fact, does not solve the open problemposed in
Agnetis et al. (2004), since we usually study computational
complexity under binary encoding.

Binary NP-hardness of problem 1||∑ C (A)
j : ∑

U (B)
j ≤

Q was first presented in Leung et al. (2010), and a formal
proofwas published inLeung et al. (2010b). By using theNP-
complete even–odd partition for the reduction, Leung et al.
(2010b) showed that problem 1||∑ C (A)

j : ∑
U (B)

j ≤ Q is
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Table 1 Job data in instance J Job Processing time Due date

P2i−1 a2i−1 (= p2i−1)
∑i−1

k=1 p2k + ∑i−1
k=1 xk + p2i−1

P2i a2i + (li − 1)σi (= p2i )
∑i−1

k=1 p2k + ∑i
k=1 xk + p2i

R L
∑n

i=1 xi + [H + 1
2

∑n
i=1(li − 1)σi ] + L

Qi xi

binary NP-hard. Unfortunately, their proof has a logical flaw.
Thus we revisit problem 1||∑ C (A)

j : ∑
U (B)

j ≤ Q.
Although the NP-hardness proof in Leung et al. (2010b)

is invalid, we happily find that the authors have in fact
provided a reasonable and wonderful procedure for the NP-
hardness proof, which is very useful in our research. In this
paper, we first show that a special version of the even–
odd partition is NP-complete. Then, by using an arbitrary
instance of the special version of the even–odd partition for
the reduction, we construct a new job instance for problem
1|| ∑ C (A)

j : ∑
U (B)

j ≤ Q. Finally, by borrowing the proof
procedure provided in Leung et al. (2010b), we show that
problem 1||∑ C (A)

j : ∑
U (B)

j ≤ Q is NP-hard even if the
jobs of agent A have a common processing time.

In Sect. 2, by constructing a counterexample, we point
out the logical flaw in the NP-hardness proof in Leung et al.
(2010b). In Sect. 3, we present the NP-hardness proof of
problem 1|p(A)

j = p(A)| ∑ C (A)
j : ∑

U (B)
j ≤ Q.

2 The logical flaw and a counterexample

The following is the well-known even–odd partition prob-
lem. By Garey and Johnson (1979), the even–odd partition
is binary NP-complete.
Even–Odd Partition Given a set of 2n + 1 positive integers
a1, a2, . . . , a2n and H such that H = 1

2

∑2n
j=1 a j , does there

exist a partition (I1, I2) of the index set {1, 2, . . . , 2n} such
that |I1 ∩ {2 j − 1, 2 j}| = 1 and |I2 ∩ {2 j − 1, 2 j}| = 1 for
each j = 1, 2, . . . , n, and

∑
j∈I1 a j = ∑

j∈I2 a j = H?
By using the even–odd partition for the reduction, Leung

et al. (2010b) showed that problem 1||∑ C (A)
j : ∑

U (B)
j ≤

Q is binary NP-hard. Let us recall some related discussions
in Leung et al. (2010b).

Let σi = a2i − a2i−1, i = 1, 2, . . . , n. Since each pair
of integers {a2i−1, a2i } must be put into two different sets,
Leung et al. (2010b) assumed that the given instance of the
even–odd partition satisfies the following three properties:

Property 1 a1 > (2n + 2)max(σ1, . . . , σn).

Property 2 a2i−1 >
∑2i−2

j=1 a j .

Property 3 ai/ j is an integer for each 1 ≤ i ≤ 2n and 1 ≤
j ≤ n.

For a given instance of the even–odd partition, Leung et al.
(2010b) constructed an instanceJ of the scheduling problem
1|| ∑ C (A)

j : ∑
U (B)

j ≤ Q with 3n + 1 jobs: 2n P-jobs and
a large R-job for agent B, and n Q-jobs for agent A. The
processing times and due dates for these jobs are shown in
Table 1.

• L is an integer larger than 2H .
• x1 = 1, xi = n−i+1

n−i+2a2i−3 for i = 2, . . . , n − 1, and

xn = 1
2a2n−3 + a2n−5. Note that x1 < x2 < · · · < xn ,

and they are all integers.
• liσi = 1

n−i+1a2i−1, i = 1, 2, . . . , n.

Let the threshold for the total completion time of agent A
be T C , where

T C =
n∑

i=1

(n − i)[a2i + (li − 1)σi ] +
n∑

i=1

(n − i + 1)xi

+ 1

2

n∑

i=1

liσi = H + 1

2

n∑

i=1

(li − 1)σi ,

and let the threshold for the number of tardy jobs of agent
B be n. The decision problem asks whether there is a fea-
sible schedule for instance J such that

∑
C (A)

j ≤ T C and
∑

U (B)
j ≤ n.

Observation 2.1 A partition (I1, I2) of {1, 2, . . . , 2n} with
|I1 ∩ {2i − 1, 2i}| = 1 and |I2 ∩ {2i − 1, 2i}| = 1 for each
i = 1, 2, . . . , n is a solution for the instance of the even–odd
partition if and only if the following condition (C1) holds.

∑

2i−1∈I1

σi =
∑

2i−1∈I2

σi = 1

2

n∑

i=1

σi . (C1)

Proof Let (I1, I2) be a partition of {1, 2, . . . , 2n} such that
|I1 ∩ {2i − 1, 2i}| = 1 and |I2 ∩ {2i − 1, 2i}| = 1 for
each i = 1, 2, . . . , n. Then, (I1, I2) is a solution for the
instance of the even–odd partition if and only if

∑
j∈I1 a j =∑

j∈I2 a j = H , which is equivalent to the weakened version
∑

j∈I1 a j = ∑
j∈I2 a j , since H = 1

2

∑2n
j=1 a j . Now, we

have
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∑

j∈I1

a j =
∑

j∈I2

a j

⇔
∑

i :2i−1∈I1

a2i−1 +
∑

i :2i∈I1

a2i =
∑

i :2i−1∈I2

a2i−1 +
∑

i :2i∈I2

a2i

⇔
∑

i :2i−1∈I1

a2i−1 +
∑

i :2i−1∈I2

a2i =
∑

i :2i−1∈I2

a2i−1 +
∑

i :2i−1∈I1

a2i

⇔
∑

i :2i−1∈I1

a2i−1 −
∑

i :2i−1∈I1

a2i =
∑

i :2i−1∈I2

a2i−1 −
∑

i :2i−1∈I2

a2i

⇔
∑

i :2i−1∈I1

σi =
∑

i :2i−1∈I2

σi

⇔
∑

i :2i−1∈I1

σi =
∑

i :2i−1∈I2

σi = 1

2

n∑

i=1

σi ,

as required in the observation. ��
Observation 2.2 Leung et al. (2010b) presented the binary
NP-hardness proof of problem 1||∑ C (A)

j : ∑
U (B)

j ≤ Q
by proving that the instance of the even–odd partition has a
solution if and only if instance J has a feasible schedule π

such that
∑

C (A)
j (π) ≤ T C and

∑
U (B)

j (π) ≤ n. If their
Lemma 1 (pp. 3–4) and Lemma 10 (p. 15) are correct, then
the following statement holds.

Statement 1 For every partition (I1, I2) of the index set
{1, 2, . . . , 2n} with |I1 ∩ {2i − 1, 2i}| = 1 and |I2 ∩ {2i −
1, 2i}| = 1 for each i = 1, 2, . . . , n, the above condition
(C1) and the following condition (C2) are equivalent.

∑

i :2i−1∈I1

liσi =
∑

i :2i−1∈I2

liσi = 1

2

n∑

i=1

liσi . (C2)

Proof See “Appendix”. ��
However, Statement 1 is invalid. We illustrate this by the

following instance I of the even–odd partition with n = 4.
The instance I = (a1, a2, . . . , a8, H) is obtained by set-

ting a1 = 264, a2 = 288, a3 = 576, a4 = 600, a5 = 1848,
a6 = 1872, a7 = 5544, a8 = 5568, and H = 8280.

We can easily observe that instance I satisfies the above
three properties and has a solution (I1, I2) with I1 =
{1, 3, 6, 8} and I2 = {2, 4, 5, 7} such that

∑
j∈I1 a j =∑

j∈I2 a j = 8280 = H . Recall that σi = a2i − a2i−1 and

liσi = 1
n−i+1a2i−1 for each i = 1, 2, . . . , n. We then have

σ1 = σ2 = σ3 = σ4 = 24, l1σ1 = 1
4a1 = 66, l2σ2 = 1

3a3 =
192, l3σ3 = 1

2a5 = 924, and l4σ4 = a7 = 5544. Thus

∑

2i−1∈I1

σi =
∑

2i−1∈I2

σi = 1

2

n∑

i=1

σi = 48,

∑

2i−1∈I1

liσi = l1σ1 + l2σ2 = 66 + 192 = 258

and
∑

2i−1∈I2

liσi = l3σ3 + l4σ4 = 924 + 5544 = 6468.

It follows that
∑

2i−1∈I1 liσi 	= ∑
2i−1∈I2 liσi . This means

that Statement 1 is invalid.
The above discussion shows that the NP-hardness proof

in Leung et al. (2010b) has a logical flaw (in their Lemmas
1 and 10). Moreover, on p. 5, lines 6–8, the authors wrote:
“Thus, a feasible schedule with

∑
Ca

j ≤ T C is obtained
when the total processing timeof the on-timeP-jobs is exactly
A + 1

2

∑n
i=1(li − 1)σi . But this occurs only when there is a

solution for the instance of the even–odd partition problem.”
By checking the context in Leung et al. (2010b), we find that
the second sentence is confusing.

From Observations 2.1 and 2.2, we guess (or conclude)
that the authors in Leung et al. (2010b) have mistakenly
assumed that condition (C1) is equivalent to (C2). This may
be the reason for the logical flaw in Leung et al. (2010b).

We cannot find a method to amend this flaw directly.
The computational complexity of problem 1||∑ C (A)

j :
∑

U (B)
j ≤ Q should then be restudied.

3 NP-hardness proof

The following is thewell-known partition problem.ByGarey
and Johnson (1979), the partition is binary NP-complete.
PartitionGiven a set of n positive integers x1, x2, . . . , xn and
a positive integer E such that E = 1

2

∑n
j=1 x j , does there

exist a partition (I1, I2) of the index set {1, 2, . . . , n}, such
that

∑
j∈I1 x j = ∑

j∈I2 x j = E?
From the NP-completeness proof of the partition in Garey

and Johnson (1979), the following result is observed.

Lemma 3.1 The partition is also binary NP-complete for the
instances (x1, x2, . . . , xn, E) in which the n positive integers
x1, x2, . . . , xn are mutually distinct.

By using the partition for the reduction, we now show
that a special version of the even–odd partition is also binary
NP-complete.

Lemma 3.2 The even–odd partition is also binary NP-
complete for the instances (a1, a2, . . . , a2n, H) in which the
n integers |a2−a1|, |a4−a3|, . . . , |a2n −a2n−1| are mutually
distinct.

Proof Suppose that I = (x1, x2, . . . , xn, E) is an instance of
the partition. From Lemma 3.1, we may assume that x1, x2,
. . . , xn are mutually distinct. We construct an instance I ′ =
(a1, a2, . . . , a2n, H) of the even–odd partition in the follow-
ing way:

a2i−1 = 1, a2i = xi + 1 for i = 1, 2, . . . , n,

123
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and H = E + n.

Since a2i − a2i−1 = xi for i = 1, 2, . . . , n, instance I ′
guarantees that |a2 − a1|, |a4 − a3|, . . . , |a2n − a2n−1| are
mutually distinct.

For each partition (I1, I2) of the index set {1, 2, . . . , n},
we define

I ′
1 = {2i − 1 : i ∈ I2, 1≤ i ≤ n} ∪ {2i : i ∈ I1, 1≤ i ≤ n}

and

I ′
2 = {2i − 1 : i ∈ I1, 1≤ i ≤ n} ∪ {2i : i ∈ I2, 1≤ i ≤ n}.

Then, (I ′
1, I ′

2) is a partition of the index set {1, 2, . . . , 2n}
such that |I ′

1 ∩ {2 j − 1, 2 j}| = |I ′
2 ∩ {2 j − 1, 2 j}| = 1 for

each j = 1, 2, . . . , n. Moreover, we have that
∑

j∈I ′
1

a j =
∑

2i−1∈I ′
1

a2i−1 +∑
2i∈I ′

1
a2i = ∑

i∈I2 1+∑
i∈I1(xi +1) =

∑
i∈I1 xi + |I1| + |I2| = ∑

i∈I1 xi + n. For I ′
2, we have a

similar result. We then have

∑

j∈I ′
1

a j =
∑

i∈I1

xi + n and
∑

j∈I ′
2

a j =
∑

i∈I2

xi + n.

First, suppose that (I1, I2) is a solution for instance I of
the partition. We then have that

∑
j∈I1 x j = ∑

j∈I2 x j = E .
From the definition of (I ′

1, I ′
2), (I ′

1, I ′
2) is a partition of the

index set {1, 2, . . . , 2n} such that |I ′
1 ∩{2 j −1, 2 j}| = |I ′

2 ∩
{2 j − 1, 2 j}| = 1 for each j = 1, 2, . . . , n. Furthermore,
we have that

∑
j∈I ′

1
a j = ∑

i∈I1 xi + n = E + n = H

and
∑

j∈I ′
2

a j = ∑
i∈I2 xi + n = E + n = H . That is,

∑
j∈I ′

1
a j = ∑

j∈I ′
2

a j = H . Hence, (I ′
1, I ′

2) is a solution for

instance I ′ of the even–odd partition.
Conversely, suppose that (I ′

1, I ′
2) is a solution for instance

I ′ of the even–odd partition. We then have that (I ′
1, I ′

2) is a
partition of the index set {1, 2, . . . , 2n} such that∑ j∈I ′

1
a j =

∑
j∈I ′

2
a j = H and |I ′

1∩{2 j−1, 2 j}| = |I ′
2∩{2 j−1, 2 j}| =

1 for each j = 1, 2, . . . , n. From the definition of (I ′
1, I ′

2),
(I1, I2) is a partition of the index set {1, 2, . . . , n}. And we
have that

∑
i∈I1 xi = ∑

j∈I ′
1

a j − n = H − n = E and
∑

i∈I2 xi = ∑
j∈I ′

2
a j −n = H −n = E . That is,

∑
i∈I1 xi =

∑
i∈I2 xi = E . Hence, (I1, I2) is a solution for instance I of

partition.
From the above discussion, (I1, I2) is a solution for

instance I of the partition if and only if (I ′
1, I ′

2) is a solu-
tion for instance I ′ of the even–odd partition. Consequently,
this special version of the even–odd partition is binary NP-
complete. The lemma follows. ��

For the above special version of the even–odd partition in
Lemma 3.2, we have the following observations:

• Deleting a pair {a2 j−1, a2 j } with a2 j−1 = a2 j (if any)
will result in an equivalent instance. Thenwemay assume
that a2 j−1 	= a2 j .

• Exchanging (if necessary) the indices of a2 j−1 and a2 j

will not affect the problem. Then we may assume that
a2 j−1 < a2 j .

• Renumbering (if necessary) the n pairs {a2 j−1, a2 j }, j =
1, 2, . . . , n, will not affect the problem.FromLemma3.2,
we may assume that a2 − a1 < a4 − a3 < · · · < a2n −
a2n−1.

• Replacing (if necessary) each pair {a2 j−1, a2 j } with a
new pair {a2 j−1 + K j , a2 j + K j }, j = 1, 2, . . . , n,
and replacing H with H + ∑n

j=1 K j will result in a
new equivalent instance, where K1, K2, . . . , Kn are n
nonnegative integers with polynomial size in that of
(a1, a2, . . . , a2n, H). By choosing suitable K1, K2, . . . , Kn ,
we can guarantee that a1 + K1 < a2 + K1 < a3 + K2 <

a4 + K2 < · · · < a2n−1 + Kn < a2n + Kn . Then we
may assume that a1 < a2 < · · · < a2n . Note that, if
necessary, we may also assume that a1 is suitably large.

• Instance (a1, a2, . . . , a2n, H) is equivalent to instance
(2a1, 2a2, . . . , 2a2n, 2H). Thus, we may assume that all
the integers in instance (a1, a2, . . . , a2n, H) are even.

Based on the above discussion, in the remainder of this
paper we consider only the instance (a1, a2, . . . , a2n, H) of
the even–odd partition such that all the 2n + 1 integers are
even, and moreover,

n(a2n − a2n−1) < a1 < a2 < · · · < a2n, (1)

and

2 ≤ a2 − a1 < a4 − a3 < · · · < a2n − a2n−1. (2)

We are ready to show the NP-hardness of problem 1|p(A)
j =

p(A)| ∑ C (A)
j : ∑

U (B)
j ≤ Q.

Theorem 3.1 Problem 1|p(A)
j = p(A)| ∑ C (A)

j : ∑
U (B)

j ≤
Q is binary NP-hard.

Proof For a given instance I = (a1, a2, · · · , a2n, H) of the
even–odd partition with all the 2n+1 integers in the instance
being even and with the two properties in (1) and (2), we
construct a job instanceJ as follows: there are 3n+1 jobs of
two types, n A-jobs J (A)

1 , J (A)
2 , . . . , J (A)

n and 2n + 1 B-jobs

J (B)
1 , J (B)

2 , . . . , J (B)
2n , J (B)

R , where each J (B)
j with 1 ≤ j ≤

2n is called a normal B-job, and J (B)
R is called the restricted

B-job. The processing times and due dates are displayed in
Table 2.

• M j = 3H(a2 j −a2 j−1)+ (n − j)(a2 j −a2 j−1)−a2 j−1

for i = 1, 2, . . . , n.
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Table 2 The scheduling
instance J Job Processing time Due date

J (A)
j p(A)

j = p(A) = 1 + ∑n−1
k=1(a2k − a2k−1)

J (B)
2 j−1 p(B)

2 j−1 = M j + a2 j−1 d(B)
2 j−1 = ∑ j−1

k=1 p(B)
2k + ( j − 1)p(A) + p(B)

2 j−1

J (B)
2 j p(B)

2 j = M j + a2 j d(B)
2 j = ∑ j−1

k=1 p(B)
2k + j p(A) + p(B)

2 j

J (B)
R p(B)

R = L d(B)
R = ∑n

j=1 M j + np(A) + H + L

· · · · · · · · ·
0 d

(B)
1 d

(B)
2 d

(B)
3 d

(B)
4 d

(B)
2n−2 d

(B)
2n−1 d

(B)
2n d

(B)
R

p
(B)
1 p

(B)
3 p

(B)
2n−1 L − δ

p(A) + p
(B)
2 p(A) + p

(B)
4 p(A) + p

(B)
2n

Fig. 1 The due dates for B-jobs in instance J

• L = n2 p(A)+n
∑2n

j=1 p(B)
j is a sufficiently large number.

Note that the definitions of processing times and due dates
for normal B-jobs can be rewritten together as

{
p(B)

j ′ = M j + a j ′,

d(B)

j ′ = ∑ j−1
k=1 p(B)

2k + � j ′/2
p(A) + p(B)

j ′
(3)

for every j ′ ∈ {2 j − 1, 2 j}, j = 1, 2, . . . , n.
Let the upper bound of

∑
U (B)

j be defined by Q = n, and

the threshold value of
∑

C (A)
j be given by

Y = n(n + 1)

2
p(A) +

n∑

j=1

(n − j)p(B)
2 j + 3Hδ, (4)

where δ = 1
2

∑n
j=1(a2 j −a2 j−1). It is not hard to verify that

L > Y .
The decision asks whether there is a feasible schedule σ

on the above job instance such that

∑
C (A)

j (σ ) ≤ Y and
∑

U (B)
j (σ ) ≤ n. (5)

Clearly, the above construction can be done in polynomial
time.

Note that p(A) < a1 and p(B)
2 j−1 < p(B)

2 j for j =
1, 2, . . . , n. We then have d(B)

2 j − d(B)
2 j−1 = p(A) + (a2 j −

a2 j−1) for j = 1, 2, . . . , n. Figure 1 shows the structure of
the due dates for all B-jobs in instance J .

For convenience, we call I = (a1, a2, · · · , a2n, H)

the partition instance in the sequel. We set J (A) =
{J (A)

1 , J (A)
2 , . . . , J (A)

n } and J (B) = {J (B)
1 , J (B)

2 , . . . ,

J (B)
2n , J (B)

R }. Since the n jobs in J (A) are indistinguishable,
in the sequel we consider only the schedules σ for instance
J , in which the A-jobs are scheduled in the order of their

indices in σ , i.e.,

J (A)
1 ≺σ J (A)

2 ≺σ · · · ≺σ J (A)
n . (6)

For each scheduleσ ofJ (or ofJ (B)), we useO(σ ) to denote
the set of on-time B-jobs in σ .
Outline of our proof According to the principle of NP-
hardness, we need to show that the partition instance I =
(a1, a2, · · · , a2n, H) has a solution if and only if there is a
feasible schedule σ of the scheduling instance J such that
the two inequalities in Eq. (5) are satisfied. To this end, the
following work will be done in the sequel:

• Some useful inequalities are established in Eqs. (7)–(11).
• Two important inequalities related to the due dates for

B-jobs are established in Lemma3.3.
• Nice sequences are introduced, followed by the establish-
ment of someuseful inequalities related to nice sequences
in Lemma 3.4.

• Some useful properties of the optimal schedules of prob-
lem 1||∑ U (B)

j are established in Lemma 3.5. From

Lemma 3.5, we see that
∑

U (B)
j (σ ) ≤ n in (5) is equiv-

alent to
∑

U (B)
j (σ ) = n.

• From the previous equations and from Lemmas 3.3–
3.5, some useful properties of the efficient schedules
(which are feasible schedules of problem 1||∑ C (A)

j :
∑

U (B)
j = n with

∑
C (A)

j ≤ Y ) are established in
Lemma 3.6.

• The schedules corresponding to the nice sequences are
introduced, followed by the establishment of an exact
expression for the value

∑
C (A)

j (σ ) in Eq. (19) for every
such schedule σ .

• Finally, by using Lemma 3.6 and Eq. (19), we can show
that the partition instance I = (a1, a2, . . . , a2n, H) has a
solution if and only if the job instance J has an efficient
schedule. The result then follows.
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Now let us begin our proof. From the definition of M j , for
j = 1, 2, . . . , n − 1, we have

M j+1 − M j

= 3H(a2 j+2 − a2 j+1) + (n − j − 1)

(a2 j+2 − a2 j+1) − a2 j+1

−3H(a2 j − a2 j−1) − (n − j)(a2 j − a2 j−1) + a2 j−1

> 3H(a2 j+2 − a2 j+1) − a2 j+1

− 3H(a2 j − a2 j−1) − n(a2 j − a2 j−1)

≥ 6H − n(a2 j − a2 j−1) − a2 j+1 (From (2))

> 6H − a1 − a2n (From (1) and (2))

> 4H > 0, (Since 2H = a1 + · · · + a2n)

that is,

M j+1 − M j > 4H > 0. (7)

Consequently, we have

M1 < M2 < · · · < Mn . (8)

From the definitions of the due dates and processing times
for B-jobs, we further have

3H < p(B)
1 < p(B)

2 < · · · < p(B)
2n < p(B)

R , (9)

and

d(B)
1 < d(B)

2 < · · · < d(B)
2n < d(B)

R . (10)

From (1) and (2), we have that np(A) < n2(a2n − a2n−1) <

na1 <
∑n

k=1 a2k−1 < H , that is,

H > np(A). (11)

The following lemma establishes two important inequal-
ities related to the due dates for B-jobs.

Lemma 3.3 (i) d(B)
2 j < 3H + p(B)

1 + p(B)
3 +· · ·+ p(B)

2 j−1, for
j = 1, 2, . . . , n, and

(ii) d(B)
R < 3H + p(B)

1 + p(B)
3 + · · · + p(B)

2n−1 + p(B)
R .

Proof For j = 1, 2, . . . , n, we have

3H + p(B)
1 + p(B)

3 + · · · + p(B)
2 j−1

= 2H + H +
j∑

k=1

(Mk + a2k−1)

>

j∑

k=1

(Mk + a2k−1) + 2H + np(A) (From (11))

>

j∑

k=1

(Mk + a2k) + np(A)

> d(B)
2 j .

This proves (i).
Note that we also have

3H + p(B)
1 + p(B)

3 + · · · + p(B)
2n−1 + p(B)

R

= H + 2H +
n∑

k=1

(Mk + a2k−1) + L

> np(A) +
n∑

k=1

Mk + 2H + L (From (11))

> np(A) +
n∑

k=1

Mk + H + L

= d(B)
R .

This proves (ii). The lemma follows. ��
For an index j ∈ {1, 2, . . . , n}, a sequence (1′, 2′, . . . , j ′)

of indices in {1, 2, . . . , 2 j} is called a j -nice sequence if k′ ∈
{2k − 1, 2k} for k = 1, 2, . . . , j . An n-nice sequence is also
called a nice sequence. It is easy to see that if (1′, 2′, . . . , n′)
is a nice sequence, then (1′, 2′, . . . , j ′) is a j-nice sequence
for j = 1, 2, . . . , n. The following lemma establishes some
useful inequalities related to nice sequences.

Lemma 3.4 Let (1′, 2′, . . . , j ′) be a j-nice sequence, where
j ∈ {1, 2, . . . , n}. Then we have the following inequalities:

(i) � j ′/2
p(A) + ∑ j
k=1 p(B)

k′ ≤ d(B)

j ′ ;

(ii) np(A) + ∑n
k=1 p(B)

k′ + p(B)
R ≤ d(B)

R if and only if∑n
k=1 ak′ ≤ H;

(iii) ( j + 1)p(A) + ∑ j
k=1 p(B)

k′ > d(B)

j ′ if j ≤ n − 1.

Proof The proof will follow from Eqs. (3), (9), and (10) and
the definition of d(B)

R .

The result in (i) holds, since � j ′/2
p(A) + ∑ j
k=1 p(B)

k′ ≤
� j ′/2
p(A) + ∑ j−1

k=1 p(B)
2k + p(B)

j ′ = d(B)

j ′ .

The result in (ii) followsbynoting thatnp(A)+∑n
k=1 p(B)

k′ +
p(B)

R = np(A) + ∑n
k=1 Mk + L + ∑n

k=1 ak′ and d(B)
R =

np(A) + ∑n
k=1 Mk + L + H .

The result in (iii) holds, since ( j +1)p(A) +∑ j
k=1 p(B)

k′ ≥
j p(A) + 1 + ∑n−1

k=1(a2k − a2k−1) + ∑ j
k=1(Mk + a2k−1) ≥

j p(A)+∑ j
k=1(Mk +a2k)+1 = d(B)

2 j +1 > d(B)
2 j . The lemma

follows. ��
To proceed with our proof, we next establish two lemmas

which will be used in our discussion.
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Lemma 3.5 For problem 1||∑ U (B)
j on B-jobs J (B) (with-

out considering A-jobs), every optimal schedule π has the
following properties:

(i) the (optimal) value of π is given by
∑

U (B)
j (π) = n;

(ii) exactly one job of each pair {J (B)
2 j−1, J (B)

2 j }, 1 ≤ j ≤ n,
is on time in π ;

(iii) J (B)
R is on time in π and is scheduled after all the other

on-time B-jobs in π ;
(iv) all on-time B-jobs are scheduled in the EDD order in

π ;
(v) all tardy B-jobs are scheduled after the restricted B-job

J (B)
R in π .

Proof Property (i) can be proved by applying the algorithm
presented byMoore (1968) for the problem1||∑ U j . Inwhat
follows, we will prove it in a different way to save space.

We first prove the followingweakened version of property
(i):

(i ′) the optimal value of problem 1||
∑

U (B)
j

on the instance of B-jobs is at most n.

To prove (i′), we consider the schedule σ = (J (B)
1 , J (B)

3 , . . . ,

J (B)
2n−1, J (B)

R , J (B)
2 , J (B)

4 , . . . , J (B)
2n ). Since J (B)

R has a very

large processing time L , the n B-jobs J (B)
2 , J (B)

4 , . . . , J (B)
2n

are tardy in σ . We will show that the other n + 1 B-jobs
J (B)
1 , J (B)

3 , . . . , J (B)
2n−1, J (B)

R are on time in σ .
FromLemma 3.4(i), by setting j ′ = 2 j −1 for each j with

1 ≤ j ≤ n, we have C (B)
2 j−1(σ ) = ∑ j

k=1 p(B)
2k−1 ≤ d(B)

2 j−1.

This implies that J (B)
1 , J (B)

3 , . . . , J (B)
2n−1 are on time in σ .

Note that C (B)
R (σ ) = ∑n

k=1 p(B)
2k−1 + p(B)

R < np(A) +
∑n

k=1 p(B)
2k−1 + p(B)

R . Since
∑n

k=1 a2k−1 < H , from

Lemma 3.4(ii), we have C (B)
R (σ ) < d(B)

R . Thus, J (B)
R is on

time in σ . This proves property (i′).
Now we consider an optimal schedule π for problem

1|| ∑ U (B)
j on B-jobs J (B). Let O(π) be the set of on-time

B-jobs in π .
By contradiction, suppose that property (ii) does not hold

for π . Let j be the smallest index in {1, 2, . . . , n} so that
{J (B)

2 j−1, J (B)
2 j } violates property (ii). Then, for each k with

1 ≤ k ≤ j − 1, exactly one job of each pair {J (B)
2k−1, J (B)

2k } is
on time in π , and moreover, J (B)

2 j−1 and J (B)
2 j are either both

tardy or both on time in π .
From property (i′), there are at least n on-time jobs

among {J (B)
1 , J (B)

2 , . . . , J (B)
2n } in π , or equivalently, |O(π)∩

{J (B)
1 , J (B)

2 , . . . , J (B)
2n }| ≥ n. Let v be the smallest index in

{ j, j+1, . . . , n} such that |O(π)∩{J (B)
1 , J (B)

2 , . . . , J (B)
2v }| ≥

v.

If v = j , by the choices of j and v, |O(π) ∩
{J (B)

2k−1, J (B)
2k }| = 1 for k = 1, 2, . . . , j −1 and {J (B)

2 j−1, J (B)
2 j }

⊆ O(π). Thus, from (9), (10), and Lemma 3.3(i), we have

d(B)
2 j = max{d(B)

i : i = 1, 2, . . . , 2 j}
≥ max{C (B)

i (π) : J (B)
i ∈ O(π) ∩ {J (B)

1 , J (B)
2 , . . . , J (B)

2 j }}

≥
j−1∑

k=1

min{p(B)
2k−1, p(B)

2k } + p(B)
2 j−1 + p(B)

2 j

=
j−1∑

k=1

p(B)
2k−1 + p(B)

2 j−1 + p(B)
2 j

> 3H +
j∑

k=1

p(B)
2k−1

> d(B)
2 j ,

a contradiction. Consequently, we have

v > j and O(π) ∩ {J (B)
2 j−1, J (B)

2 j } = ∅. (12)

From the definition of v, we further have

|O(π) ∩ {J (B)
1 , J (B)

2 , . . . , J (B)
2v }| = v. (13)

Now we suppose that O(π) ∩ {J (B)
1 , J (B)

2 , . . . , J (B)
2v } =

{J (B)

1′ , J (B)

2′ , . . . , J (B)

v′ } so that 1′ < 2′ < · · · < v′. From the
choices of j and v, together with (12) and (13), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J (B)

k′ ∈ {J (B)
2k−1, J (B)

2k }, for k = 1, 2, . . . , j − 1,

J (B)

k′ ∈ {J (B)
2k+1, J (B)

2k+2, . . . , J (B)
2v−2}, for k = j, j + 1, . . . , v − 2,

J (B)

(v−1)′ = J (B)
2v−1,

J (B)

v′ = J (B)
2v .

Consequently, from the definitions of J (B)
2 j−1 and J (B)

2 j and
(9), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(B)

k′ ≥ p(B)
2k−1 = Mk + a2k−1, for k = 1, 2, . . . , j − 1,

p(B)

k′ ≥ p(B)
2k+1 = Mk+1 + a2k+1, for k = j, j + 1, . . . , v − 2,

p(B)

(v−1)′ = p(B)
2v−1 = Mv + a2v−1,

p(B)

v′ = p(B)
2v = Mv + a2v.

(14)

Note that v ≥ j + 1. From (7), we have p(B)
2v = Mv + a2v >

M j +a2 j−1 +4H = p(B)
2 j−1 +4H > p(B)

2 j−1 +3H . From (9),
(10), (14), and Lemma 3.3(i), we have

d(B)
2v = max{d(B)

k′ : k = 1, 2, . . . , v}
≥ max{C (B)

k′ (π) : k = 1, 2, . . . , v}

≥
v∑

k=1

p(B)

k′
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=
j−1∑

k=1

p(B)

k′ +
v−2∑

k= j

p(B)

k′ + p(B)

(v−1)′ + p(B)

v′

≥
j−1∑

k=1

p(B)
2k−1 +

v−1∑

k= j+1

p(B)
2k−1 + p(B)

2v−1 + p(B)
2v

> 3H +
v∑

k=1

p(B)
2k−1

> d(B)
2v ,

a contradiction. Property (ii) follows.
Fromproperties (i′) and (ii), the restricted B-job J (B)

R must

be on time inπ . Since p(B)
R = L is a sufficiently large integer,

all the other on-time B-jobs must be scheduled before J (B)
R .

This proves property (iii).
From properties (i′), (ii), and (iii), we certainly have

∑
U (B)

j (π) = n, and so property (i) follows.

The above three properties enable us to define J (B)

j ′ , 1 ≤
j ≤ n, to be the unique job in O(π) ∩ {J (B)

2 j−1, J (B)
2 j }. Note

that, from property (iii), J (B)
R is the last on-time job in π .

To prove property (iv), by contradiction, we suppose that
there are two indices i and j with d(B)

i ′ < d(B)

j ′ such that J (B)

i ′

is scheduled after J (B)

j ′ in π . For our purpose, wemay choose
such a pair (i, j) so that i is as small as possible. From (10),
we have 1 ≤ i < j ≤ n. By the choice of (i, j), all the jobs
J (B)

k′ , 1 ≤ k ≤ i , and J (B)

j ′ are completed by time C (B)

i ′ (π) in
π . We then have

C (B)

i ′ (π) ≥
i∑

k=1

p(B)

k′ + p(B)

j ′

≥ 3H +
i∑

k=1

p(B)
2k−1 (From (9))

> d(B)
2i (From Lemma 3.3(i))

≥ d(B)

i ′ . (From (10))

This contradicts our assumption that J (B)

i ′ is on time in π .
Property (iv) follows.

Finally, if property (v) is violated, there must be a tardy
B-job J (B)

x which is scheduled before the restricted B-job
J (B)

R in π . Then all the jobs J (B)

k′ , 1 ≤ k ≤ n, J (B)
x and J (B)

R

are completed by time C (B)
R (π) in π . As a result, we have

C (B)
R (π) ≥

n∑

k=1

p(B)

k′ + p(B)
R + p(B)

x

≥ 3H +
n∑

k=1

p(B)
2k−1 + p(B)

R (From (9))

> d(B)
R . (From Lemma 3.3(ii))

This contradicts property (iii). The lemma follows. ��
From Lemma 3.5,

∑
U (B)

j (σ ) ≤ n in (5) is equivalent to
∑

U (B)
j (σ ) = n. Thus, we define an efficient schedule to be

a feasible schedule σ for instance J such that

∑
C (A)

j (σ ) ≤ Y and
∑

U (B)
j (σ ) = n. (15)

Lemma 3.6 Suppose that instance J has efficient schedules,
and let σ be an efficient schedule for instance J such that
∑

C (A)
j (σ ) is as small as possible. Then σ has the following

properties:

(i) the properties (ii)–(v) in Lemma 3.5 are still valid for
σ ;

(ii) all the A-jobs are scheduled before J (B)
R in σ ;

(iii) let J (B)

j ′ , 1 ≤ j ≤ n, be the on-time B-job in

{J (B)
2 j−1, J (B)

2 j }. Then J (B)

j ′ ≺σ J (A)
j+1 and J (A)

j ≺σ J (B)

( j+1)′
for j = 1, 2, . . . , n − 1;

(iv) for each j = 1, 2, . . . , n, there are only two possible
configurations for the triple {J (B)

2 j−1, J (A)
j , J (B)

2 j } in σ :

– either J (B)
2 j−1 is on time, J (B)

2 j is tardy, and J (B)
2 j−1 and

J (A)
j are scheduled consecutively in this order,

– or J (B)
2 j−1 is tardy, J (B)

2 j is on time, and J (A)
j and J (B)

2 j
are scheduled consecutively in this order.

Proof Suppose that σ is an efficient schedule for instance
J such that

∑
C (A)

j (σ ) is as small as possible. Then
∑

U (B)
j (σ ) = n. This means that the schedule obtained

from σ by deleting the A-jobs is also an optimal schedule
for problem 1||∑ U (B)

j on B-jobs J (B). Consequently, the
properties (ii)–(v) in Lemma 3.5 are still valid for σ .

Since p(B)
R = L > Y is a sufficiently large integer, all

A-jobs must be scheduled before J (B)
R in σ . Property (ii)

follows.
Recall that O(σ ) is the set of on-time B-jobs in σ . The

above discussion enables us to define J (B)

j ′ , 1 ≤ j ≤ n, to be

the unique job inO(σ )∩{J (B)
2 j−1, J (B)

2 j }. Then (1′, 2′, · · · , n′)
is a nice sequence. From property (i) and Lemma 3.5, in
schedule σ , the on-time B-jobs are scheduled in the order

J (B)

1′ ≺σ J (B)

2′ ≺σ · · · ≺σ J (B)

n′ . (16)

Recall that A-jobs are scheduled in the order as (6), i.e.,

J (A)
1 ≺σ J (A)

2 ≺σ · · · ≺σ J (A)
n .

To prove property (iii), by contradiction, we suppose that
there is some j ∈ {1, 2, . . . , n − 1} so that either J (A)

j+1 ≺σ

J (B)

j ′ or J (B)

( j+1)′ ≺σ J (A)
j .
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If J (A)
j+1 ≺σ J (B)

j ′ , from (6) and (16), we have {J (A)
1 , · · · ,

J (A)
j+1} ≺σ J (B)

j ′ , and {J (B)

1′ , · · · , J (B)

( j−1)′ } ≺σ J (B)

j ′ . Thus,

from Lemma 3.4(iii), we have C (B)

j ′ (σ ) ≥ ( j + 1)p(A) +
∑ j

k=1 p(B)

k′ > d(B)

j ′ . This contradicts our assumption that

J (B)

j ′ is on time in σ .

Now, by the choice of j , we must have J (B)

( j+1)′ ≺σ J (A)
j .

From (6) and (16), again, there must be a pair of indices x
and y with 1 ≤ x < y ≤ n such that J (B)

y′ ≺σ J (A)
x and J (B)

y′

and J (A)
x are consecutively scheduled in σ , i.e., C (B)

y′ (σ ) =
S(A)

x (σ ), where S(A)
x (σ ) is the starting time of J (A)

x in σ .
Let σ ′ be the new schedule obtained from σ by exchang-
ing the positions of J (B)

y′ and J (A)
x . From Lemma 3.4(i),

we have C (B)

y′ (σ ′) = C (A)
x (σ ) = ∑y

k=1 p(B)

k′ + xp(A) ≤
∑y

k=1 p(B)

k′ + (y − 1)p(A) ≤ d(B)

y′ . This implies that J (B)

y′ is

also on time in σ ′, and so
∑

U (B)
j (σ ′) = ∑

U (B)
j (σ ) = n.

But
∑

C (A)
j (σ ′) <

∑
C (A)

j (σ ). This contradicts the defini-
tion of σ . Property (iii) follows.

To prove property (iv), we note from property (iii) that

J (B)

( j−1)′ ≺σ J (A)
j ≺σ J (B)

( j+1)′ and J (A)
j−1 ≺σ J (B)

j ′ ≺σ J (A)
j+1.

(17)

By contradiction, suppose that there is some index j ∈
{1, 2, . . . , n} such that the triple {J (B)

2 j−1, J (A)
j , J (B)

2 j } violates
property (iv).

Let S( j)(σ ) = min{S(B)
2 j−1, S(A)

j , S(B)
2 j }be the earliest start-

ing time for the three jobs J (B)
2 j−1, J (A)

j , J (B)
2 j in σ . From

(17), J (B)

k′ and J (A)
k , 1 ≤ k ≤ j − 1, are just all the

jobs completed by time S( j)(σ ), implying that S( j)(σ ) =∑ j−1
k=1 p(B)

k′ + ( j − 1)p(A). Thus, we have

j−1∑

k=1

p(B)
2k−1+( j−1)p(A) ≤ S( j)(σ ) ≤

j−1∑

k=1

p(B)
2k +( j−1)p(A).

(18)

Suppose that j ′ = 2 j − 1 and J (A)
j is scheduled before

J (B)
2 j−1. Then we have

C (B)
2 j−1(σ ) = S( j)(σ ) + p(A) + p(B)

2 j−1

≥
j−1∑

k=1

p(B)
2k−1 + ( j − 1)p(A) + p(A)

+ M j + a2 j−1 (From (18))

=
j−1∑

k=1

(Mk + a2k−1) + p(A) + ( j − 1)p(A)

+ M j + a2 j−1

≥
j−1∑

k=1

(Mk + a2k) + 1 + ( j − 1)p(A)

+ M j + a2 j−1

= d(B)
2 j−1 + 1

> d(B)
2 j−1.

This contradicts our assumption that J (B)
2 j−1 = J (B)

j ′ is on time
in σ .

From (17) and the choice of j , the above discussion
implies that j ′ = 2 j and J (A)

j is scheduled after J (B)
2 j . Let

σ ′ be the new schedule obtained from σ by exchanging the
positions of J (A)

j and J (B)
2 j . From property (iii), the com-

pletion times for other jobs except J (A)
j and J (B)

2 j in σ ′ are
the same as they are in σ . From (18), we have C (B)

2 j (σ ′) =
S( j)(σ ) + p(A) + p(B)

2 j ≤ ∑ j
k=1 p(B)

2k + j p(A) = d(B)
2 j . Then

J (B)
2 j is still on time in σ ′, and so

∑
U (B)

j (σ ′) = ∑
U (B)

j (σ ).

But then
∑

C (A)
j (σ ′) <

∑
C (A)

j (σ ). This contradicts the
choice of σ . Property (iv) follows. ��

Given a nice sequence (1′, 2′, . . . , n′), let (1′′, 2′′, . . . , n′′)
be the sequence such that { j ′, j ′′} = {2 j − 1, 2 j} for j =
1, 2, . . . , n. We then define a schedule σ ofJ corresponding
to the nice sequence (1′, 2′, . . . , n′) in the following way:

{J (A)
1 , J (B)

1′ } ≺σ {J (A)
2 , J (B)

2′ } ≺σ · · · ≺σ {J (A)
n , J (B)

n′ }
≺σ J (B)

R ≺σ {J (B)

j ′′ : j = 1, 2, . . . , n},

where, for j = 1, 2, . . . , n, we have

{
J (A)

j ≺σ J (B)

j ′ , if j ′ = 2 j,

J (B)

j ′ ≺σ J (A)
j , if j ′ = 2 j − 1.

For j = 1, 2, . . . , n, we have

C (A)
j (σ ) =

{
j p(A) + ∑ j

k=1 p(B)

k′ , if j ′ = 2 j − 1,

j p(A) + ∑ j−1
k=1 p(B)

k′ , if j ′ = 2 j .

Hence, we have

n∑

j=1

C (A)
j (σ )

=
n∑

j=1

j p(A) +
∑

j : j ′=2 j−1

j∑

k=1

p(B)

k′

+
∑

j : j ′=2 j

j−1∑

k=1

p(B)

k′
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= n(n + 1)

2
p(A) +

∑

j : j ′=2 j−1

(n + 1 − j)p(B)
2 j−1

+
∑

j : j ′=2 j

(n − j)p(B)
2 j

= n(n + 1)

2
p(A) +

n∑

j=1

(n − j)p(B)
2 j

+
∑

j : j ′=2 j−1

p(B)
2 j−1

−
∑

j : j ′=2 j−1

(n − j)
(

p(B)
2 j − p(B)

2 j−1

)

= n(n + 1)

2
p(A) +

n∑

j=1

(n − j)p(B)
2 j

+
∑

j : j ′=2 j−1

(M j + a2 j−1)

−
∑

j : j ′=2 j−1

(n − j)(a2 j − a2 j−1)

= n(n + 1)

2
p(A) +

n∑

j=1

(n − j)p(B)
2 j

+
∑

j : j ′=2 j−1

3H(a2 j − a2 j−1).

From the definition of Y in (4), we have

n∑

j=1

C (A)
j (σ ) = Y − 3Hδ +

∑

j : j ′=2 j−1

3H(a2 j − a2 j−1).

(19)

Now let us return to the NP-hardness proof. We need
to show in the following that the partition instance I =
(a1, a2, . . . , a2n, H) has a solution if and only if the job
instance J has an efficient schedule. Note that M j =
3H(a2 j − a2 j−1) + (n − j)(a2 j − a2 j−1) − a2 j−1. Then
we have

M j + a2 j−1 − (n − j)(a2 j − a2 j−1) = 3H(a2 j − a2 j−1)

for j = 1, 2, . . . , n. (20)

Suppose first that the partition instance I has a solu-
tion. Then there is a partition (I1, I2) of the index set
{1, 2, . . . , 2n} such that |I1 ∩ {2 j − 1, 2 j}| = |I2 ∩
{2 j − 1, 2 j}| = 1 for j = 1, 2, . . . , n, and

∑
j∈I1 a j =

∑
j∈I2 a j = H . For our purpose, we write I1 = {1′, 2′, . . . ,

n′} and I2 = {1′′, 2′′, . . . , n′′} such that { j ′, j ′′} = {2 j −
1, 2 j} for j = 1, 2, . . . , n. Then

∑n
k=1 ak′ = ∑n

k=1 ak′′ =
H . Recall that δ = 1

2

∑n
j=1(a2 j − a2 j−1). Then 2δ =

∑
j : j ′=2 j−1(a2 j − a2 j−1) + ∑

j : j ′=2 j (a2 j − a2 j−1) and
∑

j : j ′=2 j−1(a2 j − a2 j−1) − ∑
j : j ′=2 j (a2 j − a2 j−1) =

∑n
j=1 a j ′′ − ∑n

j=1 a j ′ = H − H = 0. Therefore, we have

δ =
∑

j : j ′=2 j−1

(a2 j − a2 j−1). (21)

Let σ be the schedule of J corresponding to the nice
sequence (1′, 2′, . . . , n′).

From (19) and (21), we have
∑

C (A)
j (σ ) = Y .

For each j ∈ {1, 2, . . . , n}, from Lemma 3.4(i), we have
C (B)

j ′ (σ ) = ∑ j
k=1 p(B)

k′ + � j ′/2
p(A) ≤ d(B)

j ′ . Hence, the

n B-jobs J (B)

j ′ , 1 ≤ j ≤ n, are on time in σ . For the

restricted B-job J (B)
R , from Lemma 3.4(ii) and from the fact

that
∑n

k=1 ak′ = H , we have C (B)
R (σ ) = ∑n

k=1 p(B)

k′ +
np(A) + p(B)

R ≤ d(B)
R . Thus, J (B)

R is also on time in σ . Since

J (B)
R has a sufficiently large processing time, it is easy to ver-

ify that all the B-jobs in {J (B)

j ′′ : j = 1, 2, . . . , n} are tardy
in σ . It follows that

∑
U (B)

j (σ ) = n. Thus, σ is an efficient
schedule for instance J .

Conversely, suppose that σ is an efficient schedule for
instance J . Then,

∑
C (A)

j (σ ) ≤ Y and
∑

U (B)
j (σ ) = n.

For our purpose, we may assume that σ is chosen such that
∑

C (A)
j (σ ) is as small as possible. Recall that O(σ ) is the

set of on-time B-jobs in σ . According to Lemma 3.6, J (B)
R

is on time in σ . Then |O(σ ) ∩ {J (B)
1 , J (B)

2 , . . . , J (B)
2n }| = n.

Assume that O(σ ) ∩ {J (B)
1 , J (B)

2 , . . . , J (B)
2n } = {J (B)

j ′ : 1 ≤
j ≤ n} such that 1′ < 2′ < · · · < n′. From Lemma 3.6, we
have j ′ ∈ {2 j − 1, 2 j} for j = 1, 2, . . . , n, and moreover,
(1′, 2′, . . . , n′) is a nice sequence and σ is the schedule of J
corresponding to (1′, 2′, . . . , n′).

Set I1 = { j ′ : 1 ≤ j ≤ n} and I2 = {1, 2, . . . , 2n}\I1.We
will show that (I1, I2) is a solution for the partition instance
I.

Since J (B)
R is on time in σ , we have d(B)

R ≥ C (B)
R =

np(A) + ∑n
j=1 p(B)

j ′ + p(B)
R . From Lemma 3.4(ii), we have

∑

j∈I1

a j =
n∑

j=1

a j ′ ≤ H . (22)

Since
∑

C (A)
j (σ ) ≤ Y , from (19), we have Y ≥

∑
C (A)

j (σ ) = Y − 3Hδ + ∑
j : j ′=2 j−1 3H(a2 j − a2 j−1),

implying that
∑

j : j ′=2 j−1(a2 j − a2 j−1) ≤ δ. Note that

δ = 1
2

∑n
j=1(a2 j −a2 j−1). Then we have

∑
j : j ′=2 j−1(a2 j −

a2 j−1) ≤ ∑
j : j ′=2 j (a2 j − a2 j−1), or equivalently,

∑

j∈I2

a j ≤
∑

j∈I1

a j . (23)
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Since
∑

j∈I1 a j + ∑
j∈I2 a j = 2H , from (22) and (23), we

conclude that
∑

j∈I1 a j = ∑
j∈I2 a j = H . Consequently,

(I1, I2) is a solution for the partition instance I. The result
follows. ��

We use 1||Lex (γ1, γ2) to denote the single machine hier-
archical optimization problem, where γ1 is the primary
criterion and γ2 is the secondary criterion. The objective is
to minimize the secondary criterion γ2 under the constraint
that the primary criterion γ1 is optimized.

From the above discussion, we have the following corol-
lary.

Corollary 3.1 Problem1|p(A)
j = p(A)|Lex (

∑
U (B)

j ,
∑

C (A)
j )

is binary NP-hard.
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Appendix: Proof of Observation 2.2

Proof The proof of Lemma 1 in Leung et al. (2010b) is
based on the assumption that there exists a solution for
the given instance of the even–odd partition, that is, there
is a partition (I1, I2) of the index set {1, 2, . . . , 2n} with
|I1 ∩ {2i − 1, 2i}| = 1 and |I2 ∩ {2i − 1, 2i}| = 1 for each
i = 1, 2, . . . , n such that

∑
j∈I1 a j = ∑

j∈I2 a j = H . From
Observation 2.1, the condition

∑
j∈I1 a j = ∑

j∈I2 a j = H
is equivalent to condition (C1). The aim of their Lemma 1 is
to show that there is a schedule such that

∑
Ca

j ≤ T C and
∑

U b
j ≤ n. This is achieved by constructing a schedule π .

To guarantee that their constructed schedule π satisfies
∑

U b
j (π) ≤ n, the R-job must be on time in the schedule.

Then we have

∑

i :2i−1∈I1

p2i−1 +
∑

i :2i∈I1

p2i +
n∑

i=1

xi + L

=
∑

i :2i−1∈I1

a2i−1 +
∑

i :2i∈I1

(a2i + (li − 1)σi )

+
n∑

i=1

xi + L

=
n∑

i=1

xi + H + L +
∑

i :2i∈I1

(li − 1)σi

=
n∑

i=1

xi + H + L +
∑

i :2i∈I1

liσi

−
∑

i :2i∈I1

σi +
∑

i :2i−1∈I1

liσi −
∑

i :2i−1∈I1

liσi

=
n∑

i=1

xi + H + L +
n∑

i=1

liσi

−
∑

i :2i−1∈I1

liσi −
∑

i :2i∈I1

σi

=
n∑

i=1

xi + H + L +
n∑

i=1

liσi

−
∑

i :2i−1∈I1

liσi − 1

2

n∑

i=1

σi

≤ dR =
n∑

i=1

xi +
[

H + 1

2

n∑

i=1

(li − 1)σi

]

+ L.

Thus, we have
∑

i :2i−1∈I1 liσi ≥ 1
2

∑n
i=1 liσi .

On the other hand, to guarantee that the total completion
time of agent A is no more than T C , we should have

∑

i :2i−1∈I1

(n − i + 1)p2i−1 +
∑

i :2i∈I1

(n − i)p2i

+
n∑

i=1

(n − i + 1)xi

=
∑

i :2i−1∈I1

(n − i + 1)a2i−1 +
∑

i :2i∈I1

(n − i)(a2i

+ (li − 1)σi ) +
n∑

i=1

(n − i + 1)xi

+
∑

i :2i−1∈I1

(n − i)(a2i + (li − 1)σi )

−
∑

i :2i−1∈I1

(n − i)(a2i + (li − 1)σi )

=
n∑

i=1

(n − i)(a2i + (li − 1)σi )

+
n∑

i=1

(n − i + 1)xi +
∑

i :2i−1∈I1

a2i−1

−
∑

i :2i−1∈I1

(n − i)(a2i − a2i−1 + (li − 1)σi )

=
n∑

i=1

(n − i)(a2i + (li − 1)σi ) +
n∑

i=1

(n − i + 1)xi

+
∑

i :2i−1∈I1

(a2i−1 − (n − i)liσi )

=
n∑

i=1

(n − i)(a2i + (li − 1)σi )

+
n∑

i=1

(n − i + 1)xi +
∑

i :2i−1∈I1

liσi
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≤ T C =
n∑

i=1

(n − i)(a2i + (li − 1)σi )

+
n∑

i=1

(n − i + 1)xi + 1

2

n∑

i=1

liσi .

Thus, we have
∑

i :2i−1∈I1 liσi ≤ 1
2

∑n
i=1 liσi .

From the above discussion, we can see that the correct-
ness of their Lemma 1 needs the correctness of condition
(C2), i.e.,

∑
i :2i−1∈I1 liσi = ∑

i :2i−1∈I2 liσi = 1
2

∑n
i=1 liσi .

Consequently, the correctness of their Lemma 1 requires that

Condition (C1) implies condition (C2). (A)

The proof of Lemma 10 in Leung et al. (2010b) is based
on the assumption that there exists a solution for problem
1|| ∑ Ca

j ≤ T C : ∑
U b

j ≤ n on the constructed scheduling
instance. The aim is to show that there exists a solution for
the instance of the even–odd partition.

Their proof also uses the results in their Lemmas 2–9. We
do not need to state all of the steps, but the R-job must be on
time, and the total completion time for agent A is no more
than T C . Then, from Lemmas 2–9, we have

n∑

i=1

p2i +
n∑

i=1

xi + L −
∑

i :P2i−1 is early
liσi

=
n∑

i=1

(a2i + (li − 1)σi ) +
n∑

i=1

xi + L

−
∑

i :P2i−1 is early
liσi

= H + 1

2

n∑

i=1

σi +
n∑

i=1

(li − 1)σi +
n∑

i=1

xi + L

−
∑

i :P2i−1 is early
liσi

=
n∑

i=1

xi + H + L +
n∑

i=1

liσi − 1

2

n∑

i=1

σi

−
∑

i :P2i−1 is early
liσi

≤ dR =
n∑

i=1

xi +
[

H + 1

2

n∑

i=1

(li − 1)σi

]

+ L,

and

n∑

i=1

(n − i)p2i +
n∑

i=1

(n − i + 1)xi

+
∑

i :P2i−1 is early
liσi

=
n∑

i=1

(n − i)(a2i + (li − 1)σi )

+
n∑

i=1

(n − i + 1)xi +
∑

i :P2i−1 is early
liσi

≤ T C =
n∑

i=1

(n − i)(a2i + (li − 1)σi )

+
n∑

i=1

(n − i + 1)xi + 1

2

n∑

i=1

liσi .

Hence, we have that

∑

i :P2i−1 is early
liσi ≥ 1

2

n∑

i=1

liσi and
∑

i :P2i−1 is early
liσi ≤ 1

2

n∑

i=1

liσi .

That is,

∑

i :P2i−1 is early
liσi =

∑

i :P2i−1 is tardy
liσi = 1

2

n∑

i=1

liσi . (C2′)

Note that condition (C2′) is potentially implied in the proof
of their Lemma 10. After this, the authors of Leung et al.
(2010b) directly conclude that the instance of the even–odd
partition has a solution. In the normal deduction, we should
add the following procedure.

Let I1 = {2i −1 : P2i−1 is early}∪ {2i : P2i is early} and
I2 = {1, 2, . . . , 2n} \ I1. The results in their Lemmas 2-9
imply that |I1∩{2i−1, 2i}| = 1 and |I2∩{2i−1, 2i}| = 1 for
each i = 1, 2, . . . , n. Now condition (C2′) can be rewritten
as condition (C2), i.e.,

∑
i :2i−1∈I1 liσi = ∑

i :2i−1∈I2 liσi =
1
2

∑n
i=1 liσi . Thus, from Observation 2.1, the correctness of

their Lemma 10 requires that

Condition (C2) implies condition (C1). (A)

From equations (A) and (B), we conclude that if their
Lemmas 1 and 10 are correct, then for every partition (I1, I2)
of the index set {1, 2, . . . , 2n} with |I1 ∩ {2i − 1, 2i}| = 1
and |I2 ∩ {2i − 1, 2i}| = 1 for each i = 1, 2, . . . , n, the two
conditions (C1) and (C2) are equivalent. ��
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