
Journal of Scheduling (2018) 21:647–654
https://doi.org/10.1007/s10951-018-0556-2

Online scheduling of moldable parallel tasks

Deshi Ye1 · Danny Z. Chen2 · Guochuan Zhang1

Published online: 2 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In this paper, we study an online scheduling problem with moldable parallel tasks on m processors. Each moldable task can
be processed simultaneously on any number of processors of a parallel computer, and the processing time of a moldable task
depends on the number of processors allotted to it. Tasks arrive one by one. Upon arrival of each task, the scheduler has to
determine both the number of processors and the starting time for the task. Moreover, these decisions cannot be changed in
the future. The objective is to attain a schedule such that the longest completion time over all tasks, i.e., the makespan, is
minimized. First, we provide a general framework to show that any ρ-bounded algorithm for scheduling of rigid parallel tasks
(the number of processors for a task is fixed a prior) can be extended to yield an algorithm for scheduling of moldable tasks
with a competitive ratio of 4ρ if the ratio ρ is known beforehand. As a consequence, we achieve the first constant competitive
ratio, 26.65, for the moldable parallel tasks scheduling problem. Next, we provide an improved algorithm with a competitive
ratio of at most 16.74.

Keywords Online scheduling · Moldable tasks · Multi-core scheduling · Competitive analysis

1 Introduction

Virtualization technology is enriching the research on par-
allel task scheduling. For example, Kalé (2002) studied
virtualization benefits for Charm++ and AMPI systems. In
virtualization, a parallel task can be processed on a smaller
number of processors than requested, though the processing
time of the task may increase due to the influence of com-
munications, synchronization, and other overheads. A task is
moldable if the degree of parallelism (the number of proces-
sors used to process it) can be chosen by a scheduler when the
task arrives (but the number of processors used for this task,
once decided, cannot be changed during the whole process-
ing).A task is rigid if the number of processors for processing
it is fixed a priori. A task is malleable if the number of pro-

B Deshi Ye
yedeshi@zju.edu.cn

Danny Z. Chen
dchen@nd.edu

Guochuan Zhang
zgc@zju.edu.cn

1 College of Computer Science, Zhejiang University,
Hangzhou 310027, China

2 Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA

cessors may change during its processing by preemption of
tasks or simply by data redistributions. Note that some liter-
ature also names moldable tasks as malleable tasks (Ludwig
and Tiwari 1994; Mounié et al. 2007).

Dutot et al. (2004) pointed out that most parallel appli-
cations are moldable. Cirne and Berman (2001) provided
a model to generate moldable tasks from rigid workloads.
In some real applications, tasks may arrive online, such as
parallel short sequence mapping in DNA sequencing analy-
sis (Saule et al. 2010). The concept of moldable tasks offers
a powerful way to model large-scale parallel applications.
But, it also adds an additional dimension of consideration
to scheduling, i.e., the scheduler has to decide how many
processors are used for each task.

In this paper, we study online scheduling of moldable
tasks on a parallel computer system. We are given a set
of n independent moldable jobs and m identical proces-
sors. An instance of the problem consists of a set of n jobs,
J = {J1, J2, . . . , Jn}, and a processing time function p j,s

that represents the processing time of job J j when executed
on s processors. The scheduler shall assign a subset of S j

processors for each job J j and find a starting time t j such
that job J j starts its execution simultaneously at time t j on all
these processors. In this work, we consider the online model,
in which jobs are released one by one, and the scheduler shall

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-018-0556-2&domain=pdf

648 Journal of Scheduling (2018) 21:647–654

make the decision for each job without being aware of any
future jobs, and this decision cannot be changed later. The
goal of the scheduler is to minimize themakespan, defined as
the longest completion time over all the jobs, i.e., to find a fea-
sible schedule minimizingCmax = max j=1,...,n{t j + p j,|S j |}.
Henceforth, the terms of processor and machine, and the
terms of task and job, are interchangeable, respectively.

We use competitive analysis (Borodin and El-Yaniv 1998)
to measure the performance of an online algorithm. For any
input instance I and an online algorithm A, we denote by
OPT (I) and A(I), respectively, the makespan of an opti-
mal offline algorithm and the makespan of the algorithm A
to schedule the instance I . Algorithm A is said to be ρ-
competitive if A(I) ≤ ρ · OPT (I) for any instance I . The
competitive ratio of algorithm A is defined as

RA = sup
I

{A(I)/OPT (I)}.

The reader might wonder whether a simple greedy algo-
rithm is good enough to solve this online moldable task
scheduling problem: Upon the arrival of each job J j , sim-
ply use all m processors to process it, and let J j start the
execution once the execution of J j−1 is finished. However,
this greedy algorithm can suffer an arbitrarily large compet-
itive ratio. The following is a simple example to illustrate
this. There are m jobs, all of which have processing time 1
on 1 processor and 1 − ε on m processors, where ε is an
arbitrarily small positive constant. It is easy to see that the
makespan of this greedy algorithm is m(1 − ε), while the
optimal makespan is 1.

1.1 Related work

Offline moldable task scheduling has been studied exten-
sively in the past decades; the reader is referred to the
excellent survey (Dutot et al. 2004).Moldable tasks are called
monotone if the processing time of any task is non-increasing
in the number of machines and the work (the number of
machines times the processing time) is non-decreasing in
the number of machines. Belkhale and Banerjee (1990) pre-
sented a 2/(1 + 1/m)-approximation algorithm under the
monotonic assumption, where m is the number of total pro-
cessors.

A basic approach for moldable jobs scheduling consists of
two steps. The first step determines the number of machines
for each job and the second step solves the resulting rigid task
scheduling problem. In this approach, Turek et al. (1992)
showed a 2-approximation algorithm without the mono-
tonic assumption; the running time of their algorithm is
O(mnL(m, n)), where m is the number of machines, n is
the number of jobs, and L(m, n) is the running time of an
algorithm for the rigid jobs scheduling problem. Later, Lud-
wig and Tiwari (1994) presented an algorithm with the same

approximation ratio of 2 without the monotonic assumption,
but with an improved running time O(mn + L(m, n)).

Another approach for moldable jobs scheduling is to use
dual approximation. This technique first selects an objec-
tive value and then decides the most efficient number of
machines for each job such that all the jobs can be completed
within this selected value. Under the monotonic assumption,
Mounié et al. (1999) gave a (

√
3 + ε)-approximation algo-

rithm. Later, they improved the ratio to (3/2 + ε) (Mounié
et al. 2007). Recently, Jansen (2012) also gave an algorithm
with an approximation ratio of 3/2+ε, butwithout themono-
tonic assumption.

Some special cases yield better results. When the number
m of machines is a constant, Jansen and Porkolab (2002)
proposed a linear time PTAS. When the number of machines
is polynomially bounded by the number of jobs, Jansen and
Thöle (2010) gave a PTAS. For the case of identical moldable
jobs, Decker et al. (2006) presented a 5/4-approximation
algorithm.

Note that the results mentioned above are not for online
moldable task scheduling. To the best of our knowledge, no
previous work is known for the general online moldable task
scheduling. However, some special cases have been inves-
tigated. Rapine et al. (1998) considered scheduling online
preemptive moldable jobs with the monotonic assumption,
and the competitive ratios derived are not constant. In their
model, the number of machines allocated to a job can be
changed anytime during the execution, and job preemption is
allowed. Dutton andMao (2007) dealt with a model in which
the processing time of a job J j is t j = p j/k j + (k j − 1) · c,
where c is a constant, and job J j has a processing requirement
p j and is assigned to k j machines. They gave competi-
tive ratios of earliest completion time (ECT) algorithms for
m ≤ 4 machines and presented a general lower bound of
2.3 for a large number of machines. For a larger number
of machines, an upper bound of around 4 of shortest exe-
cution time (SET) algorithm was presented in Havill and
Mao (2008). Recently, Kell and Havill (2015) presented
improved results for two and three machines. Guo and Kang
(2010) extended this model for two machines, in which a
job-dependent overhead term c j replaces a uniform constant
c.

The strip packing problem is to minimize the height
required for placing a set of rectangular items into a stripwith
fixed width and unbounded height. Rigid tasks scheduling is
closely related to the classic strip packing problem, in which
it is in addition required to allocate consecutive processors to
a task. Regarding online strip packing problems, Baker and
Schwartz (1983) developed the first fit shelf algorithm with a
competitive ratios of 6.99. Later, improved algorithms were
proposed with a competitive ratio of 6.66 in two independent
results (Hurink and Paulus 2007; Ye et al. 2009). Yu et al.
(2016) provided a lower bound of 2.618.

123

Journal of Scheduling (2018) 21:647–654 649

1.2 Our results

In this paper, we study the online moldable tasks scheduling
problem. The processing time of amoldable task is a function
of the number of processors allocated to it. While previous
studies focused on some restricted functions of processing
time, we consider the general function without any assump-
tion. Our first result is to provide a general framework, in
which we present a black-box reduction such that any online
moldable task scheduling algorithm is reduced to a rigid par-
allel task scheduling algorithm. Our work is motivated by
the doubling technique (e.g., Aspnes et al. 1997) for online
algorithms. In particular, we define a ρ-bounded algorithm
(the detailed definition is given in Sect. 2) and then show that
a 4ρ-competitive algorithm for the moldable task scheduling
problem can be obtained from any ρ-bounded algorithm for
the rigid parallel task scheduling problem. Since the algo-
rithms in Baker and Schwartz (1983), Hurink and Paulus
(2007), Ye et al. (2009) for rigid parallel task scheduling are
ρ-bounded algorithms, we obtain a 26.65-competitive algo-
rithm for the onlinemoldable tasks scheduling problem.Note
that the knowledge of ρ is required. Next, by exploring the
details of a ρ-bounded algorithm, we provide an improved
algorithm with a competitive ratio of at most 16.74.

In the remaining part of this paper, we first present a gen-
eral framework in Sect. 2. Then we provide an improved
online algorithm in Sect. 3. We conclude the paper with open
questions in Sect. 4.

2 A general framework

For the online moldable task scheduling problem, let s̄ =
{s1, s2, . . . , sn} be an allocation of machines to the n jobs,
where si is the number of machines assigned to the task i .
Note that the problem is a rigid task scheduling problem if a
fixed s̄ is used. Define

LB(s̄) = max

⎧
⎨

⎩

1

m

n∑

j=1

(s j · p j,s j), max
j∈{1,...,n}{p j,s j }

⎫
⎬

⎭
.

Then LB(s̄) is a lower bound for the makespan of a rigid
task scheduling problem. The first item in LB(s̄) refers to
the total work load (the product of the number of machines
and its processing time) evenly divided by the number of
machines, and the second item refers to the length of a task
with largest processing time. Clearly, LB(s̄) is lower bounds
on the makespan of the optimal offline schedule.

As introduced by Ludwig and Tiwari (1994), a ρ-bounded
algorithm is defined as follows.

Definition 1 For any value ρ ≥ 1, an algorithm for the
rigid task scheduling problem is said to be ρ-bounded if the

makespan generated by this algorithm is at most ρLB(s̄) for
any given s̄.

The rigid task scheduling problem can be viewed as the
strip packing problem, where the width of the strip corre-
sponds to themachines and the height of the strip corresponds
to the time axis. The number of machines s and processing
time p j,s of a rigid task J j are corresponding to the width
and height of a rectangle item that are requested to be packed
in strip packing. Strip packing differs from scheduling rigid
tasks in that we have just the additional constraint that a job
must be scheduled on consecutivemachines. Therefore, algo-
rithms for strip packing canbeused for scheduling rigid tasks,
but in general not vice versa. Now we know that the known
algorithms in Baker and Schwartz (1983), Hurink and Paulus
(2007), Ye et al. (2009) can be applied for the online rigid par-
allel task scheduling problem. Moreover, one can check that
only the lower bounds in LB(s̄) are used as lower bounds on
the makespan of the optimal offline schedule in Baker and
Schwartz (1983), Hurink and Paulus (2007), and Ye et al.
(2009). Therefore, algorithms in Baker and Schwartz (1983),
Hurink and Paulus (2007), andYe et al. (2009) areρ-bounded
according to Definition 1, which achieve competitive ratios
of 6.99 and 6.66, respectively.

The principle of an offline ρ-dual approximation algo-
rithm (Hochbaum and Shmoys 1987) is to take a positive real
number α as input, and either deliver a schedule of length at
most ρα or point out that there exists no schedule of length
at most α.

For online problems, it is quite natural to consider greedy
algorithms. However, even for rigid task scheduling (Ye et al.
2009), a greedy method that assigns each task to proces-
sors such that its completion time is minimized cannot be
constant-approximated. In this paper, we will combine tech-
niques used in both offline and online algorithms.

Thedetailed descriptionof our online algorithm for the tar-
get problem is called Algorithm 1 (FRAMEWORK), which
is given as follows.

Algorithm 1 is a general framework, in which any ρ-
bounded online rigid task scheduling algorithm can be
applied as a black box. The key idea of our online algorithm
is to adopt the standard doubling technique (e.g., Aspnes
et al. 1997) to guess a positive real number α and assign
the incoming job in the schedule within the length of ρα if
this is possible; otherwise, we double α until this job can be
assigned. To make our idea work, we must guarantee that if
the online rigid task scheduling algorithm cannot schedule
the incoming jobs within the length of ρα, then no optimal
offline algorithm for the non-rigid tasks problem can com-
plete all the jobs within a length of α.

In the following, we discuss the algorithm FRAME-
WORK in detail. The algorithm finds an assignment for any
incoming job J j (lines 2–19). We denote the part of the pro-

123

650 Journal of Scheduling (2018) 21:647–654

Algorithm 1: FRAMEWORK (a general framework
for the moldable task scheduling problem)
Input: A set of n moldable jobs, and a set of m machines. A

ρ-bounded rigid task scheduling algorithm RTA.
1 Let α = min1≤s≤m{p1,s}, T = 0, i = 1, Wi = 0, αi = α,

bouti = ∅ ; /* We denote the part of the
process during which the value of α

remains unchanged (i.e., α is not updated)
as a bout. We let the work of a job be the
product of the processing time and the
number of machines allocated to this job,
and Wi be the total work of the jobs
assigned in the ith bout. */

2 foreach incoming job J j do
3 Let I s_scheduled = False;
4 while I s_scheduled = False do
5 f (j) = {s | p j,s ≤ αi } ; /* f (j) is the set

of machine numbers for job J j such
that for each s ∈ f (j), the processing
time of job J j is at most αi if using
s machines. */

6 if f (j) �= ∅ then
7 Find s ∈ f (j) such that s · p j,s is minimized;
8 Wi = Wi + s · p j,s ;

9 if Wi ≤ αi · m and f (j) �= ∅ then
10 Let I s_scheduled = True;
11 Assign s, the number of machines, to job J j ;
12 bouti = bouti

⋃{J j };
13 Assign this job (s, p j,s) by a rigid task scheduling

algorithm RTA in the time interval [T , T + ραi];
14 else
15 T = T + ραi ;
16 α = 2αi ;
17 i = i + 1;
18 Wi = 0;
19 αi = α;

Output: The schedule for each job J j , i.e., an assignment of
the number of machines assigned to J j and the start
time of J j .

cess during which the value of α remains unchanged (i.e., α
is not updated) as a bout, and denote the set of jobs assigned
in the i th bout as bouti . Let the work of a job be the product
of the processing time and the number of machines allocated
to this job, and Wi be the total work of the jobs assigned in
the i th bout. Let αi be the value of α in the i th bout. Without
loss of generality, we assume that the current bout is i upon
the arrival of job J j . Let f (j) denote the set of numbers of
machines for job J j such that for any number s ∈ f (j), the
processing time of job J j is at most αi if using s machines
(line 5). If f (j) is not empty, i.e., there exists some number s
of machines such that the processing time of job J j is at most
αi using s machines, then we update the total work of bouti
by adding up the minimum work of job J j whose process-
ing time is limited to at most αi (lines 6–8). If Wi ≤ αi · m
and f (j) �= ∅, then lines 9–13 make sure that job J j can be
successfully assigned by a given black-box ρ-bounded algo-

rithmRTA (the detailed proof will be given in Lemma 1), and
job J j is assigned to bouti . Lines 15–19 deal with the case
that job J j cannot be assigned in bouti , which also implies
that bouti is ended and job J j will be forwarded to the next
bout. In bouti+1, we let αi+1 = 2αi (line 16 and line 19). The
start time of bouti+1 is T + ραi , where T = ∑

1≤k≤i−1 ραk

(line 15) that can be determined by the iterations. Lemma 2
will show that if job J j cannot be scheduled in bouti , then
any optimal makespan must be larger than αi . This motivates
us to increase the value of α.

Lemma 1 Suppose the subroutine RTA for the rigid task
scheduling problem in Algorithm 1 (FRAMEWORK) is a ρ-
bounded algorithm. For any i ≥ 1, it is feasible to complete
all jobs in bouti within the time interval [T , T +ραi], where
T = ∑i−1

k=1 ραk .

Proof According to Algorithm 1, for any job J j ∈ bouti ,
suppose the number of machines assigned to job J j is s, then
we have p j,s ≤ αi . Moreover, in each bouti , we have that the
total work sumWi of all jobs in bouti is no more than αi ·m.
Suppose the machine assignments for all the jobs in bouti is
s̄; then, LB(s̄) ≤ αi . Since the subroutine RTA for the rigid
task scheduling problem is a ρ-bounded algorithm, all of the
bouti jobs can be completed by a schedule with a length of
at most ρLB(s̄), and thus ρ · αi . Hence, all jobs in bouti can
be scheduled in [T , T + ραi], with T = ∑i−1

k=1 ραk . �	
Lemma 2 For any integer k ≥ 1 and boutk �= ∅, the
makespan of any optimal solution for all the jobs in
boutk−1

⋃
boutk is larger than αk−1 (with α0 = 0).

Proof Let job J j be the first job in boutk . According to Algo-
rithm 1, eitherwe have p j,s > αk−1 for all s ∈ {1, . . . ,m}, or
there exists an s such that s·p j,s isminimized for p j,s ≤ ak−1

but we haveWk−1+s · p j,s > αk−1 ·m. In the former case, we
know that the processing time of job J j is larger than αk−1

no matter how many of the m machines are assigned to it. In
the latter case, the total work of the jobs in boutk−1

⋃{J j }
is larger than αk−1 · m. Note that the work of every job in
boutk−1

⋃{J j } is minimized under the assumption that the
processing time of that job is at most αk−1. Thus, if any
optimal algorithm does not assign a job with a processing
time larger than αk−1, then the total work of the jobs in
boutk−1

⋃{J j } must be larger than αk−1 · m. Hence, the
lemma follows immediately. �	
Theorem 1 Given a ρ-bounded rigid task scheduling algo-
rithm as a subroutine, the competitive ratio of Algorithm 1
(FRAMEWORK) for our online moldable task scheduling
problem is at most 4ρ. Specifically, there exists a 6.6623-
bounded algorithm (Ye et al. 2009) for the rigid task
scheduling problem, and hence, the competitive ratio of Algo-
rithm 1 is at most 26.65.

123

Journal of Scheduling (2018) 21:647–654 651

Proof The number of machines for any job is determined
upon its arrival, and is not changed later. Moreover, we use
the online algorithm RSr in Ye et al. (2009) as the subroutine
RTA that determines the starting time of a job. Thus, one can
see that Algorithm 1 is an online algorithm.

Let ALG and OPT be themakespans generated byAlgo-
rithm 1 and an optimal offline algorithm, respectively. Upon
the arrival of the first job, we let the initial value of α be
mins{p1,s}.

The concept of a boutwas already defined above. Suppose
there are totally l bouts until the end of Algorithm 1. Let α j

denote the guessed value of α in the j th bout, i.e., α j =
2 j−1 mins{p1,s}.

Lemmas 1 and 2 guarantee that Algorithm 1 either is able
to complete successfully all the jobs for the given guessed α

or there exists no schedule with a length of at most α. Since
there are totally l bouts, we know that the makespan OPT
of any optimal algorithm must be strictly larger than αl−1,
by Lemma 2.

Wehaveαl = 2αl−1 = 2l−1 mins{p1,s} < 2OPT . Let Tj

denote the starting time of the j th bout in Algorithm 1 . The
rigid task scheduling algorithm is a ρ-bounded algorithm,
andAlgorithm1can complete all the jobswithin timeTl+ραl
by Lemma 1. Note that Tj = Tj−1 + ρα j−1 for each j > 1
and T1 = 0. Hence, the makespan attained by Algorithm 1
is calculated as follows.

ALG = Tl + ραl

=
l∑

j=1

ρα j

≤ 2ραl

≤ 4ρOPT .

Thus, the competitive ratio of Algorithm 1 is at most 4ρ, and
then at most of 26.65. �	

3 An improved online algorithm

In this section, we will present an improved algorithm
based on the above framework. The algorithm FRAME-
WORK reduces a moldable task scheduling problem to a
rigid task scheduling problem. In this framework, the rigid
task scheduling algorithm is regarded as a black box. Con-
sequently, a natural question arises: Can we take a rigid task
scheduling algorithm as a white box and design an improved
algorithm for themoldable task scheduling problem?Wewill
show that the answer to this question is affirmative, and give
an improved algorithm as described in Algorithm 2 (IOA).

Before we jump into Algorithm 2, let us first give a brief
description of the RSr algorithm in Ye et al. (2009). The

Algorithm 2: I O A (an improved online algorithm)
Input: A set of n moldable jobs, and a set of m machines. A

ρ-bounded rigid task scheduling algorithm RTA.
1 Let α = min1≤s≤m{p1,s}, T = 0, i = 1, Wi = 0, αi = α; Let

β = 1.56 and r = 1.44; foreach incoming job J j do
2 Let I s_scheduled = False;
3 while I s_scheduled = False do
4 f (j) = {s | p j,s ≤ αi } ; /* f (j) is the set

of machine numbers for job J j such
that for each s ∈ f (j), the processing
time of job J j is at most αi if using
s machines. */

5 if f (j) �= ∅ then
6 Find s ∈ f (j) such that s · p j,s is minimized;
7 Wi = Wi + s · p j,s ;

8 if Wi ≤ αi · m and f (j) �= ∅ then
9 Let I s_scheduled = True;

10 Assign s, the number of machines, to job J j ;
11 bouti = bouti

⋃{ j};
/* Assign this job (s, p j,s) using
the following method. */

12 if s > m/2 then
13 Create a shelf of height p j,s at the top of the

current schedule, and assign job J j to this
shelf;

14 else
15 Find an integer k such that

rk−1 < p j,s ≤ rk , and then pack J j into a
shelf of height rk by the FF (First Fit)
algorithm. Specifically, the job (s, p j,s) is
packed leftmost into the lowest shelf of
height rk which has enough room for it.
Otherwise, create a new shelf of height rk at
the top of the current schedule, and place this
job into it; ; /* A shelf can be
regarded as a rectangle, whose
width is m and whose height
is determined by the
algorithm; the assignment of a
shelf is like an operation on
a stack, always pushing the
current shelf onto the top of
the stack. The makespan of the
online algorithm is the sum of
the heights of all shelves
pushed onto the stack. */

16 else
17 α = β · αi ;
18 i = i + 1;
19 Wi = 0;
20 αi = α;

Output: The schedule for each job J j , i.e., an assignment of
the number of machines assigned to J j and the start
time of J j .

algorithm RSr schedules jobs in shelves. In this algorithm,
a job is big if the number of machines s assigned to that
job is greater than m/2, and small otherwise. Big jobs are
never assigned together with other jobs, and each of them is
assigned to a separate shelf with height exactly the same as

123

652 Journal of Scheduling (2018) 21:647–654

Table 1 An instance: 5 jobs and
their processing times on a total
of 5 machines

s J1 J2 J3 J4 J5

1 5 2 2 2.5 3.79

2 4 1.5 2 2.5 2.5

3 3 1.1 2 2.1 2.5

4 2 1 2 2 2.5

5 1 1 2 2 2.5

its processing time (line 15 in Algorithm 2). A parameter r
is given to distinguish different groups of small jobs. Small
jobs are grouped together with similar heights that differ at
most r times, and they will be assigned by first fit algorithm
among shelves with the same height rk for some integer k
(line 17 in Algorithm 2).

Algorithm IOA is similar to the general framework of
Algorithm 1. First, in contrast to Algorithm 1, we use a
parameter β in Algorithm 2 (instead of a constant 2 in Algo-
rithm 1) when we update α (line 19 of Algorithm 2). Another
difference is that we use the RTA algorithm [i.e., the RSr
algorithm in Ye et al. (2009)] as a white box in Algorithm 2
(lines 14–17). However, the parameter r used in Algorithm 2
may not be the same as that in Ye et al. (2009). Note that the
parameter r = 3

5−√
10

= 1.63 inYe et al. (2009). SinceAlgo-
rithm 1 adopts RTA as a black-box subroutine, the parameter
r in Algorithm 1 is also 1.63. Finally, in contrast to Algo-
rithm 1, which always assigns a bouti job in the time interval
[T , T + ραi], with T = ∑i−1

k=1 ραk , Algorithm 2 does not
need to maintain the variable T ; instead, it will assign the
incoming job to the “shelf" that is determined by the algo-
rithm (lines 14–17). A shelf can be viewed geometrically as
a rectangle with a width ofm and a height determined by the
algorithm. A schedule can be viewed as a stack of shelves,
with each new shelf laying on top of the last shelf. To illus-
trate the algorithm IOA, an example is given as follows.

Example 1 We give an example to illustrate howAlgorithm 2
works. Let m = 5 and n = 5. The detailed processing times
are given in Table 1. Note that we set β = 1.56 and r =
1.44 in Algorithm 2. After the first job J1 arrives, α1 = 1,
f (1) = {5}, and W1 = 5. Let si be the number of machines
assigned by the algorithm I O A to Ji . Then s1 = 5, and
bout1 = {J1}. A shelf of height 1 will be created and aligned
at the bottom.When the second job J2 arrives, f (2) = {4, 5},
W1 + 4 ∗ 1 = 9 > 5α1, and hence, the first bout is ended.
Then it goes to the second bout, i.e., α2 = βα1 = 1.56. In
this case, f (2) = {2, 3, 4, 5}, W2 = 3 < α2 · m = 7.8.
Hence, s2 = 2, and p2,2 = 1.5. Since 1.44 < 1.5 ≤ 1.442 ≈
2.07, i.e., k = 2, a shelf of height 1.442 will be created
and assigned onto the top of the first shelf. Upon the arrival
of job J3, p3,s = 2 > α2 = 1.56 for any s, and hence,
f (3) = ∅. In this case, the algorithm goes to bout 3, and
bout2 = {J2}. Clearly, α3 = βα2 = 1.562 = 2.4336. Then

Fig. 1 Illustrating the schedule in Example 1. A shelf is between every
two consecutive red dotted line segments, and the numbers on the right
are the height of each shelf, respectively

f (3) = {1, . . . , 5}, s3 = 1, p3,1 = 2, and bout3 = {J3}.
Since 1.44 < 2 ≤ 1.442, J3 can be assigned to a shelf of
height 1.442, and actually, it is assigned to the right of job
J2. One may check that job J4 belongs to bout3, and hence,
bout3 = {J3, J4}. Since s4 = 3, we create a shelf of height
p4,3 = 2.1, which will be located on the top of the shelf of
height 1.442. Up to now, W3 = 1 ∗ 2 + 3 ∗ 2.1 = 8.3. One
may also check f (5) = ∅, and then α4 = βα3 = 3.796.
Then s5 = 1, and we find 1.443 < 3.79 ≤ 1.444, which
implies that we need to create a shelf of height 1.444 ≈ 4.3
on the top of the current schedule, and then assign job J5 to
this shelf. The makespan of this example is 9.47. One could
check that the makespan of the optimal solution is at most
3.5 by letting s1 = 5, s2 = s3 = s4 = 1, s5 = 2 (Fig. 1).

Lemma 3 Let l be the number of bouts at the end of
Algorithm 2 (IOA). The total work sum of the n jobs is upper-

bounded by β2

β−1 · αl−1 · m, and the longest processing time
of any job is upper-bounded by β · αl−1.

Proof According to Algorithm 2 (IOA), each incoming job
is assigned to one bout. Hence, the union of all the bouts,
⋃

1≤i≤l bouti , consists of all the jobs. Note that if a job J j
is in bouti , then its processing time is upper-bounded by αi .
Thus, the largest processing time of any job is upper-bounded
by αl = β · αl−1.

Note that the work sum of all the jobs in bouti is at most
αi ·m, by Algorithm 2. Hence, the total work of all the n jobs

is upper-bounded by
∑l

i=1 αi · m ≤ β2

β−1 · αl−1 · m because
αi = βαi−1 for any 2 ≤ i ≤ l. �	

123

Journal of Scheduling (2018) 21:647–654 653

Thefinal schedule ofAlgorithm2 (IOA) consists of a stack
of shelves. For simplicity of the proofs, we use the similar
notation as in Ye et al. (2009). The shelves created for those
jobs to each of which more than m/2 machines are assigned
are said to be full. A shelf of height rk created for jobs with a
degree of parallelism no more than m/2 is said to be sparse.
Otherwise, a shelf is dense.

Let HF denote the total height of all the full shelves, HS

denote the total height of all the sparse shelves, and HD

denote the total height of all the dense shelves, respectively.
The following lemma can be obtained directly from Ye et al.
(2009).

Lemma 4 (Ye et al. 2009, Theorem 1) The total work of all
the jobs is at least HD · 2

3r · m + HF · m/2.

Theorem 2 Theonline algorithm I OA (Algorithm2) achieves
a competitive ratio of at most 16.74 by setting β = 1.56 and
r = 1.44.

Proof Let ALG and OPT denote the makespans produced
by the online algorithm I O A and an optimal offline algo-
rithm, respectively. Let l be the number of bouts at the end
of the algorithm I O A. Since boutl �= ∅, we know OPT ≥
αl−1. By definitions, we have ALG = HD + HF + HS .

It is worth noting that there is at most one sparse shelf for
each height rk . Let h be the longest processing time among all
the jobs in the sparse shelves, and suppose the shelf to which
it is assigned is of a height at most rh. By Lemma 3, we have
h ≤ βαl−1 ≤ βOPT . Since each sparse shelf belongs to a
different class of height, the value of HS is at most of the sum
of a geometric sequence with the common ratio of r ; thus,
the following inequality holds.

HS ≤ rh + h
∞∑

i=0

1/r i ≤ r2

r − 1
h ≤ β

r2

r − 1
OPT .

Let W be the total work of all the n jobs generated by the
online algorithm I O A. By Lemma 4 and letting r ≥ 4/3,
we have

W ≥ HD · 2

3r
· m + HF · m/2

≥ 2

3r
(HD + HF)m.

By Lemma 3, we haveW ≤ β2

β−1 ·αl−1 ·m ≤ β2

β−1 ·m ·OPT .
Clearly, we now have

ALG = HD + HF + HS

≤ 3r

2
· β2

β − 1
OPT + β

r2

r − 1
OPT .

Given any specific number of β, we can find the smallest

value of 3r
2 · β2

β−1 + β r2
r−1 . We do a binary search on β in the

interval (1, 2]. Finally, by letting β = 1.56 and r = 1.44, we

have 3r
2 · β2

β−1 + β r2
r−1 < 16.74. Thus, the competitive ratio

of the online algorithm I O A is at most 16.74. �	

4 Concluding remarks

In this paper, we explored online scheduling of moldable
tasks. We presented a constant competitive online algorithm
by applying a black-box reduction from the moldable task
scheduling to the rigid task scheduling. The techniques used
in this paper are based on a combination of the doubling
technique and a kind of greedy method. Moreover, we pre-
sented an improved algorithm by using a parameter instead
of doubling and also taking a known rigid task scheduling
algorithm as a white box.

For future work, a natural problem is to design bet-
ter online algorithms for moldable task scheduling. One
may also consider some special cases of the moldable task
scheduling problem, for example, the function of processing
time is concave or with a monotonic assumption. It would
also be interesting to consider malleable task scheduling.

Acknowledgements We would like to thank the anonymous referees
for their valuable comments to improve the presentation of this paper.
The research of D. Ye was supported in part by NSFC (11671355) and
China Scholarship Council. The research of D.Z. Chen was supported
in part by NSF under Grants CCF-1217906 and CCF-1617735. The
research of G. Zhang was supported in part by NSFC (11271325).

References

Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., & Waarts, O. (1997). On-line
routing of virtual circuits with applications to load balancing and
machine scheduling. Journal of the ACM, 44(3), 486–504.

Baker, B., & Schwartz, J. (1983). Shelf algorithms for two-dimensional
packing problems. SIAM Journal on Computing, 12, 508–525.

Belkhale, K., & Banerjee, P. (1990). Approximate algorithms for the
partitionable independent task schedulingproblem. InProceedings
of the international conference on parallel processing (ICPP) (pp.
72–75).

Borodin, A., & El-Yaniv, R. (1998). Online computation and competi-
tive analysis. Cambridge: Cambridge University Press.

Cirne, W., & Berman, F. (2001). A model for moldable supercomputer
jobs. In Proceedings of the 15th international parallel and dis-
tributed processing symposium (IPDPS) (pp. 59–66).

Decker, T., Lücking, T., & Monien, B. (2006). A 5/4-approximation
algorithm for scheduling identical malleable tasks. Theoretical
Computer Science, 361(2), 226–240.

Dutot, P., Mounié, G., & Trystram, D. (2004). Scheduling parallel tasks
approximation algorithms, Chapter 26. In J. Y.-T. Leung (Ed.),
Handbook of scheduling: Algorithms, models and performance
analysis. Boca Raton: CRC Press.

Dutton, R., & Mao, W. (2007). Online scheduling of malleable parallel
jobs. In Proceedings of the IASTED international conference on
parallel and distributed computing and systems (pp. 1–6).

Guo, S.,&Kang, L. (2010).Online scheduling ofmalleable parallel jobs
with setup times on two identical machines. European Journal of
Operational Research, 206(3), 555–561.

123

654 Journal of Scheduling (2018) 21:647–654

Havill, J.,&Mao,W. (2008).Competitive online scheduling of perfectly
malleable jobs with setup times. European Journal of Operational
Research, 187, 1126–1142.

Hochbaum, D., & Shmoys, D. (1987). Using dual approximation algo-
rithms for scheduling problems: Theoretical and practical results.
Journal of the ACM, 34(1), 144–162.

Hurink, J., & Paulus, J. (2007). Online algorithm for parallel job
scheduling and strip packing. In Proceedings of the 5th interna-
tional workshop in approximation and online algorithms (WAOA)
(pp. 67–74).

Jansen, K. (2012). A (3/2 + ε) approximation algorithm for scheduling
moldable and non-moldable parallel tasks. In Proceedings of the
24th ACM symposium on parallelism in algorithms and architec-
tures (SPAA) (pp. 224–235).

Jansen, K., & Porkolab, L. (2002). Linear-time approximation schemes
for scheduling malleable parallel tasks. Algorithmica, 32(3), 507–
520.

Jansen, K., & Thöle, R. (2010). Approximation algorithms for schedul-
ing parallel jobs. SIAM Journal on Computing, 39(8), 3571–3615.

Kalé, L. (2002). The virtualization model of parallel programming:
Runtime optimizations and the state of art. In Proceedings of Los
Alamos computer science institute symposium (LACSI) (pp. 347–
364).

Kell, N., & Havill, J. (2015). Improved upper bounds for online mal-
leable job scheduling. Journal of Scheduling, 18(4), 393–410.

Ludwig, W., & Tiwari, P. (1994). Scheduling malleable and nonmal-
leable parallel tasks. InProceedings of the 15th annual ACM-SIAM
symposium on discrete algorithms (SODA) (pp. 167–176).

Mounié, G., Rapine, C., &Trystram,D. (1999). Efficient approximation
algorithms for scheduling malleable tasks. In Proceedings of the
11th annual ACM symposium on parallel algorithms and archi-
tectures (SPAA) (pp. 23–32).

Mounié, G., Rapine, C., & Trystram, D. (2007). A 3
2 -approximation

algorithm for scheduling independent monotonic malleable tasks.
SIAM Journal on Computing, 37, 401–412.

Rapine, C., Scherson, I., & Trystram, D. (1998). On-line scheduling of
parallelizable jobs. In Proceedings of the 4th international euro-
par conference on parallel processing (Euro-Par) (pp. 322–327).

Saule, E., Bozdağ, D., & Catalyurek, U. (2010). A moldable online
scheduling algorithm and its application to parallel short sequence
mapping. In Proceedings of the 15th international conference on
job scheduling strategies for parallel processing (JSSPP) (pp. 93–
109).

Turek, J.,Wolf, J., &Yu, P. S. (1992). Approximate algorithms schedul-
ing parallelizable tasks. In Proceedings of the 4th annual ACM
symposium on parallel algorithms and architectures (SPAA) (pp.
323–332).

Ye, D., Han, X., & Zhang, G. (2009). A note on online strip packing.
Journal of Combinatorial Optimization, 17(4), 417–423.

Yu, G., Mao, Y., & Xiao, J. (2016). A new lower bound for online
strip packing. European Journal of Operational Research, 250(3),
754–759.

123

	Online scheduling of moldable parallel tasks
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our results

	2 A general framework
	3 An improved online algorithm
	4 Concluding remarks
	Acknowledgements
	References

