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Abstract
Research on non-regular performance measures is at best scarce in the deterministic machine scheduling literature with
machine unavailability constraints. Moreover, almost all existing works in this area assume either that processing on jobs
interrupted by an interval of machine unavailability may be resumed without any additional setup/processing or that all prior
processing is lost. In this work, we intend to partially fill these gaps by studying the problem of scheduling a single machine
so as to minimize the total deviation of the job completion times from an unrestrictive common due date when one or several
fixed intervals of unavailability are present in the planning horizon. We also put serious effort into investigating models with
semi-resumable jobs so that processing on a job interrupted by an interval of machine unavailability may later be resumed at
the expense of some extra processing time. The conventional assumptions regarding resumability are also taken into account.
Several interesting cases are identified and explored, depending on the resumability scheme and the location of the interval of
machine unavailability with respect to the common due date. The focus of analysis is on structural properties and drawing the
boundary between polynomially solvable and NP-complete cases. Pseudo-polynomial dynamic programming algorithms
are devised for NP-complete variants in the ordinary sense.

Keywords Single-machine · Earliness/tardiness · Common due date · Unrestrictive · Machine unavailability · Maintenance ·
Resumable · Semi-resumable · Non-resumable · NP-complete · Dynamic programming

1 Introduction

The continuous availability of resources is a dominant
assumption in the machine scheduling literature. The over-
whelmingmajority of scheduling research ignores the impact
of events such as machine breakdowns, scheduled and pre-
ventive maintenance, on the shop floor. If a machine in
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operation requires the uninterrupted attention of a worker,
lunch, rest, and weekend breaks are further complicating
factors for operations scheduling. Examples pointing to the
diligence required in scheduling activities in the presence of
machine unavailabilities are several in the literature. Ben-
mansour et al. (2014) motivate their model, which integrates
job scheduling decisions with periodic and flexible pre-
ventive maintenance activities, by arguing that preventive
planned maintenance is an effective strategy for reducing
the risk of breakdowns and the operating costs in produc-
tion systems subject to random failures. This rationale is
further supported by Garg and Deshmukh (2006) who con-
tend that maintenance costs can comprise the largest part of
an operational budget along with energy costs. Another com-
mon settingwithmaintenance activities incorporated into the
schedule is due to themachine toolwear as cited byLow et al.
(2010) in the context of the micro-drilling processes in PCB
manufacturing. In general for the semiconductor industry,
Graves and Lee (1999) state that “…, it is not uncommon to
observe an operational machine in an idle state waiting for
maintenance while jobs are waiting to be processed. This is
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due to lack of coordination between operators (or produc-
tion planning personnel) and maintenance personnel.” In a
somewhat different setting from the chemical industry dis-
cussed byRapine et al. (2012), jobs require intervention by an
operator at their start and termination, and the machine may
become unavailable as a consequence of operator unavail-
ability.

As evident from the previous paragraph, scheduling prob-
lems involving machine unavailabilities arise in various
physical manufacturing environments. Moreover, machine
unavailabilities may also result from the tactical- and
operational-level scheduling schemes (Schmidt 2000). For
instance, a prevalent scheduling practice in dynamic environ-
ments is to construct schedules in a rolling planning horizon
framework. The natural overlap of two consecutive planning
intervals translates into machine unavailabilities in the lat-
ter planning interval because resources may have already
been committed based on earlier scheduling decisions. An
analogous problem setting occurs in the context of real-time
operating systems, where programs with low priority must
be scheduled on the processor(s) around those with higher
priority, or multi-user computer system applications, where
new jobs have to be executed in addition to those already
scheduled. In both cases, a scheduling model captures peri-
ods assigned to tasks of higher priority/earlier arrival time as
intervals of unavailability.

Scheduling problems with machine unavailability con-
straints have received considerable attention fromresearchers
in the last two decades motivated by abundant practical
examples as discussed before. A rich set of features and
characteristics have been considered, and a brief taxonomy
is in order. The first differentiating dimension is the infor-
mation available about the occurrence and length of the
unavailabilities. Studies focusing on unpredictable machine
breakdowns/repairs and maintenance required due to a ran-
dom drift toward unacceptable product quality are stochastic
in nature and deemed out of scope here. We refer the inter-
ested reader to Federgruen andMosheiov (1997) and Liu and
Sanlaville (1997)—two widely cited works in this area. The
remaining properties pertain to the deterministic scheduling
problems with machine unavailabilities, and next in the list is
the structure of the scheduling objective: regular versus non-
regular. In the scheduling literature, it is well established
that regular objective functions, which are non-decreasing
in the job completion times, are generally less challenging
compared to non-regular objectives from theoretical and/or
practical viewpoints. The third feature describes the level of
control on scheduling the unavailability intervals, and there
are twomain streams of research here. In one stream, the tim-
ing of themachine unavailabilities is an external input; that is,
the associated start and completion times are fixed. At times,
an additional periodicity requirement may be imposed. The
durations may be identical for all intervals of unavailability

or may be allowed to change. The other stream targets the
integration of the job and maintenance scheduling decisions
and treats the start time of an interval of unavailability as a
variable. There is often an upper bound on the time elapsed
between two consecutive unavailabilities, and such settings
are frequently referred to as problems with flexible and/or
periodic maintenance. A further defining characteristic is the
number of intervals of unavailability in the planning horizon:
single versus several. Finally, any scheduling problem with
unavailability constraints must specify how the remaining
processing of a job interrupted by an interval of unavailability
is to be handled. If all prior processing is lost, and processing
must be restarted from scratch after the machine becomes
available again, then we have a non-resumable problem.
Alternatively, a problem setting is referred to as resumable
if the processing of an interrupted job resumes without any
additional processing and/or setup following the interruption.
In between these two extremes, semi-resumability—initially
introduced by Lee (1999)—implies that an interrupted job
may continue its execution at the expense of extra process-
ing time and/or setup. Some papers refer to the resumable
and non-resumable cases as preemptive and non-preemptive,
respectively, but we adopt the earlier terminology. We also
use the term break for an interval of machine unavailability
in the rest of the paper. Based on this classification of the
literature, we tackle a deterministic single-machine problem
with machine unavailability constraints, in which all infor-
mation about the jobs and the breaks is known with certainty
at the time of planning. The objective is non-regular and
minimizes the total absolute deviation of the job completion
times from an unrestrictive common due date as defined pre-
cisely in Sect. 2. We study several variants, and if there are
multiple breaks, their lengths may be nonidentical. There is
no periodicity assumption. All three different cases regarding
resumability are analyzed. In the sequel, we provide pointers
to the existing studies in an effort to position our work with
respect to the literature by sticking to the taxonomy laid out
previously. The focus is on the single-machine environment
as it creates the context for the current study, and in our cov-
erage of the literature with regular scheduling objectives we
do not delve into the specifics of the solution methods, but
instead focus on the attributes of the problems attacked so
far. For an in-depth analysis of the literature—including the
various complexity results, polynomial and enumerative opti-
mal methods, heuristics and the associated approximation
bounds, the interested reader is referred to the comprehen-
sive surveys by Schmidt (2000) and Ma et al. (2010). We
ultimately conclude this section by summarizing our contri-
butions.

Virtually all scheduling research with machine unavail-
abilities ignores non-regular objective functions. One of the
earliest examples of research on regular objective functions
in the single-machine literature is by Adiri et al. (1989), who
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establish that the single-machine total completion time prob-
lem with a single break isNP-complete. The timing and the
length of the break are known a priori, and the jobs are non-
resumable. An exact branch-and-bound (B&B) algorithm is
developed by Leon andWu (1992) for minimizing the maxi-
mum lateness on a singlemachine under the same constraints,
except that the planning horizon may include several breaks
and jobs are released at different times. Lee (1996) continues
in the same vein of research by characterizing and devel-
oping algorithms for one fixed break per machine in the
single- and parallel-machine environments under both the
resumability and non-resumability assumptions for several
regular scheduling criteria: makespan, maximum lateness,
total (weighted) completion time, and total number of tardy
jobs. The state of the art for the single-machine totalweighted
completion time problem with a single fixed break and non-
resumable jobs is defined by Kacem et al. (2008) and Kacem
and Chu (2008), who devise exact algorithms which scale up
to 3000 and 6000 jobs, respectively.Wang et al. (2005) attack
the resumable version of the single-machine total weighted
completion time problem with multiple fixed breaks. They
prove that the problem is NP-hard in the strong sense and
provide approximation results for two special cases. Laalaoui
and M’Hallah (2016) take on the objective of maximizing
the weighted number of scheduled non-resumable jobs on a
single machine over a planning horizon, which incorporates
a predefined number of fixed breaks of possibly different
durations. Another recent piece of research with one fixed
maintenance activity in the planning horizon is contributed
by Yin et al. (2016b). These authors develop two pseudo-
polynomial time dynamic programming algorithms for a set
of non-resumable jobs on a single machine with the goal of
minimizing the total amount of late work, where the length of
processing performed on a job past its due date is labeled as
late. Approximation results are also provided. In the realm of
periodic and/or flexible maintenance with regular objective
functions on a single machine, Ji et al. (2007), Low et al.
(2010), and Cui and Lu (2017) are concerned with the inte-
grated scheduling of non-resumable jobs and several periodic
maintenance activities as to minimize the makespan. Chen
(2009), Lee and Kim (2012), and Liu et al. (2016) consider
the identical setting under the performance measure of min-
imizing the number of tardy jobs. In these six papers, two
consecutive maintenance breaks are separated exactly by a
fixed predefined duration, and the breaks are all of equal
length, except in Low et al. (2010) and Cui and Lu (2017),
whoallow forflexibility in the start timeof a break.The recent
work by Drozdowski et al. (2017) has a fresh perspective on
flexible maintenance activities. These authors observe that in
practicemaintenance activities are also often triggered by the
number of jobs performed since the completion of the most
recent maintenance. Under this setting, the authors explore
various problem variants with the objective of minimizing

the makespan or the maximum lateness. The work by Graves
and Lee (1999) is an exception to the body of work dis-
cussed so far, because these authors take semi-resumable jobs
into account. More specifically, a job interrupted by a break
may be carried on after the break following a job-dependent
fixed setup time. The objective is either to minimize the total
weighted completion time or the maximum lateness on a sin-
gle machine, and the length of the planning horizon justifies
just a single break or amaximum of two. In both cases, a flex-
ible break must be performed within a predetermined fixed
period of time. Detienne (2014) adopts the exact same semi-
resumability scheme and develops computationally effective
mixed-integer programming formulations forminimizing the
weighted number of late jobs with several fixed breaks in
the planning horizon and no periodicity requirement. The
conventional resumable and non-resumable cases are also
considered. To the best of our knowledge, these are the only
two pieces of research in the single-machine literature, which
handle the case of semi-resumable jobs. For an overview of
shop scheduling problems with machine unavailability con-
straints, the reader is referred to the survey papers by Schmidt
(2000) and Ma et al. (2010), and the recent papers by Yoo
and Lee (2016), Yin et al. (2016a, 2017), and Huo (2017).

In contrast to a fairly rich literature onmachine scheduling
problems with unavailability constraints under regular per-
formance measures, papers attacking non-regular objectives
under similar constraints are quite rare. A first example is set
by Mannur and Addagatla (1993). Similar to our work, these
authors address the problem of minimizing the total abso-
lute deviation of the job completion times from a common
due date on a single machine with several fixed breaks in
the planning horizon. However, the attention is restricted to
non-resumable jobs, and two heuristics are proposed based
on the decomposition of the planning horizon into several
independent processing intervals by the breaks. This early
piece of work was only followed up in the last few years
starting with Benmansour et al. (2011), who set up a mixed-
integer programming formulation for minimizing the total
weighted earliness/tardiness (E/T) with a common due date.
Jobs are non-resumable, and a single machine is unavail-
able periodically for a fixed maintenance duration. In this
stream of research, Low et al. (2015) incorporate a single
fixed planned maintenance period with non-resumable jobs
into their problem of minimizing the sum of the absolute
deviations of the job completion times from a common due
date on a single machine. A mixed-integer programming
formulation of the problem at hand is followed by the devel-
opment of an ant colony heuristic for large-scale instances.
In addition, the authors also tackle a special case under an
unrestrictiveness assumption, where the due date falls into
the break. This setting is identical to that in Sect. 5.1 of
our paper. However, we provide a substantially more con-
cise, streamlined, and easy-to-follow analysis by exposing a
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certain discrete convexity property, which is then exploited
algorithmically. Molaee et al. (2011) and Benmansour et al.
(2014) take a different path from these three papers focusing
on additive E/T criteria and incorporate the maximum ear-
liness and/or the maximum tardiness into their objectives.
More specifically, Molaee et al. (2011) first focus on mini-
mizing the maximum earliness and then shift their attention
to the bi-objective problem of identifying the Pareto frontier
for minimizing the maximum earliness and the number of
tardy jobs on a single machine simultaneously. There is a
single fixed break in the planning horizon under the non-
resumability assumption. For either type of problem, the
authors first derive some structural properties, lower bounds,
and dominance rules and then leverage these for devising a
heuristic and a B&B method. Benmansour et al. (2014) are
concerned with the single-machine scheduling problem of
minimizing the weighted sum of the maximum earliness and
the maximum tardiness costs, where the jobs share a restric-
tive common due date. The machine is required to undergo
periodic and flexible maintenance of fixed length. An upper
limit on the time elapsed between two consecutive main-
tenance breaks is present, and the jobs are non-resumable.
These two features lend the problem a bin packing structure.
A heuristic relying on this structure is proposed following a
mathematical programming formulation of the problem.

The taxonomy and review of the literature reveal a clear
void regarding E/T problems with machine unavailability
constraints, and we intend to partially fill this gap in this
paper. As pointed out previously in this section, our focus is
onminimizing the total absolute deviation of the job comple-
tion times from an unrestrictive common due date on a single
machine with one or several non-periodic fixed breaks in the
planning horizon, and we cover all three cases with respect
to resumability. In the E/T literature with additive objec-
tives, only the single-machine unrestrictive common due date
problems with job-independent unit E/T penalties are poly-
nomially solvable—seeBaker and Scudder (1990) andKanet
and Sridharan (2000) for the early results in this field. Given
this fact and the lack of a rigorous understanding of the struc-
tural properties of E/T problems with machine unavailability
constraints in the literature, we consider it a worthy research
question to investigate how the structural properties of an
originally simple E/T problem are affected by the presence
of machine unavailability constraints. We elaborate more on
this at the end of Sect. 2, following a formal introduction of
our problem.

Our primary technical contribution in this paper is that
for a given problem variant we consider, we either present
a polynomial time optimal algorithm or prove its NP-
completeness. For NP-complete variants in the ordinary
sense, such a result is accompanied by a dynamic pro-
gramming algorithm of pseudo-polynomial complexity as
appropriate. Ultimately, we provide a fairly complete char-

acterization of the single-machine unrestrictive common due
date total E/T problem with machine unavailability con-
straints in our setting and generally succeed in drawing the
boundary between polynomially solvable andNP-complete
problems for the variants we explore. From a modeling per-
spective, we have other contributions on top of that directly to
the E/T literature. In contrast to the overwhelming majority
of the literature, we take both a single and several fixed—
not necessarily periodic—breaks into account. It turns out
that these two types of problems are quite different in nature.
Finally, a major contribution of this paper is that all three
assumptions regarding resumability are analyzed in detail.
In their conclusions, Ma et al. (2010) point out that only
a handful of papers are available on semi-resumability and
emphasize semi-resumability as a future research direction
based on its prevalence in the industry. We make a serious
effort to examine this case in our models.

In Sect. 2, a formal definition of our problem is pre-
sented, and we then proceed to establish the strong NP-
completeness of our problem with several breaks in the
following section. A set of preliminaries is discussed in
Sect. 4, and Sects. 5–6 are dedicated to the analysis of a single
break. Several interesting cases are identified and investi-
gated, depending on the location of the break with respect to
the common due date and the assumptions regarding resuma-
bility. We conclude with future research prospects in Sect. 7.

2 Problem statement

In the most general statement of the single-machine E/T
scheduling problem with machine availability restrictions,
a total of n jobs are to be processed non-preemptively on a
single machine. If the processing of a job spans a break, then
we label this job as an interrupted job. Each job i has a nom-
inal processing time pi > 0 and incurs a break penalty (extra
amount of processing) if its executionwindow intersectswith
a break. In the rest of the paper, we assume that the nominal
processing times are in the Longest Processing Time (LPT)
order, i.e., p1 ≥ p2 ≥ · · · ≥ pn , unless specified explic-
itly otherwise. The vector of processing times is denoted by
p. The actual processing time p̄i (si ) of job i depends on its
start time si , and its exact form is specified in the sequel. In
addition, a due date di , a unit earliness cost αi , and a unit
tardiness cost βi are associated with job i . All jobs are ready
for processing at time zero. There is a total of K breaks in
the planning horizon [0, T ], where break k is given by the

time interval
[
Bk
s , B

k
f

]
with a length of bk = Bk

f − Bk
s time

units. Bk
f < Bk+1

s holds for all k = 1, . . . , K − 1. All pro-
cessing times, the due dates, and the break start and finish
times are assumed to be integral. This general problem for-
mulation with distinct job-dependent due dates and multiple
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Fig. 1 Amount of processing an interrupted job j with p j = 10 receives
upon resuming as a function of the length of its processing before the
break.

breaks is stronglyNP-hard because it subsumes the strongly
NP-hard single-machine scheduling problem of minimiz-
ing the total weighted tardiness with job-dependent penalties
and distinct job-dependent due dates. A time-indexed binary
integer programming formulation for this general problem
statement is provided in Appendix A. Finally, we compute
the actual processing time p̄i (si ) of job i as

p̄i (si )=
{
pi +bk+li

(
si , Bk

s

)
if si < Bk

s <si + pi for some k∈{1 . . . , K },
pi , otherwise,

(1)

where the break penalty li (si , Bk
s ) of job i is calculated as

follows:

li (si , B
k
s ) =

⌈(
Bk
s − si

)
�

⌉
. (2)

Note that the break penalty represents the fraction of work
completed before the break, which needs to be repeated after
the break. The structure of (2) captures all three cases of
resumable, non-resumable, and semi-resumable jobs with
� = 0, � = 1, and 0 < � < 1, respectively. The val-
ues � > 1 are not relevant because such values imply that
delaying the start of a currently interrupted job decreases
its completion time. Figure 1 presents the length of the pro-
cessing of an interrupted job after the break with respect to
that before the break for various values of �. The compu-
tations for � = 0 and � = 1 are straightforward because
the former implies that no work is repeated following an
interruption, and all prior processing is lost in the latter
case. To illustrate the calculations for the intermediate val-
ues of �, assume that job j with p j = 10 is interrupted by

break k after receiving five units of processing. According to
(2), the break penalty evaluates to

⌈(
Bk
s − s j

)
�

⌉ = �5��.
Thus, the total amount of work performed after the break is
(10 − 5) + �5 ∗ 0.3� = 7 and (10 − 5) + �5 ∗ 0.7� = 9 for
� = 0.3 and � = 0.7, respectively. It should also not go
unnoticed that the computation of the actual processing time
specified in (1) implicitly assumes that a job will not be inter-
rupted more than once. For reasons that will become evident
at the end of Sect. 3, this is the prevalent case in this paper,
and this formula is sufficient for our purposes. However, the
logic underlying (1) can easily be generalized to compute the
actual processing time of a job interrupted several times in
succession. In any case, we stress that our general problem
statement and the complexity proof in the next section do
not depend on an assumption that a job is interrupted at most
once.

The computational complexity of the general problem
definition discussed up to this point and the scarcity of
papers taking on E/T objectives with machine unavailabil-
ity restrictions prompt us to identify the special cases that
are amenable to optimal solution methods of polynomial
or pseudo-polynomial complexity. To this end, we follow
suit with the E/T literature at large, which grew out from
the study of common due date problems. For this class of
problems, the literature branches out into two main paths.
In the case of a restrictive common due date, the immi-
nence of the due date has an impact on the optimal schedule
and adds an additional layer of complexity. Problems with
an unrestrictive common due date d ≥ ∑n

i=1 pi such that
di = d, i = 1, . . . , n, are in general theoretically and/or
practically easier compared to their restrictive counterparts
and have more structure. For this reason, unrestrictive com-
mon due date problems are typically tackled first in the
literature, and the outcomes are then possibly leveraged in the
design of optimal or heuristic algorithms for the correspond-
ing restrictive common due date problems in subsequent
research.We take a similar approach in this paper by restrict-
ing our attention to an unrestrictive common due date with
the hope that our study will pave the way for follow-up
research on various possible extensions. For our problem, a
sufficient condition for the unrestrictiveness of the common
due date is given as

∑n
i=1 pi ≤ min{d, B1

s }. Furthermore,
as underlined toward the end of Sect. 1, even minimizing the
total weighted E/T with an unrestrictive common due date
remains NP-complete unless the unit E/T weights are job
independent, and we assume that αi = βi = 1, i = 1, . . . , n,
in the rest of the paper. In the next section, we settle the
complexity of the unrestrictive common due date problem
with semi-resumable and non-resumable jobs when multi-
ple breaks are present in the planning horizon before we
proceed with our formal analysis of the unrestrictive com-
mon due date problem with a single break in the rest of the
paper.
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Fig. 2 Schedule S0

3 The non-resumable and semi-resumable
unrestrictive common due date total E/T
problemwithmultiple breaks is strongly
NP-hard

The decision version of the single-machine unrestrictive
commondue date total E/T scheduling problemwithmultiple
breaks—referred to as ET–MB—and 0 < � ≤ 1 requires
a yes/no answer to the following question: Does there exist
a feasible schedule S with a total cost f (S) no larger than
some integer y0?

The proof proceeds by a reduction from the
3-PARTITION problem defined as follows: Given an
integer b > 0 and a set of 3t positive integers X =
{x1, x2, . . . , x3t } with b

4 < xi < b
2 , i = 1, . . . , 3t , and∑3t

i=1 xi = tb, is it possible to partition X into t mutually
disjoint three element subsets Xk ⊂ X , k = 1, . . . , t , such
that

∑
i∈Xk

xi = b for k = 1 . . . , t? Without loss of general-
ity, we also assume that xi−1 ≤ xi for i = 2, . . . , 3t . In the
sequel, we prove that 3-PARTITION has a yes answer if
and only if the particular instance I1 of the decision version
of ET–MB described in the following is a yes-instance as
well. The construction of I1 is clearly polynomial in the size
of the 3-PARTITION instance.

In the instance I1, the commondue date is set to d = 2y0+
tb+1,where y0 = ∑t

k=1 ((k − 1) (3b + 3) + 3b). Thevalue
of � may be chosen arbitrarily from the interval (0, 1]. I1
includes 3t “partition” jobs Ji with pi = xi for i = 1, . . . , 3t ,
an additional dummy job J0 with p0 = y0, and t + 1 breaks
such that B0

s = d − y0 − 1, B0
f = d − (�(p0 − 1) �� + 1),

Bk
s = Bk

f − 1, Bk
f = d + k (b + 1) for k = 1, . . . , t − 1,

and Bt
s = d + t (b + 1) − 1, Bt

f = d + y0 + 1. Observe
that the partition jobs Ji , i = 1, . . . , 3t , are in the Shortest
Processing Time (SPT) order, and the common due date d
satisfies the sufficiency condition

∑3t
i=0 pi ≤ min

{
B0
s , d

}
for unrestrictiveness stipulated at the end of Sect. 2 because∑3t

i=0 pi = y0 + tb ≤ min
{
B0
s , d

} = B0
s = d − y0 − 1 =

(2y0 + tb + 1) − y0 − 1 = y0 + tb.

Lemma 3.1 If the partitioning of X into mutually disjoint
three element subsets X1, X2, . . . , Xt corresponds to a solu-
tion of 3-PARTITION, then there exists a feasible schedule
S0 for I1 with a total E/T cost of at most y0.

Proof Assume that X1, X2, . . . , Xt yield a solution for
3-PARTITION. Consider the feasible schedule S0 illus-

trated in Fig. 2, in which the jobs in sets Xk , k = 1, . . . , t ,
are scheduled in increasing order of their indices. Note that
for brevity of notation, we employ Xk, k = 1, . . . , t , also as
index sets for jobs scheduled in specific intervals in S0.
The cost of the schedule S0 is:

f (S0) = 0 +
t∑

k=1

⎛
⎜⎜⎝3 (k − 1) (b + 1) +

∑
i∈Xk

∑
j∈Xk
j≤i

p j

⎞
⎟⎟⎠ (3)

<

t∑
k=1

(
3 (k − 1) (b + 1) + 3b

2
+ 2b

2
+ b

2

)

=
t∑

k=1

(3 (k − 1) (b + 1) + 3b) = y0. (4)

In (3), the expression (k − 1) (b + 1) is the delay of the start
time of the first of the three jobs in Xk with respect to d,
and adding

∑
j∈Xk
j≤i

p j to this quantity yields the tardiness of

job i ∈ Xk . The strict inequality in the transition from (3) to
(4) follows from the fact that there are exactly three jobs in
each Xk , k = 1, . . . , t , and that the processing times of all
jobs are less than b

2 by definition. Equations (3)–(4) certify
that there exists a feasible schedule S0 for I1with a total cost
of f (S0) ≤ y0 if X1, X2, . . . , Xt constitute a solution for
3-PARTITION. 	


Conversely, suppose that there exists a feasible schedule
S for I1 such that f (S) ≤ y0.

Lemma 3.2 The following properties must hold for a feasible
schedule S of I1 if f (S) ≤ y0:

i. No job completes before B0
s or after Bt

f .
ii. The dummy job J0 is scheduled at the first position.
iii. The dummy job J0 completes at the common due date d.

Proof i. This is due to the choice of the lengths and posi-
tions of the first and last breaks—i.e., d − B0

s > y0 and
Bt

f − d > y0. So, a job which completes before the first
break or after the last break incurs a cost larger than y0.

ii. By contradiction. Assume that J0 with p0 = y0 is not the
first job in S with a total cost of f (S) ≤ y0, and note that
I1 includes at least three jobs in addition to J0 because
t ≥ 1. In order to calculate a lower bound on f (S),
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we consider the corresponding instance of the unrestric-
tive common due date total E/T problem—a special case
of ET–MB with no breaks. The discussion immediately
following Property 4.1 in the next section reveals that
the total E/T cost in the absence of any breaks cannot
be less than y0 + 3, unless J0 occupies the initial posi-
tion. Incorporating breaks cannot decrease the cost, and
f (S) ≥ y0 + 3 must hold in this case as well, contradict-
ing the upper bound y0 assumed on f (S).

iii. If f (S) ≤ y0, Properties i–ii imply that no job can finish
its processing before J0 and the completion time of J0
will be later than B0

f . If J0 is interrupted just by break
0, the amount of processing J0 receives following the
break is given by

⌈(
B0
s − s0

)
�

⌉ + (
p0 − (

B0
s − s0

))
and is a non-increasing function of the work

(
B0
s − s0

)
completed before the break. This result follows directly
from

⌈(
B0
s − s0 + 1

)
�

⌉ + (
p0 − (

B0
s − s0 + 1

)) −⌈(
B0
s −s0

)
�

⌉−(
p0−

(
B0
s −s0

))=⌈(
B0
s −s0

)
�+�

⌉ −⌈(
B0
s − s0

)
�

⌉ − 1 ≤ 0 because 0 < � ≤ 1. There-
fore, if J0 is interrupted by break 0, then it will need to
stay on the machine for a minimum of �(p0 − 1) �� + 1
time units after the break, and it will terminate no
earlier than at time B0

f + �(p0 − 1) �� + 1 = d −
(�(p0 − 1) �� + 1) + (�(p0 − 1) �� + 1) = d. If J0 is
not interrupted, its minimum possible completion time is
B0

f + p0 = d − (�(p0 − 1) �� + 1) + p0 ≥ d.
Furthermore, if f (S) ≤ y0, Properties i–ii require that
all tb units of work on jobs J1, . . . , J3t must fit between
the completion time of J0 and Bt

s . This is only attainable
if the completion time of J0 is no larger than d because
the total availability of the machine in the time interval
[d, Bt

s ] is exactly tb time units. Combined with the argu-
ments in the previous paragraph, which establish that J0
cannot be finished before d if f (S) ≤ y0, we conclude
that the completion time of J0 is d if f (S) ≤ y0. 	


Lemma 3.3 If there exists a feasible schedule S of I1
with f (S) ≤ y0, then the underlying instance of the
3-PARTITION problem is a yes-instance.

Proof From Lemma 3.2, job J0 must be scheduled first and
completes at time d, and there must be no job completions
before B0

s and after Bt
f if f (S) ≤ y0. This leaves t separate

blocks of time, each of length exactly b, for the remaining
jobs Ji , i = 1, . . . , 3t , between d and Bt

s . This is just enough
time to accommodate these jobs only if no job is interrupted
because the total nominal processing time of these 3t jobs
is tb time units and � > 0. Consequently, each block is
filled entirely and a job is processed completely in a single
block; that is, the jobs J1, . . . , J3t are partitioned into three-
job subsets X1, X2, . . . , Xt such that

∑
i∈Xk

pi = b for all
k = 1, . . . , t , providing us with a solution of the associated
3-PARTITION instance. 	


Theorem 3.4 The decision version of ET–MB is NP-
complete in the strong sense for 0 < � ≤ 1.

Proof The decision version of ET–MB is clearly in NP .
Furthermore, the construction of I1 is polynomial in the
size of the underlying 3-PARTITION instance, and I1 is
a yes-instance of ET–MB if the associated 3-PARTITION
instance is a yes-instance (Lemma 3.1). The converse follows
from Lemma 3.3. These two lemmas complete the polyno-
mial transformation from 3-PARTITION to ET–MB and
yield the desired result because 3-PARTITION is NP-
complete in the strong sense. 	


The careful reader may have noticed that the complexity
analysis fails to go through if the jobs are resumable, i.e.,
if � = 0, because we can no longer claim that each job
is performed exclusively in a single block in the proof of
Lemma 3.3. The complexity of ET–MBwith� = 0 remains
open.

Graves and Lee (1999) state that in their experience “there
are very few (one or two) maintenance periods during a
planning horizon,” and more than two maintenance peri-
ods scheduled during a planning horizon are rare in practice.
Motivated by this claim and having established the difficulty
of minimizing the total E/T under an unrestrictive common
due date andmultiple breaks, we shift our focus to the special
case of ET–MB with a single break—referred to as ET–
SB—in the rest of the paper. For brevity of notation, the
superscripts are omitted from B1

s and B1
f .

4 Preliminary insights

The problem of minimizing the absolute deviation from
an unrestrictive common due date on a single machine
(UCDD-ADev) is one of the easiest of all earliness/tardiness
scheduling problems. For the rest of the paper, we tackle
various generalizations of this problem with a single break.
Therefore, in this section we first list the fundamental struc-
tural properties exhibited byUCDD-ADev, and then proceed
to illustrate that these properties do not necessarily hold for
ET–SB. The lack of these properties renders solving ET–SB
to optimality a substantially harder endeavor in general. In
the following sections, we analyze various variants of ET–
SB differentiated by the position of the break with respect
to the due date and the value of �. We start with the sim-
plest setting in Sect. 5.1 and work our way up toward tougher
problem types.

It is fairly straightforward to show that there exists an opti-
mal solution for UCDD-ADev with the following properties
(Kanet 1981):

Property 4.1 a. There is no inserted idle time in the sched-
ule.
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(a) (b)

(c)

Fig. 3 Properties 4.1a–c are not necessarily satisfied in ET–SB. a No optimal schedule without inserted idle time (� = 1). b No optimal schedule
without a straddling job (� = 0). c No optimal schedule obeys the V-shaped property (� = 1)

b. One job completes precisely at the due date.
c. The optimal schedule is V-shaped. That is, the jobs which

complete before or at the due date are in the LPT order,
while the remaining jobs are sequenced in the SPT order.

These properties were initially exploited in a seminal paper
by Kanet (1981) to design a polynomial time optimal algo-
rithm of complexity O(n2) for UCDD-ADev. However,
researchers subsequently realized that this complexity can be
dropped to O(n log n) (Bagchi et al. 1986; Hall 1986). The
key observation is that the processing time of an early/on-
time job contributes to the earliness of every preceding job,
and the processing time of a tardy job is counted toward
the tardiness of every job completed later, including its own.
Based on this rationale, solving UCDD-ADev to optimality
boils down to matching the processing times to the set of n
positional weights c = {0, 1, 1, 2, 2, 3, 3, . . .} sorted in non-
decreasing order, and the optimal objective function value is
then given by

∑n
j=1 c j p j because the jobs are labeled in the

LPT order. The basic idea of this algorithm is generalized in
Algorithm 1 in Sect. 5.1 for optimally solving ET–SBwith a
straddling break—that is, the break contains the due date—
and non-resumable jobs. This is only possible because this
variant of ET–SB preserves Properties 4.1a and 4.1c. It turns
out that the second property is not essential for the sequenc-
ing decisions, but only helps determine the completion times
given the job processing sequence.

Figure 3 attests to the fact that each of Properties 4.1a–c
may be violated at optimality for an instance of ET–SB. In
particular, the machine is left idle for one time unit following
the break in the unique optimal schedule of the instance in
Fig. 3a—not complying with Property 4.1a. Similarly, the
unique optimal solution in Fig. 3b exhibits a straddling job—
a job that starts before the due date and completes tardy—
in contradiction to Property 4.1b. Finally, in any one of the
(symmetric) optimal solutions of the instance in Fig. 3c, the
break is preceded by a job with a duration of five time units,
but the length of the job following the break is shorter. Both
jobs start and complete after the due date and break the SPT

order in violation of Property 4.1c. The first two cases are
relatively common, and illustrative examples are simple to
construct. However, the absence of the V-shaped property is
more subtle and occurs less frequently.

The careful reader may question whether the presence
of interrupted and straddling jobs in an optimal schedule
is mutually exclusive, which arguably would help reduce
the search space in an enumerative algorithm. However, the
examples in Fig. 3b and Fig. 4 demonstrate the lack of such
a structural property. In Figs. 3b and 4a, there only exist a
single straddling and a single interrupted job in the optimal
schedule, respectively. In Fig. 4b, job 1 is both interrupted
and straddling, while two separate interrupted and straddling
jobs are presented in Fig. 4c.

The next section presents our analysis of the simpler
case with a single straddling break, and we then proceed
to the characterization and solution of ET–SB with a non-
straddling break in Sect. 6.

5 Single straddling break

5.1 Non-resumable jobs

This variant of our problem is referred to as ET–SStB-
NonRes and preserves the V-shaped property described in
Property 4.1c. That is, all jobs preceding and succeeding the
break are sequenced in the LPT and SPT orders, respectively.
However, the position of the due date within the break has
an impact on the structure of the optimal solution. In par-
ticular, the number of early and tardy jobs ne and (n − ne),
respectively, is affected by the relative magnitudes of the
expressions involving BE = d − Bs and BT = B f − d in
the objective function. Consequently, unlike UCDD-ADev,
the optimal value of ne cannot be identified on the fly during
the course of the algorithm when the processing times are
matched to the objective function coefficients. Ultimately,
we characterize the optimal objective function value of ET–
SStB-NonRes with the additional restriction that exactly ne
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Fig. 4 Interrupted and
straddling jobs in an optimal
schedule of ET–SB. a There
only exists an interrupted job in
the optimal schedule (� = 0). b
The same job is both straddling
and interrupted in the optimal
schedule (� = 0). c Two
distinct straddling and
interrupted jobs in the optimal
schedule (� = 0)

(a)

(c)

(b)

Fig. 5 Cost coefficients applied
to the processing times are
indicated in parentheses above
the jobs

jobs are placed before the break. We show that this value
ω(ne) is discrete convex over ne = 0, . . . , n, which results
in an effective optimal algorithm for ET–SStB-NonRes.

The optimal objective function value of ET–SStB- Non-
Res with ne early jobs is expressed as

ω(ne) = neBE + (n − ne)BT +
n∑
j=1

c j (ne)p j

= neBE + (n − ne)BT + f (ne), (5)

where the entries in the set of objective function coefficients

c(ne) = {0, 1, . . . , ne − 1} ∪ {1, 2, . . . , n − ne} (6)

are sorted in non-decreasing order to minimize the objec-
tive function (Baker and Scudder 1990; Emmons 1987). The
last term f (ne) in (5) is easily recognized as the optimal
objective function value of UCDD-ADevwith the additional
constraint of exactly ne early/on-time jobs in the schedule.
In our problem, this term must be augmented by the first
two terms in (5), which denote the fixed earliness and tardi-
ness costs resulting from the break. Figure 5 illustrates the
objective function coefficients c(ne).

Lemma 5.1 The optimal objective function ω(ne) defined
over ne = 0, . . . , n is discrete convex.

Proof A function g : N0 �→ R is discrete convex if and only
if the differences t �→ g(t + 1) − g(t) are non-decreasing.
Therefore, we only need to show that the difference ω(ne +

1) − ω(ne) is non-decreasing for ne = 0, . . . , n − 1. To this
end, we compute

ω(ne + 1) − ω(ne)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

BE − BT − ∑n
j=2ne+1 p j , 0 ≤ ne < n

2 ,

BE − BT , ne = n
2 ,

BE − BT + ∑n
j=2(n−ne)+1 p j ,

n
2 < ne ≤ n − 1.

(7)

In the interest of space, we only illustrate the calculations for
ne = n

2 explicitly, which is only relevant for even n. In this
case, we obtain c(ne) = c(ne +1) = {0, 1, 1, 2, 2, . . . , ne −
1, ne − 1, ne} from (6). Thus, ω(ne + 1) − ω(ne) = (ne +
1)BE−neBE+(n−ne−1)BT −(n−ne)BT = BE−BT . The
remaining two cases can be derived by constructing c(ne) and
c(ne + 1) in a similar way. In particular, for 0 ≤ ne < n

2 ,
we obtain ω(ne + 1) − ω(ne) = BE − BT + σne , where σne
is defined, explained, and computed in Algorithm 2 and the
related discussion below.

The term BE − BT is common to all three cases in (7).
Thus, the proof is completed by arguing that−∑n

j=2ne+1 p j

is strictly negative and strictly increasing for 0 ≤ ne < n
2 , and∑n

j=2(n−ne)+1 p j is strictly positive and strictly increasing
for n

2 < ne ≤ n − 1. 	


A direct consequence of Lemma 5.1 is that n�
e =

min {ne ∈ N0 | ω(ne + 1) − ω(ne) ≥ 0}—the minimizer of
ω(ne)—can be identified by a standard binary search over the
range 0, . . . , n, as stated in Algorithm 1, which is invoked
with ne = 0 for solving ET–SStB-NonRes. The argument
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ne supplied to Comp_StradB_NonRes_Sched is for gen-
erality and is required in Sect. 5.2.

Algorithm 1: Comp_StradB_NonRes_Sched
input : n, p, d, Bs , B f , ne: p is in LPT order, ne is the

minimum number of jobs before the break.
output: ω�, S�, n�

e: optimal objective function value, optimal
schedule, number of jobs before the break in S�.

1 f = Compute_UCDD-ADev_OFV (n,p);
// Calculate the values f (ne) for ne = 0, . . . , n.

See Algorithm 2.
2 Search for the minimizer n�

e of
ω(ne) = neBE + (n − ne)BT + f (ne) over [ne, n] via binary
search in O(log n) time;
// ω(ne) is discrete convex—see Lemma 5.1.

3 Construct the optimal schedule S� from n�
e , ω

� = ω(n�
e);

The complexity of Comp_StradB_NonRes_Sched
depends on the function evaluations f (ne) on line 2 of Algo-
rithm 1. It turns out that all function evaluations f (ne), ne =
0, . . . , n, can be performed inO(n) time on line 1 by a careful
analysis of the relationship of the set of objective coefficients
c(ne) and c(ne+1) and the corresponding difference between
f (ne) and f (ne + 1). If all jobs are tardy, then f (0) =∑n

j=1 j p j as calculated in the first for-loop in Algorithm 2.
The difference f (ne + 1)− f (ne) is denoted by σne , and we
observe that σ0 = f (1) − f (0) = −∑n

j=1 p j—as calcu-
lated in the first for-loop—because c(0) = {1, 2, . . . , n}
and c(1) = {0, 1, 2, . . . , n − 1}. In general, the effect of
increasing the number of early jobs ne by 1 is to insert the
element ne into and delete the element n − ne from the set
of objective coefficients. That is,

c(ne + 1) = c(ne) ∪ {ne}\{n − ne}
= {0, 1, 1, 2, 2, . . . , ne − 1, ne − 1, ne, ne + 1,

. . . , n − ne} ∪ {ne}\{n − ne} (8)

= {0, 1, 1, 2, 2, . . . , ne − 1, ne − 1, ne, ne,

ne + 1, . . . , n − ne − 1}. (9)

This presentation assumes that 0 ≤ ne ≤ n
2 − 1 or 0 ≤ ne ≤

n+1
2 −1 depending on whether n is even or odd, respectively,

as taken into account in the bounds of the second for-loop
in Algorithm 2. The changes in c(ne + 1) over c(ne) in (8)-
(9) reveal that σne = −∑n

j=2ne+1 p j . Similarly, σne+1 =
−∑n

j=2(ne+1)+1 p j , and σne+1 − σne = p2ne+1 + p2ne+2 as
employed on line 10 for updating the variable σ . Finally, it
is straightforward to figure out that c(n − ne) = c(ne + 1),
which justifies line 9 and completes the algorithm. Obvi-
ously, Algorithm 2 runs inO(n) time and leads to an overall

complexity ofO(n+ log n) = O(n) for Algorithm 1 without
including the cost of sorting the processing times in the LPT
order.

Algorithm 2: Compute_UCDD-ADev_OFV .
input : n, p: p is in LPT order.
output: f (ne), ne = 0, . . . , n: optimal objective function value

of UCDD-ADev with exactly n − ne tardy jobs.
1 if n is even then n̄e = n

2 else n̄e = n+1
2 ;

2 f (0) = 0, σ = 0 ;
3 for j = 1 to n do
4 σ = σ − p j ;
5 f (0) = f (0) + j p j ;
6 end
7 for k = 0 to n̄e − 1 do
8 f (k + 1) = f (k) + σ ;
9 f (n − k) = f (k + 1);

10 σ = σ + p2k+1 + p2k+2;
11 end

5.2 Resumable and semi-resumable jobs

In this variant of our problemwith 0 ≤ � < 1—referred to as
ET–SStB-SemiRes, the jobs are allowed to be interrupted by
the straddling break at integer points in time. In this section,
we first establish several structural properties of the problem
and then leverage these for our algorithmic design. The key
result is a polynomial time algorithm of complexity O(n2),
which computes the optimal solution of ET–SStB-SemiRes
if 1

1−�
is integral. Otherwise, aminormodification applied to

this algorithm provides the optimal solution at the expense
of the pseudo-polynomial complexity O(n

∑
j p j ). In the

following development, nt = n − ne.

Lemma 5.2 For an instance with a straddling break and for
any value of 0 ≤ � < 1, there exists an optimal schedule
without an interrupted job if d − Bs ≤ B f − d.

Proof Suppose to the contrary that there exists an interrupted
job—say job j—in the optimal schedule S� of an instance
with a straddling break, where d− Bs ≤ B f −d. Let e be the
amount processing job j receives preceding the break before
the due date. Consequently, when processing resumes for job
j following the break, the length of the remaining processing
time is p j − e + �e��.

If ne > nt , then S� cannot be optimal because the total
cost is decreased by delaying the start time of the schedule
by e units—that is, by starting job j after the break:

nt
(
p j − (

p j − e + �e��)) − nee = nt (e − �e��)
−nee ≤ (nt − ne) e < 0. (10)
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The first term in (10) represents the additional cost incurred
by the tardy jobs in S�, including job j . This extra cost is
more than offset by the reduction nee in the total earliness.

In the complementary case with ne ≤ nt , we can construct
another schedule with no higher objective function value by
shifting the start time of the schedule earlier by (p j − e)
time units. As a result, job j is processed entirely before
the break. In the analysis of the change in the total cost in
(11), (d − Bs) is the earliness cost incurred by job j after
the shift, and ne

(
p j − e

)
is the further earliness incurred

by the early jobs in S�. These costs are compensated for by
the last two terms on the left-hand side of the inequality in
(11), which express the reduction in the total tardiness of the
tardy jobs in S�. Note that the tardiness cost of job j in S� is
(B f − d) + (p j − e + �e��).
(
d − Bs

) + ne
(
p j − e

)−
(
B f − d

)
−nt

(
p j − e + �e��)

≤ (ne − nt )
(
p j − e

) ≤ 0. (11)

	

Lemma 5.2 establishes a simple condition for the dom-

inance of schedules without an interrupted job even when
0 ≤ � < 1. This is formalized in Corollary 5.3 and also
taken into account in the design of Algorithm 3, which solves
ET–SStB-SemiRes to optimality.

Corollary 5.3 If d − Bs ≤ B f − d, then Algorithm 1 solves
ET–SStB-SemiRes optimally for 0 ≤ � < 1.

The pillar of the algorithms developed in this section is
to fix the location of the interrupted job around the strad-
dling break and then rely on Algorithm 1 to compute the
optimal objective function value under this setting. There-
fore, Lemma 5.4, presented next, helps rule out some jobs
from assuming the role of the interrupted job and reduces the
computational effort.

Lemma 5.4 If
⌈(

p j − 1
)
�

⌉ + 1 = p j , then there exists an
optimal schedule, in which job j is not interrupted.

Proof If job j is interrupted, then the length of its remaining
processing time after the break is given by l j (s j , Bs)+(p j −
(Bs − s j )) = ⌈(

Bs − s j
)
�

⌉ + (p j − (Bs − s j )). It is easy
to observe that this expression is non-decreasing in s j for
Bs − p j + 1 ≤ s j ≤ Bs − 1 and attains its minimum at
Bs − p j +1 with the corresponding value

⌈(
p j − 1

)
�

⌉+1.
If this quantity is equal to p j and job j is interrupted, the
amount of the remaining processing time of job j after the
break is then never less than p j . Consequently, there always
exists another feasible schedule with no larger cost in which
job j is scheduled completely after the break. 	


Next, we turn our attention to the behavior of an inter-
rupted job around a straddling break in an optimal schedule

if schedules containing an interrupted job cannot be com-
pletely excluded from consideration by Lemmas 5.2 and 5.4.
To illustrate the need for this exploration, observe that job
j in Fig. 1 is always processed for nine time units after the
break if it starts at time t = Bs − 4, Bs − 5, or Bs − 6
and � = 0.7. Thus, if this job completes at time B f + 9 in
an optimal schedule, then it only makes sense to start it at
time Bs −4 in order to avoid introducing additional earliness
cost. In order to formalize this observation, we define t j as
the amount of processing performed on job j after the strad-
dling break in an optimal schedule. Then, the corresponding
processing time preceding the break is denoted by e∗

j

(
t j
)
and

given in Definition 5.5. In Fig. 1, we have e∗
j

(
t j
) = 4.

Definition 5.5 If an interrupted job j is processed for⌈(
p j − 1

)
�

⌉ + 1 ≤ t j ≤ p j − 1 time units after the
break in an optimal schedule with ne > 0, then e∗

j

(
t j
) =

min
{
e ∈ N0 | (p j − e

) + �e�� = t j
}
.

The next two technical results describe how e∗
j

(
t j
)

changes as t j is varied and are only required for the proofs
of Lemma 5.8 and Proposition 5.9. Therefore, the proofs of
Lemmas 5.6 and 5.7 are relegated to Appendix B.

Lemma 5.6 The difference between e∗
j

(
t j
)
and e∗

j

(
t j + 1

)
is

equal to either
⌈

1
1−�

⌉
or

⌊
1

1−�

⌋
for

⌈(
p j − 1

)
�

⌉ + 1 ≤
t j < p j − 1, and it is equal to

⌈
1

1−�

⌉
for t j = p j − 1.

Lemma 5.7 The inequality e∗
j

(
p j − i

) − e∗
j

(
p j

) ≥ i
1−�

holds for 1 ≤ i ≤ p j − (⌈(
p j − 1

)
�

⌉ + 1
)
.

Lemma 5.8 If there is an interrupted job in the optimal sched-
ule, then 1

1−�
≤ nt

ne
.

Proof Suppose to the contrary that 1
1−�

> nt
ne

and there is an
interrupted job j in the optimal schedule with the completion
time B f +t j .We prove that the cost of this schedule decreases
strictly if the entire schedule is shifted to the right by p j − t j
time units so that job j starts at time B f . The difference of
the extra tardiness cost resulting from the shift and the gain
in the earliness cost is computed as:

nt
(
p j − t j

) − ne
(
e∗
j

(
t j
) − e∗

j

(
p j

))

= nt
(
p j − t j

) − ne
(
e∗
j

(
p j − (

p j − t j
)) − e∗

j

(
p j

))

(12)

≤ nt
(
p j − t j

) − ne

(
p j − t j
1 − �

)

= (
p j − t j

) (
nt − ne

(
1

1 − �

))
(13)

<
(
p j − t j

) (
nt − ne

(
nt
ne

))
= 0. (14)
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The transition from (12) to (13) is due to Lemma 5.7. The
strict decrease in the total cost under the assumption that
1

1−�
> nt

ne
contradicts the optimality of the original schedule.

Therefore, 1
1−�

must be no larger than nt
ne

for the presence
of an interrupted job in the optimal solution. 	

Proposition 5.9 If job j is interrupted in the optimal schedule
and the ratio 1

1−�
is integral, then there exists an optimal

schedule where job j completes at time B f +
⌈(

p j − 1
)
�

⌉+
1. That is, t j = ⌈(

p j − 1
)
�

⌉ + 1.

Proof If the tardy part of job j in the optimal schedule is
t j + i units where 1 ≤ i < p j − t j , then we can shift the
entire schedule to the left without increasing the total cost
so that the processing of the interrupted job terminates at
B f + t j . The decrease in the total cost associated with this
shift is calculated as:

nt
(
t j + i − t j

) − ne
(
e∗
j

(
t j
) − e∗

j

(
t j + i

))
(15)

= nt (i) − ne

i∑
l=1

(
e∗
j

(
t j + (l − 1)

) − e∗
j

(
t j + l

))

=
i∑

l=1

(
nt − ne

(
e∗
j

(
t j + (l − 1)

) − e∗
j

(
t j + l

)))
(16)

=
i∑

l=1

(
nt − ne

(
1

1 − �

))
(17)

≥
i∑

l=1

(
nt − ne

nt
ne

)
= 0. (18)

The transition from (16) to (17) stems from Lemma 5.6 and

the integrality of 1
1−�

, which yields 1
1−�

=
⌈

1
1−�

⌉
=⌊

1
1−�

⌋
. The transition from (17) to (18) is due to Lemma

5.8. The schedule obtained via the shift does not lead to a
higher cost over the original optimal schedule and must also
be optimal. Furthermore, the interrupted job completes at
B f + t j in this schedule as desired. 	


Proposition 5.9 provides us with a fundamental result for
designing an effective algorithm for ET–SStB-SemiRes if
1

1−�
is integral by fixing the position of the interrupted job

with respect to the break. This allows us to consider the inter-
rupted job as “part of the break.” In other words, for each
choice of the interrupted job—say job j—we construct an
artificial break with the start and end points B

′
s = Bs−(p j −

1) and B
′
f = B f + ⌈(

p j − 1
)
�

⌉ + 1, respectively, and call
our optimal algorithm Comp_StradB_NonRes_Sched for
the non-resumable case iteratively. The tardiness cost of job
j is then added to the value retrieved from Comp_StradB_
NonRes_Sched in order to arrive at the optimal cost ω j

given that job j is interrupted. The algorithm Comp_

StradB_Semi Res_Sched provided in Algorithm 3 solves
ET–SStB-SemiRes for any value of� in [0, 1) such that 1

1−�

is integral with a complexity of O(n2) because Algorithm 1
with a complexity ofO(n) is invoked atmost n+1 times. One
significant issue deserves further attention in the design of
Algorithm 3. It turns out that theminimizer n j+1

e ofω j+1(ne)
is no smaller than that of ω j (ne), where ω j (ne) is defined
based on (5)with respect to the straddling break running from
B

′
s to B

′
f and the set of n−1 jobs {1, . . . j−1, j+1, . . . , n}.

This result—formally proven in Lemma 5.10—is an impor-
tant computational enhancement even if it does not affect the
theoretical complexity and allows us to restrict the search
for n j+1

e to the interval [n j
e , n]. See line 9 in Algorithm 3

below.

Lemma 5.10 The minimizer n j+1
e of ω j+1(ne) is no smaller

than that of ω j (ne); i.e., n
j+1
e ≥ n j

e .

Proof ByLemma 5.1, bothω j (ne) andω j+1(ne) are discrete
convex. That is, the differences ω j (ne + 1) − ω j (ne) and
ω j+1(ne + 1) − ω j+1(ne) are both non-decreasing for ne =
0, . . . , n − 2. Therefore, showing that

ω j (ne + 1) − ω j (ne) ≥ ω j+1(ne + 1) − ω j+1(ne),

ne = 0, . . . , n − 2, (19)

holds is sufficient to establish n j+1
e ≥ n j

e . Our strategy for
the proof is to demonstrate the validity of (19) for each of
the three cases in (7). Observe that ω j (ne) and ω j+1(ne)
are both defined with respect to a total of n − 1 jobs, and
the indices in the presentation below account for this fact
whenever required.

We start by analyzing the common expression BE − BT

in (7), where we augment the notation BE and BT with the
index of the interrupted job:

B j
E − B j

T = d − (Bs − (p j − 1))

− (B f + ⌈
(p j − 1)�

⌉ + 1 − d)

= 2d − Bs − B f

+ (p j − ⌈
(p j − 1)�

⌉
) − 2, and

B j+1
E − B j+1

T = 2d − Bs − B f

+ (p j+1 − ⌈
(p j+1 − 1)�

⌉
) − 2.

Thus, (19) is satisfied for ne = n−1
2 if B j

E − B j
T ≥

B j+1
E − B j+1

T stands correct. Equivalently, we must argue
that p j − ⌈

(p j − 1)�
⌉ ≥ p j+1 − ⌈

(p j+1 − 1)�
⌉
. This

is accomplished by recalling that p j ≥ p j+1 and employ-
ing Lemma 8.1 in Appendix B, which states that g(p) =
p − �(p − 1)�� is non-decreasing over p = 1, 2, . . ., for
0 ≤ � ≤ 1.
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Algorithm 3: Comp_StradB_Semi Res_Sched
input : n, p, d, Bs , B f , �: p is in LPT order.
output: ω�, S�, i�, n�

e: optimal objective function value, optimal schedule, index of the interrupted job in S�, number of jobs before the break
in S�.

1 [ω�, S�, n�
e] = Comp_StradB_NonRes_Sched

(
n,p, d, Bs , B f , 0

)
; // Find the optimal solution with no

interrupted job

2 ω0 = ω�, S0 = S�, i� = 0, n0e = n�
e;

3 if B f − d < d − Bs then // Else, no need to check schedules with an interrupted job—see Lemma 5.2
4 for j = 1 to n do // Make job j interrupted
5 if

⌈(
p j − 1

)
�

⌉ + 1 ≤ p j − 1 then // Else, no need to make job j interrupted—see Lemma 5.4
6 B

′
s = Bs − (p j − 1); // Optimal start time of job j—see Proposition 5.9

7 B
′
f = B f + ⌈(

p j − 1
)
�

⌉ + 1 ; // Optimal completion time of job j—see Proposition 5.9

8 p′ = [
p1, . . . , p j−1, p j+1, . . . , pn

]
; // The processing times of all jobs except for job j

9 if j = 1 then ne = 0 else ne = n j−1
e ; // Based on Lemma 5.10

// Need to make provisions on the previous line if some jobs are ruled out for
interruption based on Lemma 5.4

10

[
ω j , S j , n j

e

]
= Comp_StradB_NonRes_Sched

(
n − 1,p′, d, B

′
s , B

′
f , ne

)
;

11 ω j = ω j + (B
′
f − d) ; // Add the tardiness of the interrupted job

12 if ω j < ω� then i� = j, ω� = ωi� ; // Keep track of the current best solution
13 end
14 end
15 end

16 S� = Si
�
, n�

e = ni
�

e

In the analysis of the remaining two cases, p j
i denotes the

processing time of the i th job in the LPT sequence if job j is
the interrupted job. Obviously, we have p j

j = p j+1, p
j+1
j =

p j , and p j
i = p j+1

i for i = 1, . . . , j − 1, j + 1, . . . , n − 1.
Consequently, for 0 ≤ ne < n−1

2 ,

ω j (ne + 1) − ω j (ne) ≥ ω j+1(ne + 1) − ω j+1(ne)

⇐⇒ B j
E − B j

T −
n−1∑

i=2ne+1

p j
i ≥ B j+1

E − B j+1
T

−
n−1∑

i=2ne+1

p j+1
i

⇐⇒ (B j
E − B j

T ) − (B j+1
E − B j+1

T )

+
n−1∑

i=2ne+1

(p j+1
i − p j

i ) ≥ 0.

(B j
E −B j

T )−(B j+1
E −B j+1

T ) ≥ 0 obtained from the previous

case and p j+1
i ≥ p j

i , i = 1, . . . , n − 1, yield the validity of
the last inequality. Analogously,

ω j (ne + 1) − ω j (ne) ≥ ω j+1(ne + 1) − ω j+1(ne)

⇐⇒ (B j
E − B j

T ) − (B j+1
E − B j+1

T )

+
n−1∑

i=2(n−1−ne)+1

(p j+1
i − p j

i ) ≥ 0

is a correct statement for n−1
2 < ne ≤ n − 2. This completes

the proof. 	


If 1
1−�

is not integral, then the structural property in
Proposition5.9 is destroyed.Consider the following instance:
n = 19, p j = 29, for all j , d = 899, Bs = 747, B f = 900,
� = 0.41. In any optimal solution, the start time of the
interrupted job is 730. This leads to a completion time of
900 + �(747 − 730)0.41� + (29 − (747 − 730)) = 919.
That is, the amount of processing carried out for the inter-
rupted job following the break is 19 time units, which is
strictly larger than �(29 − 1)0.41� + 1 = 13. Our inabil-
ity to fix the position of the interrupted job around the
break precludes us from attaining a polynomial time opti-
mal algorithm forET–SStB-SemiReswith non-integral 1

1−�

values. However, it is a simple matter to make provisions in
Algorithm 3 for the lack of this property. Adding a second
(inner) for-loop, which traverses over all possible comple-
tion times B f + ⌈(

p j − 1
)
�

⌉ + 1, . . . , B f + p j − 1 of
the interrupted job j—along with the other associated obvi-
ous modifications—is sufficient to ensure the optimality of
Comp_StradB_Semi Res_Sched for ET–SStB-SemiRes
with any� in [0, 1) at the expense of the pseudo-polynomial
complexity O(n

∑
j p j ).
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Fig. 6 Schedule S0

6 Non-straddling break

Earlier in Sect. 4, we surmised that the position of the break
with respect to the due date factors into the complexity
of solving ET–SB, and the analysis of and the algorith-
mic design for ET–SStB-NonRes and ET–SStB-SemiRes
in Sect. 5 attest to the correctness of this claim. Ultimately,
ET–SB with a single straddling break remains polynomially
solvable, unless 1

1−�
is fractional. However, the story is quite

different if the break is not straddling as we delve into in this
section. It turns out thatET–SNStB, which stands forET–SB
with a single non-straddling break, isNP-complete regard-
less of the value of�. The proof is carried out by a reduction
from theEVEN-ODD PARTITION problem and establishes
that ET–SNStB is at least weakly NP-hard. As in Sect. 5,
we first investigate the case with non-resumable jobs and
devise a pseudo-polynomial time exact algorithm inSect. 6.2.
We subsequently proceed to ET–SNStB with resumable and
semi-resumable jobs in Sect. 6.3 and outline how the pseudo-
polynomial time algorithm for non-resumable jobs can be
leveraged to solve these cases in much the same spirit that
the algorithmComp_StradB_Semi Res_Sched in Sect. 5.2
invokes Comp_StradB_NonRes_Sched as a subroutine.
The pseudo-polynomial time complexity remains intact and
leads to the conclusion that ET–SNStB is not stronglyNP-
hard. Our results in this section settle the complexity of
ET–SNStB precisely with no gap for any �.

6.1 ET–SNStB is at least weaklyNP-hard for
general2

The decision version of ET–SNStBwith 0 ≤ � ≤ 1 requires
a yes/no answer to the following question: Does there exist
a feasible schedule S with a total cost f (S) no larger than
some integer y0?

The proof borrows constructs and steps from that by
Hoogeveen and Van de Velde (1991) for the single-machine
restrictive common due date total E/T scheduling problem.
The similarity between this problem and ET–SNStB is best
observed if we assume that a long break starts shortly after
the due date so that all jobs have to be scheduled in the time
interval [0, Bs] in any optimal schedule. In this case, the
“restrictiveness” in the tardy part of the schedule—instead of
that in the early part—must be accounted for. Nevertheless,
a direct reduction from the single-machine restrictive com-
mon due date total E/T scheduling problem to ET–SNStB
remains elusive, and the proof proceeds by a reduction
from the EVEN-ODD PARTITION problem (Garey et al.

1988) defined as follows: Given a set of 2t positive integers
X = {x1, x2, . . . , x2t } with xi > xi+1 for 1 ≤ i < 2t ,
does there exist a partition of X into subsets X1 and X2

such that
∑

xi∈X1
xi = ∑

xi∈X2
xi = 1

2

∑
xi∈X xi = A and

X1 (and hence X2) contains exactly one of {x2i−1, x2i } for
each 1 ≤ i ≤ t? In the sequel, we prove that EVEN-ODD
PARTITION has a yes answer if and only if the particular
instance I1 of the decision version of ET–SNStB described
in the following is a yes-instance as well. The construction
of I1 is clearly polynomial in the size of the EVEN-ODD
PARTITION instance.

The instance I1 includes 2t “partition” jobs Ji with pi =
xi + t A for i = 1, . . . , 2t , in addition to three dummy jobs
J ′
0, J

′′
0 , J ′′′

0 with the processing times p′
0 = p′′

0 = p′′′
0 =

3
(
t2 + 1

)
A, respectively. The common due date is set to

d = 11
(
t2 + 1

)
A, and a single non-straddling break spans

the time interval from Bs = d + (
t2 + 1

)
A = 12

(
t2 + 1

)
A

until B f = Bs + y0, where y0 = ∑t
i=1 i (p2i−1 + p2i ) + d

is the upper bound on the total scheduling cost. The value of
�may be chosen arbitrarily from the interval [0, 1]. Observe
that the partition jobs Ji , i = 1, . . . , 2t , are in the LPT order,
and the common due date d is unrestrictive because p′

0+ p′′
0+

p′′′
0 +∑2t

i=1 pi = 9(t2+1)A+∑2t
i=1(xi+t A) = 9(t2+1)A+

2t2A+∑2t
i=1 xi = 11(t2 + 1)A = d ≤ min

{
Bs, d

} = d—
see the end of Sect. 2.

Now, consider a partitioning of the set of partition jobs

{J1, . . . , J2t } into two subsets X1 =
{
J (1)
1 , . . . , J (1)

t

}

and X2 =
{
J (2)
1 , . . . , J (2)

t

}
such that both J (1)

i , J (2)
i ∈

{J2i−1, J2i } and J (1)
i �= J (2)

i for 1 ≤ i ≤ t . The processing

time associated with J (k)
i is represented by p(k)

i for k = 1, 2,
and i = 1, . . . , t .

Lemma 6.1 If X1 and X2 correspond to a solution of
EVEN-ODD PARTITION, then there exists a feasible sched-
ule S0 for I1 with a total E/T cost of at most y0.

Proof Consider the feasible schedule S0 illustrated in Fig. 6,
in which the jobs in X1 and X2 are scheduled in LPT and
SPT orders, respectively. The cost of the schedule S0 is:

f (S0) = p′′
0 + 2p′′′

0 + 3
t∑

i=1

p(1)
i +

t∑
i=1

(i − 1)p(1)
i +

t∑
i=1

i p(2)
i (20)

= 12(t2 + 1)A +
t∑

i=1

i
(
p(1)
i + p(2)

i

)
− (t2 + 1)A

=
t∑

i=1

i
(
p2i−1 + p2i

) + d = y0. (21)
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In (20), the first three terms stand for the total earliness cost
incurred by J ′

0, J
′′
0 , J

′′′
0 , and the last two terms account for

the total E/T cost of the jobs in X1 and X2. The transition
from (20) to (21) follows from the fact that

∑t
i=1 p

(1)
i =∑

xi∈X1
xi + t2A = ∑

xi∈X2
xi + t2A = ∑t

i=1 p
(2)
i =

(t2 + 1)A because X1 and X2 correspond to a solution
of EVEN-ODD PARTITION. Equations (20)–(21) certify
that there exists a feasible schedule S0 for I1 with a total
cost of f (S0) ≤ y0 if X1 and X2 constitute a solution for
EVEN-ODD PARTITION. 	


Conversely, suppose that there exists a feasible schedule
S for I1 such that f (S) ≤ y0.We next prove that Smust have
the same structure as S0 and that the subsets X1 and X2 must
correspond to a solution of EVEN-ODD PARTITION. To
this end, we first show a set of useful properties in Lemma
6.2 and then establish that S0 and S must be identical in
Lemma 6.3. The proofs of Lemmas 6.2 and 6.3 are similar to
those of the corresponding results in Hoogeveen and Van de
Velde (1991) and therefore presented in Appendix C. How-
ever, we note that the extra provisions required are much less
than straightforward in some cases.

Lemma 6.2 The following properties must hold for a feasible
schedule S of I1 if f (S) ≤ y0:

i. No job completes after the break.
ii. At most t jobs can be started at or after d.
iii. The last job must be completed at time Bs.
iv. The dummy jobs J ′

0, J
′′
0 , and J ′′′

0 must be scheduled at the
first three positions.

v. At least t − 1 partition jobs must be started at or after d.

Lemma 6.3 If there exists a feasible schedule S of I1 with
f (S) ≤ y0, then the underlying instance of the EVEN-ODD
PARTITION problem is a yes-instance.

Theorem 6.4 The decision version of ET–SNStB is NP-
complete in the ordinary sense for 0 ≤ � ≤ 1.

Proof The decision version of ET–SNStB is clearly inNP .
Furthermore, the construction of I1 is polynomial in the
size of the underlying EVEN-ODD PARTITION instance,
and Lemma 6.1 assures that I1 is a yes-instance of ET–
SNStB if the associated EVEN-ODD PARTITION instance
is a yes-instance. The converse follows from Lemma 6.3.
These two lemmas complete the polynomial transformation
from EVEN-ODD PARTITION toET–SNStB and yield the
desired result because EVEN-ODD PARTITION is NP-
complete in the ordinary sense. 	


6.2 Non-resumable jobs

In this section, we devise a pseudo-polynomial time exact
dynamic programming (DP) algorithm for the special case
of ET–SNStBwith non-resumable jobs—referred to as ET–
SNStB-NonRes. As evident from Fig. 3a and the related
discussion in Sect. 4, inserted idle time may be a must in the
optimal schedule. For clarity, two separate DP recursions are
developed, depending on whether the single non-straddling
break completes prior to the due date such that B f < d or
starts after the due date with Bs > d. However, we under-
score that both cases bear structural similarities. In particular,
the underlying pillar of both DP algorithms is the weakly V-
shaped property. The essence of this property is that a string
of jobs in LPT order is followed by a string of jobs in SPT
order in any optimal schedule that minimizes the total E/T
around a restrictive common due date (Hall et al. 1991). That
is, the processing time of the straddling job—if it exists—
is either no longer than that of the final job that completes
prior to the due date or no longer than that of the first job
that starts after the due date. Thus, if the jobs are indexed in
the SPT order—as assumed in the following presentation—
and inserted into the schedule one by one, the next longest
job is either appended to the head or the tail of the job pro-
cessing sequence. The start time of the first job along with
the job processing sequence is then sufficient to describe a
schedule. This is exploited in an exact pseudo-polynomial
DP algorithm by Ventura and Weng (1995) for solving the
total E/T problem with a restrictive common due date. Obvi-
ously, the weakly V-shaped property must also hold for any
optimal schedule of ET–SNStB-NonRes following or pre-
ceding the break, depending on whether B f < d or Bs > d,
respectively. Therefore, our optimal DP algorithm for ET–
SNStB-NonRes follows suit with that in Ventura and Weng
(1995), except that it also accounts for the possibility that
jobs can be assigned for processing in the LPT order before
the break if B f < d or in the SPT order upon the completion
of the break if Bs > d.

If B f < d, idle time between two consecutive jobs may
only be present in an optimal schedule between B f and the
start time of the first job performed following the break. In the
forwardDP recursion below, hk(s, e) stands for theminimum
cost of scheduling jobs 1, 2, . . . , k given that the first job after
the break starts at time s and the total amount of processing
before the break is e time units. The recursive relation for
stage k ≥ 1 considers different cases defined by the relative
positions of s and d and the length of the processing sequence
starting at time s:
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hk(s, e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
{
h

′
k(s, e), h

′′
k(s, e), h

′′′
k (s, e)

}
, if B f ≤ s < d, s + ∑k

i=1 pi − e > d, and e ≥ 0,

min
{
h

′
k(s, e), h

′′′
k (s, e)

}
, if B f ≤ s < d, s + ∑k

i=1 pi − e ≤ d, and e ≥ 0,

min
{
h

′′
k(s, e), h

′′′
k (s, e)

}
, if d ≤ s ≤ d + pn − 1 and e ≥ 0,

∞, otherwise,

(22)

where h
′
k(s, e) = |d − (s + pk)| + hk−1 (s + pk, e) cap-

tures the optimal total cost of scheduling jobs 1, 2, . . . , k
given that job k starts at time s. This case is omitted from
consideration if s ≥ d because it would violate the SPT
order for the tardy jobs. The second option is to schedule
job k at the very end of the processing sequence with a

completion time of
(
s + ∑k

i=1 pi − e
)
, and the associated

optimal cost of scheduling jobs 1, 2, . . . , k is then computed

as h
′′
k(s, e) =

(
s + ∑k

i=1 pi − e
)

− d + hk−1 (s, e). This

case is only relevant if job k terminates strictly after the
due date; otherwise, the LPT order would not be observed
by the jobs executed between B f and d. Finally, job k
may also be performed in the initial position prior to the
break to complete at

(
Bs − (e − pk)

)
. The resulting opti-

mal cost for jobs 1, 2, . . . , k is provided by h
′′′
k (s, e) =

d − (
Bs − (e − pk)

) + hk−1 (s, e − pk).

The boundary conditions for the recursion in (22) are
defined as:

h0(s, e) =
{
0, for e = 0 and B f ≤ s ≤ d + pn − 1,

∞, otherwise,

(23)

and the optimal cost is given by hn(s∗, e∗) =
minB f ≤s≤d,0≤e≤P hn(s, e), where P = ∑n

i=1 pi .
Note that the value of the first state variable is increased to

or beyond d at some stage k only if s < d currently holds, job
k is started at time s, and s+ pk ≥ d. In this case, no job k′ is
scheduled at the time instant denoted by the value of the first
state variable at any stage 1 ≤ k′ < k in order to conform
with the SPT ordering of the jobs following the due date—as
explained above. These observations lead us to conclude that
s ≤ d−1+ pn is fulfilled at any stage 1 ≤ k ≤ n as asserted

on the third line of (22) and in (23) and that the total number
of states is O(nP(d + pn − B f )). Each state is evaluated
in constant time, and thus, if B f < d ET–SNStB-NonRes
is solved to optimality by our DP algorithm with an overall
pseudo-polynomial time complexity ofO(nP(d+pn−B f )).

If Bs > d, unforced idle time between two consecutive
jobs may only exist in an optimal schedule upon the comple-
tion of the final job before the break and Bs . In the forward
DP recursion below, hk(c, t) represents the minimum cost of
scheduling jobs 1, 2, . . . , k given that the final job before the
break terminates at time c and the total amount of processing
after the break is t time units. As with the previous DP, the
recursive relation for stage k ≥ 1 considers different cases
defined by the relative positions of c and d and the length of
the processing sequence ending at time c:

hk(c, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
{
h

′
k(c, t), h

′′
k(c, t), h

′′′
k (c, t)

}
, if d < c ≤ Bs, c − ∑k

i=1 pi + t < d, and t ≥ 0,

min
{
h

′
k(c, t), h

′′′
k (c, t)

}
, if d < c ≤ Bs, c − ∑k

i=1 pi + t ≥ d, and t ≥ 0,

min
{
h

′′
k(c, t), h

′′′
k (c, t)

}
, if d − pn + 1 ≤ c ≤ d and t ≥ 0,

∞, otherwise,

(24)

where h
′
k(c, t) = (c − d) + hk−1 (c − pk, t) is the opti-

mal total cost of scheduling jobs 1, 2, . . . , k if job k is
appended to the end of the string of jobs before the break
and finishes at time c. This case is ignored if c ≤ d in
order to avoid breaking the LPT order for the early and on-
time jobs. Otherwise, job k may be also be performed at
the very start of the schedule and completes processing at

time c −
(∑k−1

i=1 pi − t
)
, which corresponds to h

′′
k(c, t) =

d −
(
c −

(∑k−1
i=1 pi − t

))
+ hk−1(c, t) as the associated

optimal cost of scheduling jobs 1, 2, . . . , k. This case is dis-

regarded if the start time
(
c −

(∑k
i=1 pi − t

))
of job k is

not prior to the due date; otherwise, the SPT order would
be violated by the jobs executed between d and Bs . Finally,

h
′′′
k (c, t) =

(
B f + t

)
−d+hk−1 (c, t − pk) reflects the opti-

mal cost of scheduling jobs 1, 2, . . . , k if job k is put to the
last position after the break.
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Fig. 7 Interrupted job
completes at time B f + 2 in all
optimal solutions (� = 0)

Theboundary conditions for the recursion in (24) are given
as:

h0(c, t) =
{
0, for t = 0 and d − pn + 1 ≤ c ≤ Bs,

∞, otherwise,

(25)

and hn(c∗, t∗) = mind≤c≤Bs ,0≤t≤P hn(c, t) provides us with
the optimal cost of scheduling all jobs 1, . . . , n.

By a similar reasoning to that in the case with B f < d,
we determine that the number of states in the DP recursion
is O(nP(Bs − d + pn)), where each state is evaluated in
constant time. This lends an overall pseudo-polynomial time
complexity of O(nP(Bs − d + pn)) to solving ET–SNStB-
NonRes exactly if Bs > d.

6.3 Resumable and semi-resumable jobs

For this variant of our problem with 0 ≤ � < 1 referred
to as ET–SNStB-SemiRes, we do not expect to be able to
devise a polynomial time algorithm due to Theorem 6.4.
However, we can rely on a strategy similar to that we applied
for non-integral 1

1−�
at the end of Sect. 5.2 to design an

exact algorithm. That is, we create an artificial break for
every possible completion time of a candidate interrupted
job and then invoke one of the algorithms in Sect. 5.2 or
Sect. 6.2 to calculate the optimal cost for the remaining n−1
jobs, depending on the relative location of the due date with
respect to the artificial break and the value of �. Since the
complexity of the DP algorithms in Sect. 6.2 is pseudo-
polynomial, we do not expect a better overall worst-case
complexity; however, a result similar to that in Proposition
5.9 would prove useful from a computational point of view
by reducing the set of possible completion times for a can-
didate interrupted job to a singleton. Unfortunately, such a
result remains out of our reach even when 1

1−�
is integral,

and the structure of the optimal solution may be different
than that prescribed in Proposition 5.9 if the break is not
straddling. This is illustrated in the example of Fig. 7, where
the interrupted job terminates at B f + 2 in all six symmetric
optimal solutions of this instance. If the break were strad-
dling, we would be assured of the existence of an optimal
solution with a completion time of B f +1 for the interrupted
job.

The proposed algorithm for solvingET–SNStB-SemiRes
traverses over all possible completion times
B f + ⌈(

p j − 1
)
�

⌉ + 1, . . . , B f + p j − 1 of a candidate

interrupted job j . If job j receives t j units of processing
following B f , the corresponding artificial break runs from

Bs − e∗
j

(
t j
)
to B f + t j . We then invoke one of the algo-

rithms in Sect. 5.2 appropriate for the value of � with n − 1
jobs by excluding the interrupted job if the artificial break
happens to contain d. Otherwise, if d falls outside the arti-
ficial break, we rely on one of DP recursions in Sect. 6.2
depending on whether B f + t j < d or Bs − e∗

j

(
t j
)

> d.
In all cases, the E/T cost of the interrupted job is added
to the objective function value with n − 1 jobs retrieved
from the subroutine to arrive at the correct objective func-
tion value for all n jobs, given a candidate interrupted job
and an associated fixed completion time. The minimum cost
over O(P) iterations—one iteration for each possible posi-
tion of a candidate interrupted job j = 1, . . . , n—yields the
minimumcost of ET–SNStB-SemiResunder the assumption
that there exists an interrupted job. In order to identify the
optimal schedule of ET–SNStB-SemiRes, this figure is then
compared to the cost of the optimal schedule with no inter-
rupted job provided by one of the DP algorithms in Sect. 6.2
for the entire set of jobs and the original break. The overall
time complexity of solving ET–SNStB-SemiRes exactly is
pseudo-polynomial because we either call a polynomial or
pseudo-polynomial time algorithm for a total ofO(P) itera-
tions.

7 Conclusions and future research

In this paper, we offer a rigorous analysis of the single-
machine total earliness/tardiness scheduling problem around
an unrestrictive common due date with machine unavailabil-
ity constraints. We cover a wide range of problem variants
differentiated by the number of breaks, the job resumability
scheme, and the position of the due date with respect to the
break if there is just a single break in the planning horizon.
In all cases, we derive structural properties and draw the line
between polynomially solvable and NP-complete variants.
The analysis of the variants characterized as NP-complete
in the ordinary sense is complemented by exact algorithms
of pseudo-polynomial complexity, leaving no ambiguity in
their complexity status. In particular, this research establishes
that no problem variant with a single break isNP-complete
in the strong sense.

Certain open research questions remain. The proof of
Theorem 3.4 is restricted to 0 < θ ≤ 1, and the complex-
ity of ET–MB still needs to be settled for resumable jobs.
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Moreover, for the case of a single straddling break with semi-
resumable jobs and a non-integral value for 1

1−�
, we have a

pseudo-polynomial algorithm. We conjecture that this vari-
ant isNP-complete in the ordinary sense, but have no formal
proof at this point.

A primary strategy of the paper has been to initially
gain insights into the nature of the problem variants with
non-resumable jobs and then leverage these for correspond-
ing variants with resumable and semi-resumable jobs. For
non-resumable jobs, the problem complexity goes from
being polynomial in the presence of a single straddling
break to NP-complete in the ordinary sense if the break
is not straddling, and finally to NP-complete in the strong
sense if there are several breaks. This elegant sequence of
results justifies solving ET–MB via an integer programming
formulation—as is done in Sect. 2. However, a worthy future
research goal is to develop a custom, fast, and scalable exact
algorithm for ET–MB with � = 1 that can possibly be
further modified for or called upon as a subroutine in an
exact approach to solve ET–MB with resumable and semi-
resumable jobs.

Other possible extensions of this paper include consid-
ering different penalty schemes for the job interruptions.
For instance, the parameter � may be job dependent, or
each interruption may be followed by a job-dependent fixed
setup time independent of the amount of processing already
received before the break (Graves and Lee 1999). Another
research question is whether the structural properties, com-
plexity results, and algorithms presented in this paper can be
generalized if the unit E/T penalties are job dependent.
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Appendix A: A time-indexed formulation for
the single-machine E/T scheduling problem
withmachineavailability restrictions anddis-
tinct due dates

In the time-indexed formulation corresponding to the general
problem statement given in Sect. 2, period t covers the time
interval [t, t+1). The set of all time periods duringwhich the
machine is available in the planning horizon is represented
by T , and the set Ti is defined such that job i must start in
one of the time periods in Ti so that it finishes no later than
past the end of the planning horizon T . The time-indexed
formulation (TI) of the general problem is then stated as:

(TI) minimize
n∑

i=1

∑
t∈Ti

ci t xi t (26)

subject to
∑
t∈Ti

xi t = 1, i = 1, . . . , n, (27)

n∑
i=1

∑
s∈Si (t)

xis ≤ 1, t ∈ T , (28)

xit ∈ {0, 1} , i = 1, . . . , n, t ∈ Ti ,
(29)

where the binary variable xit is set to 1, if job i starts its
processing at time t with an associated cost of cit = αi (di −
(t+ p̄i (t)))+ +βi (t+ p̄i (t)−di )+. The notation (z)+ stands
for max(z, 0). The constraints (27) mandate that each job
starts its processing exactly once in the planning horizon,
and the machine capacity constraints (28) prescribe that no
more than one job is active at any time instant in the planning
horizon. In the modeling of the capacity constraints, the set
Si (t) = {si | si ≤ t and si + p̄i (si ) ≥ t + 1} denotes the set
of all possible start times of job i so that job i is in process
in time period t . Thus,

∑n
i=1

∑
s∈Si (t) xis yields the total

number of jobs being executed on the machine at time t , and
the capacity is imposed by restricting this expression not to
exceed 1 in any time period. For any given instance, all sets
Ti , i = 1, . . . , n, and Si (t), i = 1, . . . , n, t ∈ T , can be
constructed from the nominal processing times, the locations
of the breaks in the planning horizon, and the value of � as
part of the data to be fed into the formulation (TI).

Appendix B: Technical results for Sect. 5.2

B.1 Proof of Lemma 5.6

Proof For
⌈(

p j − 1
)
�

⌉ + 1 ≤ t j < p j − 1, the difference
is computed as follows:

e∗
j

(
t j
) − e∗

j

(
t j + 1

) = min
{
e ∈ N0 | p j − e + �e�� = t j

}

− min
{
e ∈ N0 | p j − e + �e�� = t j + 1

}

= min
{
e ∈ N0 | �e (� − 1)� = t j − p j

}

− min
{
e ∈ N0 | �e (� − 1)� = t j − p j + 1

}

= min
{
e ∈ N0 | �e (1 − �)� = p j − t j

}

− min
{
e ∈ N0 | �e (1 − �)� = p j − t j − 1

}

= min
{
e ∈ N0 | e (1 − �) ≥ p j − t j

}

− min
{
e ∈ N0 | e (1 − �) ≥ p j − t j − 1

}

=
⌈
p j − t j
1 − �

⌉
−

⌈
p j − t j − 1

1 − �

⌉
.
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Note that
⌊

1
1−�

⌋
≤

⌈
p j−t j
1−�

⌉
−

⌈
p j−t j−1
1−�

⌉
≤

⌈
1

1−�

⌉
and

0 ≤
⌈

1
1−�

⌉
−

⌊
1

1−�

⌋
≤ 1. Therefore, e∗

j

(
t j
) − e∗

j

(
t j + 1

)

equals to either
⌈

1
1−�

⌉
or

⌊
1

1−�

⌋
if

⌈(
p j − 1

)
�

⌉ + 1 ≤
t j < p j − 1.

The analysis is similar for t j = p j − 1:

e∗
j

(
p j − 1

) − e∗
j

(
p j

)

= min
{
e ∈ N0 | p j − e + �e�� = p j − 1

}

− min
{
e ∈ N0 | p j − e + �e�� = p j

}

= min {e ∈ N0 | �e (� − 1)� = −1} − 0

= min {e ∈ N0 | �e (1 − �)� = 1}
= min {e ∈ N0 | e (1 − �) ≥ 1} =

⌈
1

1 − �

⌉
.

	


B.2 Proof of Lemma 5.7

Proof

e∗
j

(
p j − i

) − e∗
j

(
p j

)

= min
{
e ∈ N0 | p j − e + �e�� = p j − i

}

− min
{
e ∈ N0 | p j − e + �e�� = p j

}

= min {e ∈ N0 | �e (� − 1)� = −i} − 0

= min {e ∈ N0 | �e (1 − �)� = i}
= min {e ∈ N0 | e (1 − �) ≥ i} =

⌈
i

1 − �

⌉
≥ i

1 − �
.

	

B.3 Result Required for Lemma 5.10

Lemma 8.1 The function g(p) = p − �(p − 1)�� defined
over p = 1, 2, . . ., is non-decreasing for 0 ≤ � ≤ 1.

Proof The result holds trivially for � = 0, 1, and we
restrict our attention to 0 < � < 1. Obviously, g(p) =
p − �(p − 1)�� ≤ p − (p − 1)� = p(1 − �) + �. Then,

(p(1 − �) + � − g(p)) − ((p + 1)(1 − �) + � − g(p + 1))
(30)

= (p(1 − �) + � − p + �(p − 1)��)
− ((p + 1)(1 − �) + � − p − 1 + �p��) (31)

= � + �p� − �� − �p�� . (32)

Since 0 < � < 1, the difference �p� − ��−�p�� is either
0 or -1, and accordingly, the right-hand side of (32) is either
� or � − 1. We analyze these two cases separately.

Re-arranging the terms in (30) yields g(p + 1) − g(p) −
(1−�), and this expression is either equal to � or �− 1. In
the former case, g(p + 1) − g(p) = 1, while the latter case
results in g(p+1)− g(p) = 0. Thus, we conclude that g(p)
is non-decreasing over p = 1, 2, . . .. 	


Appendix C. Technical results for Sect. 6.1

C.1 Proof of Lemma 6.2

Proof i. The tardiness of any job that completes after the
break is no less than B f −d = d+ (t2 +1)A+ y0 −d =
(t2+1)A+ y0 > y0. Thus, all jobs must terminate before
Bs if f (S) ≤ y0.

ii. The dummy jobs are longer than all partition jobs because
the sum of the processing times of the longest t partition
jobs are

∑t
i=1 pi = ∑t

i=1 xi + t2A < (t2 + 2)A <

3(t2 + 1)A = p′
0 = p′′

0 = p′′′
0 , where the first strict

inequality stems from
∑t

i=1 xi <
∑2t

i=1 xi = 2A. There
is no processing following the break due to item i, and
therefore, we can complete the argument by showing
that the total processing time of the shortest t partition
jobs does not exceed (Bs − d) and that the next shortest
partition job does not fit into the time interval between
d and Bs . The relation

∑2t
i=t+1 xi < 1

2

∑2t
i=1 xi = A

must hold for the t smallest numbers in X , and the first
part is then obtained from

∑2t
i=t+1 pi = ∑2t

i=t+1 xi +
t2A < (t2 + 1)A = Bs − d. Moreover, it turns out that∑2t

i=t pi = ∑2t
i=t xi + (t2 + t)A > (t2 + 1)A = Bs − d,

and no additional job can be scheduled during [d, Bs]
because job t is the shortest among the remaining jobs
J1, . . . , Jt , J ′

0, J
′′
0 , J ′′′

0 .
iii. Item ii directly implies that there are at most t + 1 tardy

or on-time jobs, and consequently, at least t + 2 early
jobs in S if f (S) ≤ y0. Therefore, pushing the entire
schedule later by the amount of idle time between the
completion time of the final job in the schedule and Bs is
guaranteed to lead to a strict decrease in f (S). Without
loss of generality, we can assume that a schedule S with
a total cost of no more than y0 possesses this property.

iv. S is charged a cost of f (S) ≤ y0, and without loss of
generality, also observes the V-shaped property. Further-
more, note that the time available for processing between
d and Bs is (t2 + 1)A < 3(t2 + 1)A = p′

0 = p′′
0 = p′′′

0
units, and suppose that at least one of J ′

0, J
′′
0 , or J

′′′
0 does

not fill one of the first three positions in S. Then, the only
remaining possible structure for S is that exactly two of
the three dummy jobs are put into the initial two posi-
tions, while the third dummy job is straddling—say J ′′′

0 .
Moreover, p′′′

0 − (Bs − d) = 3(t2 + 1)A − (t2 + 1)A =
2(t2 + 1)A is the minimum amount of processing J ′′′

0
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receives prior to the due date. The partition jobs are dis-
tributed around J ′′′

0 with at most t starting after J ′′′
0 due

to item ii and the final job terminating at time Bs as man-
dated by item iii.
In the development below, we construct a lower bound
on the total cost of S with exactly k early partition jobs—
denoted as f (S, k)—by assuming that the k early and
(2t−k) tardy partition jobs are selected from the k short-
est and (2t − k) shortest jobs, respectively. The relevant
range of k is from t to 2t based on item ii. We obtain

f (S, t) = 5(t2 + 1)A +
2t∑

i=t+1

pi

︸ ︷︷ ︸
≤ cost of J ′

0

+ 2(t2 + 1)A + 0
2t∑

i=t+1

pi

︸ ︷︷ ︸
≤ cost of J ′′

0

+ 2t(t2 + 1)A +
2t∑

i=t+1

(i − t − 1)pi

︸ ︷︷ ︸
≤ cost of early partition jobs

+
2t∑

i=t+1

(i − t)pi

︸ ︷︷ ︸
≤ cost of tardy
partition jobs

= (2t + 7)(t2 + 1)A +
2t∑

i=t+1

(i − t + 1)pi

+
2t∑

i=t+1

(i − t)pi = (2t + 7)(t2 + 1)A

+
t∑

i=1

(2i + 1)pi+t ,

and a similar reasoning leads to

f (S, t + 1) = (2t + 9)(t2 + 1)A +
2t∑
i=t

(i − t + 2)pi

+
2t∑

i=t+2

(i − t − 1)pi ,

f (S, t + 2) = (2t + 11)(t2 + 1)A +
2t∑

i=t−1

(i − t + 3)pi

+
2t∑

i=t+3

(i − t − 2)pi .

The pattern is clear, and it is a simple matter to ver-
ify that the coefficients associated with the processing
times never decrease from f (S, k) to f (S, k+1) for k =
t, . . . , 2t − 1. This analysis of the relationships among
f (S, t), f (S, t + 1) . . . , f (S, 2t) reveals that f (S, k) is
non-decreasing over k = t, . . . , 2t , and we arrive at
the inequality f (S) ≥ mink=t,...,2t f (S, k) = f (S, t).
Thus, the only remaining piece for a contradiction in the
proof is to establish that f (S, t) > y0. To this end, we
compute

y0 =
t∑

i=1

i (p2i−1 + p2i ) + d (33)

≤ 1

2
(t + 1)

2t∑
i=1

pi + d

= 1

2
(t + 1) 2

(
t2 + 1

)
A + 11

(
t2 + 1

)
A (34)

= (t + 12)
(
t2 + 1

)
A =

(
t3 + 12t2 + t + 12

)
A.

The transition from (33) to (34) is justified because
1
2t

∑t
i=1 2i = 1

2 (t + 1). In other words, (33) matches the
longest processing times with the smallest coefficients
while the same “average coefficient” is applied to all
processing times in (34), and the earlier expression is
therefore a lower bound on the latter. Note that the equal-
ity in (34) stems from

∑2t
i=1 pi = ∑2t

i=1(xi + t A) =
2A + 2t2A = 2(t2 + 1)A. However,

f (S) ≥ f (S, t) = (2t + 7)(t2 + 1)A +
t∑

i=1

(2i + 1)pi+t

> (2t + 7)(t2 + 1)A +
t∑

i=1

(2i + 1)t A

= (3t3 + 9t2 + 2t + 7)A (35)

≥ (
t3 + 12t2 + t + 12

)
A ≥ y0, (36)

and contradicts our initial assumption that f (S) ≤
y0. Unfortunately, this completes the proof just for
t ≥ 2 because the relation between (35) and (36) is
violated for t = 1, and this case must be treated sep-
arately.
For t = 1, we obtain d = 11(t2 + 1)A = 22A, y0 =∑t

i=1 i (p2i−1 + p2i ) + d = 2(t2 + 1)A + d = 26A,
p′
0, p

′′
0 , p

′′′
0 = 3(t2 + 1)A = 6A, Bs − d = (t2 + 1)A =

2A. In this case, S must assume one of the three possible
structures illustrated in Fig. 8. In Fig. 8a, f (S) = 14A+
8A + (p2 + 4A) + 4A + 2A = 32A + p2 > 26A = y0.
In Fig. 8b, f (S) > 13A + 7A + 6A + 2A = 28A >

y0, where the earliness of J ′′′
0 is strictly smaller than A
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(a) (b)

(c)

Fig. 8 Possible structures of schedule S for t = 1

and cannot be incorporated. Finally, in Fig. 8c, f (S) >

13A + 7A + 5A + 2A = 27A > y0, where the tardiness
of J ′′′

0 is strictly smaller than A and ignored. In all cases,
we obtain a contradiction with our initial assumption that
f (S) ≤ y0.

v. It is sufficient to verify that the time interval [d, Bs]
is long enough to accommodate the processing of the
longest t − 1 partition jobs because items iii and iv
together mandate that all partition jobs are placed follow-
ing the dummy jobs and that there is no idle time between
the completion of the final job and the start time of the
break. The sequence of relations

∑t−1
i=1 pi = ∑t−1

i=1 xi +
(t−1)t A < 2A+(t2−t)A = (t2−t+2)A ≤ (t2+1)A =
Bs − d yields the desired result, where the first strict
inequality is implied by

∑t−1
i=1 xi <

∑2t
i=1 xi = 2A for

t ≥ 1. 	


C.2 Proof of Lemma 6.3

Proof Schedule S fulfills the properties put forward in
Lemma 6.2 because f (S) ≤ y0. By Lemma 6.2-iv, the
dummy jobs J ′

0, J
′′
0 , J ′′′

0 are executed consecutively at the
start of S, followed by 2t partition jobs. In the presentation
below, s(i) denotes the index of the job that is scheduled
in position i from the end in S, and Ci stands for the
completion time of job i . We initially compute the total
cost fk(S) incurred in S with respect to a hypothetical due
date k = Bs − (

ps(1) + · · · + ps(t)
)
, which coincides with

Cs(t+1). Then, we point out the relationship between fk(S)

and the true cost f (S) of S with respect to the actual due date
d. This relationship is exploited to prove the final result. The
cost fk(S) is computed as:

fk(S) =
2t∑
i=1

|Ci − k| + (
k − C ′

0

) + (
k − C ′′

0

) + (
k − C ′′′

0

)

=
t∑

i=1

(i)ps(i)

︸ ︷︷ ︸
cost of tardy
partition jobs

+
2t∑

i=t+1

(2t − i)ps(i)

︸ ︷︷ ︸
cost of early
partition jobs

+
2t∑

i=t+1

ps(i) + 6
(
t2 + 1

)
A

︸ ︷︷ ︸
cost of J ′

0

+
2t∑

i=t+1

ps(i) + 3
(
t2 + 1

)
A

︸ ︷︷ ︸
cost of J ′′

0

+
2t∑

i=t+1

ps(i)

︸ ︷︷ ︸
cost ofJ ′′′

0

=
t∑

i=1

(i)ps(i) +
2t∑

i=t+1

(2t − i + 1)ps(i)

+ 9
(
t2 + 1

)
A + 2

2t∑
i=t+1

ps(i)

=
t∑

i=1

(i)ps(i) +
t∑

i=1

(i)ps(2t+1−i) + 11
(
t2 + 1

)
A

︸ ︷︷ ︸
d

− 2
(
t2 + 1

)
A + 2

2t∑
i=t+1

ps(i) (37)

≥
t∑

i=1

[
i (p2i−1 + p2i )

] + d

︸ ︷︷ ︸
y0

− 2
(
t2 + 1

)
A

︸ ︷︷ ︸∑2t
i=1 pi

+2
2t∑

i=t+1

ps(i) (38)

= y0 −
2t∑
i=1

pi + 2
2t∑

i=t+1

ps(i) = y0

− 2
t∑

i=1

ps(i)

︸ ︷︷ ︸
Bs−k

+
t∑

i=1

ps(i) +
2t∑

i=t+1

ps(i)

= y0 − 2
(
Bs − k

) +
2t∑
i=1

pi = y0
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− 2
(
d +

(
t2 + 1

)
A − k

)

+
2t∑
i=1

pi = y0 − 2(d − k).

The smallest value the expression
∑t

i=1

[
i
(
ps(i) +

ps(2t+1−i)
)]

could conceivably attain is acquired by match-
ing the longest processing times with the smallest coeffi-
cients—as in

∑t
i=1

[
i (p2i−1 + p2i )

]
—and lends validity to

the transition from (37) to (38).
The key to relating fk(S) to the actual cost incurred by

the jobs in S with respect to d is to rely on items ii and v
in Lemma 6.2 to argue that Cs(t+2) < d ≤ Cs(t) must be
satisfied if f (S) ≤ y0 because at least t − 1 and at most
t partition jobs must start and complete after the due date.
Observe that a total of B(S) = t + 3 jobs complete at or
before k in S, and the corresponding number of tardy jobs
is A(S) = t . We analyze three relevant cases by keeping in
mind that the change in the total cost of S per unit time change
in the due date from its current value k can be computed based
on A(S) and B(S) for Cs(t+2) < d ≤ Cs(t).

– If d = k, then f (S) ≥ y0.
– If k < d ≤ Cs(t), then f (S) ≥ y0 − 2(d − k) +

[B(S) − A(S)] (d − k) = y0 + (d − k) > y0.
– If Cs(t+2) < d < k, then f (S) ≥ y0 − 2(d − k) +

[(A(S) + 1) − (B(S) − 1)] (k − d) = y0 + 2(k − d) +
[(t + 1) − (t + 2)] (k − d) = y0 + (k − d) > y0.

This analysis concludes that f (S) ≤ y0 prevails only
if d = k and the transition from (37) to (38) preserves
the equality; that is, if

∑t
i=1

[
i
(
ps(i) + ps(2t+1−i)

)] =∑t
i=1

[
i (p2i−1 + p2i )

]
. If these two properties hold, we

arrive at the conclusion that the schedule S is identical to
the schedule S0 depicted in Fig. 6, and consequently, that the
underlying instance of the EVEN-ODD PARTITION prob-
lem is a yes-instance. 	
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