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Abstract In this paper, we study an integrated produc-
tion and outbound distribution scheduling model with one
manufacturer and one customer. The manufacturer has to
process a set of jobs on a single machine and deliver them
in batches to the customer. Each job has a release date
and a delivery deadline. The objective of the problem is
to issue a feasible integrated production and distribution
schedule minimizing the transportation cost subject to the
production release dates and delivery deadline constraints.
We consider three problems with different ways how a job
can be produced and delivered: non-splittable production
and delivery (NSP–NSD) problem, splittable production and
non-splittable delivery problem and splittable production and
delivery problem. We provide polynomial-time algorithms
that solve special cases of the problem. One of these algo-
rithms allows us to compute a lower bound for the NP-hard
problem NSP–NSD, which we use in a branch-and-bound
(B&B) algorithm to solve problem NSP–NSD. The compu-
tational results show that the B&B algorithm outperforms a
MILP formulation of the problem implemented on a com-
mercial solver.
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1 Introduction

Supply chain management is an active domain consist-
ing of the optimization and management of flows between
different actors that generally have conflicting objectives,
which makes the coordination of their decisions a crucial
issue.

In this paper, we study an integrated production and
outbound distribution scheduling (IPODS) model with one
manufacturer and one customer. The manufacturer has to
process a set of jobs on a single machine and deliver them
in batches to the customer. Each job has a release date and
a delivery deadline. The release dates may correspond to
the raw material availability dates or to the delivery dates of
semi-finished products coming from suppliers or classically
from another unmodeled part of the factory that have to be
processed further and then sent to the customer. As observed
commonly in practice, delivery is outsourced to a third-party
logistics provider that owns a sufficiently large number of
vehicles. According to the European Commission (2011), in
2010, the share of own-account transport is around15%of the
tonne-kmgenerated in road freight transport. Thismeans that
transport is mostly outsourced to independent partners like
third-party logistics providers. In some cases, the manufac-
turer outsources all logistic activities, including the delivery
schedule planning and the transportation, to the third-party
logistics provider. In other cases, planning of delivery is
still handled by the manufacturer and the third-party logis-
tics provider is just a pure transporter. Hsiao et al. (2010)
conducted an empirical study among actual Dutch and Viet-
namese food processing companies that indicates that among
114 enquired companies, 79 companies outsourced their out-
bound transportation activity, while only 42 outsourced the
transportation management activity. In this paper, we con-
sider the latter case, where the delivery schedule remains
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under the control of the manufacturer. The objective of the
problem is to build a feasible integrated production and dis-
tribution schedule minimizing the transportation cost subject
to production release dates and delivery deadline constraints.
A recent survey by Moons et al. (2017) as well as the state-
of-the-art review given below, reveal that only a few study
in integrated production and distribution scheduling prob-
lems consider jointly production release dates and delivery
due dates. However, as stated by Jamili et al. (2016), the
presence of job release dates is a consequence of the exis-
tence several suppliers for production raw material, which is
highly relevant in many applications. Moreover, the model
we consider is appropriate for perishable products. Among
them, fresh products like fruits or vegetables provide a par-
ticularly clear insight into the effects of transportation costs
on food prices (Volpe et al. 2013). In the survey of Moons
et al. (2017), 13 papers involving integrated production and
distribution scheduling of perishable products are discussed.
Among them Chen et al. (2009), justify the consideration
of delivery deadlines for perishable products, mainly due to
the fact that they deteriorate rapidly. The presence of pro-
duction release times can also be an intrinsic characteristic
of perishable products. In particular Russel et al. (2008) and
Chiang et al. (2009) consider an integrated production and
distribution problem in the newspaper industry where pro-
duction release date are necessary to represent early and late
editions.

We consider three problems with different ways how a
job can be produced and delivered: non-splittable produc-
tion and delivery (NSP–NSD) problem, splittable production
and non-splittable delivery (SP–NSD) problem and splittable
production and delivery (SP–SD) problem. As noticed by
Chen and Pundoor (2009), there are practical situations that
justify all these cases. While non-splitting delivery hypothe-
sis is commonly considered, splitting delivery may allow, as
remarked by Dror and Trudeau (1989), to save transportation
costs.

We refer to recent surveys of Chen (2010), Wang et al.
(2014) and Moons et al. (2017). Before presenting the
related literature, recall the notation introduced by Chen
(2010) to represent the IPODS models. It is a five-field nota-
tion, α|β|π |δ|γ , where α, β and γ specify, respectively,
the machine environment, the job characteristics and the
optimality criterion as the classical three-field classifica-
tion for scheduling problems (Graham et al. 1979). Some
new objective functions linked to transportation are intro-
duced, such as maximum delivery time denoted by Dmax,
total delivery time denoted by

∑
Di or total trip-based

transportation cost denoted by T C . Fields π and δ spec-
ify, respectively, the characteristics of delivery process and
the number of customers. The number of customers is spec-
ified by one value of {1, k, n}, where δ = 1 for single
customer, δ = k ≥ 2 means there are multiple customers,

and δ = n means that each order belongs to a different cus-
tomer. The characteristics of delivery process include vehicle
characteristics (number and capacity of vehicles) and deliv-
ery methods. The vehicle characteristics are specified by
V (x, y), where x ∈ {1, v,∞} represents the number of
vehicles, and y ∈ {1, c,∞, Q} represents the capacity of
vehicles. Field values {1, c,∞} and Q distinguish, respec-
tively, the possible capacities of vehicles when jobs have
equal size, and the limited capacity of vehicles when jobs
have general size. The delivery methods include: individual
and immediate delivery (i id), direct batch delivery (direct),
batch routing delivery (routing), shipping with fixed deliv-
ery departure dates ( f dep), and splittable delivery (spli t),
i.e., an order can be split and delivered by several vehi-
cles.

When considering production only, our model concerns
single machine scheduling problems with release dates min-
imizing the maximum lateness Lmax. The problem without
release dates 1||Lmax can be solved by Jackson’s earli-
est due date (EDD) rule introduced by Jackson (1955).
This problem is a special case of the problem 1|prec|Lmax

solved by a polynomial-time algorithm provided by Lawler
(1973). The problem with release dates and preemption
1|r j , pmtn|Lmax can be solved by Jackson’s preemptive
earliest due date (EDD-preemptive) rule introduced by Jack-
son (1955). This problem is a special case of the problem
1|prec, r j , pmtn|Lmax solved by a polynomial-time algo-
rithm provided by Baker et al. (1983). Lenstra et al. (1977)
proved the NP-hardness of the problem 1|r j |Lmax. Carlier
(1982) provided the first efficient branch-and-bound algo-
rithm to solve this problem.

The research on the IPODS problems with
release dates concentrates on the (i id) and (direct)
models. As proved by Chen (2010), the prob-
lems with individual and immediate delivery, (i)
1|r j |V (∞, 1), i id|n|Dmax, (ii) 1|r j , prec|V (∞, 1), i id|n|
Dmax, (iii) Pm|r j |V (∞, 1), i id|n|Dmax, (iv)
Fm|r j |V (∞, 1), i id|n|Dmax are strongly NP-hard. Liu
and Cheng (2002) proved the NP-hardness of the problem
(v) 1|r j , s j , pmtn|V (∞, 1), i id|n|Dmax. In these problems,
the jobs are delivered individually and immediately to the
customers upon their completion while minimizing the
maximum delivery time. For problems (i), (ii), (iii) and (v),
approximation algorithms and/or polynomial-time approx-
imation schemes were provided by Potts (1980), Hall and
Shmoys (1989, 1992), Mastrolilli (2003), Zdrzaka (1994)
and Liu and Cheng (2002). Gharbi and Haouari (2002)
developed a branch-and-bound algorithm for problem
(iii). Kaminsky (2003) proposed an asymptotic optimality
analysis of the longest delivery time algorithm for problem
(iv). Few articles consider (direct) or (routing) delivery.
Lu et al. (2008) provided a polynomial-time algorithm
for the problem 1|r j , pmtn|V (1, c), direct |1|Dmax. For
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the problem 1|r j |V (1, c), direct |1|Dmax they proved its
NP-hardness and proposed an approximation algorithm with
worst-case ratio of 5/3, which was later improved to 3/2
by Liu and Lu (2011). Recently, Zhong and Jiang (2016)
considered problems 1|r j |V (1, c), direct |1|Dmax + T C
and 1|r j |V (1, c), direct |1|∑ Di + T C and provided a
polynomial algorithm for the first one while they prove
NP-hardness of the second one and give a heuristic with
a worst-case ratio of 2. Mazdeh et al. (2008) provided
a branch-and-bound algorithm for a special case of the
NP-hard problem 1|r j |V (∞,∞), direct |n|∑ Fj + T C ,
where

∑
Fj represents the total flow time. Mazdeh et al.

(2012) provided a branch-and-bound algorithm for a special
case of the similar problem involving the sum of weighted
flow time, 1|r j |V (∞,∞), direct |n|∑ w j Fj + T C .
Selvarajah et al. (2013) provided an evolutionary meta-
heuristic for the same problem in the general case
and a polynomial-time algorithm for the special case
with a common weight and preemptive production,
i.e., 1|r j , pmtn|V (∞,∞), direct |n|∑ wFj + T C and
1|r j , pmtn|V (∞,∞), direct |n|∑ wC j + T C . As men-
tioned above, Jamili et al. (2016) solved the problem
involving the average delivery time and the total cost via a
tabu search heuristic. There are some articles considering
the on-line problem, i.e., the information related to a job
becomes known when this job is released. Ng and Lu
(2012) investigated the problems of Lu et al. (2008) in
an on-line environment. Averbakh and Xue (2007) pro-
vided a 2-competitive algorithm for the on-line problem
1|r j , pmtn|V (∞,∞), direct |k|∑ D j + T C . Recent work
on other on-line or semi-on-line integrated production-
distribution scheduling problems can be found in Averbakh
(2010), Averbakh and Baysan (2012, 2013a, b), and Feng
et al. (2016).

Some IPODS problems with maximum lateness Lmax or
delivery deadline d j , and transportation cost T C have been
investigated in the literature. Polynomial-time algorithms
were provided for problemswith a fixed number of customers
k. These are 1||V (∞,∞), direct |k|Lmax + T C by Hall and
Potts (2003), 1||V (∞, c), direct |k|Lmax + T C by Pundoor
and Chen (2005) and 1||V (1,∞), routing|k|Lmax + T C by
Chen (2010). In the latter paper, a polynomial-time algorithm
was also provided for problem 1||V (v,∞), direct |1|Lmax+
T C with a fixed number of vehicles v. Polynomial-
time algorithms were also proposed by Hall and
Potts (2005) for problem 1||V (1,∞), direct |1|Lmax +
T C and by Chen and Pundoor (2009) for problem
1|pmtn, d j |V (∞, Q), direct, spli t |1|T C .

Wang and Lee (2005) proved the NP-hardness of
the problem 1|d j |V (∞, 1), i id|n|T C with two types
of vehicles and provided a pseudo-polynomial-time
dynamic programming algorithm for a special case and
a branch-and-bound exact algorithm for the same prob-

lem to minimize the sum of the total weighted tar-
diness and the total shipping cost. Chen and Pundoor
(2009) proved the NP-hardness of the problems without
production preemption, 1|d j |V (∞, Q), direct |1|T C and
1|d j |V (∞, Q), direct, spli t |1|T C , and provided approx-
imation algorithms with worst-case ratio of 2 (see more
details below). Zhong et al. (2010) proposed a polynomial-
time heuristic algorithm for a strongly NP-hard problem
with delivery deadline, a fixed vehicle departure time and
different shippingmodes, and showed that its worst-case per-
formance ratio was bounded by 2. Stecke and Zhao (2007)
studied the same problem with a more general shipping
cost structure and two different delivery cases, and pro-
posed a polynomial-time algorithm for the partial delivery
case and a heuristic for the no partial delivery case. More
recently, Leung and Chen (2013) considered the problems
involving maximum lateness and T C in a setting where
there are a fixed possible vehicle departure time dates.
Mensendiek et al. (2015) considered the maximum lateness
criterion in a parallel machine environment when the set
of possible delivery dates are also fixed. Li et al. (2015)
extended this model to a parallel batching machine environ-
ment.

There are only a few papers studying the IPODS problem
with the consideration of jobs release dates and due dates
or deadlines at the same time. Fu et al. (2012) considered a
coordinated production and distribution schedule in which
each job has a production time window and a promised
delivery time. Contrarily to our model where actual deliv-
ery times must be determined, there are fixed delivery times
on which delivery batches made of completed jobs can be
assigned, with limited delivery capacities. The objective is
to select a subset of jobs to process and deliver, so as to
maximize a global profit. NP-hardness results and approx-
imation algorithms have been given. As also mentioned
above, Russel et al. (2008) and Chiang et al. (2009) consid-
ered an integrated production and vehicle routing problem
in the newspaper industry with production release dates cor-
responding to different editions and delivery deadlines. In
both cases, the problem is solved via two-phase methods. In
Chapter 4 of the recent book of Ullrich (2013a), the cost-
cutting potential of integrated supply chain scheduling has
been demonstrated via computational experiments on supply
chain scenarios including integrated machine and delivery
scheduling with job release dates, batch capacities, holding
costs and earliness and tardiness penalties. An integrated par-
allel machine scheduling and vehicle routing problem with
time windows has been considered by Ullrich (2013b) but
the time windows concern the delivery part while production
jobs are subject to machine ready times. Recently Condotta
et al. (2013) proposed an efficient tabu search algorithm for
problem1|r j |V (v, c), direct |1|Lmax.Note that this problem
does not include transportation costs. Our paper consider an
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IPODS problem with jobs release dates, delivery deadlines
and transportation cost, which can be appropriate for practi-
cal cases as stated above, such as production and distribution
of perishable products. To the best of our knowledge, the
problem has never been considered in the literature.

The closest related research has been provided by Chen
and Pundoor (2009) without considering release dates (see
also the description above). They investigated an IPODS
model in a supply chain where a manufacturer needs to
process a set of jobs at a single production line, pack the
completed jobs to form delivery batches, and deliver them to
a customer. They investigated problems in scenarios (with or
without splitting in production and distribution) that inspired
us for the present paper. Different from their model, we con-
sider that the jobs have equal size and possibly different
release dates. Our objective is to propose solution algorithms
for the three considered problems, i.e., SP–NSD, SP–SD and
NSP–NSD, for each of which we consider two scenarios: (1)
decentralized system scenario where the production sched-
ule and the delivery schedule are decided in a sequential
order (i.e., first the production schedule, then the delivery
schedule); (2) integrated system scenariowhere an integrated
production distribution schedule is built. In the decentral-
ized system scenario, we review known exact algorithms in
the literature to solve the production scheduling problems
(i.e., problems NSP and SP) and develop exact algorithms
to solve the distribution scheduling problems (i.e., problems
NSDandSD). In the integrated system scenario,we proposed
algorithms to solve three new IPODS problems with job
release dates and deadlines. Note that incorporating release
dates deeply changes the problem structure, as the production
scheduling problem becomes NP-hard in the non-preemptive
case. (see also Example 3 in Sect. 2) A question arises as to
whether polynomial cases can however be exhibited.Another
non-trivial issue is to design computationally efficient meth-
ods for large instances of the problem. This paper aims to
tackle these two questions, that appear to be interrelated as
we propose a polynomial-time algorithm for a special case
that we use to compute lower bounds into an efficient branch-
and-bound method.

This paper is organized as follows. In Sect. 2, we for-
mally describe the problems, introduce notations and ter-
minology and provide examples to illustrate the problem
properties. Section 3 is devoted to the decentralized system
scenario. Section 4 deals with the integrated system sce-
nario. In particular, we propose polynomial-time algorithms
for two special cases of problems SP–NSD and SP–SD and
a branch-and-bound algorithm for problem NSP–NSD. In
Sect. 5, we evaluate the performance of this branch-and-
bound algorithm by comparing it to a mixed-integer linear
programming (MILP) formulation ion randomly generated
instances. Section 6 contains some conclusions and perspec-
tives.

2 Problems and notations

A set of jobs N = {1, . . . , n} has to be processed on a single
machine. Each job j ∈ N has a release date r j , a processing
time p j and a delivery deadline d j . After processing on the
machine, the jobs can be grouped into batches of maximum
size c > 0, corresponding to a full truck load, and then sent
to a single customer location. The jobs are unit sized, i.e.,
a truck can carry at most c jobs at a time. As mentioned by
Chen (2010), even if this hypothesis is restrictive, most of
the literature considers this case. Delivery is handled by a
third-party logistic providers that has an infinite number of
vehicles. A batch is available to be delivered when all jobs of
this batch are completed. The transportation time of a batch
and the corresponding subcontracting cost are supposed to be
independent on the batch constitution. Hence, we can assume
without loss of generality that the transportation time is 0
and the transportation cost of a batch is 1. It follows that the
delivery deadline is also the production deadline.

Let (σ, θ) denote an integrated production and distribu-
tion schedule, where σ and θ are, respectively, the production
schedule and the delivery schedule. In this integrated sched-
ule, C j (σ ) is the completion time of job j on the machine
and D j (θ) is the delivery time of job j to the customer loca-
tion. When there is no ambiguity, we use C j and D j instead
of C j (σ ) and D j (θ) to simplify the notations.

We consider two scenarios: (1) decentralized system
scenario, where the production schedule and the delivery
schedule are decided in a sequential order (i.e., first the pro-
duction schedule, then the delivery schedule); (2) integrated
system scenario, where an integrated production distribution
schedule is issued. Next, the induced scheduling problems
are formally defined and 3 examples are given to illustrate
the problem properties.

2.1 Decentralized system scenario

Production scheduling problem The objective is to deter-
mine a feasible production schedule in which the jobs are
completed before or at their deadline. We investigate the
problem in two cases:

– Non-splittable production (NSP) problem A job is non-
preemptable (or non-splittable) in production. Using the
three-field notation α|β|γ for machine scheduling prob-
lems (Graham et al. 1979), this problem can be denoted
by 1|r j , d j |−.

– Splittable production (SP) problem A job can be
split in production. This problem can be denoted by
1|r j , pmtn, d j |−.

Distribution scheduling problem The objective is to obtain
a delivery schedule minimizing the transportation cost T C
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subject to the delivery release dates fixed by the production
schedule and the delivery deadlines. A delivery schedule is
an assignment of jobs to batches, along with the departure
time for each batch.We investigate the problem in two cases:

– Non-splittable delivery (NSD) problem A finished job
must be delivered in one batch. A delivery schedule
defines a partition of the jobs.

– Splittable delivery (SD) problem A finished job can be
split and delivered in several batches. We assume that
the capacity occupied by a job in a batch is equal to the
delivered fraction of the job.

2.2 Integrated system scenario

The objective is to determine an integrated production and
distribution schedule minimizing the transportation cost T C
subject to the delivery deadlines. We consider the integrated
problem in three cases with different ways how a job can be
produced and delivered.

– Non-splittable production and delivery (NSP–NSD)
problem a job is non-preemptable (or non-splittable)
in production and a finished job must be delivered
in one batch. Using the five-field notation proposed
by Chen (2010), this problem can be denoted by
1|r j , d j |V (∞, c), direct |1|T C , where V (∞, c) and
direct mean that we consider the direct batch delivery
by an unlimited number of trucks with the capacity of c.

– Splittable production and non-splittable delivery (SP–
NSD) problem a job can be preempted in produc-
tion, and a finished job must be delivered in one

Table 1 Example for the integrated problems

Job j 1 2 3 4 5 6 7

p j 4 2 2 2 2 3 1

r j 0 2 2 2 13 12 17

d j 12 5 12 12 16 18 19

batch. This problem can be denoted by 1|r j , pmtn, d j |
V (∞, c), direct |1|T C .

– Splittable production and delivery (SP–SD) prob-
lem a job can be preempted in both production
and delivery. This problem can be denoted by
1|r j , pmtn, d j |V (∞, c), direct, spli t |1|T C .

We do not consider the non-splittable production and
splittable delivery (NSP-SD) problem, because according to
Lemma 2 in Sect. 3.2, for any feasibleNSP production sched-
ule, there exists an optimal NSD delivery schedule.

2.3 Illustrative examples

Example 1 To illustrate the three integrated problems, we
consider the following example with seven jobs where the
vehicle capacity c is equal to 2. Table 1 gives the jobs’ param-
eters.

Figure 1 shows the optimal schedules for the integrated
problems. In what follows, in a production schedule, [ j]
means that job j is produced without preemption. In a deliv-
ery schedule, [ j] means that job j is delivered without
splitting. When [ j] is preceded by a constant α, 0 < α < 1,
this means that a part α of job j is produced or delivered.

Fig. 1 Optimal schedules for
the three integrated problems. a
An optimal schedule for
NSP–NSD problem. b An
optimal schedule for SP–NSD
problem. c An optimal schedule
for SP–SD problem
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Problem NSP–NSD: In an optimal schedule as shown in
Fig. 1a, the production sequence is ([2], [1], [3], [4], [5],
[6], [7]). There exists an idle time before job 2, because if
another job was processed before 2, then job 2 would be late.
A similar reason holds for the second idle time. There are six
delivery batches: {[2]}, {[1], [3]}, {[4]}, {[5]}, {[6]} and {[7]},
which depart at times 4, 10, 12, 15, 18 and 19, respectively.

Problem SP–NSD: In an optimal schedule as shown in
Fig. 1b, the production sequence is ( 12 [1], [2], [3], 1

2 [1],
[4], 1

3 [6], [5], 2
3 [6], [7]), where jobs 1 and 6 are split into

two parts. The optimal schedule has five delivery batches:
{[2]}, {[1], [3]}, {[4]}, {[5]} and {[6], [7]}, which depart at
times 4, 8, 10, 15 and 18, respectively. Since job 2 cannot
be delivered with any other job, the transportation cost can-
not be improved for the first 4 jobs with the non-splittable
delivery. However, we can split job 6 in production in order
to deliver jobs 6 and 7 in one batch.

Problem SP–SD: In an optimal schedule as shown in Fig. 1c,
the production sequence is the same as for problem SP–
NSD. The optimal schedule has four delivery batches:
{ 12 [1], [2], 1

2 [3]}, { 12 [3], 12 [1], [4]}, {[5]} and {[6], [7]}, which
depart at times 5, 10, 15 and 18, respectively. The first deliv-
ery batch consists of half of job 1, whole job 2 and half of
job 3. With the splittable delivery, the first four jobs can be
delivered in two full batches. Recall that the capacity occu-
pied by a job in a batch is equal to the delivered fraction of
the job.

Note that in the above problems, the jobs delivered
together are not necessarily sequenced consecutively, which
makes the considered problems different from classical
batching models.

Example 2 To illustrate the benefit of integration of pro-
duction and distribution decisions in the case of problem
NSP–NSD,we consider the following example with five jobs
where the vehicle capacity c is equal to 3. Table 2 gives the
jobs’ parameters.

Figure 2a shows a feasible schedule for the decentralized
system scenario. Figure 2b shows an optimal schedule in the
integrated system scenario. We compare the two schedules
to evaluate the benefit of integration.

Table 2 Example for evaluation of the benefit of integration

Job j 1 2 3 4 5

p j 8 2 8 6 2

r j 2 10 6 0 12

d j 15 17 32 28 22

Fig. 2 Schedules for the individual problems and the integrated prob-
lem. a A schedule for decentralized scheduling problems (NSP and
NSD). b An optimal schedule for NSP–NSD problem

Table 3 Example for evaluation of the effect of job release dates

Job j 1 2 3 4 5 6 7

p j 5 8 2 4 7 1 2

r j 0 2 14 25 10 25 26

d j 14 18 25 30 25 27 32

Decentralized system scenario (solve NSP then NSD):
Applying Carlier’s algorithm (see Sect. 3.1), we stop when
we find the first feasible production schedule. As shown in
Fig. 2a, the production sequence is ([4], [1], [2], [5], [3]).
All jobs are completed before their deadline. With this pro-
duction schedule, the best delivery schedule consists of
four delivery batches: {[1]}, {[2]}, {[5]} and {[3], [4]}, which
depart at times 14, 16, 18 and 26, respectively.

Centralized system scenario (solve NSP–NSD): In an opti-
mal integrated schedule as shown in Fig. 2b, the production
sequence is ([1], [2], [5], [3], [4]). The optimal schedule has
two delivery batches: {[1], [2], [5]} and {[3], [4]}, which
depart at times 14 and 28, respectively. Comparing with the
schedule for individual problems, we observe that with the
integration, the transportation cost is reduced by 50%.

Example 3 To illustrate the effect of job release dates, we
consider the following example with or without job release
dates in the case of problem NSP–NSD where the vehicle
capacity c is equal to 3. Table 3 gives the jobs’ parameters
with job release dates.

Figure 3a, b shows an optimal schedule for problemNSP–
NSD in the casewith job release dates andwithout job release
dates, respectively.

Problem NSP–NSD in the case with job release dates:
As shown in Fig. 3a, the production sequence is
([1], [2], [5], [3], [6], [4], [7]). The optimal schedule has
five delivery batches:: {[1]}, {[2]}, {[5], [3]}, {[6]}, {[4]} and
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Fig. 3 Schedules for the individual problems and the integrated prob-
lem. aAn optimal schedule for casewith job release dates. bAn optimal
schedule for case without job release dates

{[7]}, which depart at times 13, 22, 26, 30 and 32, respec-
tively.

Problem NSP–NSD in the case without job release
dates: As shown in Fig. 3b, the production sequence is
([1], [2], [6], [5], [3], [7], [4]). The optimal schedule has
three delivery batches: {[1], [2], [6]}, {[5], [3], [7]} and {[4]},
which depart at times 14, 25 and 29, respectively. Compar-
ing with the case with job release dates, we observe that job
release dates strongly impact on the optimal schedule of our
problem.

3 Decentralized system scenario

In the decentralized scenario, the production schedule and
the delivery schedule are established sequentially.We review
known exact algorithms to solve the production scheduling
problems (i.e., problems NSP and SP) and we propose exact
algorithms to solve the distribution scheduling problems (i.e.,
problems NSD and SD).

3.1 Production scheduling problem

The objective is to determine a feasible production schedule
in which the jobs are completed before or at their deadline.
We introduce first the concepts of production triplet (seeDef-
inition 1) and production block (see Definition 2). Then we
investigate problems NSP and SP.

Definition 1 In a production schedule σ , a production triplet
is a job or a part of job, which is processed without pre-
emption. Let Vj (σ ) = (J j , a j , b j ) denote production triplet
j , where the job J j ∈ N is scheduled in the time interval
[a j , b j ], a j and b j represent, respectively, the starting time
and ending time of the triplet. Hence the production sched-
ule σ can be represented by a sequence of production triplets
denoted by V (σ ).

Definition 2 In a production schedule σ , a production block
is defined as a subset of jobs that are processed consecutively

without idle time. We define the starting time of the block
as the minimum starting time of jobs of the block and the
ending time of the block as the maximum completion time
of jobs of the block. The sequence of jobs is not taken into
account in the definition of a block. Let Ki (σ ) denote the i th

production block in σ .

Problem NSP In this problem, a job is non-preemptable
(or non-splittable) in production. This decision problem,
denoted by 1|r j , d j |−, is NP-complete (Garey and Johnson
1979). Carlier (1982) proposed an efficient binary branch-
and-bound algorithm to solve a head–tail problem where a
job j is available for processing on the machine at release
date r j (called also head), and has to spend an amount of
time p j on the machine and an amount of time q j (called
tail) in the system after its processing. The objective is to
minimize max j∈N (C j +q j ). It is well-known that this prob-
lem is equivalent to the problem 1|r j |Lmax, where Lmax =
max j∈N L j = max j∈N (C j − d j ), L j is the lateness and d j

is the due date (i.e., it can be violated). Indeed, if we define
q j = maxi∈N di − d j , then minimizing max j∈N (C j + q j )

is equivalent to minimizing Lmax. Furthermore, the problem
1|r j , d j |− is nothing but the decision version of the optimiza-
tion problem 1|r j |Lmax, i.e., does there exist a production
schedule σ such that Lmax(σ ) ≤ 0 ? It immediately fol-
lows that problem NSP can be solved by applying Carlier’s
branch-and-bound algorithm and stopping when a feasible
solution with Lmax ≤ 0 is found.

For further usage, we review the Carlier’s branch-and-
bound algorithm for the problem 1|r j |Lmax. The algorithm
computes a lower bound and an upper bound for each node
based on preemptive and non-preemptive EDD rules (Jack-
son 1955), respectively.

– Preemptive EDD rule at each decision point t in time,
consisting of each release date and each job completion
time, schedule one of the available jobs j (i.e., r j ≤ t)
with the earliest due date, interrupting the job in process
at t , if it exists. If no jobs are available at a decision point,
schedule an idle time until the next release date.

– Non-preemptive EDD rule at each decision point t in
time, consisting of each starting time of production block
and each job completion time, schedule an available job
j (i.e., r j ≤ t) with the earliest due date without preemp-
tion. If no jobs are available at a decision point, schedule
an idle time until the next release date.

At every node u, the algorithm runs the preemptive EDD
rule to obtain a lower bound and the node is pruned if the
upper bound does not exceed the lower bound. Otherwise,
the algorithm constructs the non-preemptive EDD schedule,
possibly updating the upper bound, and the branching scheme
depends on the analysis of this schedule.We suppose that jobs
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are renumbered according to the sequence in the obtained
schedule. Let l be the job with the smallest index such that
Ll = Lmax. Let h ≤ l be the job with the largest index such
that h = 1 orCh−1 < sh where sh is the starting time of job h.
Let [h, l] denote the set of jobs from h to l, defining a critical
block. If dl = maxk∈[h,l] dk , then the obtained schedule is
optimal. Otherwise, the algorithm defines a critical job e ∈
[h, l] with the largest index such that de > dl and a critical
set J = [e + 1, l]. The algorithm considers two subsets of
schedules corresponding to two nodes u1 and u2. Let r j (u)

and d j (u) be the release date and the due date of job j at
node u, respectively.

– At node u1, the algorithm requires the critical job to be
processed before the jobs of the critical set by setting

de(u1) = max
j∈J

d j (u) −
∑

j∈J

p j (1)

dk(u1) = dk(u), k ∈ N\{e} (2)

rk(u1) = rk(u), k ∈ N (3)

– At node u2, the algorithm requires the critical job to be
processed after the jobs of the critical set by setting

re(u2) = min
j∈J

r j (u) +
∑

j∈J

p j (4)

rk(u2) = rk(u), k ∈ N\{e} (5)

dk(u2) = dk(u), k ∈ N (6)

Problem SP In this problem, the preemption is allowed in
production. This problem, denoted by 1|r j , pmtn, d j |−, is
a decision problem corresponding to the optimization prob-
lem 1|r j , pmtn|Lmax, which is solved with the preemptive
EDD rule in O(n log n) time (Horn 1974). Hence problem
SP can be solvedwith the preemptive EDD rule in O(n log n)

time. Since the preemption occurs only at release dates in the
schedule generated with the preemptive EDD rule, there are
at most n −1 preemptions. Hence there are O(n) production
triplets in this production schedule.

3.2 Distribution scheduling problem

The objective is to obtain a delivery schedule minimizing the
transportation cost T C subject to the delivery release dates
fixed by the production schedule σ and the delivery dead-
lines. We assume that the jobs are indexed in the increasing
completion time, i.e., C1(σ ) < · · · < Cn(σ ). This sorting
operation requires O(n log n) time. Here, σ can be a NSP
schedule or a SP schedule. We recall that there are O(n)

production triplets in σ (see Sect. 3.1). We first provide a
general property for problems NSD and SD. Then we inves-
tigate problems NSD and SD separately.

Lemma 1 There exists an optimal solution for problems
NSD and SD, such that each batch is delivered at its com-
pletion time, i.e., when all jobs (or parts of jobs) of the batch
are completed.

Proof Consider an optimal delivery solution for problem
NSD and SD that does not satisfy the property. We can antic-
ipate the delivery time of each batch to its completion time
without changing the number of delivery batches. ��

Problem NSD In this case, a finished job must be delivered
in a single batch. We propose a polynomial-time greedy
algorithm (see algorithm GA1) to solve problem NSD.

Algorithm GA1

Step 1 Let N ′ ⊆ N denote the set of undelivered jobs. Set
the current delivery time T = max j∈N ′ C j (σ ).

Step 2 Find the set of undelivered jobswith deadlines greater
than or equal to T . Let S ⊆ N ′ denote this set.

Step 3 If |S| < c, deliver all jobs of S in one batch departing
at time T . Otherwise, deliver the last c completed
jobs of S in one delivery batch departing at time T .
Then, update N ′. If all jobs are delivered, then STOP.
Otherwise, go to step 1.

Theorem 1 Algorithm GA1 finds an optimal delivery sched-
ule for problem NSD in O(n2) time.

Proof We first prove the complexity. Steps 1 and 2 require
O(n) time both at each iteration. Since the jobs of N are
sorted in the increasing completion time, the jobs of S
obtained at the step 2 are also sorted in the increasing comple-
tion time. Hence, step 3 requires O(1) time at each iteration.
Since there are at most n iterations, the complexity is O(n2).

Then we prove that algorithm GA1 provides an optimal
solution. Suppose that there is an optimal delivery schedule
θ∗ respecting Lemma 1 for problemNSD. Let θ be the deliv-
ery schedule generated by algorithm GA1. Suppose that the
k last delivery batches are the same in the two schedules and
the (k + 1)th last delivery batch Bk+1 is different in the two
schedules. According to Lemma 1 and the step 1 of algorithm
GA1, Bk+1(θ

∗) and Bk+1(θ) are delivered at the same time
T = max j∈N ′ C j (σ ) where N ′ is the set of delivered jobs
before the k last delivery batches. Let S be the set of deliv-
ered jobs before the k last delivery batches with the deadline
greater than or equal to T . We distinguish two cases:

– if |S| < c, it is clear that the jobs of Bk+1(θ
∗) are in

Bk+1(θ). We can put all jobs j , such that j ∈ Bk+1(θ)

and j /∈ Bk+1(θ
∗), in Bk+1(θ

∗) without increasing the
number of delivery batches. Now Bk+1(θ

∗) becomes the
same as Bk+1(θ).
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– if |S| ≥ c, we have |Bk+1(θ)| = c and Bk+1(θ
∗) ⊂ S.

If |Bk+1(θ
∗)| < c, we fill Bk+1(θ

∗) with some jobs of
S that are not in Bk+1(θ

∗) and update the delivery time
of modified batches. Now we do not increase the number
of batches and have |Bk+1(θ

∗)| = c. If there exists a job
j such that j /∈ Bk+1(θ) and j ∈ Bk+1(θ

∗), then there
exists another job i such that i ∈ Bk+1(θ), i /∈ Bk+1(θ

∗)
and C j < Ci because job i is one of the last c com-
pleted jobs.We can interchange jobs i and j in θ∗ without
changing the number of batches and update the delivery
time of modified batches. We repeat this operation until
Bk+1(θ

∗) becomes the same as Bk+1(θ).

Hence, we can transform any optimal schedule θ∗ to θ with-
out increasing the transportation cost. ��

Problem SD: In this case, a finished job can be split and
delivered in several batches. We propose a polynomial-time
greedy algorithm (see algorithm GA2) for problem SD.

Algorithm GA2

Step 1 Let V ′ ⊆ V (σ ) denote the set of production triplets
(see Definition 1) corresponding to the undeliv-
ered parts of jobs. Set current delivery time T =
maxVj ∈V ′ b j .

Step 2 Find the set of production triplets corresponding to
the jobs with a deadline greater than or equal to T
from V ′. Let S ⊆ V ′ denote this set.

Step 3 If
∑

Vj ∈S(b j −a j )/pJj < c, deliver the parts of jobs
corresponding to S in one batch,which departs at time
T . Otherwise, create one batch departing at time T
as follows: iteratively, if the remaining capacity of
the batch, denoted by c′, is large enough, add the part
of job corresponding to the last completed produc-
tion triplet Vj ∈ S in the delivery batch, otherwise
split Vj = (J j , a j , b j ) into two production triplets
(J j , a j , b j − c′ pJj ) and (J j , b j − c′ pJj , b j ). Put the
part of job J j corresponding to (J j , b j − c′ pJj , b j )

in the batch to form a full batch. Then update V ′. If
all jobs are delivered, then STOP. Otherwise, go to
step 1.

Theorem 2 Algorithm GA2 finds an optimal delivery sched-
ule for problem SD in O(n2) time.

Proof The proof is similar to Theorem 1 proof. ��
As discussed in Sect. 2, we do not consider the non-

splittable production and splittable delivery (NSP-SD) prob-
lem, because according to Lemma 2, for any feasible NSP
schedule, there exists an optimal NSD delivery schedule.

Lemma 2 For any given feasible NSP schedule, there exists
an optimal delivery schedule in which the jobs are not split.

Proof For a given NSP schedule, algorithm GA2 finds an
optimal delivery schedule, which is a NSD schedule. In fact,
in the case NSP, each production triplet Vj corresponds to a
non-split job J j , i.e., b j − a j = pJj . At step 3 of algorithm
GA2, when we create a full batch in the case

∑
Vj ∈S(b j −

a j )/pJj > c, we do not split any production triplet, i.e., the
jobs are put in the delivery batch without splitting. ��

4 Integrated system scenario

The integrated scheduling problem amounts to compute an
integrated schedule minimizing the transportation cost T C
subject to the delivery deadlines. In what follows, we first
consider problems SP–NSD and SP–SD, then problemNSP–
NSD.

4.1 Problems SP–NSD and SP–SD

In this section, we first give some properties of optimal solu-
tions for problems SP–NSD and SP–SD. Then we provide a
polynomial-time algorithm that solves these problems in two
special cases. This algorithm will be used to compute lower
bounds inside the branch-and-bound algorithm that solves
problem NSP–NSD.

Lemma 3 An optimal integrated schedule for problems SP–
NSD and SP–SD, if it exists, satisfies the following properties:

(1) Each job is processed in one production block only.
(2) Each production block starts at the minimum release date

of jobs within this block.
(3) Each batch is delivered at its completion time when all

jobs (or parts of jobs) of the batch are completed.

Proof (1) Suppose there exists an optimal integrated sched-
ule (σ ∗, θ∗), which does not satisfy property 1, such that
job j is the first job preempted and scheduled in several
production blocks. Let Ki be the first block containing
job j (see Fig. 4a). We reschedule as early as possible
the rest of job j in the idle times after Ki (see Fig. 4b).
Consequently, job j is processed only in Ki . Delivery
schedule θ∗ is also feasible for the new production sched-
ule. So, this new integrated schedule is also optimal. We
can repeat this argument a finite number of times until
property 1 is satisfied.

(2) Suppose there exists an optimal integrated schedule
(σ ∗, θ∗), which satisfies property 1 but does not sat-
isfy property 2, such that production block Ki is the first
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Fig. 4 Illustration of property 1
of Lemma 3

Fig. 5 Illustration of property 2 of Lemma 3

block that does not satisfy property 2. Suppose job j
has the earliest release date among the jobs of block Ki .
We reschedule job j as early as possible without chang-
ing other jobs.We distinguish two cases: in the first case,
the completion time of the production block Ki−1 is less
than r j (see Fig. 5a) and in the new production schedule
all blocks before K ′

i satisfy property 2 (see Fig. 5b); in
the second case, the completion time of the production
block Ki−1 is greater than or equal to r j (see Fig. 5c)
and in the new production schedule all blocks before Ki

satisfy property 2 (see Fig. 5d). In the new production
schedules (b) and (d), we reduce the total size of blocks
that do not satisfy property 2. The delivery schedule θ∗
is also feasible for these new production schedules. So
this new integrated schedule is also optimal. We can
repeat this argument in polynomial time until property
2 is satisfied.

(3) The proof is the same as Lemma 1. ��

Lemma 4 An optimal integrated schedule for problems SP–
NSD and SP–SD, if it exists, is such that the structure of
production blocks, consisting of the jobs composition, the
starting time and the ending time of each block, is the same
as that constructed by the preemptive EDD rule.

Proof Suppose there exists an optimal integrated schedule
(σ ∗, θ∗), which satisfies the properties of Lemma 3 but does
not satisfy the property of Lemma 4. Let (K ∗

1 , . . . , K ∗
l ) be

the set of production blocks of σ ∗. Let σ denote the produc-
tion schedule constructed by the preemptive EDD rule. Let
(K1, . . . , Ku) be the set of production blocks of σ . Suppose
K ∗

i and Ki are the first blocks that are different in the two
schedules.

According to the preemptive EDD rule, in σ there is a idle
time only if there is no available job. Hence there is no idle
time among the split parts of each job. In addition, at each
idle time end, the rule schedules always one of remaining
jobs with the earliest release date. Consequently, σ satisfies
the properties of Lemma 3.

According to property 2 of Lemma 3, K ∗
i and Ki must

start at the same time. Noting that in σ there is a idle time
only if there is no available job, we know that all jobs of K ∗

i
must be in Ki , i.e., K ∗

i ⊆ Ki .
Suppose job j is the first job such that j /∈ K ∗

i and j ∈ Ki .
Since the jobs before j of Ki are also in K ∗

i , we know that
K ∗

i can finish only at or after r j . According to property 2 of
Lemma 3, the block including job j must start before or at
r j . Consequently, job j must be in K ∗

i , which is in conflict
with the assumption of job j . That means that all jobs of Ki

must be in K ∗
i , i.e., Ki ⊆ K ∗

i .
Hence, we have Ki = K ∗

i and the ending times of Ki

and K ∗
i are the same. So K ∗

i and Ki are not the first blocks
that are different in the two schedules. Hence the property of
Lemma 4 is satisfied. ��

Now, we introduce the Shortest Remaining Processing
Time (SRPT) rule to construct a production schedule for prob-
lems SP–NSD and SP–SD.
SRPT rule at each decision point t in time, consisting of
each release date and each job completion time, schedule
an available job j (i.e., r j ≤ t) with the shortest remaining
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processing time. If no jobs are available at a decision point,
schedule an idle time until the next release date.
Next,weprovide a polynomial-time algorithm (see algorithm
GA3) for problems SP–NSDandSP–SD in the following two
special cases:

Case 1 The vehicle capacity is unlimited, i.e., c = ∞.
Case 2 The set of jobs N can be divided into two subsets of

jobs N1 and N2. ∀ j ∈ N1, � j ′ ∈ N1 such that r j ≤
r j ′ < r j + p j . ∀ j ∈ N1 and i ∈ N2, r j + p j ≤ ri . In
any production block of the schedule constructed by
preemptive EDD rule, the jobs of N2 have the same
release date.

Algorithm GA3

Step 1 Generate a production schedule σ with the preemp-
tive EDD rule. If C j (σ ) ≤ d j ,∀ j ∈ N , go to Step
2, otherwise there is no solution and STOP.

Step 2 Let N ′ ⊆ N denote the set of undelivered jobs. Set
the current delivery time T = max j∈N ′ C j (σ ).

Step 3 Find the set of undelivered jobs with deadlines
greater than or equal to T . Let S denote this set.

Step 4 If |S| < c, deliver the jobs of S in one batch, which
departs at time T . Otherwise, reschedule the jobs
of S in σ with the SRPT rule and do not change
the schedule of other jobs. Then, deliver the last c
completed jobs of S in one batch, which departs at
time T . Then update N ′. If all jobs are delivered, then
STOP. Otherwise, go to step 2.

Theorem 3 Algorithm GA3 finds an optimal integrated
schedule for problems SP–NSD and SP–SD in the special
case 1 in O(n2) time, and the special case 2 in O(n2 log n)

time.

Proof We first prove the complexity of algorithm GA3. At
step 1, the generation of σ takes O(n log n) time. We take
O(n) time to check feasibility of the solution. At each itera-
tion, step 2 and step 3 take O(n) time, respectively. The step
4 takes O(1) time for the case |S| ≤ c and takes O(n log n)

time to reschedule the jobs of S with the SRPT rule for the
case |S| > c. There are O(n) iterations. We note that for
the problem in the special case 1, at step 4 we have always
|S| ≤ c. It follows that algorithm GA3 finds an integrated
schedule for problems SP–NSD and SP–SD in the special
case 1 in O(n2) time, and the special case 2 in O(n2 log n)

time.
Next, we prove that the algorithm provides an optimal

solution. Let us add a fictive job 0, such that r0 = p0 = d0 =
0. Let (σ, θ) denote the integrated schedule provided by algo-
rithm GA3 with k batches. Let Bi denote the i th last batch of

θ . Let |Bi | denote the size of Bi . Let T (Bi ) denote the depar-
ture date of Bi . Since d0 = 0, it is clear that T (Bk) = 0. We
use a recursion argument to prove that algorithm GA3 con-
structs a solution with minimum T (Bi ), among all feasible
solutions.

Using the preemptive EDD rule at step 1 guarantees that
T (B1) is minimum. Suppose that T (Bi ) is minimum, for a
given 1 ≤ i ≤ k − 1, and prove that T (Bi+1) is minimum.
We consider the two special cases 1 and 2 separately.
Case 1 Since c = ∞, the algorithm generates a non-full
batch |Bi | < c. Since Bi delivers all undelivered available
jobs at time T (Bi ), T (Bi+1) is a production completion time
of one job with a deadline lower than T (Bi ). According to
the preemptive EDD rule, we cannot anticipate themaximum
production completion time of all jobs with a deadline lower
than T (Bi ). Hence T (Bi+1) is minimum,
Case 2 In this case, if the algorithm generates a non-full
batch |Bi | < c, with the same argument as for the 1, we can
prove that T (Bi+1) is minimum. If the algorithm generates
a full batch |Bi | = c, we can also prove the minimization of
T (Bi+1) as follows:

– if T (Bi+1) is a production completion time of one job
with a deadline lower than T (Bi ), according to the pre-
emptive EDD rule, we cannot anticipate the maximum
production completion time of all jobs with a deadline
lower than T (Bi ).

– if T (Bi+1) is a production completion time of one job
of N1 with a deadline greater than or equal to T (Bi ),
according to the preemptive EDD rule, the completion
times of jobs of N1 cannot be anticipated and the SRPT
rule does not change the completion times of jobs in N1,
hence we cannot anticipate T (Bi+1). If T (Bi+1) is a
production completion time of one job j of N2 with a
deadline greater than or equal to T (Bi ), algorithm GA3
guarantees that this job is executed before all jobs of Bi

in σ . Since the release dates of the jobs of N2 are equal
in each production block, using SRPT rule minimizes
T (Bi+1) = C j .

In the two special cases, we prove that T (Bi+1) is mini-
mum. Consequently, for any other solution with k′ batches,
we have k ≤ k′ and algorithm GA3 generates a solution
with the minimum number of batches to deliver all jobs.

��
Remark that the computational complexities of problems

SP–NSD and SP–SD are still open in the general case.

4.2 Problem NSP–NSD

It can be observed easily that problem 1|r j , d j |− reduces
to problem NSP–NSD, i.e., it is a special case of problem
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NSP–NSDwith c = 1. Consequently, problem NSP–NSD is
NP-hard in the strong sense. In this section, we first present
two heuristics to determine upper bounds of T C . Then,
we describe a branch-and-bound algorithm to solve prob-
lem NSP–NSD. Finally, we provide a mixed-integer linear
programming (MILP) model, which is used to evaluate the
performance of the branch-and-bound algorithm.

4.2.1 Heuristics

In our branch-and-bound algorithm, we will use two heuris-
tics that try to construct a feasible integrated schedule for
problem NSP–NSD.

The first heuristic, denoted by H1, uses the non-
preemptive EDD rule, which forces to create a production
schedule without preemption. If the obtained production
schedule is feasible, then we apply Algorithm GA1.
Heuristic H1

Step 1 Create a production schedule σ with the non-
preemptive EDD rule. If C j (σ ) ≤ d j ,∀ j ∈ N , go
to step 2. Otherwise, the algorithm cannot provide a
feasible solution and STOP.

Step 2 Apply Algorithm GA1 to compute a delivery sched-
ule.

The second heuristic, denoted byH2, uses a SP–NSD inte-
grated schedule computed by Algorithm GA3 to construct,
if possible, a feasible integrated schedule for problem NSP–
NSD.
Heuristic H2

Step 1 Create a priority list of jobs, such that in the given
schedule (σ, θ), if Di (θ) < D j (θ), job i must be
before job j in the list, and if Di (θ) = D j (θ) and
Ci (σ ) < C j (σ ), job i must be before job j in the
list.

Step 2 Schedule each job as early as possible without pre-
emption. When there are several jobs that can be
scheduled, we choose the job with the highest pri-
ority. Let σ ′ be the constructed production schedule.
If C j (σ

′) ≤ d j ,∀ j ∈ N , go to step 3. Otherwise,
the algorithm cannot provide a feasible solution and
STOP.

Step 3 Apply Algorithm GA1 to compute a delivery sched-
ule.

4.2.2 Branch-and-bound algorithm

We propose a branch-and-bound algorithm (see Algorithm
B1) for problem NSP–NSD based on the branch-and-bound
algorithm of Carlier recalled in Sect. 3.1.

Algorithm 1: Algorithm B1

1 Generate the root associated with L B(Lmax, root) and
U B(Lmax, root) as in the algorithm of Carlier, and put this node
in list L;

2 while L = ∅ do
3 Choose one node u in L with minimum L B(Lmax, u) ;
4 if U B(Lmax, u) > 0 and L B(Lmax, u) ≤ 0 then
5 Compute L B(T C, u) and U B(T C, u) as in Algorithm

B2;
6 if L B(T C, u) < U B∗(T C) then
7 if U B(T C, u) < n + 1 then
8 Apply Algorithm B2 with p j , r j (u), d j (u), the

original deadlines d j (root) for j ∈ N , and the
precedence relations between jobs imposed at the
path from the root to node u;

9 else
10 Branch as Carlier’s algorithm and add new nodes

with the bounds of Lmax in L;

11 else
12 if L B(Lmax, u) ≤ U B(Lmax, u) ≤ 0 then
13 Apply Algorithm B2 with p j , r j (u), d j (u), the

original deadlines d j (root) for j ∈ N , and the
precedence relations between jobs imposed at the path
from the root to node u;

14 Remove u from L .

In the search tree, a node u is characterized by: release
dates r j (u), deadlines d j (u) of jobs j ∈ N , a lower bound
of Lmax denoted by L B(Lmax, u), an upper bound of Lmax

denoted by U B(Lmax, u), a lower bound of T C denoted by
L B(T C, u), an upper bound of T C denoted by U B(T C, u),
the current best upper bound of T C denoted by U B∗(T C),
and precedence constraints between the jobs. If node u is
the root of search tree, r j (root) and d j (root) represent the
original release dates and deadlines, respectively.

Algorithm B1 first applies Carlier’s algorithm. When a
feasible solution, i.e., U B(T C, u) < n + 1 (line 7 of Algo-
rithm B1) or U B(Lmax, u) ≤ 0 (line 12 of Algorithm B1), is
found at node u, we apply another branch-and-bound algo-
rithm denoted by Algorithm B2 from node u to try to find
a locally optimal solution minimizing T C . When algorithm
B2 stops, algorithm B1 continues the branching of Carlier’s
algorithm for the remaining active nodes (line 10 of Algo-
rithm B1).

In Algorithm B2, the lower bound L B(T C, u) is com-
puted by solving two relaxed problems, each satisfying one
of the two conditions defining the two special cases of prob-
lem SP–NSD. The upper bound U B(T C, u) is obtained by
applying the two heuristics H1 and H2. Branching in Algo-
rithm B2 is achieved by assigning to each position of the
production schedule a job satisfying a set of dominance con-
ditions. Moreover, when Algorithm B2 applies Algorithm
GA3, heuristics H1 andH2, themodified deadlines d j (u) are
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used to determine a feasible production schedule according
to Carlier’s algorithm, while the original deadlines d j (root)
are used to determine the delivery schedule.
Algorithm B2
Lower bound At node u, we solve two relaxed problems,
which satisfy the conditions of the two special cases of SP–
NSD:

Case 1 Set c = n.
Case 2 Divide the set of jobs N in two subsets of jobs N1

and N2 as follows. ∀ j ∈ N1, � j ′ ∈ N1 such that
r j (u) ≤ r j ′(u) < r j (u) + p j . ∀ j ∈ N1, ∀i ∈ N2,
r j (u) + p j ≤ ri (u). Schedule the jobs with the pre-
emptive EDD rule, then find, for each production
block, the smallest release date of jobs of N2 in this
block. Replace the release date of each job in N2 by
the corresponding smallest release date of its pro-
duction block.

We solve these relaxed problems by applying Algorithm
GA3: execute step 1 of Algorithm GA3 with d j (u) for
j ∈ N , and execute the remaining steps of the algorithm
with the original deadlines, i.e., d j (root) for j ∈ N . Let
(σ1, θ1) and (σ2, θ2) denote the obtained SP–NSD inte-
grated schedules for the above problems, respectively. Set
L B(T C, u) = max{T C(σ1, θ1), T C(σ2, θ2)}.
Upper bound Firstly, generate a NSP–NSD integrated sched-
ule by applying heuristic H2 with the above obtained
schedule (σ2, θ2) and the original deadlines, i.e., d j (root) for
j ∈ N . Secondly, generate a second NSP–NSD integrated
schedule by applying heuristic H1: execute step 1 of heuristic
H1 with d j (u) for j ∈ N , and execute step 2 of the heuristic
with the original deadlines, i.e., d j (root) for j ∈ N . Finally,
if one or both constructed integrated schedules are feasible,
set U B(T C, u) as the smallest T C among the two sched-
ules. Otherwise, setU B(T C, u) = n +1. UpdateU B∗(T C)

if necessary.
Branching if L B(T C, u) < U B∗(T C, u) for a node u, firstly
choose one job to be scheduled in the current production
position. Job j is a valid candidate if it satisfies the following
conditions. Let N ′ denote the set of unscheduled jobswithout
job j .

active scheduling rule r j (u) < mink∈N ′(rk(u) + pk)

deadline rule r j (u) + p j ≤ mink∈N ′(dk(u) −
pk)

precedence relations rule j has no predecessors in N ′.

Then, require the valid candidate j to be scheduled at the
current production position and let u′ be the corresponding
new node. Set rk(u′) = max(rk(u), r j (u) + p j ),∀k ∈ N ′.

Table 4 Example to illustrate the branch-and-bound Algorithm B1

Jobs j 1 2 3 4 5 6 7

p j 13 18 19 20 7 8 2

r j 35 38 14 21 1 48 14

d j 69 79 99 80 65 88 51

Example To illustrate Algorithm B1, we consider the fol-
lowing example with seven jobs where the vehicle capacity
c is equal to 2. Table 4 gives the jobs’ parameters.

Figure 6 illustrates the search tree of the branch-and-
bound Algorithm B1. At the root, i.e., node 1, since
U B(Lmax, u) > 0 and L B(Lmax, u) ≤ 0, we check
U B(T C, u) and L B(T C, u). Since U B(T C, 1) = 8, i.e.,
the algorithm does not find a feasible NSP schedule, the
algorithm branches as Carlier’s algorithm. Here, we have
the critical job e = 3 and the critical set J = {1, 2, 4}.

At node 2, Carlier’s algorithm requires the critical job
to be processed before the jobs of the critical set by set-
ting the deadline of the critical job 3 to d3(2) = 29. Since
L B(Lmax, 2) = 6 and U B(Lmax, 2) = 6, the algorithm
ensures that there is no feasible NSP–NSD schedule for node
2.

At node 3, Carlier’s algorithm requires the critical job
to be processed after the jobs of the critical set by setting
the release date of the critical job 3 to r3(3) = 72. Since
L B(Lmax, 3) = 0 and U B(Lmax, 3) = 0, the algorithm
ensures that there is at least one feasible NSP–NSD sched-
ule. Then it applies Algorithm B2. The precedence relations
enforce that the job 3 has to be processed after the jobs 1, 2
and 4. Since initially L B(T C, 3) = 4 and U B(T C, 3) = 5,
the branching is performed as prescribed by Algorithm B2.
U B∗(T C) is updated to 5.

For the first position of the production schedule, Algo-
rithm B2 finds that job 5 is the only job that meets the
dominance conditions among the candidates. By schedul-
ing job 5 at the first position, node 4 is generated. Since
rk(3) < r5(3) + p5(3),∀k ∈ N\{5}, the algorithm does
not change the release dates. Since L B(T C, 4) = 4 and
U B(T C, 4) = 5, the algorithms goes on branching. We still
have U B∗(T C) = 5.

The algorithm finds the only candidate 7 for the sec-
ond position of the production schedule. By scheduling
job 7 at the second position, node 5 is generated. Since
rk(4) < r7(4) + p7,∀k ∈ N\{5, 7}, the algorithm does
not change the release dates. Since L B(T C, 5) = 4 and
U B(T C, 5) = 5, the algorithms continues to branch. We
still have U B∗(T C) = 5.
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Fig. 6 Illustration of the
branch-and-bound algorithm B1

For the third position of the production schedule, Algo-
rithm B2 finds a set of candidates {1, 2, 4}.

By scheduling job 1 at the third position, node 6 is gener-
ated. The algorithm sets r2(6) = max{r2(5), r1(5) + p1} =
48 and r4(6) = max{r4(5), r1(5) + p1} = 48. With this
modified setting, there is no feasible solution for problem
SP–NSD in the two special cases. Hence there is no feasible
solution for problem NSP–NSD.

By scheduling job 2 in the third position, node 7 is gener-
ated. The algorithm sets r1(7) = max{r1(5), r2(5) + p2} =
56 and r4(7) = max{r4(6), r2(6) + p2} = 56. With this
modified setting, there is no feasible solution for problem
SP–NSD in the two special cases. Hence there is no feasible
solution for problem NSP–NSD.

By scheduling job 4 at the third position, node 8 is gener-
ated. The algorithm sets r1(8) = max{r1(5), r4(5) + p4} =
41 and r2(8) = max{r2(5), r4(5) + p4} = 41. With this
modified setting, Algorithm B1 computes L B(T C, 8) = 5
andU B(T C, 8) = 5, a local optimal solution is found. Since
there is no active node, the algorithm stops and an global opti-
mal solution for problem NSP–NSD is found (see Fig. 7).

Figure 7 shows an optimal solution problem for NSP–
NSD. The production sequence is (5, 7, 4, 1, 2, 6, 3). There
are five delivery batches: {7}, {5, 1}, {2}, {4, 6}, and {3},
which depart at times 16, 54, 72, 80, and 99, respectively.

4.2.3 Mixed-integer linear programming model

The proposed mixed-integer linear program is valid thanks
to the following lemma.

Lemma 5 There exists an optimal integrated schedule for
problem NSP–NSD, such that each batch is delivered at one
delivery deadline of job.

Proof Suppose that there is an optimal integrated schedule
for problem NSP–NSD that does not satisfy the property.
We can change the delivery time of each batch to satisfy the
property without changing the number of delivery batches.��
We propose a MILP model, which extends the time-
indexed scheduling model as defined by Queyranne and
Schulz (1994). We note that {min j∈N r j ,min j∈N r j +
1, . . . ,min(maxi∈N ri + ∑

i∈N pi ,maxi∈N di )} is the set of
possible production starting times. Let T denote this set. In
this model, according to Lemma 5, we can suppose that each
delivery batch departs at one job deadline.Note that one batch
departs at a delivery deadline of job (which can be out of this
batch) between the last production completion time of jobs
in this batch and the earliest deadline of jobs in this batch.
Let s1, . . . , su denote the possible delivery batch departure
dates.
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Fig. 7 An optimal solution for
problem NSP–NSD

Decision variables

– xit =
⎧
⎨

⎩

1, if production job i starts at time t,
i ∈ {1, . . . , n}, t ∈ T

0, otherwise

– yiq =
⎧
⎨

⎩

1, if job i is delivered at time sq ,

i ∈ {1, . . . , n}, q ∈ {1, . . . , u}
0, otherwise

– wq = number of batches departing at time sq , q ∈
{1, . . . , u}

MILP

min
u∑

q=1

wq (7)

s.t.
∑

t∈T

xit = 1, i ∈ {1, . . . , n} (8)

n∑

i=1

t∑

k=max{ri ,t+1−pi }
xik ≤ 1, t ∈ T (9)

xit = 0, i ∈ {1, . . . , n},
t < ri or t > di − pi (10)

∑

t∈T

tx jt + p j ≤
u∑

q=1

(y jqsq), j ∈ {1, . . . , n} (11)

n∑

i=1

yiq ≤ cwq , q ∈ {1, . . . , u} (12)

u∑

q=1

yiq = 1, i ∈ {1, . . . , n} (13)

yiq = 0, i ∈ {1, . . . , n},
q ∈ {1, . . . , u}, di < sq (14)

yiq ∈ {0, 1}, i ∈ {1, . . . , n},
q ∈ {1, . . . , u} (15)

wq ∈ N, q ∈ {1, . . . , u} (16)

xit ∈ {0, 1}, i ∈ {1, . . . , n}, t ∈ T (17)

In MILP, the objective function is to minimize the trans-
portation cost. Constraints (8) ensure that any job i starts its
processing once. Constraints (9) guarantee that the interval
[t, t + 1], for each t, is occupied by at most one job. The
interval [t, t + 1] is occupied by job i only if job i starts its
processing in the interval [max{ri , t +1− pi }, t]. Constraints
(10) ensure that job i starts its processing in the interval
[ri , di − pi ]. Constraints (11) ensure that each job is delivered

after or at its production completion time. Constraints (12)
are the batch capacity constraints. Constraints (13) ensure
that each job is delivered in one batch only. Constraints (14)
are the delivery deadlines constraints. Constraints (15)–(17)
give the domain of definition of each variable.

5 Computational results

In this section, we evaluate the performance of the branch-
and-bound Algorithm B1 by comparing it with MILP. The
branch-and-bound algorithm is implemented in C++ and the
MILP model is implemented in Cplex V12.1. The experi-
ments are carried out on aDELL2.50GHzpersonal computer
with 8GB RAM.

We reuse the method of Briand et al.
(2010) to generate instances. We consider n ∈
{10, 20, 30, 50, 70, 100, 150, 200, 300, 500}. The inte-
gers p j , r j and d j are generated, respectively, from
the uniform distributions [1, 50], [0, α

∑n
j=1 p j ]

and [(1 − β)a
∑n

j=1 p j , a
∑n

j=1 p j ], where α, β ∈
{0.2, 0.4, 0.6, 0.8, 1} and a ∈ {100, 110%}. If d j < r j + p j ,
d j is updated to r j + p j . The transportation cost of one batch
is equal to 1. We choose a set of hard instances as follows:
we apply the branch-and-bound algorithm of Carlier to find
the minimum Lmax for each instance, if the problem for
this instance cannot be solved at the root of the search tree,
we consider this instance as a hard instance. If the found
Lmax of this hard instance is positive, we add this value to
each d j of this instance to ensure that we have at least one
feasible solution. For n ≤ 70, we consider the batch capacity
c ∈ {2, 3, � n

8 �, � n
4 �}, and c ∈ {� n

50�, � n
30�, � n

20�, � n
10�} for

n ≥ 100. 80 hard instances for each value of n are generated.
A total number of 800 hard instances are generated.

Tables 5, 6, 7 and 8 illustrate the performance of branch-
and-bound Algorithm B1. Imposing 5min as the limit of
execution time, we use the following measures to compare
the branch-and-bound algorithm with the MILP model.

Fea the percentage of instances for which a feasible solu-
tion is determined within the given time.

Opt the percentage of instances that are solved to opti-
mality within the given time.

Node the average number of explored nodes.
Time the average CPU time in seconds.

Gap1 the relative gap measured by (U B∗(T C) −
L B∗(T C))/L B∗(T C), where U B∗(T C) and
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Table 5 Performance of the branch-and-bound Algorithm B1

n Fea (%) Opt (%) Node Time

10 100 100 2 0.07

20 100 100 16 0.85

30 100 96.25 165 14.82

50 100 95 173 19.16

70 100 91.25 183 36.13

100 100 77.5 324 78.46

150 100 66.25 334 118.18

200 100 51.25 298 150.02

300 100 32.5 240 209.01

500 100 32.5 118 212.98

Table 6 Performance of MILP

n Fea (%) Opt (%) Node Time

10 100 100 1 0.87

20 100 100 313 12.14

30 100 78.75 1401 108.64

50 96.25 37.5 357 215.86

70 75 27.5 98 264.52

Table 7 Gaps of solutions of the branch-and-bound Algorithm B1

Gap1 Gap2

n Average (%) Min (%) Max (%) Average (%)

10 0 0 0 0

20 0 0 0 0

30 0.4 6.67 12.5 10.56

50 0.7 5.88 16.67 13.97

70 0.76 6.25 12.5 8.7

100 2.5 4 28.57 11.1

150 3.92 2 31.58 11.62

200 5.64 2 30 11.57

300 7.98 2 30.23 11.83

500 8.8 2.22 32 13.03

Table 8 Gaps of solutions of MILP

Gap1 Gap2

n Average (%) Min (%) Max (%) Average (%)

10 0 0 0 0

20 0 0 0 0

30 5.61 6.25 62.5 26.4

50 22.79 3.85 86.75 37.34

70 37.95 6.67 90.96 59.92

Table 9 Results of the first feasible solution obtained by the branch-
and-bound algorithm

n Gap3 (%) %Imp Gap4 (%) Node Time

10 0.36 2.5 14.58 1.75 0.05

20 0.5 5,00 10.05 3.09 0.1

30 2.96 23.75 12.45 19.89 0.7

50 1.81 17.5 10.34 16.4 1.11

70 1.13 11.25 10.02 14.79 1.62

100 0.82 15,00 5.47 33.13 6.59

150 1.12 18.75 5.99 31.01 10.32

200 0.42 5,00 8.34 9.46 4.61

300 0.31 8.75 3.51 19.28 16.68

500 0.62 26.25 2.36 18.14 42.69

L B∗(T C) are the best upper bound and lower
bound. We consider the instances for which we
obtained at least one feasible solution (optimal
solution included).

Gap2 the relative gap for the instances for which we
obtained at least one feasible solution (optimal solu-
tion excluded).

The results show that the branch-and-bound Algorithm
B1 outperforms the MILP model. From Tables 5 and 6, we
observe that the average execution time and the number of
nodes obtained by the MILP model are always larger than
the branch-and-bound algorithm. MILP cannot find a feasi-
ble solution with n ≥ 100. The branch-and-bound algorithm
solves all instanceswith n ≤ 20 optimallywithin a very short
execution time (less than one second), and more than 90% of
instances with n ≤ 70 are solved within an average execu-
tion time of less than 40s. The branch-and-bound algorithm
solves 32.5% of instances optimally with n up to 500 and
5min as time limit.

Consulting the gaps in Tables 7 and 8, we observe that the
branch-and-bound algorithm has a much better performance.
On average, Gap1 and Gap2 of the branch-and-bound algo-
rithm are lower than 0.8 and 14% when n ≤ 70. However,
the maximum Gap2 shows some hard cases for the branch-
and-bound algorithm when n ≥ 100. For the MILP model,
on average, Gap1 andGap2 exceed 20 and 30%, respectively,
when n = 50.

When the number of jobs is very large, it is difficult to
construct a simple heuristic that guarantees that a feasible
solution is found (especially when deadlines are tight). For
this reason, for large instances, the B&B algorithm could
be stopped after a fixed amount of time and/or when a first
feasible solution is found. We report in Table 9 the results
when a first feasible solution is found. We use the following
measures.
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Gap3 average gap between the cost of the final solution of
the B&B (computational times limited to 5min) and
the first obtained feasible solution.

%Imp average percentage of instances where the two solu-
tions are different.

Gap4 average gap between the cost of the final solution of
the B&B and the first obtained feasible solution, for
instances where they are different.

The results show that the algorithm find a feasible solution
for each instance and that good solutions can be found for
large instances within a reasonable amount of computational
time (43s on average for n = 500). The relative gap (Gap4)
decreases when n increases, justifying the use of the B&B
algorithm as a good heuristic.

6 Conclusions

In this paper, we studied an integrated production and out-
bound distribution scheduling problem in a supply chain
with one manufacturer and one customer in the presence of
production release dates and delivery due dates. We con-
sidered a single machine production and a direct batch
delivery. Moreover, we considered an important feature in
production and distribution: splittable or non-splittable pro-
duction/distribution. We first investigated the scheduling
problems induced by the decentralized system scenario. We
reviewed the production scheduling problems (i.e., problems
SP and NSP) and provided two polynomial-time algorithms
to solve the distribution scheduling problems (i.e., problems
SD andNSD). Thenwe investigated the scheduling problems
in the integrated system scenario (i.e., problems SP–NSD,
SP–SD and NSP–NSD). We provided a polynomial algo-
rithm to solve two special cases of problems SP–NSD
and SP–SD. We also provided a branch-and-bound algo-
rithm for problem NSP–NSD and evaluated its performance
with numerical experiments. As illustrated by Example 3 in
Sect. 2, the presence of release dates deeply changes the prob-
lem structure compared to the problem without release dates
that was efficiently solved by Chen and Pundoor (2009). The
result show that our method obtains reasonable gap, even for
large instances and can be used a good heuristic. Further-
more, the proposed algorithm has a better performance than
the MILP model and can solve more than 90% of instances
with n ≤ 70 optimally within an average execution time less
than 40s. Several important research issues remain open for
future investigations.Afirst research direction is to clarify the
complexity of problems SP–NSD and SP–SD. Solving one
of these problems efficiently would provide a better lower
bound for the branch-and-bound algorithm that solves prob-
lemNSP–NSD.A second issue is to consider the samemodel
with a limited number of vehicles and/or with fixed pickup

times. Finally, one might consider extending the model to
production systems with parallel machines.
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