
Journal of Scheduling (2019) 22:107–118
https://doi.org/10.1007/s10951-018-0570-4

Scheduling and rescheduling elective patients in operating rooms to
minimise the percentage of tardy patients

Francisco Ballestín1 · Ángeles Pérez1 · Sacramento Quintanilla1

Published online: 26 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper considers the problem of building a schedule of elective surgery patients for a unit of a hospital. Two phases are
followed. In the first phase, a tentative schedule is calculated 2weeks before the planning period looking to minimise the
percentage of tardy patients. Several weight-based short-term objective functions are defined and compared to optimise this
goal in the long term. In the second phase, a second and final schedule is made a few days before the planning period, taking
into account the changes in the available information. We propose a general methodology to calculate this final schedule.
Several strategies to manage the types and importance of changes from the tentative schedule are presented considering
the idiosyncrasy of dealing with elective patients. The computational experiments have been carried out via simulation on
instances randomly generated according to the data from a Spanish hospital.

Keywords OR in health services · Operating room · Scheduling

1 Introduction

Operating theatres or operating rooms are critical elements
in hospitals. They are the units with the highest cost and
the highest revenue; see e.g. Macario et al. (1995). Among
the many decisions involving operating rooms, one of the
most important is to build an effective and efficient surgery
schedule. Several reviews have been written in the area; we
refer to Cardoen et al. (2010), Hanset (2010), Guerriero and
Guido (2011) and Meskens et al. (2013). As an example of
other planning decisions in health care, consult the review of
Hulshof et al. (2012).

In this paper, we study two optimisation problems that
arise when selecting and scheduling patients waiting for
surgery in a specific unit of a hospital. The first problem
is to produce a tentative schedule for an established planning
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period, given the goals sought by the hospital and the avail-
able information at that moment. The main contribution of
this part will be the study of which objective function can be
used to obtain good results not only in the period considered,
but also in a long-term period. The second problem considers
the construction of a final schedule for the selected planning
period based on the previously generated tentative schedule
and taking into account the changes that have taken place in
the days between the creation of the two schedules. Strate-
gies to manage the changes from the tentative schedule are
presented.

This work is part of a project in which we are analysing
the benefits of incorporating optimisation techniques in sev-
eral processes in one of the best and biggest public hospitals
in Spain. The hospital serves an average of 4000 patients
daily and has 1000 single beds, 45 operating rooms and 6300
employees. Our work is focused on the Urology unit, which
is among the top performing units in the hospital regarding
the treatment of patients on the waiting list. In the future, the
aim is to study the application of these techniques to other
units of the hospital.

The current objective of our work is to design a model that
provides support for the selection and scheduling of patients
waiting for surgery. This process is currently carried out by
hand by the head doctor of the medical unit. We work with
the so-called elective patients, whose surgery can be planned
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well in advance. Currently, the Urology unit works with the
so-called block (or blocked) scheduling strategy (see e.g. Fei
et al. 2010). Surgeons or blocks of surgeons are assigned to
a set of time blocks in which they can arrange their surgical
cases. In our case, these time blocks correspond to special-
ties inside the urology unit, and only surgeries belonging
to those specialties, apart from some surgeries called “gen-
eral surgeries”, can be performed in these slots. At this stage
of our research, the assigned blocks are fixed. We are then
interested in solving the sometimes called “surgery process
scheduling problem”. Let us describe the problem following
the nomenclature of Agnetis et al. (2012).

For a given time period, decision-makers have to solve the
following problems:

(i) to assign surgical disciplines to operating room sessions
over time,

(ii) to assign elective surgeries to operating room sessions,
and

(iii) to sequence these surgeries within the corresponding ses-
sion.

Problem (i) is often referred to as theMaster Surgical Sched-
ule Problem (MSSP). Problem (ii) is denoted as the Surgical
Case Assignment Problem (SCAP), whereas (iii) is the Elec-
tive Surgery Sequencing Problem (ESSP).

Our study works with a stable MSS, solving the SCAP
and the ESSP. Due to the restrictions of our problem, the res-
olution of the ESSP is straightforward, so the paper focuses
its attention on the SCAP.

To solve the SCAP, the head doctor of the unit calcu-
lates two schedules. The tentative schedule is created several
days—in our case 2weeks—before the planning period, with
the information available at that moment.With this schedule,
the patients to be operated on, and the doctors, are informed.
A few days before the planning period, a second schedule is
calculated to be used as the final schedule. The reason is that
usually some changes in the data used for making the ten-
tative scheduled occur. Some surgeries cannot be performed
due to various reasons (unavailability of patients, doctors,
necessary equipment, etc.), and new patients are available.
This problem is called the rescheduling problem.

There are mainly two goals in the creation of the tenta-
tive schedule: the minimisation of the percentage of tardy
patients and the maximisation of the utilisation rate of the
ORs. Specifically, the hospital is satisfied if this rate is above
a certain level: 80%. As we will see in the computational
results in Sect. 4, it turns out that this level is clearly sur-
passed in the schedules generated by the proposed methods.
Therefore, we will focus on the other goal.

Tardy patients are those who are scheduled after their due
date. This due date is fixed by the local government based on

the urgency of their illness. In machine scheduling, one talks
about the fraction of tardy jobs or, sometimes, serviceability
(Conway et al. 1967). The serviceability of a job indicates the
probability that a job finishes on or before its due date. This
is a goal that is rarely dealt with in the hospital literature,
for several reasons. On the one hand, the goal cannot be
directly modelled in a short-term model. On the other hand,
this goal cannot be blindly followed. A hospital sticking to
this goal would not operate a patient once he/she is tardy,
somethingwhich is inacceptable. In this paper, wemodel this
goal indirectly by means of short-term objective functions.
Besides, these functions also try to obtain good results in the
average tardiness, i.e. including tardy patients.

The review ofDemeulemeester et al. (2013) groups papers
according to different factors/fields, one of them being the
performance criteria. The percentage of tardy patients is
not mentioned as a major performance measure. Within the
papers associated with other objective functions, there are a
couple of papers worth mentioning. The objective function
of Velasquez et al. (2008) includes a term that penalises the
number of patients scheduled outside a given time window.
The other term penalises the use of resources with additional
capacity. The main difference with our model, apart from
the second term in the objective function, is that in their
model, conceived for a larger period, all patients have to be
scheduled in that period. Therefore, the percentage of tardy
patients can be directly included in the objective function.
Persson and Persson (2009) solve a similar problem to ours.
A law in Sweden states that patients must be operated on
within 90 days or else receive paid surgery elsewhere. The
paper suggests an approach that combines simulation and
optimisation techniques for modelling surgery management
decisions. We will follow a similar approach in this paper.
The objective function also includes several elements. In the
one concerning “tardy patients”, the authors include a cost
if a patient is not scheduled for surgery. This cost is the cost
of scheduling the patient 8weeks from the current planning
period. Apart from these papers, Agnetis et al. (2012) use
simulation to prove that introducing a very limited degree of
variability in the assignment of OR sessions can pay off in
terms of resource efficiency and due date performance. Due
to the similarity of their goals with ours, we will use their
objective function as a stepping stone.

Regarding the rescheduling problem, in the literature, sim-
ilar problems have only been dealt with in a few papers and
the objective is usually how to reschedule elective patients
upon the arrival of emergency patients.

In Reilly et al. (1978), walk-in patients are rescheduled
to a future appointment slot to cope with an overcrowded
facility to improve the balance of resource utilisation over
time. Li (2010) develop a simulation model to evaluate the
efficiency of catheterisation laboratory operations in a major
local health care facility. They vary the key parameters in the
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model such as the length of the time block assigned to each
case, the length of lunch buffers, as well as the option of
rescheduling patients, and consider both operational costs
and patient satisfaction metrics to illustrate the trade-offs
between the two. Erdem et al. (2012) develop a mixed inte-
ger linear programming (MILP)model to solve this problem,
by considering two types of clinical units, namely operating
rooms and post-anaesthesia care units (PACUs). van Essen
et al. (2012) and van Essen et al. (2013) develop a deci-
sion support system (DSS) which assists the OR manager
in the decision when the planned OR schedule has to be
adjusted due to surgery duration variability and/or arrivals of
emergency surgeries. The DSS considers the preferences of
all involved stakeholders and minimises the deviation from
the preferences of the stakeholders. Li (2010) formulate the
rescheduling problem as a variant of the bin-packing problem
with interrelated items, which are the surgeries performed
by the same surgeon. Bins are the staffed ORs and items
are surgeries. The goal is to minimise the weighted sum of
bins used, where the weight of a bin is proportional to its
size. Addis et al. (2016) proposed a so-called rolling horizon
approach for the patient selection and assignment. They cal-
culate the schedule for several weeks with the given waiting
list, leaving increasing free time in the schedule through-
out the weeks for incoming patients. When unpredictable
extensions of surgeries occur when applying the first week
solution, some surgeries are cancelled and are rescheduled in
the followingweeks.Also, newarrivals are taken into account
in the calculation of the final schedule. The midterm solution
is rescheduled, limiting the number of variations from the
previously computed plan.

Conforti et al. (2011) develop integer programming for-
mulations to solve the scheduling of patients waiting for
radiotherapy treatment. In the second of the two proposed
model, it is possible to reschedule some patients. Reschedul-
ing has here a doublemeaning: only the time slots can change
with respect to the last planned week or it is possible to delay
the day of the first weekly session. Luo et al. (2016) compare
a non-rolling horizon model with a rolling horizon model
in order to consider the variation in day-to-day demand,
concluding that the average utilisation rate using the sec-
ond model is significantly higher than using the first one.
ValiSiar et al. (2017) schedule and reschedule patients, but
also work with elective and semi-urgent patients. They use
a rolling horizon scheduling–rescheduling framework. Their
objective function takes into account three criteria: tardiness,
overtimes and idle times.

None of these approaches serves our purpose. We need
a first tentative complete schedule for the following two-
week period with elective patients. Also, the final schedule is
calculated taking into account the new information, but only
works with elective patients. Similarly to Addis et al. (2016),
changes are not welcome in general and therefore acceptance

criteria and limits are imposed on them. However, we apply
a method than do not impose a maximum specific number of
changes

To sum up, the contribution of this paper is twofold. First,
with regard to the choice of the objective function when
building the tentative schedule, we are going to study which
objective function in a short-termmodel leads to better results
in the long-term goal used by the hospital (percentage of
tardy patients). Comparisons among objective functions will
be performed via simulation. A big computational effort has
been put in the simulation. Tests have been performed over
one year of plans with the corresponding updates of the
waiting list with incoming and outcoming patients. We have
followed the long-term evaluationmethod used among others
by Agnetis et al. (2012) and called rolling horizon approach
by Addis et al. (2016). It is further explained in Sect. 2.1.

The second contribution is the rescheduling of elective
patients. Our methodology can be applied in many hospitals
where a schedule of elective patients is calculated. It does not
depend on the restrictions or the objective function. Further-
more, it does not depend on the number of operating rooms in
the hospital or the number of surgeries performed by the unit.
A distance between solutions is defined and used to identify
the differences between two schedules and the importance
of these differences to patients and doctors. We study the
trade-off between the degree of the changes allowed in the
tentative schedule and the benefits in the objective function
obtained by them.

The rest of the paper is organised as follows: Sect. 2 intro-
duces the model and the objective functions we propose to
minimise the percentage of tardypatients. Section3discusses
the rescheduling problem. Section 4 describes the instances
wehaveused in the computational experiments, togetherwith
the simulation process and the computational results. Finally,
the conclusions are given in the last section, i.e. Sect. 5.

2 Description of the problem.
Short-term–long-termmathematical
model

2.1 Description of the problem

There are three essential elements to consider in our optimi-
sation problem: the operating room sessions assigned to the
unit, the patients on the waiting list and the performance cri-
teria. Let us describe each of them in detail. The medical unit
is assigned a certain predefined number of operating room
sessions. Each session has several characteristics: the start
and finish time, the doctor or doctors who are going to oper-
ate and the specialty or specialties which can be performed in
the session. As mentioned in Introduction, the MSS is stable
throughout the year.
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The waiting list is a dynamic list of patients who have to
be operated on. This list is continuously updated. When the
tentative schedule is built (2weeks before the first day of the
two-week plan), only those patients on the list at that moment
are considered.When the rescheduling is performed, the new
state of the list is considered. A surgery may belong either
to a specialty of the unit or be classified as “general”. A
specialised surgery must be performed in a session assigned
to the corresponding specialty, while a general surgery can be
performed in any session. In addition, we know the estimated
duration of the surgery and also if it needs one or two doctors.
Furthermore, in some special cases, a surgery needs a specific
doctor to perform it. Finally, and due to allergies of some
patients, some surgeries have to be the first of their session.

As commented above, we only consider in this problem
elective patients. An elective patient is someone for whom
the surgery can be planned well in advance. The opposite
concept to elective patients would be non-elective or urgent
patients, i.e. those who need a surgery urgently. In the hospi-
tal of reference, urgent patients are treated elsewhere in the
hospital. Wework both with inpatients and outpatients. Inpa-
tients must stay at least one night in the hospital, whereas an
outpatient enters and leaves the hospital on the same day.
The hospital dedicates specific operating rooms for in- and
outpatients, and therefore we deal with those patients in the
same way.

For each patient, the following information is known: the
date of admission, his/her condition of inpatient or outpatient
and his/her priority. The priority can be 1, 2 or 3, depend-
ing on how imperative the surgery is. See e.g. Agnetis et al.
(2012) for other examples of similar definitions. It is impor-
tant to remark that we are going to deal with durations as
constants, not as random variables. The hospital of refer-
ence is a training facility, too. In those surgeries that are
going to finish early, doctors let trainees do more of the work
than in surgeries that aremore pressed for time. Furthermore,
between surgeries there must be a waiting time for cleaning
fixed at 20min.

Regarding the objective functions, the hospital is inter-
ested in two performance criteria. The most important goal
is to schedule patients before their (soft) due dates. Patients
with priority 1, 2 and 3 should be operated on, according to
the local government, in less than 1, 3 and 12months, respec-
tively. This is a goal and not a restriction, since due dates are
not hard constraints. The way to deal with this goal is a key
topic in this paper. The way to cope with similar goals in the
literature is through the minimisation of waiting times. For
the time being, we will call this objective function due dates
satisfaction, DDS. The other objective function, as already
commented on in Introduction, is the utilisation rate of the
surgery rooms, UR.

2.2 Problem formulation

Let us describe the model. There are n surgeries {O1, O2,

. . ., On} that can be selected to be performed in a two-week
plan. There are m sessions {S1, S2, . . ., Sm} available. We
have to decide which surgeries are going to be performed
and in which session. Taking into account the specifications
of a surgery (specialty and specific doctor), we can calculate
before the scheduling if the surgery can be performed in a
certain session. With this information, we create a set of fea-
sible sessions for each surgery, FeasSes(Oi ). Note that the
only condition this set does not take into account is whether
the surgery is going to be the first in the session. We use the
following notation:

Indexes
i = 1, . . ., n (number of surgeries to perform)
j = 1, . . .,m (number of sessions)
Constants
di = duration of surgery Oi

D j = duration of session S j

ddi = due date of surgery Oi

wt = waiting time between surgeries
fi = 1 if surgery Oi must be scheduled at the beginning

of a session, 0 otherwise
FeasSes(Oi ) = set of feasible sessions for surgery Oi

Variables
xi j = 1 if surgery Oi is assigned to session S j , 0 otherwise.
The model considered is:

Max DDS (x) (1)

Max U R (x) =
∑n

i=1 di
∑m

j=1 xi j
∑m

j=1 Dj
(2)

∑m

j=1
xij ≤ 1 (i = 1, . . . , n) (3)

∑n

i=1
(di + wt) xij ≤ Dj + wt ( j = 1, . . . ,m) (4)

∑n

i=1
fi xij ≤ 1 ( j = 1, . . . ,m) (5)

xij = 0 if j /∈ FeasSeas (Oi ) (6)

xij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . ,m) . (7)

Objective function (1) will be discussed in Sect. 2.3. Objec-
tive function (2) measures the utilisation rate of the operating
rooms. Intentionally,UR does not take into account the wait-
ing time, because in this way it is calculated by the local
government. Restrictions (3) guarantee that a given patient
is scheduled at most once. Inequalities (4) take into account
the time availability of a session. The addition of the waiting
time on the right-hand side corresponds to the fact that the
first surgery of a session does not have a waiting time before
it. A session can have at most one surgery that has to be nec-
essarily scheduled at the beginning of that session, as stated
in restrictions (5). Restrictions (6) restrict the assignment of
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a given surgery only to feasible sessions. These restrictions
fix many variables in the model.

2.3 Short-term objective functions

The local government evaluates the hospital according to
the percentage of tardy patients and to the utilisation rate of
the operating rooms. However, by optimising the DDS, we
obtain values of the utilisation rate above the desired values
of the hospital. The reason is that every objective function
defined below favours the inclusion of one patient more if it
is possible, independently of his/her due date. With this the
utilisation rate is also favoured. The DDS and the utilisation
rate are not negatively correlated. Summing up, wewill focus
on minimising the percentage of tardy patients.

As commented above, a tardy patient is one who is oper-
ated on later than his/her due date. The percentage of tardy
patients is a long-term goal, which cannot be captured in a
two-week programming in a straightforward way. One of the
purposes of this paper is to define and compare short-term
objective functions in the long term, to see which one leads
to the best result according to this goal.

TheDDS objective functionswe are going to propose allo-
cate weights to the assignment of an surgery Oi to a session
S j . Common sense dictates that, to minimise the percentage
of tardy patients, these weights should increase as the day of
the session approaches the due date of the surgery. However,
note that if we only want tominimise this goal in a short-term
optimisation problem, surgeries after their due date should
simply not be scheduled. However, a hospital cannot follow
this policy. Therefore, we have imposed a condition on the
objective functions we have designed: the weight allocated
to the assignment of a surgery to a session after the due date
should be at least as big as the weight just before the due
date. In the computational results, we also use the tardiness
for tardy patients as a performance measure.

Let us define the objective functions we are going to
consider. All objective functions except case C) should be
maximised. The comparison among them is done in Sect. 4.2.

(A) SCORE function (Agnetis et al. 2012)
We will use an objective function that appears in Agnetis

et al. (2012) as a stepping stone for our proposals. According
to that paper, the “management objectives are tomaximise the
utilisation of ORs, without resorting to overtime and, as far
as possible, perform each case surgery within the respective
due date”. Therefore, the paper optimises the same objectives
as us. The function is:

DDS1 (x) = SCORE (x) =
∑n

i=1

∑m

j=1
Kijxij

being Ki j = di (Wi − Ri j ),Wi = maximum allowed time in
waiting list for surgery Oi , and Ri j = slack time (days to due
date) of surgery Oi if scheduled in session j . Note that Ri j is

negative for tardy surgeries and represents in those cases the
tardiness but with negative sign. In the original function, a
constant Ki not depending on the session was used; although
not stated in the paper, we suppose the reason was that there
was only one session for each subspecialty.

(B) LASTDAY function
In this function, there are twoweights that affect the inclu-

sion of a surgery in a session. The first one helps select those
surgeries whose due dates are closer to expire. The second
one tries to schedule surgeries as soon as possible inside the
planning period.

DDS2 (x) = LASTDAY (x) =
∑n

i=1
(H − ddi )

∑m

j=1
(lastday − day ( j) + 1) xij.

H is a number bigger than all due dates. The value lastday
represents the last day of the planning period. In our case
lastday = 14. The value day( j) gives the day of the session
S j (1, 2, . . ., lastday), depending on the day of the session
within the 2 weeks. We add one so that the value is not 0
when we are working with sessions on the last day.

(C) TARDINESS function (minimisation)
The tardiness of an operation Oi depends on the session

S j when it is scheduled and it calculates the number of days
an operation is tardy if the operation is tardy, and 0 otherwise.
Hence, ti j = max

{
0,−Ri j

}
. The function TARDINESS

sums three quantities. The first one sums the tardiness of
scheduled surgeries. The second term only adds for unsched-
uled operations and uses t ′i , which calculates the tardiness of
operation O(i) if it was scheduled the next planning day out-
side the planning period. The last quantity comes into action
when no surgery is tardy. In that case, we apply the objective
function of (A):

DDS3 (x) = TARDINESS (x) =
∑n

i=1

∑m

j=1
tijxij

+
∑n

i=1
t ′i

(
1 −

∑m

j=1
xij

)
− βSCORE (x) .

The parameter β is a number small enough so that the third
term only serves to untie. We have used β = 1/10,000.

(D) LINE function
To describe the LINE function, we need to define addi-

tional variables and constants:
Constants
Li j = 1 if surgery Oi is tardy and assigned to session S j ,

0 otherwise
nLi j = number of days the surgery Oi is tardy if it is

assigned to session S j , 0 if the surgery is not tardy or it is not
assigned to that session

maxnLi = max{ j=1,...,m}
{
nLi j

}
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weighti = weight associated to surgery Oi . It is explained
below.

Variables
zi = 1 if surgery Oi is performed in this planning period,

and it is performed after its due date, 0 otherwise.
The function LINE is defined as follows:

DDS4 (x, z) = LINE (x, z) =
∑

i=1,...,n
j=1,...,m

weighti ·

xi j −
∑

i=1,...,n

zi +

∑

i=1,...,n
j=1,...,m

(
maxnLi − nLij

)
xij

1 + ∑

i=1,...,n
j=1,...,m

maxnLi
.

We need to add the following restrictions to the model of
Sect. 2.2, where (8) assures that zi is 1 if surgery Oi is per-
formed in this planning period and is performed after its due
date.

zi ≥
∑

j=1,...,m
Li j xi j (i = 1, . . . , n) (8)

zi ∈ {0, 1} ∀i = 1, . . . , n. (9)

The first term inLINE(x,z) selects the surgeries to be included
in the schedule. The employment of the weight favours the
operations closer to their due date and even more those
already tardy. The second term minimises the number of
tardy surgeries. The third term minimises the tardiness of
tardy surgeries. The first term uses the weights weighti to
select the surgeries. We have grouped surgeries in three sets:
(a) tardy surgeries, those which are already tardy, (b) crit-
ical surgeries, those which are close to their due dates and
(c) non-critical surgeries, those which are still not close to
their due dates. The weights of the surgeries in each one of
these groups will be calculated with a different linear func-
tion based on the slack (Ri ), defined as the number of days
until the due date of the surgery Oi if it is scheduled in the
next planning day outside the planning period. After some
preliminary tests (with other random instances different from
the ones described in Sect. 4), we have decided to work with
the weights described and depicted in Fig. 1.

2.4 Variations in previous functions

We have also studied the effect of two additional elements
that can be applied to the previous and other objective func-
tions. The first element is the duration of the surgery we want
to select, di . The second element has to do with the specialty
of the surgery.We should try to promote the selection of surg-
eries that belong to specialties that have many surgeries or
that have few sessions in the week. For this we have defined
the Dynamic Specialty Load (DSL). It takes into account the

Fig. 1 Weights assigned to the surgeries in LINE

percentage of surgeries in a specialty as a function of the total
number of surgeries. This number can be calculated by aver-
aging the historic frequencies of the specialties and the actual
frequencies in the current waiting list. We divide this sum by
the percentage of sessions of that specialty with respect to
the total number of sessions. The value sp(i) denotes the
specialty of surgeryOi and “#” denotes number.

DSL (i)

= 0.5 (historic frequency of sp (Oi ) + actual frequency of sp (Oi ))

#sessions of sp (Oi ) /m
.

Both DSL(i) and di are constants that can be multiplied by
xi j in the objective functions. We have studied whether it is
useful to multiply one of them, both or none.

3 Rescheduling

The tentative schedule for a planning period is calculated
several days before the actual period, in order to inform the
patients who are going to be operated on, to inform the doc-
tors, to prepare special equipment for some surgeries, etc. In
our case, the time gap before the planning period is 2 weeks.
However, a few days before the actual period, the schedule
is revised, with the new information available. On the one
hand, some surgeries should be cancelled: (a) if the patients
have an unavoidable appointment elsewhere, or have already
been operated on in emergencies due to complications of
their illnesses, etc.; (b) if the doctors are unable to perform
their surgeries; (c) if other essential resources such as special
equipment are unavailable. On the other hand, there are new
patients on the waiting list who could be included in the final
schedule. This revision of the initial schedule can lead to cal-
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culating a new and final schedule. This process is called the
rescheduling phase or rescheduling.

Rescheduling elective patients presents several disadvan-
tages. The most important one is the inconvenience to the
patients provoked by the changes: shifting a surgery one
or several days, cancellations of scheduled surgeries or the
incorporation of new surgeries into the final plan. Moreover,
there are also inconveniences forced on doctors who may
have to perform surgeries different than planned. Neverthe-
less, the benefits of rescheduling may be significant: a larger
number of patients may be operated on, a better utilisation
of the OR could be achieved and, in general, better values
in the hospital goals may be obtained. The hospital should
decide towhat extent to change the preliminary schedule. The
method presented in this paper to calculate this final schedule
allows the hospital to take this decision while controlling the
changes.

As we have seen in Introduction, there are not many
papers in the literature that consider rescheduling in hospi-
tals. Almost all of these papers consider a different problem:
the schedule created for elective patients have to make room
for non-elective (urgent or emergency) patients. It is worth-
while mentioning that this section is useful for any hospital
that reschedules elective patients.

The tentative schedule, Stentative, is obtained by solving
the model defined in Sect. 2.2. This schedule is obtained two
weeks before the planning period with the information avail-
able at that time. Let us call f the objective function used in
this problem (any function defined in Sect. 2.3 or any other
objective function).We assume the problem is a single objec-
tive optimisation problem.We call fM AX the value of f when
optimising the same model but with the information avail-
able in the rescheduling phase, in our case one week before
the planning period. When obtaining the final solution, the
hospital wants to optimise the same objective function f ,
but does not want to obtain a plan with many changes with
respect to Stentative. We define a method to obtain the final
schedule that reflects the changes the hospital would be will-
ing to allow. We define a policy of changes P as a set of
rules imposed by the hospital that determines which changes
can be made and which changes are not allowed when build-
ing the final schedule. Hence, many feasible schedules are
forbidden, because they do not comply with the policy of
changes. Let us define S(P) as the set of schedules fulfilling
the rules imposed by policy P . We propose the following
general method to calculate the final schedule:

Max f (S)

s.t. Restrictions of model in Sect. 2.2.
S ∈ S(P)

We have defined four different policies. Each one is
applied solving the model in Sect. 2.2 with the additional
constraints indicated in each case. Section 4.3. compares
these policies. Policies use the concepts of problematic and

unproblematic patients. We define a problematic patient as a
patient who is not available to be operated on in the session
he/she was planned in Stentative, due to, for example, any of
the reasons presented in the first paragraph of this section. An
unproblematic patient is a scheduled patient who can still be
operated on in the planned session. Let us define the policies:

• Policy 1 Unproblematic patients must be operated on in
the same session

We define:
UnP1 = {unproblematic patients scheduled in the first

week}.
UnP2 = {unproblematic patients scheduled in the second

week}.
S(i)= session assigned to patient Oi , if any;∅ if the patient

is not scheduled.
We add the following to the formulation of Sect. 2.2:

xij = 1 (i ∈ UnP1 ∪UnP2; j = S (i)) .

• Policy 2 Unproblematic patients scheduled in the first
week must be operated on in the same session. Unprob-
lematic patients scheduled in the second week must be
operated on, independently of the session.

We define:
We add the following to the formulation of Sect. 2.2:

xij = 1 (i ∈ UnP1; j = S (i))
m∑

j=1

xi j = 1 (i ∈ UnP2) .

• Policy 3 Unproblematic patients must be operated on,
independently of the session.

We add the following to the formulation of Sect. 2.2:

m∑

j=1

xi j = 1 (i ∈ UnP1 ∪UnP2) .

• Policy 4 The same as Policy 3, but only for patients with
priorities 1 or 2. Surgeries of patients with priority 3 may
be cancelled.

We define:
Pr1 = {patients with priority 1}, Pr2 = {patients with pri-

ority 2}.
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Table 1 Contributions to
function dist(S) Contributions of scheduled

patients
Contributions of
unproblematic patients

0 If the patient is operated on in S in
the same session as in Stentative

5 If the patient is operated on in S in
the same week as in Stentative but
in a different session

10 If the patient is operated on in S in
a different week than in Stentative

20 If the patient is not operated on in S

Contributions of
problematic patients

1 If the patient is operated on in S in
a different week than in Stentative

2 If the patient is not operated on in S

Contributions of not- scheduled patients 0 If the patient is not operated on in S

1 If the patient is operated on in S in
the second week

3 If the patient is operated on in S in
the first week

We add the following to the formulation of Sect. 2.2:

m∑

j=1

xi j = 1 (i ∈ (UnP1 ∪UnP2) ∩ (Pr1 ∪ Pr2)) .

Adifferent goal can be followedwhen calculating the final
schedule once the new information is available. It consists
in obtaining a schedule as similar as possible to the initial
schedule Stentative. We define SminDist as the final schedule
that provokes the minimum inconveniences to the hospital
with respect to Stentative. In order to calculate this schedule,
we introduce a distance function, dist, which calculates the
differences between a schedule S and the tentative solution.
Each hospital should define therefore their own function dist.
This function dist is defined according to the preferences
of the specific hospital. This function should measure the
inconveniences caused to the doctors, hospital and patients
when implementing a schedule S instead of continuing with
the initial schedule Stentative. We have worked with a linear
distance function that sums the contribution of scheduled
patients and the contribution of not-scheduled patients. A
scheduled patient is a patient who was going to be operated
on in Stentative. The contribution of scheduled patients is the
sum of the contributions of problematic and unproblematic
patients.

The contributions of patients to dist(S) are detailed in
Table 1. We have considered several assumptions due to the
specific characteristics of the hospital of reference and the
two-week plan. Although the cancellation of a surgery can
be due to patient or hospital causes, we only consider the first
ones. Furthermore, we have assumed that there are just two
types of problematic patients, those who cannot be operated
on in the week he/she was planned and those who cannot be
operated on in the whole two-week period. At any rate, meth-

ods presented do not depend on the contributions considered
and their specific values.

Once this distance is defined, we can calculate the sched-
ule SminDist that minimises the distance. Let us call fM I N =
f (SminDist ). To calculate SminDist , we use the model of
Sect. 2.2 replacing the objective function by dist(S) and
updating the set FeasSes(Oi ), to prevent patients being
scheduled when they are not available. We use schedule
SminDist as a keystone to analyse the benefits of allowing
changes.

4 Computational results

In this section,we present computational results for themeth-
ods introduced in the two previous sections. To assess the
efficiency of the proposedmethods, the computational exper-
iments have been carried out on realistic instances, randomly
generated following the data from a hospital. These instances
are described in Sect. 4.1. Section 4.2 compares the results
obtained by the objective functions proposed in Sect. 2.3.
Section 4.3 handles the rescheduling problem treated in
Sect. 3.

4.1 Random instances

Using historic information provided by the hospital, we have
generated several real-life-based data waiting lists for a pre-
established initial date. Their main characteristics are:

• Thevaluen is randomly selected in the interval [135,189].
• Surgeries are assigned a random priority in such a way
that 1% have priority 1, 34% have 2 and 65% have 3.
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Table 2 Results for 1% or 1-min limitation

UR %Tardy Avg_Tard_Tardy #Operated Total_Tard_Operated #Tardy_Wait Total_Tard_Wait

SCORE 89.32 11.20 14.47 1715.90 3105.05 82.05 2334.90

LINE 87.34 6.38 13.12 1737.78 1484.43 47.75 1767.90

LINE_D 88.37 7.95 17.26 1710.93 2579.63 75.40 2190.03

LINE_L 87.29 5.73 11.30 1731.20 1159.10 47.35 1944.90

LINE_DL 88.24 6.78 12.94 1708.28 1761.58 69.23 2276.88

TARDINESS 88.57 5.88 5.54 1755.05 551.65 40.70 1953.00

TARDINESS_D 88.69 7.52 11.37 1713.93 1656.13 77.58 3004.13

TARDINESS_L 88.63 5.62 6.06 1753.05 601.00 43.73 2142.03

TARDINESS_DL 88.73 7.30 9.88 1714.80 1444.73 72.73 3004.58

LASTDAY 87.07 6.26 29.97 1845.18 4013.20 89.75 5836.18

LASTDAY_D 88.29 10.55 22.63 1709.48 4547.68 111.48 4182.63

LASTDAY_L 87.08 6.58 30.22 1838.25 4097.50 87.58 6079.08

LASTDAY_DL 88.07 9.81 24.46 1710.93 4166.30 105.80 5856.90

• 2% of surgeries must be scheduled at the beginning of
the session.

• The specialty of a surgery is probabilistically chosen
based on the percentage of surgeries of that specialty in
the data provided by the hospital.

• The duration of a surgery is determined probabilistically
based on the number of surgeries along the year that have
their duration in certain pre-established intervals. The
intervals we have considered are of 15min, starting at 0
and finishing after 6h.

The characteristics of the sessions are fixed and follow the
values used in the hospital. There are 8 sessions per week:
one session of 12h and the rest of seven. Each session has
one or two specialties assigned, and “general surgeries” can
be assigned to all sessions.

To incorporate more diversity to the instance set, we have
doubled the number of patients in the initial waiting list, the
number of new patients per week and the number of sessions.
Therefore, we consider ProblemSize = 1, 2. We have also
considered two levels for the incorporation of new patients
each week: the “normal level” and a “congested level”. The
congested level incorporates a 25% more new patients each
week. The normal level is defined by Congestion = 1, and
the congested level is defined byCongestion = 1.25. For each
combination of the possible options (ProblemSize×Conges-
tion = 2 × 2 = 4), we have randomly generated 10 instances,
making a total of 40 instances. To increase the precision of
our comparisons, we use common random numbers.

To study the long-term behaviour, we follow the papers
of Persson and Persson (2009) and Agnetis et al. (2012). We
successively perform two-week plans for each instance, start-
ing from the pre-established initial date and until a year has
passed (i.e. a total of 26 time plans for each instance). The

waiting lists are updated after each two-week plan, remov-
ing the surgeries already performed and incorporating new
random patients following the data provided by the hospital.

Tests have been carried out on an Intel(R) Core(TM) i7-
2670QM CPU 2.20 GHz 6 GB RAM. Models have been
solved with GAMS 23.3, using CPLEX solver.

4.2 Comparing short-term objective functions

Following Sect. 2.4, we have considered four possibilities
for the three objective functions we have defined: (a) the
function itself, (b) the function where xi j is multiplied by the
duration, named _D, (c) the function where xi j is multiplied
by theDSL, adding _L to the name, and (d) another where xi j
is multiplied by the duration and the DSL, named _DL. To
compare the functions,wehave runGAMSwith twodifferent
limits. In Table 2, the algorithm stops after 1min of time per
optimisation problem or when the gap with the lower bound
reaches 1%. In Table 3, the algorithm cuts the search after
2min. To give an example of the gap to the lower bound,
the average deviation with respect to the bound provided by
GAMS is less than 1% in the cases of 2min of SCORE and
LINE_L (0.962 and 0.085%, respectively).

We have run the models for one year and calculated the
averages over all weeks except the first 2 weeks. We have
decided to leave out the first plan because there were already
many tardy patients and some of themwere many days tardy.
Including these patients would disturb the results, as no func-
tion can schedule them before their due dates. Furthermore,
their big values in tardiness disturb the averages of these
values for the rest of patients.

We have used several performance measures to compare
the objective functions. The most important one is the per-
centage of tardy patients (%Tardy). However, the average
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Table 3 Results for 2-min limitation

UR %Tardy Avg_Tard_Tardy #Operated Total_Tard_Operated #Tardy_Wait Total_Tard_Wait

SCORE 89.39 11.11 14.35 1718.28 3055.13 81.00 2300.83

LINE 88.80 5.23 12.05 1764.55 1162.90 41.45 1518.25

LINE_D 89.19 6.88 15.85 1731.30 2165.43 67.93 1893.13

LINE_L 88.79 4.61 10.60 1760.75 928.40 41.85 1677.43

LINE_DL 89.18 6.03 12.05 1729.60 1545.50 62.93 1996.80

TARDINESS 89.03 5.70 5.81 1757.73 546.53 38.10 1791.38

TARDINESS_D 89.33 7.05 11.34 1719.33 1486.80 75.13 2878.05

TARDINESS_L 89.05 5.47 5.82 1754.08 523.33 40.80 2008.65

TARDINESS_DL 89.27 6.93 9.57 1723.93 1242.35 72.08 3033.95

LASTDAY 87.35 6.21 29.94 1848.40 3974.15 88.63 5783.28

LASTDAY_D 88.41 10.44 23.21 1712.45 4481.48 110.60 4117.05

LASTDAY_L 87.41 6.46 29.89 1843.53 4001.30 86.78 6032.90

LASTDAY_DL 88.26 9.67 24.72 1714.15 4129.10 104.00 5735.88

tardiness of tardy patients (Avg_Tard_Tardy) is also impor-
tant. Other measures we have incorporated in the table are
the number of surgeries in the schedule (#Operated), the total
tardiness of the operated patients (Total_Tard_Operated), the
number of already tardy patients on the list after one year
(#Tardy_Wait) and the total tardiness of those patients (Total-
_Tard_Wait).

The utilisation rate (UR) is also a very important goal for
the hospital. However, a percentage of 80% is more than
enough for the hospital, as happens in all cases of the table
(almost 90%). This is one of the reasonswhywehave focused
the paper on the percentage of tardy patients. Considering
just the percentage of tardy patients, all our proposals beat
the SCORE function. The best functions cut this percentage
in half (from 11 to 5–6%). This confirms the importance of
choosing the correct objective function. Not every “similar”
function is going to lead to the same results.

Regarding the average of tardiness in tardy patients
(Avg_Tard_Tardy), variations of the LASTDAY function
obtain poor results in this field, multiplying by two the aver-
age days with respect to the SCORE function. Variations of
LINE obtain, in general, similar results to SCORE, and the
functions belonging to TARDINESS improve the results of
SCORE. Taking into account the performances %Tardy and
Avg_Tard_Tardy, the best four functions are TARDINESS,
TARDINESS_L, LINE (especially in Table 3) and LINE_L.
LINE_L outperforms LINE in all measures except in theUR
and #Operated, which are very similar. Another proof that
these functions handle the waiting list better comes from the
rest of the performances in the tables. They occupy the first
4–5 positions in every performance, except the number of
surgeries. For instance, they clearly beat the rest of the func-
tions in having a fewer number of tardy patients, both in
Tables 2 and 3.

If we compare the results of Tables 2 and 3, we can see
that there are functions which improve their results, whereas
others stay almost the same (SCORE and variations corre-
sponding to LASTDAY and TARDINESS). The functions
that most improve their results are those corresponding to
LINE, especially in %Tardy. Note that a decrease in this
percentage makes it more difficult in general to reduce the
average tardiness of tardy patients. The reason is that the
patients that have been transformed from tardy patients to
patients “on time” are usually those patients with very few
days tardy. The average of the rest of the tardy patients can
therefore be easily higher.

Regarding the inclusion of the duration andDSL, the dura-
tion alwaysworsens%Tardy. TheDSL improves thismeasure
in LINE and TARDINESS, but not in LASTDAY. At any
rate, DSL is clearly a parameter to consider when designing
an objective function for this goal.

4.3 Results for the rescheduling problem

Table 4 shows the results for the four rescheduling poli-
cies defined in Sect. 3. We have assumed a percentage of
problematic patients of 10%: 5% who cannot be operated
on in the same week and 5% who cannot be operated on
at all in the 2 weeks. The function used to calculate the
tentative schedule before optimising the rescheduling prob-
lem has been LINE_L. We cut the search after 2min, and
the average deviation with respect to the bound provided
by GAMS is 0.06%. To compare the results of the poli-
cies, we have also included the results of SminDist , the
final schedule that provokes the minimum inconveniences
to the hospital with respect to Stentative. The meanings of
the columns are as follows. The percentage %Deviation cal-
culates the deviation with respect to fM AX . As stated in
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Table 4 Results for the rescheduling problem

%Deviation #Cancelled_Surgeries
(unproblematic/all)

#New_Surgeries #Changed_Sameweek #Changed_ Difweek

SminDist 12.35% 0/6.78 0 0 2.43

Policy 1 7.92% 0/8.08 8.83 0 1.13

Policy 2 1.34% 0/7.93 7.55 5.18 3.88

Policy 3 0.84% 0/7.58 6.98 7.25 4.73

Policy 4 0.01% 26.25/32.48 23.40 10.03 7.33

Sect. 3, fM AX is the value of f when optimising the model
with the information available in the rescheduling phase. The
two numbers in #Cancelled_Surgeries (unproblematic/all)
show the average number of surgeries that are cancelled
from Stentative to the new schedule, taking into account only
unproblematic patients and all patients, respectively. Note
that #Cancelled_Surgeries (all) include patients who cannot
be scheduled because of their unavailability in the planning
period. The other three columns are self-explanatory.

As it was expected, the more changes we allow in the
schedule, the better the objective function. That is, a big-
ger flexibility in the schedule would allow better results in
terms of %Tardy and other goals. The difference between
implementing the schedule with minimum distance and the
schedule of fM AX , which corresponds to allowing total flex-
ibility, is more than 12%. Policy 1 improves almost 4.5% by
eliminating on average 8 surgeries fromproblematic patients,
changing 1 problematic patient to a different week and intro-
ducing nearly 9 new surgeries. Policy 4 performs a huge
number of changes, whereas Policy 3 seems to be the best
option in terms of the number of changes and improvement
in the objective function.

Another aspect not appearing in the table is worth men-
tioning. The gap between SminDist and fM AX changes dras-
tically from instance to instance. In 37.5% of the instances,
the gap is less than 1%, whereas in 27.5% the gap is more
than 20%.

5 Conclusions

In this paper,wehave studied the problemof creating a sched-
ule of elective surgery patients for a unit of a hospital based
on a real problem. Two phases are followed. First, a tentative
schedule is created 2 weeks before the schedule starts. Sec-
ond, a final plan is created a few days before, rescheduling
the tentative schedule with the new information available.

In the first part of the paper, we have proposed several
objective functions trying to capture the goal of minimis-
ing the percentage of tardy patients, without forgetting the
average tardiness of these patients. The best of our propos-
als halves the percentage of tardy patients of our keystone,

one of the few functions in the literature explicitly used for
this goal. At the same time, some of these functions lower
the average tardiness of tardy patients. At any rate, our study
clearly proves that short-term objective functions that look
for the same long-termgoalmayoffer great differences in that
goal. Therefore, any hospital with a long-term goal should
perform a similar study to the one provided here.

In the second part, we have described a general method
to reschedule elective patients: optimising the original objec-
tive functionwhile restricting the changes in the original plan
to a policy of changes defined by the hospital. It is worth-
while to mention that the rescheduling method presented can
be adapted in a straightforward way to policies of changes
different to the ones considered in this paper.

We have seen in our computational results that there
are instances where the possible improvement is low, and
therefore a policy of little disturbance should be adopted.
However, there are instances where a very important gain
can be achieved. A greater flexibility from the hospital can
lead to a substantial improvement in its goals.
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