
Journal of Scheduling (2020) 23:163–176
https://doi.org/10.1007/s10951-018-0597-6

The Longest Processing Time rule for identical parallel machines
revisited

Federico Della Croce1,2 · Rosario Scatamacchia1

Published online: 18 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We consider the Pm ||Cmax scheduling problem where the goal is to schedule n jobs onm identical parallel machines (m < n)

to minimize makespan. We revisit the famous Longest Processing Time (LPT) rule proposed by Graham in 1969. LPT
requires to sort jobs in non-ascending order of processing times and then to assign one job at a time to the machine whose
load is smallest so far. We provide new insights into LPT and discuss the approximation ratio of a modification of LPT that

improves Graham’s bound from
(4
3 − 1

3m

)
to

(
4
3 − 1

3(m−1)

)
form ≥ 3 and from 7

6 to
9
8 form = 2.We use linear programming

to analyze the approximation ratio of our approach. This performance analysis can be seen as a valid alternative to formal
proofs based on analytical derivation. Also, we derive from the proposed approach an O(n log n) time complexity heuristic.
The heuristic splits the sorted job set in tuples of m consecutive jobs (1, . . . ,m;m + 1, . . . , 2m; etc.) and sorts the tuples in
non-increasing order of the difference (slack) between largest job and smallest job in the tuple. Then, given this new ordering
of the job set, list scheduling is applied. This approach strongly outperforms LPT on benchmark literature instances and is
competitive with more involved approaches such as COMBINE and LDM.

Keywords Identical parallel machine scheduling · LPT rule · Linear programming · Approximation algorithms

1 Introduction

We consider the Pm ||Cmax scheduling problem [as denoted
in the three-field classification by Graham et al. (1979)]
where the goal is to schedule n jobs on m identical paral-
lel machines Mi (i = 1, . . . ,m) to minimize the makespan.
Pm ||Cmax is strongly NP-hard (Garey and Johnson 1979) and
has been intensively investigated in the literature both from
a theoretical and a practical point of view. For an exhaus-
tive discussion, we refer, among others, to books by Leung
et al. (2004), Pinedo (2016) and to the comprehensive sur-
vey by Chen et al. (1999). The pioneering approximation
algorithm for the problem is the Longest Processing Time
(LPT) rule proposed by Graham (1969). It requires to sort

B Federico Della Croce
federico.dellacroce@polito.it

Rosario Scatamacchia
rosario.scatamacchia@polito.it

1 Dipartimento di Ingegneria Gestionale e della Produzione,
Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Turin, Italy

2 CNR, IEIIT, Turin, Italy

the jobs in non-ascending order of their processing times
p j (j = 1, . . . , n) and then, given the sorted job set, to
assign one job at a time to the machine whose load is small-
est so far. This assignment of jobs to machines is also known
as list scheduling (LS). Several properties have been estab-
lished for LPT in the last decades (Graham 1969; Coffman Jr.
and Sethi 1976; Chen 1993; Blocher and Sevastyanov 2015).
Among the various approaches explicitly based on the LPT
rule, we mention also Dosa (2004), Dosa and Vizvari (2006).
We recall the main theoretical results for LPT in the next
section. LPT generally exhibits much better performance in
practice than the expected theoretical ratios, especially as the
number of jobs gets larger. Frenk and Rinnooy Kan (1987)
also showed that LPT is asymptotically optimal under mild
conditions on the probability distribution of the job process-
ing times. Due to its simplicity and practical effectiveness,
LPT became a cornerstone for the design of more involving
exact or heuristic algorithms.
We mention other popular approximation algorithms which
exploit connections of Pm ||Cmax with bin packing: MULTI-
FIT (Coffman Jr. et al. 1978), COMBINE (Lee and Massey
1988) and LISTFIT (Gupta and Ruiz-Torres 2001). Such
algorithms provide better worst-case performance than LPT

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-018-0597-6&domain=pdf
http://orcid.org/0000-0003-2897-183X

164 Journal of Scheduling (2020) 23:163–176

but at the cost of higher running times. More recently, other
more involved heuristics are available (see, e.g., Paletta
and Ruiz-Torres 2015) that require, however, much higher
computational effort. In addition, we mention the Largest
Differencing Method (LDM) proposed by Karmarkar and
Karp (1982), an efficient polynomial-time algorithm for
which Michiels et al. (2007) showed that an approximation
ratio not superior to the LPT ratio holds. Also, polynomial-
time approximation schemes (PTASs) were derived for the
problem. The first PTAS was given by Hochbaum and
Shmoys (1987). PTASs with improved running times were
then provided by Alon et al. (1998), Hochbaum (1997),
Jansen (2010). Recently, an improved PTAS has been pro-
posed by Jansen et al. (2017).

The contribution of this work is twofold. First, we revisit
the LPT rule and provide a simple algorithmic variant that
manages to improve the long-standing approximation ratio
derived by Graham (1969) keeping the same computational
complexity. To establish our theoretical results, we also
employ linear programming (LP) to analyze the worst-case
performance of the proposed algorithm and to derive approx-
imation bounds. In a sense, this paper can also be seen as a
follow-up of the work of Mireault et al. (1997) where several
LPs were used to determine the worst-case approximation
ratio of LPT on two uniform machines. Recently a growing
attention has been paid to the use of LP modeling for the
derivation of formal proofs (see Chimani and Wiedera 2016;
Abolhassani et al. 2016; Della Croce et al. 2018) and we also
show here a successful application of this technique.
We then move from approximation to heuristics. By gen-
eralizing the proposed LPT-based approach, we obtain a
simple algorithm running in O(n log n) time which drasti-
cally improves upon LPT and can hence be regarded as a
valuable alternative to the most popular constructive heuris-
tic designed for this problem.

2 Notation and LPT properties

We first recall the main theoretical properties of LPT applied
to Pm ||Cmax. From now on, we will consider the job
set J = {1, . . . , n} sorted by non-increasing p j (p j ≥
p j+1, j = 1, . . . , n − 1). We denote the solution values of
the LPT schedule and the optimal makespan by CLPT

m (J)

and C∗
m(J), respectively, where index m indicates the num-

ber of machines. Also, similarly to Chen (1993), we denote

by r LPTl the performance ratio CLPT
m (J)

C∗
m (J)

of an LPT schedule
with l jobs assigned to the machine yielding the completion
time (the critical machine) and by j ′ the last job assigned to
the machine that gives the corresponding makespan (the crit-
ical job). As usually employed in theworst-case performance
analysis of LPT, from now on we assume that the critical job

is the last one, namely j ′ = n. Otherwise, we would have
other jobs scheduled after the critical job that do not affect
the makespan provided by LPT but can contribute to increase
the optimal solution value. We summarize hereafter bounds
on C∗

m(J) and properties of the LPT schedule available in
the literature.

Proposition 1 (Pinedo2016)The following expressions hold:

C∗
m(J) ≥ max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

j=1
p j

m
, p1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

; (1)

CLPT
m (J) = C∗

m(J) if p j ′ >
C∗
m(J)

3
; (2)

otherwise, i.e., if p j ′ ≤ C∗
m(J)

3
,

CLPT
m (J) ≤

j ′∑

j=1
p j

m
+ p j ′

(
1 − 1

m

)

≤ C∗
m(J) + p j ′

(
1 − 1

m

)
. (3)

Proposition 2 (Chen 1993) For each job i assigned by LPT
in position j on a machine, the following inequality holds

pi ≤ C∗
m(J)

j
. (4)

Proposition 3 The following tight approximation ratios hold
for LPT:

r LPT2 ≤ 4

3
− 1

3(m − 1)
; (Chen 1993) (5)

r LPTl ≤ l + 1

l
− 1

lm
l ≥ 3. (Coffman Jr. and Sethi 1976)

(6)

Approximation bounds (6) were derived by Coffman Jr. and
Sethi (1976) and are also known as the a posteriori gener-
alized bounds. For l = 3, the corresponding approximation
ratio of 4

3 − 1
3m is the well-known Graham’s bound (Gra-

ham 1969) and constitutes the worst-case bound for LPT. A
straightforward implication of Proposition 2 is the following:

Lemma 1 If LPT provides a schedule where a non-critical
machine processes at least k jobs before the critical job j ′,
then CLPT

m (J)

C∗
m (J)

≤ k+1
k − 1

km .

Proof Denote by i the job in the kth position on the non-

critical machine, with pi ≥ p j ′ . Since we have pi ≤ C∗
m (J)

k

from Proposition 2 and p j ′ ≤ C∗
m (J)

k also holds, we get from
inequality (3) that CLPT

m (J) ≤ (k+1
k − 1

km)C∗
m(J). ��

123

Journal of Scheduling (2020) 23:163–176 165

3 LPT revisited

3.1 Results for LPT

We provide here further insights into the Longest Processing
Time rule. We first elaborate on the approximation bound
provided in Lemma 1. We state the following proposition.

Proposition 4 If LPT schedules at least k jobs on a non-
critical machine before assigning the critical job, then
CLPT
m (J)

C∗
m (J)

≤ k+1
k − 1

k(m−1) for m ≥ k + 2.

Proof First, we can assume that the critical machine pro-
cesses at least two jobs; otherwise, the LPT solution would
be optimal as C∗

m(J) ≥ p1 due to Proposition 1. Also, due

to Proposition 2, condition pn ≤ C∗
m (J)

k holds. Denote by tc
the completion time of the critical machine before loading
critical job n. We have CLPT

m (J) = tc + pn . Also, denote by
t ′ the completion time of a non-critical machine processing
at least k jobs and by t ′′ the sum of completion times of the

other (m−2)machines, namely t ′′ =
n∑

j=1
p j − t ′ −(tc+ pn).

Since the applicationof list scheduling to the sorted jobs, each
of the (m − 2) machines must have a completion time not
inferior to tc. Hence, the following inequality holds

t ′′

m − 2
≥ tc. (7)

We now rely on linear programming to evaluate the worst-
case performance ratio of LPT for any k ≥ 1 andm ≥ k+2.
More precisely, we introduce an LP formulation where we
can arbitrarily set the value CLPT

m (J) to 1 and minimize the
value of C∗

m(J). We associate nonnegative variables sum p

and opt with
n∑

j=1
p j and C∗

m(J), respectively. We also con-

sider completion times tc, t ′, t ′′ and processing time pn
as nonnegative variables in the LP model. Since we have

pn ≤ C∗
m (J)

k , we introduce an auxiliary slack variable sl
to write the corresponding constraint in the LP model as
pn + sl − opt

k = 0. This implies the following LP model
parametric in m and k:

minimize opt (8)

subject to − m · opt + sum p ≤ 0 (9)

k · pn − t ′ ≤ 0 (10)

tc − t ′ ≤ 0 (11)

(m − 2)tc − t ′′ ≤ 0 (12)

(tc + pn) + t ′ + t ′′ − sum p = 0 (13)

tc + pn = 1 (14)

pn + sl − opt

k
= 0 (15)

tc, t
′, t ′′, pn, sum p, opt, sl ≥ 0 (16)

The minimization of the objective function (8), after set-
ting without loss of generality the LPT solution value to 1
(constraint (14)), provides an upper bound on the perfor-
mance ratio of LPT rule. Constraint (9) represents the bound

C∗
m(J) ≥

∑n
j=1 p j

m , while constraint (10) states that the value
of t ′ is at the least kpn , since k jobs with a processing time
not inferior to pn are assigned to the non-critical machine.
Constraint (11) states that the completion time of the critical
machine before the execution of the last job is not superior to
the completion time of the other machine processing at least
k jobs. Constraint (12) fulfills inequality (7). Constraint (13)
guarantees that variable sum p corresponds to

∑n
j=1 p j and

constraint (15) represents condition pn ≤ C∗
m (J)

k . Eventu-
ally, constraints (16) state that all variables are nonnegative.
Note that model (8)–(16) is independent from the number
of jobs n. By analyzing the solutions of model (8)–(16) for
several given values of m and k, we were able to deduce that
a feasible solution of the model, for any k ≥ 1 and m ≥ 2,
is:

tc = k(m − 1) − 1

(k + 1)m − k − 2
; pn = m − 1

(k + 1)m − k − 2
;

t ′ = k(m − 1)

(k + 1)m − k − 2
; t ′′ = (m − 2)(k(m − 1) − 1)

(k + 1)m − k − 2
;

opt = k(m − 1)

(k + 1)m − k − 2
; sum p = m(m − 1)k

(k + 1)m − k − 2
;

sl = 0.

We can show by strong duality that such a solution is in
fact optimal for any m ≥ k + 2. Plugging pn = opt

k − sl
from constraint (15) in constraints (13) and (14), we get an
equivalent reduced LP model. If we associate dual variables
λi (i = 1, . . . , 6) with constraints (9)–(14), respectively, the
corresponding dual formulation of the reduced problem is as
follows:

maximize λ6 (17)

subject to − mλ1 + λ2 + λ5 + λ6

k
≤ 1 (18)

λ1 − λ5 ≤ 0 (19)

− k · λ2 − λ5 − λ6 ≤ 0 (20)

− λ2 − λ3 + λ5 ≤ 0 (21)

λ3 + (m − 2)λ4 + λ5 + λ6 ≤ 0 (22)

− λ4 + λ5 ≤ 0 (23)

λ1, λ2, λ3, λ4 ≤ 0 (24)

123

166 Journal of Scheduling (2020) 23:163–176

where the dual constraints (18)–(23) are related to the
primal variables opt , sum p, sl, t ′, tc, t ′′, respectively. For
any m ≥ k + 2, a feasible solution of model (17)–(24) is

λ1 = λ2 = λ4 = λ5 = −k

(k + 1)m − k − 2
;

λ3 = 0; λ6 = k(m − 1)

(k + 1)m − k − 2
;

where condition m ≥ k + 2 is necessary to satisfy constraint
(20). Since opt = λ6 in the above solutions, by strong duality
these solutions are both optimal. We hence have

CLPT
m (J)

C∗
m(J)

≤ 1

opt
= (k + 1)m − k − 2

k(m − 1)

= (k + 1)(m − 1) − 1

k(m − 1)
= k + 1

k
− 1

k(m − 1)

which shows the claim. ��
Notably, with respect to Lemma 1, the result of Proposition 4
for k = 3 provides already a better bound than Graham’s
bound and equal to 4

3 − 1
3(m−1) for m ≥ 5. Also, with the

results of Proposition 4 we can state the following result.

Proposition 5 In Pm ||Cmax instances with n ≥ 2m + 2 and
m ≥ 5, L PT has an approximation ratio not superior to
4
3 − 1

3(m−1) .

Proof In instances with n ≥ 3m + 1, there exists at least
one machine in the LPT schedule executing at least four
jobs. Then, either the machine is the critical one or not.
Correspondingly, either inequality (6) with l ≥ 4 holds or
Proposition 4 with k ≥ 3 applies showing the above claim.
Consider the remaining cases with 2m + 2 ≤ n ≤ 3m. We
assume the critical job n in third position on a machine; oth-
erwise, either bound on r LPT2 holds or at least bound on r LPT4
holds. This implies that LPT schedules at least another job
in position ≥ 3 on a non-critical machine. Hence, the results
of Proposition 4 with k = 3 apply. ��

In instances with n ≥ 2m + 2 and 3 ≤ m ≤ 4, we
can combine the reasoning underlying model (8)–(16) with
a partial enumeration of the optimal/LPT solutions and state
the following result.

Proposition 6 In Pm ||Cmax instances with n ≥ 2m+2, L PT
has an approximation ratio not superior to 4

3 − 1
3(m−1)) for

3 ≤ m ≤ 4.

Proof See “Appendix.” ��
Consider now instances with 2m jobs at most. The following
proposition holds.

Proposition 7 In Pm ||Cmax instances with n ≤ 2m, LPT
has an approximation ratio not superior to 4

3 − 1
3(m−1) .

Proof We consider the case n = 2m only. All other cases
n < 2m can be reduced to the previous one after adding
2m − n dummy jobs with null processing time.
It is well known (see, e.g., Graham1969) that if eachmachine
processes two jobs at most in an optimal schedule, the solu-
tion provided by LPT would be optimal. Hence, we consider
the case where there is one machine processing at least three
jobs in an optimal solution. This situation straightforwardly
implies that job 1 has to be processed alone on a machine.
Therefore, we have C∗

m(J) ≥ C∗
m−1(J \ {1}) since the opti-

mal makespan with m machines could be as well given by
the machine processing only job 1.
On the other hand, to contradict the claim, LPTmust have the
critical machine processing more than two jobs; otherwise,
we could use bound (5). This implies that job 1 is processed
alone on amachine and cannot give themakespan; otherwise,
LPT solutionwould be optimal due to expression (1).We thus
have CLPT

m (J) = CLPT
m−1 (J \ {1}). Combining these results

with Graham’s bound on the problem instance with m − 1
machines and without job 1, we get

CLPT
m (J)

C∗
m(J)

≤ CLPT
(m−1)(J \ {1})

C∗
(m−1)(J \ {1}) ≤ 4

3
− 1

3(m − 1)
.

��
For instances with exactly 2m + 1 jobs, we provide the fol-
lowing proposition.

Proposition 8 In instances with n = 2m + 1, if LPT loads at
least three jobs on a machine before the critical job, then the
approximation ratio is not superior to 4

3 − 1
3(m−1) .

Proof If LPT schedules at least three jobs on a machine
before critical job n, this means that job 1 is processed either
alone on a machine or with critical job n only. In the latter
case, the claim is showed through bound (5). Alternatively,
job 1 is processed alone on machine M1. Also, M1 cannot
give the makespan; otherwise, LPT would yield an optimal
solution. This implies that CLPT

m (J) = CLPT
m−1 (J \ {1}) and

that a trivial upper bound on the LPT solution value is equal
to p1+ pn as the starting time of job n is not superior to p1. In
this case, if an optimal solution schedules job 1 with another
job, we have C∗

m(J) ≥ p1 + pn , and thus, LPT would also
give the optimal makespan. If an optimal solution schedules
job 1 alone on M1, then inequality C∗

m(J) ≥ C∗
m−1(J \ {1})

holds. Combining these results with Graham’s bound as in
Proposition 7, we have

CLPT
m (J)

C∗
m(J)

≤ CLPT
(m−1)(J \ {1})

C∗
(m−1)(J \ {1}) ≤ 4

3
− 1

3(m − 1)
.

��

123

Journal of Scheduling (2020) 23:163–176 167

Summarizing the above properties, the following theorem
holds.

Theorem 1 LPT has an approximation ratio not superior to
4
3 − 1

3(m−1) in all instances withm ≥ 3 and n �= 2m+1. Also,

LPT can actually hit Graham’s bound of 4
3 − 1

3m for m ≥ 2
only in instances with 2m + 1 jobs with the critical machine
processing three jobs and all the other machines processing
two jobs.

3.2 Improving the LPT bound: Algorithm LPT-REV

We consider a slight algorithmic variation in LPT where a
subset of the sorted jobs is first loaded on M1, and then, LPT
is applied to the remaining job set on all machines (including
M1). We denote this variant as LPT (S) where S represents
the set of jobs assigned altogether to a machine first. Con-
sider the following algorithm, denoted by LPT-REV , which
first applies LPT and then LPT (S) for at most two suitable
choices of the job set S.

Algorithm LPT-REV
Input: Pm ||Cmax instance with n jobs and m machines.

1: Apply LPT yielding a schedule with makespan z1 and

k − 1 jobs on the critical machine before job j ′.
2: Apply LPT ′ = LPT ({ j ′}) with solution value z2.
3: If m = 2 then apply LPT ′′ = LPT ({(j ′ −

k + 1), . . . , j ′}) with solution value z3 and return

min{z1, z2, z3}.
4: Else return min{z1, z2}.

In practice, LPT-REV algorithm applies LPT first and
then re-applies LPT after having loaded on a machine first
either its critical job j ′ or the tuple of the smallest k jobs
(j ′ − k + 1), . . . , j ′. (this latter case applies only for m =
2). Eventually, the algorithm takes the best of the computed
solutions.
In the following, we will show how to improve the long-
standing Graham’s bound by means of algorithm LPT-REV
for m ≥ 3. To this extent, given Theorem 1, we just need to
address the case where the LPT critical job j ′ is job 2m + 1.
So we consider instances with either j ′ = 2m + 1 < n or
j ′ = 2m+1 = n. The LPT schedules with j ′ = 2m+1 < n
will be considered in Sect. 3.2.1 by means of Proposition 9
and additional remarks. The LPT schedules with j ′ = 2m +
1 = n will be covered in Sect. 3.2.2 bymeans of Propositions
10–14. Finally, the approximation ratio of LPT-REV will be
stated in Sect. 3.2.3 in Theorem 2.

3.2.1 LPT schedules with j′ = 2m + 1 < n,m ≥ 3

If there exists a job i > j ′ that is critical in the solution
provided by LPT ′, the following proposition holds.

Proposition 9 In Pm ||Cmax instances where there exists a job
i such that j ′ < i ≤ n and i is critical in L PT ′ schedule,
LPT-REV algorithm has a performance guarantee of 4

3 −
7m−4

3(3m2+m−1)
.

Proof Denote by β
∑n

j=1 p j the overall processing time of
jobs j ′ +1, . . . , n, with 0 < β < 1. Due to Graham’s bound,
the following relation holds for LPTwhen only jobs 1, . . . , j ′
are considered:

CLPT
m (J) ≤

∑ j ′
j=1 p j

m

(
4

3
− 1

3m

)

= (1 − β)
∑n

j=1 p j

m

(
4

3
− 1

3m

)
. (25)

From (25), we have

CLPT
m (J)

C∗
m(J)

≤ CLPT
m (J)
∑n

j=1 p j

m

≤ (1 − β)

(
4

3
− 1

3m

)
. (26)

We introduce a target LPT approximation ratio denoted as
ρ and identify the value of β which gives such a bound. We
have

(1 − β)

(
4

3
− 1

3m

)
= ρ 	⇒ β = 1 − 3mρ

4m − 1
. (27)

Consider now the solution provided by LPT ′ and denote by
tc′ the processing time of the jobs on the critical machine that
are processed before the critical job i . Since the following
relations hold

mtc′ + pi ≤
n∑

j=1

p j ≤ mC∗
m 	⇒ tc′ + pi

m
≤ C∗

m;

pi ≤ β

n∑

j=1

p j ≤ mβC∗
m,

we have, in combination with (27), that

CLPT ′
m (J) = tc′ + pi =

(
tc′ + pi

m

)
+ pi

(
1 − 1

m

)

≤ C∗
m(J) + (m − 1)βC∗

m(J)

	⇒ CLPT ′
m (J)

C∗
m(J)

≤ 1 + (m − 1)β

= 1 + (m − 1)

(
1 − 3mρ

4m − 1

)
. (28)

123

168 Journal of Scheduling (2020) 23:163–176

Hence, algorithm LPT-REV has a performance guarantee
equal to min{1 + (m − 1)(1 − 3mρ

4m−1); ρ}. This expression
reaches its largest valuewhen the two terms are equal, namely

1 + (m − 1)

(
1 − 3mρ

4m − 1

)
= ρ. (29)

From condition (29), we derive

ρ = 4m − 1

1 + 3m − 1
m

= 4

3
− 7m − 4

3(3m2 + m − 1)

≥ CLPT-REV
m (J)

C∗
m(J)

.

��
It easy to check that the bound of Proposition 9 is strictly

inferior to 4
3 − 1

3(m−1) for m ≥ 3. If the critical job in LPT ′
schedule is a job h ≤ j ′, then LPT-REV cannot have a
worse approximation ratio than the one reached in a reduced
instance where all jobs after j ′ are discarded and the same
analysis of Sect. 3.2.2 applies.

3.2.2 LPT schedules with j′ = 2m + 1 = n,m ≥ 3

We show here that the addition of LPT ′ allows us to improve
Graham’s bound to 4

3 − 1
3(m−1) . We concentrate on instances

with 2m + 1 jobs where LPT must couple jobs 1, . . . ,m,
respectively, with jobs 2m, . . . ,m + 1 on the m machines
before scheduling job 2m + 1; otherwise, Theorem 1 would
hold. Therefore, we will consider the following LPT sched-
ules with pair of jobs on each machine Mi (i = 1, . . . ,m):

M1 : p1, p2m
M2 : p2, p2m−1

. . .

Mm−1 : pm−1, pm+2

Mm : pm, pm+1

where job 2m + 1 will be assigned to the machine with the
least completion time. We analyze the following two sub-
cases.
Case 1: p(2m+1) ≥ p1 − pm
In this case, the last job 2m+1 has a processing time greater
than (or equal to) the difference p1 − pm . Consider LPT ′
heuristic. Since the LPT critical job is assumed to be the last
one, i.e., j ′ = 2m + 1, the heuristic will assign jobs 2m +
1, 1, . . . ,m − 1 to machines M1, M2, . . . Mm , respectively.
Then, job m will be loaded on M1 together with job 2m + 1.
Since p(2m+1) + pm ≥ p1, job m + 1 will be processed on
the last machine Mm after job m − 1. Now we have

p(m−1) + p(m+1) ≥ p(2m+1) + pm ≥ p1

since p(m−1) ≥ pm and p(m+1) ≥ p(2m+1). Hence, jobm+2
is loaded on machine M(m−1) with job m − 2. Similarly as
before, it follows that p(m−2) + p(m+2) ≥ p(2m+1) + pm .
Consequently, job m + 3 is processed on M(m−2) after job
m−3. By applying the same argument, LPT ′ will assign the
second job in reversed order to eachmachine until job 2m−1
is assigned to M2. Eventually, job 2m will be assigned to M1

since it will be the least loaded machine at that point. This
because all other machines have the largest (resp. smallest)
job with processing time not inferior to pm (resp. p(2m+1)).
Summarizing, LPT ′ will provide the following schedule:

M1 : p(2m+1), pm, p2m

M2 : p1, p(2m−1)

M3 : p2, p(2m−2)

. . .

M(m−1) : p(m−2), p(m+2)

Mm : p(m−1), p(m+1)

Assume now that the criticalmachine isM1 with non-optimal
completion time CLPT ′

m (J) = p(2m+1) + pm + p2m >

C∗
m(J) (or else LPT-REV would provide the optimal solu-

tion). The following proposition holds:

Proposition 10 If p(2m+1) ≥ p1 − pm and CLPT ′
m (J) =

p(2m+1)+ pm + p2m > C∗
m(J), then C∗

m(J) ≥ p(m−1)+ pm
in any optimal schedule.

Proof We prove the claim by contradiction. We assume that
an optimal schedule assigns jobs 1, 2, . . . ,m to different
machines or elseC∗

m(J) ≥ p(m−1) + pm immediately holds.
Correspondingly, since there exists a machine processing
three jobs, the optimal makespan can be lower bounded by
pm + p2m + p(2m+1). But as pm + p2m + p(2m+1) > C∗

m(J)

holds, a contradiction on the optimality of the schedule is
implied. ��
The following proposition also holds.

Proposition 11 If p(2m+1) ≥ p1 − pm and CLPT ′
m (J) =

p(2m+1)+pm+p2m, then algorithmLPT-REVhas an approx-
imation ratio not superior to 7

6 .

Proof We again employ linear programming to evaluate the
performance of LPT ′. More precisely, we consider an LP
formulation with nonnegative variables p j (j = 1, . . . , n)
denoting the processing times and a positive parameter
OPT > 0 associated with C∗

m(J). The corresponding LP
model for evaluating the worst-case performance of LPT ′
heuristic is as follows:

maximize p(2m+1) + pm + p2m (30)
subject to p(m−1) + pm ≤ OPT (31)

123

Journal of Scheduling (2020) 23:163–176 169

p(2m−1) + p2m + p(2m+1) ≤ OPT (32)
p(2m+1) − (p1 − pm) ≥ 0 (33)
p1 − p(m−1) ≥ 0 (34)
p(m−1) − pm ≥ 0 (35)
pm − p(m+1) ≥ 0 (36)
p(m+1) − p(2m−1) ≥ 0 (37)
p(2m−1) − p2m ≥ 0 (38)
p2m − p(2m+1) ≥ 0 (39)
p1, p(m−1), pm , p(m+1), p(2m−1), p2m , p(2m+1) ≥ 0

(40)

The objective function value (30) represents an upper
bound on the worst-case performance of the algorithm. Con-
straints (31)–(32) state that the optimal valueC∗

m(J) is lower
bounded according to Proposition 10 and by the sum of the
three jobs with the smallest processing times. Constraint (33)
simply represents the initial assumption p(2m+1) ≥ p1− pm .
Constraints (34)–(39) state that the considered relevant jobs
are sorted by non-increasing processing times, while con-
straints (40) indicate that the variables are nonnegative. We
remark that parameterOPT canbe arbitrarily set to anyvalue
> 0. Further valid inequalities (such as p(2m+1)+pm+p2m ≥

p1 + p(2m−1) or OPT ≥
n∑

j=1
p j

m) were omitted as they do
not lead to any improvement on the worst-case performance
ratio. Notice that the number of variables of the reduced LP
formulation is constant for any value of m.
By setting w.l.o.g. OPT = 1 and solving model (30)–(40),
we get an optimal solution value z∗ equal to 1.1666 . . . = 7

6 .

Correspondingly, the approximation ratio is z∗
OPT = 7

6 . ��
Consider now the case where the makespan of LPT ′ sched-
ule is given by one of the machines M2, . . . , Mm . In such a
case, a trivial upper bound on LPT ′ makespan is equal to
p1 + pm+1. We state the following proposition.

Proposition 12 If p(2m+1) ≥ p1 − pm and the makespan of
L PT ′ is not on M1, then coupling LPT with L PT ′ gives
a performance guarantee not superior to 15

13 for m = 3 and
4
3 − 1

2m−1 for m ≥ 4.

Proof Weagain consider anLP formulationwith nonnegative
variables p j (j = 1, . . . , n), a positive parameter OPT > 0
and twononnegative auxiliary variablesα, y.Wecan evaluate
theworst-case performanceof LPT+LPT ′ by the following
LP model

maximize y (41)

subject to
2m+1∑

j=1

p j ≤ mOPT (42)

p(2m−1) + p2m + p(2m+1) ≤ OPT (43)

p(j+1) − p j ≤ 0 j = 1, . . . , 2m; (44)

p j + p(2m− j+1) − α ≥ 0 j = 1, . . . ,m; (45)

p(2m+1) + α − y ≥ 0 (46)

p(2m+1) − (p1 − pm) ≥ 0 (47)

p1 + p(m+1) − y ≥ 0 (48)

p j ≥ 0 j = 1, . . . , 2m + 1; (49)

α, y ≥ 0 (50)

where y represents the solution value reached by LPT +
LPT ′ and α is the starting time of job 2m + 1 in LPT. Con-
straints (45) indicate that α corresponds to the smallest load
on a machine after processing jobs 1, . . . , 2m. The solution
value of LPT is therefore the sum α + p(2m+1). The objec-
tive function (41) provides an upper bound on the makespan
of LPT + LPT ′ since it maximizes the minimum between
α + p(2m+1) and the makespan reached by LPT ′ through
variable y and related constraints (46) and (48). Constraints

(42) and (43) state that C∗
m(J) is lower bounded by

n∑

j=1
p j

m
and by p(2m−1) + p2m + p(2m+1). Constraints (44) indicate
that jobs are sorted by non-increasing processing time, while
constraint (47) represents condition p(2m+1) ≥ p1 − pm .
Finally, constraints (49) and (50) indicate that all variables
are nonnegative.
By setting w.l.o.g. OPT = 1, a feasible solution of model
(41)–(50) for any value of m is:

y = 8m − 7

3(2m − 1)
; α = 2(m − 1)

2m − 1
;

p1 = 5m − 4

3(2m − 1)
; p2 = p3 = · · · = p(m−1) = 4m − 5

3(2m − 1)
;

pm = pm+1 = m − 1

2m − 1
;

pm+2 = pm+3 = · · · = p2m+1 = 1

3
.

We can show by strong duality that this solution is opti-
mal for any m ≥ 4. The dual model with variables λi
(i = 1, . . . , 3m+5) associated with constraints (42)–(48) is
as follows:

minimize mλ1 + λ2 (51)
subject to λ1 − λ3 + λ(2m+3) − λ(3m+4) + λ(3m+5) ≥ 0 (52)

λ1 + λ(1+ j) − λ(2+ j) + λ(2m+2+ j) ≥ 0 j = 2, . . . ,m − 1 (53)
λ1 + λ(m+1) − λ(m+2) + λ(3m+2) + λ(3m+4) ≥ 0 (54)
λ1 + λ(m+2) − λ(m+3) + λ(3m+2) + λ(3m+5) ≥ 0 (55)
λ1 + λ(1+ j) − λ(2+ j) + λ(4m+3− j) ≥ 0 j = m + 2, . . . , 2m − 2

(56)
λ1 + λ2 + λ2m − λ(2m+1) + λ(2m+4) ≥ 0 (57)
λ1 + λ2 + λ(2m+1) − λ(2m+2) + λ(2m+3) ≥ 0 (58)
λ1 + λ2 + λ(2m+2) + λ(3m+3) + λ(3m+4) ≥ 0 (59)

123

170 Journal of Scheduling (2020) 23:163–176

−
(3m+2)∑

j=(2m+3)

λ j + λ(3m+3) ≥ 0 (60)

− λ(3m+3) − λ(3m+5) ≥ 1 (61)
λ1, λ2, . . . , λ(2m+2) ≥ 0 (62)
λ(2m+3), λ(2m+4), . . . λ(3m+5) ≤ 0 (63)

Constraints (52)–(61) correspond to primal variables
p j , α, y, respectively. A feasible solution of model (51)–(63)
for m ≥ 4 is:

λ1 = 2

2m − 1
; λ2 = 2m − 7

3(2m − 1)
;

λ3 = λ4 = · · · = λ(m+1) = 0;
λ(m+2) = 1

2m − 1
; λ(m+3) = λ(m+4) = · · · = λ2m = 0;

λ(2m+1) = 2m − 7

3(2m − 1)
;

λ(2m+2) = 4(m − 2)

3(2m − 1)
; λ(2m+3) = 0;

λ(2m+4) = λ(2m+5) = · · · = λ(3m+1) = −2

2m − 1
;

λ(3m+2) = −1

2m − 1
; λ(3m+3) = 3 − 2m

2m − 1
;

λ(3m+4) = 0; λ(3m+5) = −2

2m − 1
.

The corresponding solution value is mλ1 + λ2 = 8m−7
3(2m−1) =

y. Hence, for m ≥ 4 we have:

min{CLPT
m (J),CLPT ′

m (J)}
C∗
m(J)

≤ y

OPT
= 8m − 7

3(2m − 1)

= 4(2m − 1) − 3

3(2m − 1)

= 4

3
− 1

2m − 1

Form = 3, an optimal solution of model (41)–(50) has value
y = 1.15385 . . . = 15

13 .
The corresponding approximation ratio is then y

OPT =
15
13 . ��
Case 2: p(2m+1) < p1 − pm
The processing time of the last job is smaller than the differ-
ence p1 − pm . The following proposition holds.

Proposition 13 If p(2m+1) < p1 − pm, the solution given by
LPT has a performance guarantee not superior to 15

13 for
m = 3 and 4

3 − 1
2m−1 for m ≥ 4.

Proof We consider the worst-case LPT performance and
notice that it can be evaluated through model (41)–(50) by
simply reversing the inequality sign in constraint (47) and
disregarding constraint (48). Correspondingly, dual model

(51)–(63) is still implied with the differences that variable
λ(3m+5) is discarded and that we have λ(3m+4) ≥ 0. The
primal solutions turn out to be the same solutions stated
in Proposition 12. Likewise, dual solutions slightly modify
in the following variables entries which do not contribute
to the objective function: λ(3m+2) = −3

2m−1 ; λ(3m+3) =
−1; λ(3m+4) = 2

2m−1 . Therefore, the approximation ratios
stated in Proposition 12 hold. ��

3.2.3 The resulting approximation ratio of LPT-REV

We can now state the following theorem for LPT-REV .

Theorem 2 Algorithm LPT-REV runs inO(n log n) time and
has an approximation ratio not superior to 4

3 − 1
3(m−1) for

m ≥ 3.

Proof Putting together the results of Propositions 11, 12, 13,
it immediately follows that LPT-REV has an approximation
ratio not superior to 4

3 − 1
3(m−1) for m ≥ 3. Besides, it is

well known that the running time of the LPT heuristic is
in O(n log n): sorting the jobs by processing time has com-
plexity O(n log n), while an efficient implementation of the
underlying LS procedure may employ a Fibonacci’s heap
for extracting the machine with smallest load at each itera-
tion with overall complexityO(n logm). Since the proposed
algorithm requires to run first LPT (to compute z1) and then
LSheuristic twice (to compute z2 and z3) after the job sorting,
the resulting time complexity is O(n log n). ��

We notice that algorithm LPT-REV has a worst-case
performance at least as good as the one of the more com-
putationally demanding Largest Differencing Method of
Karmarkar and Karp (1982), which runs in O(n log n +
nm logm) and has an approximation ratio proved to be in the

interval
[
4
3 − 1

3(m−1) ,
4
3 − 1

3m

]
for m ≥ 3 (Michiels et al.

2007).

3.2.4 LPT-REV performance analysis for P2||Cmax

We remark that in the problem variant with two machines
(m = 2), the approximation ratio of 4

3 − 1
3(m−1) = 1 can-

not be reached by any polynomial-time algorithm unless
P = NP , since P2||Cmax is well known to be NP-hard. At
the current state of the art, the approach proposed by He et al.
(2000) for P2||Cmax is the best approximation algorithm run-
ning with linear time complexity and has an approximation
bound of 12

11 . Although algorithmLPT-REV does not improve
this bound, the following analysis shows that the proposed
approach reaches an approximation ratio not superior to 9

8
and thus improves upon the bound of 7

6 implied for LPT [as
well as for Karmarkar–Karp algorithm, as shown by Fischetti
and Martello (1987)] when m = 2.

123

Journal of Scheduling (2020) 23:163–176 171

We proceed by assuming that the critical job in the LPT
solution is the last one (j ′ = n). Otherwise, we would get an
approximation ratio of 14

13 < 9
8 by using the same reasoning

employed in the proof of Proposition 9 taking into account in
this case both LPT ′ and LPT ′′. Given Lemma 1 and bound
(6), an approximation bound worse than 9

8 could be reached
only in instances with n ≤ 6 and where LPT schedules no
more than three jobs on each machine.
For n ≤ 4, LPT will output an optimal solution according
to Proposition 7. For n = 6 , we can evaluate the worst-case
LPT performance by model (64)–(70) (in “Appendix”) since
n = 3m. The corresponding optimal objective value form =
2 is opt = 0.8888 . . . = 8

9 which gives an approximation
ratio equal to 1

opt = 9
8 . For n = 5, we have the following

proposition.

Proposition 14 In P2||Cmax instances with n = 5, LPT-REV
provides an optimal solution.

Proof According to Proposition 8, LPT could not give the
optimal makespan only if it assigns jobs 1 and 4 to M1 and
jobs 2 and 3 to M2 before assigning the critical job 5. Con-
sidering this LPT schedule, we analyze all possible optimal
solution configurations and show that LPT-REV always iden-
tifies them. We have the following two cases:

– Case 1: jobs 1 and 2 are on the same machine in an
optimal solution.
There exists an optimal solution which assigns jobs 3, 4,
5 to M1 and jobs 1, 2 to M2. In fact, any other schedule
cannot provide a smaller makespan. The same solution
is also provided by LPT ′′.

– Case 2: jobs 1 and 2 are on different machines in an
optimal solution.
If there exists an optimal solution with job 1 on M1 and
jobs 2 and 3 on M2, such a solution coincides with the
LPT schedule. If instead an optimal solution assigns jobs
1 and 3 to M1, then it must assign jobs 2, 4 and 5 to M2. If
p3 = p4, clearly LPT also gives the optimal makespan.
If p3 > p4, inequality p1 ≤ p2 + p5 must hold or else
the optimal solution would be improved by exchanging
job 3 with job 4 on the machines giving a contradiction.
But then, inequality p1 ≤ p2 + p5 implies that LPT ′
solution is also optimal since it assigns jobs 5, 2 and 4 to
M1 and jobs 1 and 3 to M2.

��

4 From approximation to heuristics: a new
LPT-based approach

Moving from approximation algorithms to heuristics, we
decided to check whether it could possible from LPT-REV

to come up with a heuristic procedure competitive with the
relevant literature with emphasis on algorithms running with
very low computational complexity. We considered to this
extent the benchmark literature instances provided by Iori
and Martello (2008). All tests were conducted on an Intel i5
CPU @ 2.30 GHz with 8 GB of RAM, and all algorithms
have been implemented in C++.

Iori and Martello (2008) considered two classical classes
of instances from the literature: uniform instances proposed
by França et al. (1994) and non-uniform instances proposed
by Frangioni et al. (2004). In uniform instances, the process-
ing times are integer uniformly distributed in the range [a, b].
In non-uniform instances, 98% of the processing times are
integer uniformly distributed in [0.9(b − a), b], while the
remaining ones are uniformly distributed in [a, 0.2(b − a)].
For both classes, we have a = 1; b = 100, 1000, 10000.
For each class, the following values were considered for
the number of machines and jobs: m = 5, 10, 25 and n =
10, 50, 100, 500, 1000. For each pair (m, n) with m < n, 10
instances were generated for a total of 780 instances.
Preliminary testing showed that LPT-REV is not significantly
superior to LPT, being able to improve only 142 out of 780
instances. Besides, it can be noted that in our theoretical
results, LPT ′ was necessary to improve Graham’s bound
for m ≥ 3, while LPT ′′ was necessary for m = 2 only.
Remarkably, for m ≥ 3 the relevant subcase was the one
with 2m + 1 jobs, p2m+1 ≥ p1 − pm and LPT ′ required to
schedule job 2m + 1 first and then to apply list scheduling
first to the sorted job subset {1, . . . ,m} and then to the sorted
job subset {m + 1, . . . , 2m}. This suggests a general greedy
approach that considers not only the ordering of the jobs but
also the differences in processing time within job subsets of
size m. We propose a constructive procedure that splits the
sorted job set in tuples ofm consecutive jobs (1, . . . ,m;m+
1, . . . , 2m; etc.) and sorts the tuples in non-increasing order
of the difference between the largest job and the smallest
job in the tuple. Then, list scheduling is applied to the set of
sorted tuples. We denote this approach as SLACK.

In terms of computational complexity, since construc-

tion and sorting of the tuples can be performed in O(
⌈

n
m

⌉

log
⌈

n
m

⌉
), the running time of SLACK is O(n log n) due to

the initial sorting of the jobs.
To get a clear picture of the performance of SLACK,we com-
pared it to LPT, to LDM of Karmarkar and Karp (1982) and
to COMBINE, the algorithm proposed by Lee and Massey
(1988) that couples LPT with the MULTIFIT heuristic intro-
duced by Coffman Jr. et al. (1978). Notice that with an
increase in the computational effort, both COMBINE and
LDM generally exhibit better performances than LPT (see,
e.g., Lee and Massey 1988; Michiels et al. 2007) but still
guarantee a very limited computational complexity.

123

172 Journal of Scheduling (2020) 23:163–176

Table 1 SLACK versus LPT/COMBINE/LDM: performance comparison on Pm ||Cmax instances from Iori and Martello (2008)

[a, b] m Non-uniform instances SLACK versus LPT SLACK versus COMBINE SLACK versus LDM

W E L W E L W E L

1–100 5 50 31 16 3 30 16 14 0 44 6

10 40 32 8 0 29 8 3 0 40 0

25 40 23 17 0 23 17 0 1 39 0

1–1000 5 50 39 10 1 39 10 1 1 44 5

10 40 40 0 0 33 0 7 3 36 1

25 40 27 12 1 27 12 1 2 36 2

1–10000 5 50 39 10 1 39 10 1 2 39 9

10 40 40 0 0 32 0 8 7 29 4

25 40 28 10 2 28 10 2 5 30 5

[a, b] m Uniform instances SLACK versus LPT SLACK versus COMBINE SLACK versus LDM

W E L W E L W E L

1–100 5 50 12 37 1 10 38 2 0 44 6

10 40 14 20 6 9 21 10 2 27 11

25 40 10 29 1 4 23 13 4 28 8

1–1000 5 50 32 15 3 31 15 4 1 30 19

10 40 27 5 8 21 5 14 4 6 30

25 40 24 12 4 17 6 17 3 10 27

1–10000 5 50 36 12 2 36 11 3 0 12 38

10 40 37 0 3 30 0 10 2 1 37

25 40 22 11 7 15 6 19 4 10 26

Overall 780 513 224 43 453 208 119 41 505 234

SLACK LPT COMBINE LDM

Tot. Time (ms) 104 75 105 5453

SLACK heuristic
Input: Pm ||Cmax instance with m machines and n jobs

with processing times p j (j = 1, . . . , n).

1: Sort jobs by non-increasing p j .

2: Consider
⌈

n
m

⌉
tuples with size m given by jobs

1, . . . ,m;m + 1, . . . , 2m, etc.. If n is not multiple of m,

add dummy jobs with null processing time in the last

tuple.

3: For each tuple, compute the associated slack, namely p1−
pm, p(m+1) − p2m, . . . , p(n−m+1) − pn .

4: Sort tuples by non-increasing slack and then fill a list with

consecutive jobs in the sorted tuples.

5: Apply list scheduling to this job ordering and return the

solution.

The comparison is executed by counting how many times
SLACK wins (W), is equivalent to (E), or loses (L) when
compared to the relevant competitor. The results are reported
in Table 1 where instances are aggregated by processing
time range and number of machines as in Iori and Martello
(2008). Running times of the heuristics are generally negli-
gible; hence, we just report an aggregated entry summing up
the CPU time over all instances.

SLACK algorithm strongly outperforms LPT rule in each
instance category with the most impressive performance
difference on non-uniform instances. Overall, on 780 bench-
mark literature instances, SLACK wins 513 times (65.8% of
the cases) against LPT, ties 224 times (28.7%) and loses 43
times (5.5%) only. Given these results, SLACK heuristic can
be regarded as a valuable alternative to the popular LPT rule.

123

Journal of Scheduling (2020) 23:163–176 173

Table 2 SLACK + NS versus
LDM: performance comparison
on Pm ||Cmax instances from Iori
and Martello (2008)

[a, b] m Non-uniform instances SLACK + NS versus LDM

W E L

1–100 5 50 7 38 5

10 40 2 38 0

25 40 1 39 0

1–1000 5 50 12 35 3

10 40 16 24 0

25 40 4 35 1

1–10000 5 50 24 22 4

10 40 28 8 4

25 40 19 18 3

[a, b] m Uniform instances SLACK + NS versus LDM

W E L

1–100 5 50 1 48 1

10 40 6 26 8

25 40 5 32 3

1–1000 5 50 8 35 7

10 40 10 11 19

25 40 6 11 23

1–10000 5 50 10 20 20

10 40 13 0 27

25 40 6 10 24

Overall 780 178 450 152

The comparison between SLACK and COMBINE pro-
vides additional evidence on the effectiveness of SLACK.
The proposed heuristic outperforms COMBINE on non-
uniform instances and favorably compares to it on uniform
instances. Finally, SLACK shows up to be competitive with
LDMonnon-uniform instances,while it is slightly inferior on
uniform instances, yielding though a non-superior makespan
in 70% of the instances. Notice that in the uniform instances
the smaller the processing times distribution, the better the
performances of SLACK. A possible explanation of this phe-
nomenon is that , with larger processing times distributions,
the slack between largest and smallest processing times of
each tuple does not fully capture the jobs processing times
variance and may negatively affect the performances of the
algorithm.Besides, SLACK runsmuch faster thanLDM, tak-
ing roughly 2% of the computational time required by that
algorithm. Taking into account this last aspect, we performed
a further test where we evaluated the performance of SLACK
enhanced by a simple neighborhood search (NS) procedure.
This procedure, called SLACK+NS, with an overall negligi-
ble increase in theCPU time (about 57ms for thewhole batch

of instances), looks for the best swap SWi j between any job
i on the critical machine and any job j on any machine that
possibly improves upon the makespan provided by SLACK.
If an improvement is found, NS restarts and iterates until a
local minimum is reached. The relevant results are provided
in Table 2 and indicate that the performances of SLACK +
NS are already globally superior to those of LDM (though
still inferior on uniform instances), while the overall CPU
time remains inferior by more than an order of magnitude.

5 Concluding remarks

We provided new insights into the well-known LPT rule
for Pm ||Cmax problem and proposed a slight algorithmic
revisiting which improves previously published approxima-
tion ratios for LPT. As second major contribution, from our
approximation results we came up with a simple heuristic
requiring very low computational complexity which strongly
outperforms LPT on a large set of benchmark literature

123

174 Journal of Scheduling (2020) 23:163–176

instances and is competitive with more involved approaches
such as COMBINE and LDM.
In our analysis of Pm ||Cmax, we deployed a novel approach
which relies on linear programming. The proposed LP rea-
soning could be considered a valid alternative to techniques
based on analytical derivation and may as well find appli-
cation in other combinatorial optimization problems. For
example, an attempt in this direction has been recently pro-
posed by Della Croce et al. (2018) for a multiperiod variant
of the knapsack problem.
We remark that in this work we did not derive tight approx-
imation bounds for LPT-REV algorithm. We reasonably
expect that improved bounds can be stated and leave this
issue to future research. Nonetheless, we found out Pm ||Cmax

instances for m ≥ 3 which provide a lower bound on
the worst-case performance ratio of LPT-REV equal to
4
3 − 7

3(3m+1) . These instances have 2m + 2 jobs with pro-
cessing times:

p j = 2m −
⌊
j + 1

2

⌋
, 1 ≤ j ≤ 2m − 2;

p j = m, 2m − 1 ≤ j ≤ 2m + 2

It is easy to check thatCLPT-REV
m = 4m−1 andC∗

m = 3m+1
and that such values give the above performance ratio.

Acknowledgements The authors wish to thank an anonymous ref-
eree for pointing out the works on the LPT rule by Dosa (2004)
and Dosa and Vizvari (2006). This work has been partially supported
by “Ministero dell’Istruzione, dell’Università e della Ricerca” Award
“TESUN-83486178370409 finanziamento dipartimenti di eccellenza
CAP. 1694 TIT. 232 ART. 6.”

6 Appendix: Proof of Proposition 6

Proof The relevant cases involve instances with 2m + 2 ≤
n ≤ 3m, where LPT schedules the critical job in third
position on a machine. Also, notice that each non-critical
machine must process at most three jobs to contradict the
claim; otherwise, the results of Lemma 1 hold for k ≥ 4.
In addition, an optimal solution must assign at most three
jobs to each machine. Otherwise, we would have C∗

m(J) ≥
∑n

j=n−3 p j 	⇒ pn ≤ C∗
m (J)

4 which induces a
(
5
4 − 1

4m

)

performance guarantee according to expression (3) (with
j ′ = n).
Considering the above requirements for both LPT schedule
and the optimal solution, we introduce different LP formula-
tions which consider appropriate bounds on the completion
times of the machines as well as on the optimal makespan
according to the number of jobs and machines involved. We
analyze two macro-cases defined by the two different LP
modelings.

– Case a): n = 3m (m = 3 n = 9;m = 4 n = 12);
– Case b): 2m + 2 ≤ n ≤ 3m − 1 (m = 3 n = 8;m =
4 n = 10, 11).

6.1 Case a)

Since n = 3m, an optimal solutionmust process exactly three
jobs on each machine to contradict the claim. This implies a
lower bound on the optimum equal to p1 + p(3m−1) + p3m
as well as that condition p1 ≤ 2p3m must hold (otherwise
pn ≤ C∗

m (J)

4). Given the last condition, LPT couples jobs
1, 2, . . . ,m, respectively, with jobs 2m, (2m−1), . . . , (m+
1) on the machines. A valid upper bound on CLPT

m (J) is
hence given by p1 + p(m+1) + p3m . In order to evaluate
the worst-case LPT performance, we introduce a simple LP
formulation with nonnegative variables p j (j = 1, . . . , n)
related to job processing times and variable opt which again
represents C∗

m(J). As in model (8)–(16), we minimize the
value of C∗

m(J) after setting w.l.o.g. CLPT
m (J) = 1. The

following LP model is implied:

minimize opt (64)

subject to
3m∑

j=1

p j ≤ m · opt (65)

p1 + p(3m−1) + p3m − opt ≤ 0 (66)

p1 − 2p3m ≤ 0 (67)

p1 + p(m+1) + p3m ≥ 1 (68)

p(j+1) − p j ≤ 0 j = 1, . . . , 3m − 1; (69)

p j ≥ 0 j = 1, . . . , 3m; (70)

Constraints (65)–(70) represent the above-specified con-
ditions together with the sorting of the jobs by decreasing
processing time (constraint (69)). Solving model (64)–(70)
by means of an LP solver (e.g., CPLEX) provides the opti-
mal solution value of opt for any value ofm. More precisely,
we have opt = 0.8571 · · · = 6

7 for m = 3 and opt =
0.8421 · · · = 16

19 for m = 4. The claim is showed by the

corresponding upper bounds 1
opt on the ratio

CLPT
m (J)

C∗
m (J)

which

are equal to 7
6 for m = 3 and to 19

16 (<
11
9) for m = 4.

6.2 Case b)

As said above, LPT assigns three jobs to the critical machine.
The possible values of n and m also imply that there is a
non-critical machine in the LPT solution which schedules
three jobs. As in Case a), we introduce an LP formulation
which reconsiders model (8)–(16). For the target non-critical
machine loading three jobs, we distinguish the processing
time of the last job assigned to the machine, represented by
a nonnegative variable p′, from the contribution of the other

123

Journal of Scheduling (2020) 23:163–176 175

two jobs, represented by nonnegative variable t ′. Variables
tc, t ′′, opt have the same meaning as in model (8)–(16).
First notice that p′ ≥ p(n−1) holds as the critical job is n and
that neither job n− 1 nor job n can contribute to the value of
t ′. Also, in any LPT schedule both tc and t ′ are given by the
sum of two jobs where the first job is between job 1 and job
m. The following relations straightforwardly hold:

tc ≤ p1 + p(m+1); t ′ ≥ pm + p(n−2)

Considering these conditions and the reasoning applied to
model (8)–(16), we get the following LP model:

minimize opt (71)

subject to
n∑

j=1

p j − m · opt ≤ 0 (72)

(tc + pn) + (t ′ + p′) + t ′′ −
n∑

j=1

p j = 0 (73)

tc − (t ′ + p′) ≤ 0 (74)

(m − 2)tc − t ′′ ≤ 0 (75)

tc + pn = 1 (76)

p(n−1) − p′ ≤ 0 (77)

pm + p(n−2) − t ′ ≤ 0 (78)

tc − (p1 + p(m+1)) ≤ 0 (79)

p(j+1) − p j ≤ 0 j = 1, . . . , n − 1; (80)

p j ≥ 0 j = 1, . . . , n; (81)

tc, t
′, t ′′, p′, opt ≥ 0 (82)

Model (71)–(82) constitutes a backbone LP formulation for
all subcases analyzed in the following.

6.2.1 Pm||Cmax instances withm = 4, n = 11

To contradict the claim, an optimal solutionmust assign three
jobs to three machines and two jobs to one machine. Assume
first that the optimal solution processes the first three jobs
on two machines. Since the optimal solution must schedule
at least five jobs on two machines, a valid lower bound on
C∗
m(J) is equal to one half of the sum (p1+ p2+ p3+ p10+

p11). Thus, we can add constraint

opt ≥ p1 + p2 + p3 + p10 + p11
2

to model (71)–(82). The corresponding LP optimal solution

gives an upper bound on ratio CLPT
m (J)

C∗
m (J)

equal to 1
opt = 11

9 .
Likewise, should the optimal solution schedule the first three
jobs on three different machines, a valid lower bound on
C∗
m(J) would correspond to the following constraint

opt ≥ p1 + p2 + p3 + p7 + p8 + p9 + p10 + p11
3

since the optimal solution has to process at least eight jobs
on three machines. If we add the last constraint to model
(71)–(82), the LP optimal solution yields again a value of
1
opt equal to

11
9 .

6.2.2 Pm||Cmax instances withm = 4, n = 10

An optimal solution assigns either three jobs to three
machines and one job to the other machine, or three jobs
to two machines and two jobs to the others. We again distin-
guish whether the optimal solution processes the first three
jobs either on two or three machines. In the first case, since
two machines must process at least four jobs in an optimal
solution, a valid lower bound on C∗

m(J) is equal to one half
of the sum (p1+ p2+ p3+ p10). The optimal objective value
of model (71)–(82) after adding constraint

opt ≥ p1 + p2 + p3 + p10
2

provides an approximation ratio equal to 1
opt = 11

9 . In the
second case, as three machines must necessarily process at
least seven jobs, we can add to the LP model the following
constraint which represents a valid lower bound on C∗

m(J):

opt ≥ p1 + p2 + p3 + p7 + p8 + p9 + p10
3

From the corresponding LP optimal solution, we get again
1
opt = 11

9 .

6.2.3 Pm||Cmax instances withm = 3, n = 8

We have to address the case where an optimal solution
assigns two jobs to a machine and three jobs to the other
two machines. This implies relations C∗

m(J) ≥ p1 + p8
and C∗

m(J) ≥ p1+p2+p6+p7+p8
2 and the corresponding con-

straints to be added to model (71)–(82):

opt ≥ p1 + p8; opt ≥ p1 + p2 + p6 + p7 + p8
2

For the solution provided by LPT, we now analyze all possi-
ble assignments of the jobs which can give t ′. LPT separately
schedules the first three jobs and job 4 with job 3 on the third
machine. It immediately follows that if the target non-critical
machine is the first one, then it must necessarily process job
6 as second job, i.e., t ′ = p1 + p6. Instead, if the non-critical
machine is the second machine, then t ′ must be contributed
by p2 and p5, i.e., t ′ = p2+ p5. To show this, first notice that
the assignment t ′ = p2 + p6, which also implies p′ = p7
as well as having job 5 with job 3 and 4, cannot occur, as

123

176 Journal of Scheduling (2020) 23:163–176

it would prevent the critical machine from scheduling three
jobs. Also, job 7 cannot be scheduled as second job on such
non-critical machine. Eventually, a third possibility is to have
t ′ = p3 + p4. Solving model (71)–(82) with the constraints
related to the three possible assignments of t ′ provides the
following upper bounds on ratio CLPT

m (J)

C∗
m (J)

:

t ′ = p1 + p6 	⇒ 1

opt
= 15

13

(
<

7

6

)
;

t ′ = p2 + p5 	⇒ 1

opt
= 7

6
;

t ′ = p3 + p4 	⇒ 1

opt
= 7

6
.

Putting together all the stated results, we get the claim. ��

References

Abolhassani, M., Chan, T. H., Chen, F., Esfandiari, H., Hajiaghayi, M.,
Hamid, M., et al. (2016). Beating ratio 0.5 for weighted oblivious
matching problems. In P. Sankowski & C. Zaroliagis (Eds.), 24th
Annual European symposium on algorithms (ESA 2016) (Vol. 57,
pp. 3:1–3:18).

Alon, N., Azar, Y., Woeginger, G. J., & Yadid, Y. (1998). Approxi-
mation schemes for scheduling on parallel machines. Journal of
Scheduling, 1, 55–66.

Blocher, J. D., & Sevastyanov, D. (2015). A note on the coffman-sethi
bound for LPT scheduling. Journal of Scheduling, 18, 325–327.

Chen, B. (1993). A note on LPT scheduling. Operation Research Let-
ters, 14, 139–142.

Chen, B., Potts, C. N., &Woeginger, G. J. (1999). A review of machine
scheduling: Complexity, algorithms and approximability. In D. Z.
Du & P. M. Pardalos (Eds.),Handbook of combinatorial optimiza-
tion: Volume 1–3. New York: Springer.

Chimani, M., &Wiedera, T. (2016). An ILP-based proof system for the
crossing number problem. In P. Sankowski & C. Zaroliagis (Eds.),
24th annual European symposium on algorithms (ESA 2016) (Vol.
57, pp. 29:1–29:13).

Coffman, E. G, Jr., Garey, M. R., & Johnson, D. S. (1978). An applica-
tion of bin-packing to multiprocessor scheduling. SIAM Journal
on Computing, 7, 1–17.

Coffman, E. G, Jr., & Sethi, R. (1976). A generalized bound on
LPT sequencing. Revue Francaise d’Automatique Informatique,
Recherche Operationelle Supplement, 10, 17–25.

Della Croce, F., Pferschy, U., & Scatamacchia, R. (2018). Approxi-
mation results for the incremental knapsack problem. In Combi-
natorial algorithms: 28th international workshop, IWOCA 2017,
Springer lecture notes in computer science (Vol. 10765, pp. 75–
87).

Dosa, G. (2004). Graham example is the only tight one for P || Cmax
(in Hungarian). Annales Univ Sci Budapest, 47, 207–210.

Dosa,G.,&Vizvari,A. (2006). The general algorithm lpt(k) for schedul-
ing identical parallel machines. Alkamazott Matematikai Lapok,
23(1), 17–37. (in Hungarian).

Fischetti, M., & Martello, S. (1987). Worst-case analysis of the
differencing method for the partition problem.Mathematical Pro-
gramming, 37, 117–120.

França, P. M., Gendreau, M., Laporte, G., & Müller, F. (1994). A
composite heuristic for the identical parallel machine scheduling

problem with minimum makespan objective. Computers & Oper-
ations Research, 21, 205–210.

Frangioni, A., Necciari, E., & Scutellà,M. G. (2004). Amulti-exchange
neighborhood for minimum makespan parallel machine schedul-
ing problems. Journal of Combinatorial Optimization, 8, 195–220.

Frenk, J. B. G., & Rinnooy Kan, A. H. G. (1987). The asymptotic
optimality of the LPT rule. Mathematics of Operations Research,
12, 241–254.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability.
New York: W. H. Freeman.

Graham, R. L. (1969). Bounds on multiprocessors timing anomalies.
SIAM Journal on Applied Mathematics, 17, 416–429.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G.
(1979). Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. In P. L. Hammer, E. L. Johnson, &
B. H. Korte (Eds.), Discrete optimization II, annals of discrete
mathematics (Vol. 5, pp. 287–326).

Gupta, J. N. D., & Ruiz-Torres, A. J. (2001). A listfit heuristic for
minimizing makespan on identical parallel machines. Production
Planning & Control, 12(1), 28–36.

He, Y., Kellerer, H., & Kotov, V. (2000). Linear compound algorithms
for the partitioning problem. Naval Research Logistics (NRL),
47(7), 593–601.

Hochbaum, D. S. (Ed.). (1997). Approximation Algorithms for NP-hard
Problems. Boston: PWS Publishing Co.

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approxima-
tion algorithms for scheduling problems theoretical and practical
results. Journal of the ACM, 34, 144–162.

Iori, M., & Martello, S. (2008). Scatter search algorithms for identi-
cal parallel machine scheduling problems. In Metaheuristics for
scheduling in industrial and manufacturing applications (pp. 41–
59).

Jansen, K. (2010). An eptas for scheduling jobs on uniform proces-
sors: Using an milp relaxation with a constant number of integral
variables. SIAM Journal on Discrete Mathematics, 24, 457–485.

Jansen, K., Klein, K. M., & Verschae, J. (2017). Improved efficient
approximation schemes for scheduling jobs on identical and uni-
form machines. In Proceedings of the 13th workshop on models
and algorithms for planning and scheduling problems (MAPSP
2017) (pp. 77–79).

Karmarkar, N., & Karp, R. M. (1982). The differencing method of set
partitioning. Technical Report UCB/CSD 82/113, University of
California, Berkeley.

Lee, C. Y., & Massey, J. D. (1988). Multiprocessor scheduling: Com-
bining LPT andMULTIFIT.Discrete AppliedMathematics, 20(3),
233–242.

Leung, J., Kelly, L., &Anderson, J. H. (2004).Handbook of scheduling:
Algorithms, models, and performance analysis. Cambridge: CRC
Press, Inc.

Michiels, W., Korst, J., Aarts, E., & van Leeuwen, J. (2007). Perfor-
mance ratios of the Karmarkar–Karp differencingmethod. Journal
of Combinatorial Optimization, 13(1), 19–32.

Mireault, P., Orlin, J. B., &Vohra, R.V. (1997). A parametricworst-case
analysis of the LPT heuristic for two uniform machines. Opera-
tions Research, 45(1), 116–125.

Paletta, G., & Ruiz-Torres, A. J. (2015). Partial solutions and multifit
algorithm for multiprocessor scheduling. Journal of Mathematical
Modelling and Algorithms in Operations Research, 14(2), 125–
143.

Pinedo,M. L. (2016). Scheduling: Theory, algorithms, and systems (5th
ed.). Berlin: Springer.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	The Longest Processing Time rule for identical parallel machines revisited
	Abstract
	1 Introduction
	2 Notation and LPT properties
	3 LPT revisited
	3.1 Results for LPT
	3.2 Improving the LPT bound: Algorithm LPT-REV
	3.2.1 LPT schedules with j= 2m + 1 < n, m3
	3.2.2 LPT schedules with j= 2m + 1 = n, m 3
	3.2.3 The resulting approximation ratio of LPT-REV
	3.2.4 LPT-REV performance analysis for P2 || Cmax

	4 From approximation to heuristics: a new LPT-based approach
	5 Concluding remarks
	Acknowledgements
	6 Appendix: Proof of Proposition 6
	6.1 Case a)
	6.2 Case b)
	6.2.1 Pm || Cmax instances with m=4, n=11
	6.2.2 Pm || Cmax instances with m=4, n=10
	6.2.3 Pm || Cmax instances with m=3, n=8

	References

