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Abstract In this paper, we discuss a flexible flow shop
scheduling problem with batch processing machines at each
stage andwith jobs that have unequal ready times. Scheduling
problems of this type can be found in semiconductor wafer
fabrication facilities (wafer fabs). We are interested in mini-
mizing the total weighted tardiness of the jobs. We present a
mixed integer programming formulation. The batch schedul-
ing problem is NP-hard. Therefore, an iterative stage-based
decomposition approach is proposed that is hybridized with
neighborhood search techniques. The decomposition scheme
provides internal due dates and ready times for the jobs on
the first and second stage, respectively. Each of the result-
ing parallel machine batch scheduling problems is solved
by variable neighborhood search in each iteration. Based on
the schedules of the subproblems, the internal due dates and
ready times are updated. We present the results of designed
computational experiments that also consider the number of
machines assigned to each stage as a design factor. It turns out
that the proposed hybrid approach outperforms an iterative
decomposition scheme where a fairly simple heuristic based
on time window decomposition and the apparent tardiness
cost dispatching rule is used to solve the subproblems. Rec-
ommendations for the design of the two stages with respect
to the number of parallel machines on each stage are given.
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1 Introduction

The electronics industry has become one of the world’s
largest industries over the last three decades. A key aspect
of this industry is the manufacturing of integrated circuits
(chips). Every semiconductor process starts with rawwafers,
thin disksmade of silicon. Lots of 25 or 50wafers, called jobs
to be consistent with the scheduling literature, are themoving
entities in wafer fabs. A diverse product mix, a large num-
ber of jobs, and machines groups (i.e., parallel machines) are
typical for semiconductor manufacturing (cf. Uzsoy et al.
1992). In addition, a mix of different process types including
single-wafer processes and batch processes are characteris-
tic of wafer fabs. A batch is a set of jobs that have to be
processed jointly. Two types of batching are differentiated,
namely serial batching (s-batch) and parallel batching (p-
batch). In the serial batching case, the processing time of
a batch is the sum of the processing times of all the jobs
that form the batch, while in the parallel batching case the
processing time of a batch is given by the maximum pro-
cessing time of the jobs that are included in the batch. In the
present paper, we consider a parallel batching problem, i.e.,
the jobs of the batch are processed at the same time on a
single machine, a so-called batch processing machine. Each
batch processing machine has a capacity that is given as the
maximum number of jobs that can be batched together (cf.
Mönch et al. 2011). It is well known that often one third of
all operations in a wafer fab are performed on batch process-
ing machines. Furthermore, the processing times of jobs are
long, up to 20h per job, compared to processing times on
non-batching machines which are often less than 1h. As a
consequence of these two facts, an appropriate scheduling of
jobs on batch processing machines has a large impact on the
performance of wafer fabs (cf. Mönch et al. 2013).
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Single and parallel batch processing machine schedul-
ing models have been extensively studied in the last two
decades (cf. Mathirajan and Sivakumar 2006 for a survey
related to semiconductor batching).Despite the fact that these
scheduling models provide many useful insights, it seems to
be more desirable to study flow shop scheduling problems
where batch processingmachines are involved on at least one
stage. This is justified by the fact that according to Robin-
son et al. (1995) batch processing machines heavily impact
downstream machine groups, while information on jobs of
upstreammachine groups are useful tomake scheduling deci-
sions on batch processing machines. Two consecutive batch
diffusion processes of oxidation and nitration occur in recent
wafer fabs and this situation can be modeled as a flexible
flow shop.

In the present paper, we propose an iterative decomposi-
tion method for a two-stage flexible flow shop where batch
processing machines can be found at each stage. The decom-
position approach is hybridized with VNS to solve the two
parallel batch processing machine subproblems that are the
result of each iteration. This paper extends the schedul-
ing model of a two-stage flow shop with batch processing
machines proposed by the present authors in Tan et al. (2014)
toward parallel machines on each stage. The assumption of
parallel machines at the two stages is crucial to increase the
real-world fit of the scheduling model at hand. A prelimi-
nary version of the new scheduling model was presented in
the Tan et al. (2015) extended abstract. However, this paper
contains a complete description and a rigorous computational
assessment of the proposed heuristics.

The paper is organized as follows. The problem is
described in Sect. 2. This includes a MIP formulation.
Related work is discussed in Sect. 3. The iterative decom-
position heuristic is proposed in Sect. 4. Moreover, a time
window decomposition approach and a VNS-based scheme
to solve the resulting subproblems are discussed in this sec-
tion. Computational results are presented in Sect. 5. Finally,
conclusions and future research directions are discussed in
Sect. 6.

2 Scheduling problem

We start by defining the problem in Subsect. 2.1. We then
discuss a corresponding MIP formulation in Subsect. 2.2.

2.1 Problem setting

A two-stage flexible flow shop is considered where stage
s contains ms identical parallel machines with a maximum
batch size of Bs . No preemption is allowed, i.e., after a batch
is started on a batch processing machine it cannot be inter-
rupted. In addition, we assume that the buffer between the

two stages is unlimited. We consider n jobs that have to be
scheduled on the machines of the flow shop. We assume that
each job j belongs to family fs ( j) ∈ {1, . . . , Fs} at stage
s where Fs is the number of incompatible families at stage
s. The number of jobs in family 1 ≤ f ≤ Fs is n f . There

are n = ∑Fs
f =1 n f jobs. Only jobs of the same family can

be batched together due to the different nature of the chemi-
cal processes when the jobs belong to different families. The
common processing time of all jobs of family f at stage s
is given by p f s . Each job j has a due date d j , a ready time
r j , and a weightw j . The completion time of the operation of
job j at stage s is denoted by C js . The performance measure
TWT is the summation of the weighted tardiness w j Tj over

all jobs j = 1, . . . , n, where Tj := (
C j2 − d j

)+, i.e., we
have TWT = ∑n

j=1 w j Tj . Here, we use x+ := max (x, 0)
for abbreviation in the rest of the paper. Using the α|β |γ
notation from scheduling theory (cf. Graham et al. 1979),
the researched problem can be represented as follows:

FF2|r j , p-batch,incompatible|TWT, (1)

where we denote by FF2 a two-stage flexible flow shop
with identical parallel machines at each stage. The notation
p-batch,incompatible refers to parallel batching with incom-
patible job families.

Next, we study the computational complexity of problem
(1). Therefore, we prove the following slightly more general
proposition.

Proposition 1 The scheduling problem

F2|p-batch,incompatible|TT (2)

is NP-hard. Here, F2 is a two-stage flow shop, and TT
denotes the total tardiness of the jobs, i.e., TT= ∑

Tj .

Proof WeknowfromMehta andUzsoy (1998) that 1|p-batch,
incompatible|TT is NP-hard. We can consider instances of
problem (2) where the processing times of the jobs for all
families on the second stage are zero. Therefore, we obtain
all the instances of 1|p-batch,incompatible|TT and the NP-
hardness of problem (2) follows. ��

Since problem (2) is a special case of problem (1), we
obtain that problem (1) is also NP-hard.

Therefore, we have to look for efficient heuristics to solve
large-size problem instances in a reasonable amount of time.

The following three decisions have to be made at each of
the two stages:

1. How to form batches.
2. How to assign each batch to one of the machines that

belong to the stage.
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Fig. 1 Exemplified two-stage
flexible flow shop with batch
processing machines

3. How to sequence the batches on each of the machines of
a single stage.

A fairly simple example is shown in Fig. 1. There are two
batch processingmachines on the first stage,while the second
stage has four machines. There is a single waiting room for
jobs in front of the machines of each stage. The maximum
batch size of the machines on the first stage is B1 = 4,
whereas the maximum batch size of the machines on the
second stage is B2 = 3. The jobs belong to different families
on the two stages. This is indicated by different colors. Only
jobs of the same family are processed together in a batch.
Moreover, we see that due to unequal ready times batches
that contain less than the maximum batch size are formed
in some situations. For instance, a batch that contains only
a single job is processed on the first machine of the second
stage.

2.2 MIP formulation

We formulate a MIP for problem (1) in this subsection. We
start by introducing the set of indices, parameters, and deci-
sion variables.

Indices and sets

j = 1, . . . , n : set of jobs
f = 1, . . . , Fs : set of families of stage s
b = 1, . . . , bsm : set of batches on machine m of stage s
m = 1, . . . ,ms : set of machines at stage s

Parameters

Bs : maximum batch size of a machine on stage s
pfs : processing time of family f jobs on the stage s

machines
d j : due date of job j
w j : weight of job j
r j : ready time of job j

e j f s =
{
1, if job j belongs to family f at stage s
0, otherwise

M : big number

Main decision variables

x jbsm :=
⎧
⎨

⎩

1, if job j belongs to batch b on machine m
at stage s

0, otherwise

ybf sm :=
⎧
⎨

⎩

1, if batch b on machine m at stage sbelongs
to family f

0, otherwise

Resultant variables

C js : completion time of job j at stage s
Tj : tardiness of job j
sbsm : start time of batch b on machine m at stage s

Next, the MIP model can be formulated as follows:

min
n∑

j=1

w j Tj (3)
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subject to
bsm∑

b=1

ms∑

m=1

xjbsm = 1, j = 1, . . . , n, s = 1, 2 (4)

n∑

j=1

xjbsm ≤ Bs , s = 1, 2, m = 1, ..,ms , b = 1, . . . , bsm

(5)
F∑

f =1

ybfsm = 1, s = 1, 2, b = 1, . . . , bsm,m = 1, ..,ms (6)

ejfsxjbsm ≤ ybfsm, j = 1, . . . , n, s = 1, 2,

f = 1, . . . , Fs,m = 1, ..,ms , b = 1, . . . , bsm (7)

r j x jb1m ≤ sb1m , j = 1, . . . , n, b = 1, . . . , b1m ,

m = 1, ..,ms (8)

sbsm + e j f s p f s x jbsm ≤ sb+1,sm , s = 1, 2, j = 1, . . . , n,

b = 1, . . . , bsm, f = 1, . . . , Fs,m = 1, ..,ms (9)

sbsm + e j f s p f s ≤ C js + M
(
1 − xjbsm

)
, j = 1, . . . , n,

s = 1, 2, b = 1, . . . , bsm, f = 1, . . . , Fs, m = 1, ..,ms

(10)

C j1 ≤ M
(
1 − x jb2m

) + sb2m , j = 1, . . . , n,

b = 1, . . . , b2m , m = 1, . . . ,ms (11)

C j2 − Tj ≤ d j , j = 1, . . . , n (12)

xjbsm, ybfms ∈ {0, 1} ,C js , Tj , sbsm ≥ 0, j = 1, . . . , n,

s = 1, 2, f = 1, . . . , Fs , b = 1, . . . , bsm, m = 1, . . . ,ms .

(13)

Our aim is to minimize the TWT value of the jobs. This
is expressed by the objective function (3). Constraints (4)
ensure that each job belongs to exactly one batch. The
inequalities (5) model the fact that the number of jobs in each
batch is not larger than the maximum batch size on a given
stage. Constraints (6) make sure that each batch belongs to
exactly one family. Constraints (7) ensure that all the jobs in a
batch on a given stage belong to the same family. Constraints
(8) model the fact that a given job cannot start on the first
stage before its ready time. The sequencing of the batches on
a given stage is represented by constraints (9). Constraints
(10) relate the start time of a given batch to its completion
time, while constraints (11) ensure that a batch on the sec-
ond stage can only start if all the jobs that form this batch are
completed on the first stage. Constraints (12) express the tar-
diness of each job, while constraints (13) model the fact that
the decision variables are binary or nonnegative, respectively.

The MIP formulation (3)–(13) can be solved by a com-
mercial solver. However, due to the NP-hardness of problem
(1), only small-size problem instances can be solved to opti-
mality, even with a large amount of computing time. These
optimal solutions to small-size instances can be used to
ensure that the proposed heuristics are correctly implemented
and to determine the efficacy of the heuristics.

3 Related work

In this section, we discuss related work with respect to
decomposition approaches for flow shop scheduling prob-
lems with due date-related objectives and with respect to
flow shop scheduling problems that include batch process-
ing machines.

We refer to Emmons and Vairaktarakis (2013) for a dis-
cussion of deterministic flow shop scheduling problems.
Scheduling approaches for flexible flow shops are surveyed
by Ruiz and Vázquez-Rodríguez (2010).

It is shown by Demirkol et al. (1997) and Jain andMeeran
(2002) that the shifting bottleneck heuristic (SBH) works
well for job shops, but is not particularly effective in flow
shop settings. An efficient decomposition heuristic is pro-
posed for the problem F2||TT by Koulamas (1998). The
proposed heuristic exploits the relationship to the single-
machine scheduling problem 1||TT. It is demonstrated by
Mukherjee and Chatterjee (2006) that the SBH often fails to
optimally solve problem instances of F2||Cmax where Cmax

denotes the makespan. An alternative decomposition heuris-
tic is designed that is based on a Schrage-type heuristic.

The problemFFc||TWT is discussed byYang et al. (2000).
Here, FFc refers to a flexible flow shop with c stages. Several
decomposition approaches based on the disjunctive graph
representation, the SBH, and local search techniques are pro-
posed. Demirkol and Uzsoy (2000) consider the problem
Fm|sjk, recrc|Lmax where Fm refers to anm-stage flow shop,
sjk is used for sequence-dependent setup times, and recrc
refers to reentrant flows. The maximum lateness criterion
Lmax is the objective to be minimized. Efficient decomposi-
tion heuristics are proposed; however, batching is not taken
into account.

A bottleneck-focused scheduling approach is proposed by
Lee et al. (2004) for the problem FFc||TT. In a first step,
the operations are scheduled on the machines of the bottle-
neck stage using list scheduling. Then, the operations on the
remaining stages are scheduled using the schedule for the
bottleneck. The ready times of operations at the bottleneck
stage are iteratively updated using information on the sched-
ules obtained in previous iterations.Within each iteration, the
ready time of a single job is fixed. However, in the present
paper, we consider batching problems. Therefore, an inser-
tion of single jobs is not possible, i.e., an extension of this
approach toward problem (1) is not straightforward. Chen
and Chen (2008) study the problem FFc||∑Uj where

∑
Uj

is the number of tardy jobs. They propose several heuristics
that are based on the idea to schedule first the jobs at the
machines of the bottleneck stage by a heuristic inspired by
Moore’s algorithm. The heuristic schedules the jobs indepen-
dently on the upstream stages to obtain the ready times at the
bottleneck. The downstream machines are scheduled using
list scheduling. A similar approach is proposed for FFc||TT
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by Chen and Chen (2009). The bottleneck-focused approach
outperforms list scheduling approaches and a tabu search
heuristic. Liao and Huang (2010) propose a tabu search
approach to solve the problem FFc||TT.

Next, we discuss work related to flow shop scheduling
with batch processing machines. Sung et al. (2000) discuss
a permutation flow shop scheduling problem where batch
processing machines can be found on each stage. Based on
structural properties of optimal solutions, a problem reduc-
tion approach is proposed that removes dominatedmachines.
The makespan and the total completion time are considered
as objectives. The problem F2|p-batch, r j |Cmax is discussed
by Sung and Kim (2002). An efficient heuristic is provided
and a worst-case error bound is derived. The same authors
study in Sung andKim (2003) a two-stage flow shop schedul-
ing problem where each of the two machines is a batch
processing machine. The processing time of a batch depends
on the machine, but not on the jobs in the batch, i.e., only
one incompatible family is assumed at each stage. It is shown
that for the maximum tardiness, the maximum number of
tardy jobs, and the TT measure, efficient polynomial time
algorithms exist. A two-stage flow shop scheduling prob-
lem with a batch processing machine on the first stage and
makespan objective is considered by Su (2003). A time con-
straint between the first and the second stage is assumed. A
MIP formulation and heuristics are proposed for this prob-
lem.

MIP formulations for F2|p-batch|Cmax are presented by
Damodaran and Srihari (2004). Liao and Liao (2008) study
the same problem. Improved MIP formulations and several
heuristics are proposed. A scheduling problem for a two-
machine flow shop with batch processing and makespan
objective is discussed inManjeshwar et al. (2009). Simulated
annealing is used to tackle this problem that is motivated by
a real-world situation in a printed circuit assembly line. A
two-stage flow shop scheduling problemwith a parallel batch
processingmachine on the first stage andmakespan objective
is discussed in Oulamara (2012). A s-batching machine is on
the second stage. A no-wait constraint is between processing
jobs on the first and the second machine. An approximation
algorithm is designed for this problem.

A flexible flow shop scheduling problem with batch pro-
cessing machines at some stages and makespan objective
is studied by Amin-Naseri and Beheshti-Nia (2009). The
machines on each stage are uniform. Several heuristics,
among them a genetic algorithm, are proposed. Bellanger
and Oulamara (2009) consider a two-stage flexible flow shop
where p-batching takes place on the second stage. Only com-
patible jobs can be batched together. Themakespan objective
is considered. Several heuristics are proposed. A polynomial
time approximation scheme is proposed for the case of equal
processing times.

The problem Fm|p-batch,perm|C is investigated by Lei
andGuo (2011). Themaximum tardiness, the weighted num-
ber of tardy jobs, and the TT objective are considered as
objective C , respectively. The notation perm is used to indi-
cate that only permutation schedules are considered, i.e.,
the batches that are formed for the first machine and their
sequence cannot change on the remaining machines. A VNS
approach is applied to tackle this problem. A two-stage flow
shop is studied by Fu et al. (2012) where the machine on
the second stage is a batch processing machine. Incompat-
ible families are considered on the first machine. There is
a finite buffer between the machines. The mean completion
time is the performance measure to be minimized. Several
heuristics are used to form the batches, whereas the batches
are sequenced by a differential evolution algorithm. Yugma
et al. (2012) discuss a real-world flexible job shop schedul-
ing problem where each machine group can consist of batch
processing machines. Minimizing the waiting time of jobs,
maximizing the number of performed operations, and maxi-
mizing the fullness of batches are considered. The scheduling
problem is modeled by a disjunctive graph. An iterative sam-
pling procedure and a simulated annealing procedure are
proposed. However, problem (1) is different since we con-
sider the TWT performance measure.

Wang et al. (2012) consider a two-stage flexible flow shop
scheduling problem with makespan objective where batch
processing machines are on the first stage. Ready times
and machine dedications are assumed. Heuristics solution
approaches are proposed. A genetic algorithm is proposed
by Li et al. (2015) to solve a scheduling problem for a flexi-
ble flow shop where batch processing machines are allowed
only at a single stage. Setup times are taken into account.
The makespan and the TWT performance measure are con-
sidered, respectively. However, our problem is different since
we allow for batching on both stages.

Overall, to the best of our knowledge, problem (1) has not
been addressed so far with the exception of Tan et al. (2015)
where only preliminary computational results are presented.
In this paper, an iterative decomposition approach is proposed
that can be interpreted in terms of the lead time iteration
scheme of Vepsalainen and Morton (1988) to obtain waiting
time estimates for the operations of the jobs. The resulting
subproblems for identical parallel batch processingmachines
are solved by the time window decomposition procedure (cf.
Mönch et al. 2005) and the VNS scheme proposed by Bilyk
et al. (2014).

4 Hybrid heuristics

In this section, we start by describing the proposed iterative
decomposition scheme in Subsect. 4.1. The time window
decomposition heuristic is summarized in Subsect. 4.2, and
a VNS scheme is discussed in Subsect. 4.3.
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4.1 Iterative decomposition approach

In this subsection, we describe an iterative procedure to
decompose the overall scheduling problem. In contrast to
somewhat similar approaches proposed in the literature (cf.
Lee et al. 2004; Chen and Chen 2008, 2009), we cannot con-
sider scheduling one job after another since the scheduling
entities in problem (1) are batches. Therefore, internal due
dates and ready times for the first and second stage, respec-
tively, are required to formulate the corresponding parallel
machine subproblems. The main idea of the proposed itera-
tive procedure consists of using the completion times of the
operations on the first stage as ready times for the operations
of the second stage. Note that a more direct application of
the SBH based on disjunctive graphs seems not to be appro-
priate because we have only two stages and because of the
deficiencies of the SBH for flow shops (cf. the discussion in
Sect. 3).

We introduce the following additional notation to present
the iterative decomposition approach:

l : iteration number
d(l)
j1 : (internal) due date of job j at stage 1 in iteration l

r (l)
j2 : (internal) ready time of job j at stage 2 in iteration l

s(l)
j2 : start time of job j at stage 2 in iteration l

w
(l)
j2 : waiting time of job j at stage 2 that is a result of the

scheduling decisions made in iteration l
p js : processing time of job j at stage s, i.e., p js := p f ( j)s

C (l)
j1 : completion time of job j at stage 1 in iteration l
α : parameter of the iterative decomposition approach
β : parameter of the iterative decomposition approach.

Now, we describe the iterative decomposition approach
(IDA) as follows:

Algorithm IDA

1. Initialize l := 1. Set the parameter values α, β (discussed
below). Moreover, choose initial internal due dates as
follows:

d(1)
j1 := 1

2

(
r j + p j1 + d j − p j2

)
. (14)

2. If l ≥ 2 set d(l)
j1 , j = 1, . . . , n using the waiting time

information of the jobs obtained from the schedule com-
puted in iteration l − 1, l ≥ 2 as follows:

d(1)
j1 := (1 − α) r (l−1)

j2 +α
(
d j − p j2 − w

(l−1)
j2

)
+βw

(l−1)
j2 .

(15)

3. Solve the resulting scheduling problem for the first stage
using r j and d(l)

j1 , j = 1, . . . , n.
4. Using the solution of the first stage scheduling problem

in iteration l, set r (l)
j2 := C (l)

j1 , j = 1, . . . , n.

5. Solve the resulting scheduling problem for the second
stage using r (l)

j2 and d j , j = 1, . . . , n.
6. Calculate the TWT value of the schedule x obtained in

iteration l. If l = 1 then initialize x∗ := x , otherwise
update x∗ := x if TWT(x) < TWT(x∗). Here, x∗ is the
best schedule found so far.

7. When the termination criterion is fulfilled then stop, oth-
erwise increase the iteration number by l := l + 1 and
go to Step 2.

The overall information flow between two consecutive itera-
tions l − 1 and l is depicted in Fig. 2. The parallel rectangles
on each stage indicate the parallel machines. We see from
this figure that the due dates for the first stage subproblem in
iteration l are determined based on the ready time and wait-
ing time of the jobs obtained from the solution of the second
stage subproblem in iteration l−1 [based on expression (15)].
This information flow is indicated by an arrow across the
two iterations and stages. The gray-colored boxes contain the
information obtained from a schedule, while white-colored
boxes are used to represent input information for a schedul-
ing instance. Moreover, the completion times of the jobs in a
schedule for the first stage subproblem in iteration l are used
to determine the ready times for the jobs in the second stage
subproblem in iteration l (see Step 4 in the IDA algorithm).
Again an arrow is used to show this information flow.

Note that we have to solve 2l subproblems of type

Pm|r j , p-batch,incompatible|TWT (16)

in Step 3 and Step 5 when l iterations of IDA are performed.
Here, Pm is used to refer to identical parallel machines. We
continue with several remarks related to expressions (14),
(15), and IDA:

1. The earliest possible completion of job j at the first
stage is r j + p j1. The maximum possible slack of job
j is then d j − p j2 − (

p j1 + r j
)
. We add half of this

slack to the earliest possible completion time of the first
stage to set the internal due date for the first stage. We
obtain d(1)

j1 := r j + p j1 + 1
2

(
d j − p j1 − p j2 − r j

) =
1
2

(
r j + p j1 + d j − p j2

)
. Thismotivates expression (14).

2. In the general case, we have for the waiting time at the
second stage w

(l−1)
j2 := s(l−1)

j2 − r (l−1)
j2 . After some alge-

bra, the following representation can be obtained from
expression (15):

d(l)
j1 := (1 − α) s(l−1)

j2 + α
(
d j − p j2

) + (β − 1)w
(l−1)
j2 . (17)
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Fig. 2 Information flow
between two iterations of IDA

Iteration
l-1

Iteration
l

First stage subproblem Second stage subproblem

l
jC 1 j

l
j d,r 2

l
jj dr 1,

1)
2

1
2 , l

j
l
j wr –(1)–(

)(

(  )
)(

We see from expression (17) that the internal due date
for the first stage in iteration l is a linear combination of
the second stage starting time in iteration l − 1 and the
latest possible starting time that does not lead to a tardy
job j and a correction term that takes into account the
amount of waiting time for job j at stage 2 in iteration
l − 1. The correction term can be positive, negative, or
zero depending on the choice of the β value. The overall
situation is shown in Fig. 3.We see the potential place for
the first stage due dates in iteration l according to expres-
sion (17). The corresponding section on the time axis is
marked with crosses. The ready time for the second stage
in iteration l is set according to the scheduling result for
the first stage in iteration l. The corresponding possible
values are also depicted in Fig. 3. As shown in Fig. 3,
the ready times for the second stage in iteration l can
be eventually before or after the ready times in iteration
l − 1.
It becomes clear that the IDA scheme is similar to itera-
tive simulation procedures such as the lead time iteration
methodproposedbyVepsalainen andMorton (1988).The
evaluation of the schedule can be interpreted as a deter-
ministic forward simulation.

3. At the first glance it seems that

d(l)
j1 := s(l−1)

j2 , (18)

is a natural choice for the internal due date for the first
stage in iteration l. However, since all the operations at

the first stage in iteration l−1 are completed before s(l−1)
j2

it is fairly easy to obtain a small TWT value for the first
stage in iteration l. Hence, it is reasonable to add waiting
time as done in expression (15) or (17).

4. We will select the parameter values for α, β from an
equidistant grid over [0, 2] × [0, 2]. The setting β > 1 is
useful in situationswhen thewaiting time is small. There-
fore, tighter due dates are possible. If d j − p j2 < s(l−1)

j2
then α > 1 leads to internal due dates that are smaller
than d j − p j2.

5. We terminate IDAwhen either the same schedule is com-
puted a second time or when a prescribed maximum
number of iterations abbreviated by i termax is reached.

In the next two subsections, we will describe the methods we
use to solve the resulting parallel batch processing machine
subproblems.

4.2 Time window decomposition

The first subproblem solution procedure is based on the time
window decomposition (TWD) scheme proposed by Mönch
et al. (2005). For the sake of completeness, we briefly sum-
marize the decisions made by TWD to choose the batch to be
processed next. In order to simplify the notation, we do not
differentiate between the two stages. We simply assume that
job j has a due date d̃ j , a processing time p̃ j , a weight w̃ j ,
and a ready time r̃ j . The maximum batch size is B̃, whereas
F̃ is the number of incompatible families.
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Fig. 3 Placing the internal due
date within the different
iterations of IDA
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When a batch processing machine k becomes available at
decision time t , we form for each family f ∈ F̃ the set

J f (t) := {
j |r̃ j ≤ t + �t, f ( j) = f

}
, (19)

i.e., we consider only the jobs of family f that are ready for
processing before or at t + �t . We sort all the jobs from
J f (t) in non-increasing order with respect to the Apparent
Tardiness Cost (ATC) index (cf. Vepsalainen and Morton
1987):

I j (t) := w̃ j

p̃ j
exp

⎛

⎜
⎝−

(
d̃ j − p̃ j − (

r̃ j − t
)+)

κ p̄

+⎞

⎟
⎠ . (20)

The look-ahead parameter κ is used for scaling in expression
(20), whereas the quantity p̄ is the average processing time of
the remaining jobs.Due to the computational burden,we con-
sider only the first thresh jobs from the list sorted according
to ATC to form batches. The resulting set is called J̃ (t). In
a next step, we consider all batches that can be formed using
jobs from J̃ (t). Each of these potential batches b for each
family f is evaluated based on the Batched ATC (BATC)-II
index (cf. Mönch et al. 2005):

Ib (t) :=
∑

j∈b
w̃ j/ p̃ j exp

(

−
(
d̃ j − p̃ j − t + (rb − t)+

)+/
(κ p̄)

) |b|
B̃

.

(21)

Here, |b| is the number of jobs in batch b. In addition, the
ready time of batch b is given by rb := max

{
r̃ j | j ∈ b

}
.

The batch with the largest BATC-II index is selected among
all families f ∈ F̃ and processed on machine k. The entire
procedure is repeated if amachine becomes available or a new
job arrives at a new decision time t∗. The resulting iterative
decomposition scheme for i termax iterations that is based on
the TWD approach is abbreviated by IDA(TWD, itermax) in
the rest of the paper.

An alternative TWD approach is considered that is based
on the weighted earliest due date (WEDD) dispatching rule
in combination with a full batch policy. Here, we replace the
index (20) by I j := w̃ j/d̃ j . Moreover, batches are formed by

considering the firstmin
(
B̃, l

)
batches from the sorted list of

unscheduled jobs of a given family. Here, we denote by l the
number of jobs in the list of the corresponding family. Each
formed batch b is assessed by the batch index Ib := ∑

j∈b I j .
The resulting scheme is called IDA(BWEDD, itermax) in the
rest of the paper.

4.3 VNS scheme

We know from Mönch et al. (2005) and Bilyk et al. (2014)
that the TWD scheme can be improved by metaheuristics.
Therefore, we recall next the main ingredients of a VNS
approach proposed by Bilyk et al. (2014) for a slightly more
general situation, i.e., for precedence constraints among the
jobs.

VNS is a local search-based metaheuristic that is based on
the idea of using several neighborhood structures. The main
ingredients of VNS are shaking and local search (cf. Hansen
and Mladenovic 2001). The main purpose of shaking is to

123



J Sched (2018) 21:209–226 217

restart the local search when it gets stuck in a local optimum.
We use the following five classes of neighborhood structures
in this research:

1. MoveBatch(k) Randomly choose a batch on a randomly
chosen machine. Remove this batch and insert it in a
randomly chosen position of a randomly chosenmachine
that is different from the first one. Repeat this procedure
k times.

2. SwapBatch(k) Randomly choose two batches from
two different, randomly chosen machines at that stage.
Exchange these batches. Repeat this procedure k times.

3. MoveSeq(k) This neighborhood structure is similar
to MoveBatch(k); however, instead of moving single
batches, sequences of batches are considered.

4. SwapSeq(k) This neighborhood structure is similar to
SwapBatch(k); however, instead of swapping pairs of
batches, sequences of batches are considered.

5. SplitBatch(k) Randomly choose a batch. Split this batch
into two batcheswhere the content of the first batch is ran-
domly chosen. The first resulting batch does not change
its position, while the second one is inserted in a ran-
domly chosen position of a different, randomly chosen
machine. Repeat the entire procedure k times.

While the proposed neighborhood structures work on the
final solution representation, i.e., on batches that are assigned
to single machines and sequenced there, the local search pro-
cedure is based on job insertion, job swap, and batch swap
(cf. Bilyk et al. 2014 formore details). The usedVNS scheme
can be summarized as follows:

Algorithm VNS

1. Initialization Choose the neighborhood structures Nk ,
k = 1, . . . , 25. Compute initial solutions x (κ) based
on the TWD approach where we test the values κ =
0.5l, l = 1, . . . , 10. Choose an initial solution x (κ∗) that
has the smallest TWT values among the different initial
solutions.

2. Main Loop

a. Shaking Choose randomly a solution x ′ ∈ Nk (x).
b. Local Search Balance the solution x ′, i.e., unify the

workload on the different machines by the follow-
ing procedure. If the last batch of the machine with
the maximum completion time starts later than the
completion time of the machine with the smallest
workload, the batch is moved to that machine. This
step is repeated until no batch can bemoved anymore.
The resulting solution is abbreviated by x̂ . Apply the
local search procedure to x̂ to obtain x ′′.

c. Acceptance Decision If TWT
(
x ′′) < TWT (x) then

set x := x ′′ and k := 1, otherwise set k := k mod
kmax + 1.

3 Termination If a maximum computing time is reached
then stop. Otherwise repeat Step 2.

The resulting iterative decomposition scheme including
itermax iterations that is based on this VNS scheme is abbre-
viated by IDA(VNS, itermax) in the rest of the paper.

For the sake of completeness, we summarize the hybrid
approach in one place as follows:

1. The approach is based on an iterative decomposition
scheme that uses scheduling results from the previous
iteration, namely waiting times and ready times of the
jobs in the second stage subproblem, to set the internal
due dates for the first stage subproblem of the current
iteration.

2. After the first stage subproblem is solved in the current
iteration, the completion times of the jobs from the corre-
sponding schedule are used as ready times for the second
stage subproblem.

3. The resulting subproblems are solved either by TWD
or by VNS. Since we combine iterative decomposition
techniques with metaheuristic approaches, namely VNS,
the proposed approach is hybrid.

The hybrid approach based on the IDA algorithm can be
visualized as shown in Fig. 4.

5 Computational experiments

In this section, we start by presenting the design of exper-
iments. We then discuss how the various parameters of the
heuristics are chosen in Subsect. 5.2, and we also describe
implementation details. The computational results are pre-
sented in Subsect. 5.3. The obtained results are analyzed and
discussed in Subsect. 5.4.

5.1 Design of experiments

We expect that the performance of the proposed heuristics
depends on the number of jobs per family, on the number of
families, the maximum batch size at each stage, the number
of machines at each stage, and the ready time and due date
setting. We generate ready times by using crude makespan
estimates for each stage, i.e.,

r j ∼ U

⎛

⎝0, a

⎛

⎝ 1

B1m1

n∑

j=1

p j1 + 1

B2m2

n∑

j=1

p j2

⎞

⎠

⎞

⎠ , (22)
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 Initialize
- set l=1 
- select α, β values 
- determine internal due dates for the first iteration

First stage
Formulate and solve the subproblem (TWD/VNS)

Information flow
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of the first stage to the second stage 

Second stage
Formulate and solve the subproblem for the second stage 
(TWD/VNS)
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the schedule of the second stage, iteration l to iteration 
l+1  

Fig. 4 Overall flow of the hybrid approach

wherewe denote by X ∼ U (a, b) a randomvariable X that is
uniformly distributed over the interval (a, b). The parameter
a determines how widespread the ready times are. Based on
the ready times, we are able to generate due dates according
to

d j := r j + FF
(
p j1 + p j2

)
, (23)

wherewe denote by FF ≥ 1 a flow factor that is used to repre-
sent the waiting time that occurs in the two-stage flow shop.
Each first stage family will become either one or two families
with equal probability at the second stage. This situation is
typical for the two consecutive batch diffusion processes of
oxidation and nitration that occur in modern wafer fabs.

Important design factors are the number of machines at
each stage and the maximum batch size per stage since they
directly influence the offered capacity at the two stages. We
are interested in assessing the performance of the proposed
algorithms in the situation when the number of machines at
each stage is also a design factor. Therefore, the two stages
can have a different bottleneck behavior. We measure the
workload of stage s as follows:

WLs = 1

Bsms

n∑

j=1

p js, s = 1, 2. (24)

We use the following algorithm to define the bottleneck
behavior of the flow shop:

Algorithm bottleneck configuration (BC)

1. Initialization Start from the total number of machines in
the two-stage flow shop. This number is denoted by m.
Initialize �min with a large value.

2. Loop Repeat for each pair (m1,m − m1) with m1 =
1, . . . ,m − 1:

a. Compute the value �(m1,m − m1) := |WL1

− WL2|.
b. If �(m1,m − m1) < �min then set m∗

1 := m1 and
m∗

2 := m − m1. Update �min := �(m1,m − m1).

3. Output The pair
(
m∗

1,m
∗
2

)
leads to the most bal-

anced machine configuration of the flow shop. If pos-
sible, consider the configurations

(
m∗

1 − 1,m∗
2 + 1

)
and(

m∗
1 + 1,m∗

2 − 1
)
. They indicate a situation where the

bottleneck is on the first and second stage, respectively.

The computational experiments are performed with the three
different machine configurations that are the result of the
BC algorithm. The design of experiments is summarized in
Table 1.

Note that we have 384 problem instances in total. But we
have only 128 unique sets of jobs. From each set of jobs, we
obtain three different instances that have different bottleneck
configurations.

In another experiment, we are interested in investigat-
ing the situation where the second stage has non-batching
machines. This situation is also important in real-world sit-
uations found in wafer fabs (cf. Robinson et al. 1995).
Therefore, we generate 16 additional problem instances that
follow the design of experiments summarized in Table 1 with
the exception that we consider only 16 machines, i.e., one
level for the total number of machines, one level for the max-
imum batch size, i.e., we use B1 = 4 and B2 = 1, and only
the balanced configuration.

Moreover, we are interested in assessing the correctness
of the implementation and the efficacy of the heuristics by
using the MIP model (3)–(13) for eight small-size instances.
The design characteristics are similar to the one found in
Table 1. We consider n = 12 jobs. The maximum batch size
at both stages is B1 = B2 = 2. In total,m = 12machines are
considered. The number of machines at each stage is selected
in such a way that a balanced configuration is obtained from
the BC algorithm. The jobs belong to two families at the
first stage, whereas up to four families are possible at the
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Table 1 Design of experiments

Factor Level Count

Number of jobs per family 240/F, 360/F 2

Number of families on the first stage 6, 12 2

Number of families on the second stage consider the families of the first stage, each family is divided with probability 0.5
into two families, the number of jobs per family is adjusted accordingly

1

Total number of machines on the two stages 8,16 2

Processing time of a job family on a stage 5 with p = 0.2, 10 with p = 0.3, 15 with p = 0.3, 20 with p = 0.2 1

Maximum batch size for all the machines of a single
stage

2, 4 4

Weight of the jobs w j ∼ U (0, 1) 1

Ready time of the jobs
r j ∼ U

(
0, a

(
1

B1m1

∑n
j=1 p j1 + 1

B2m2

∑n
j=1 p j2

))

a = 0.25, 0.75
2

Due date of the jobs
d j := r j + FF

(
p j1 + p j2

)

FF = 1.3, 1.5
2

Bottleneck machine configuration balanced, on stage 1, on stage 2 3

Total 384

Table 2 Settings for exploring
the number of iterations versus
computing time

Variant Number of iterations Amount of computing
time per subproblem

Total time per instance
(s)

MI 40 5 400

LT 10 5 400

10 15

second stage using the same family split as for the design of
experiments summarized in Table 1.

In addition, we want to understand the importance of the
number of iterations vs. the amount of computing time for the
subproblems in IDA(VNS, itermax). Therefore, we consider
20 randomly selected problem instances with six job fami-
lies and 360 jobs. For these instances, we vary the number
of iterations and the amount of computing time per sub-
problem in such a way that the overall computing time per
instance is the same. We consider IDA(VNS, 40) in addi-
tion to IDA(VNS, 20), i.e., we use more iterations. At the
same time, we use only a computing time of 5 s per subprob-
lem in case of IDA(VNS, 40). This variant is abbreviated by
IDA(VNS,MI). The second variant uses a computing time
of 5 s in the first ten iterations. However, the computing time
is 15 s from iteration 11–20, i.e., a longer computing time is
allowed. This variant is called IDA(VNS,LT). Overall, we
have an average computing time of around 400 s per problem
instance for the two settings. The settings of the two variants
are summarized in Table 2.

We are interested in assessing the performance of IDA-
type heuristics. Therefore, we consider the ratio of the TWT
value obtained by IDA(VNS, itermax) and by IDA(TWD, 1),
i.e., we compute the quantity:

Imp (VNS, itermax) := TWT(IDA (VNS, itermax))/

TWT(IDA (TWD, 1)) (25)

for each single instance. Note that it is reasonable to compare
the performance relative to IDA(TWD, 1) because we know
for the problem F2|r j , p-batch,incompatible|TWT that the
improvement obtained by IDA(TWD, itermax) compared to
IDA(TWD, 1) is fairly small (cf. Tan et al. 2014). Based
on experiments for the problem instances of Table 1, we
observe a similar behavior for problem (1). Moreover, we
do not separately assess the performance of IDA(VNS, 1)
since we know from Bilyk et al. (2014) that up to 20% TWT
reduction for the VNS scheme compared to TWD is possible
for a single stage. This result carries over to the two-stage
flexible flow shop setting as observed by experiments for the
instances in Table 1.

Each problem instance is solved three times with dif-
ferent random number seeds to obtain statistically mean-
ingful results. The average value of the corresponding
Imp(VNS, itermax) values of the independent replications is
presented.

5.2 Implementation issues and parameter setting

All the algorithms are coded using theC++programming lan-
guage. ILOG CPLEX 12.1 is applied to implement the MIP
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Table 3 Summary of the computational experiments

Feature Experiment

1 2 3 4

#Instances 8 small-size instances 384 large-size instances 16 large-size instances,
batching only on the
first stage

20 large-size instances

Bottleneck
configuration

Balanced Balanced, bottleneck at
the first stage,
bottleneck at the
second stage

Balanced Balanced

Solution method CPLEX
IDA(TWD,1)
IDA(VNS,15)

IDA(TWD,1)
IDA(TWD,20)
IDA(VNS,20)

IDA(TWD,1)
IDA(TWD,20)
IDA(VNS,20)

IDA(TWD,1)
IDA(VNS,20)
IDA(VNS,40)

Computing time 6s per subproblem
(VNS), 4h per
instance for CPLEX

20s per subproblem
(VNS)

20s per subproblem
(VNS)

5s per subproblem (VNS)
for iteration 1–10, 15 s for
iteration 11–20, 5 s per
subproblem (VNS) for
iteration 1–40

Choice of the (α, β)

values
49 pairs 49 pairs 49 pairs 1 pair

(3)–(13). The computational tests are performed on an Intel
Xeon E5-2620 2.00GHz, 32GB computer with Windows
Server 2008 R2 Standard operating system. The computer
has two E5-2620 processors and a total of 12 cores. The
grid search for appropriate (α, β) pairs can be parallelized.
Twelve processes of each of the heuristics are created and
deployed on the multi-core computer in our experiments.
The smallest TWT value and the longest computing time
obtained from these twelve processes are recorded.

Next, we discuss the parameter setting for the different
heuristics. The TWD scheme is parameterized by �t = 4h
and thresh = 15 since we know from (Mönch et al. 2005)
that these settings lead to small TWT values. The BATC-II
rule is applied for sequencing batcheswith appropriate values
for the look-ahead parameter κ . The κ values are taken from
the grid {0.5l|l = 1, . . . , 10}. The κ value that leads to the
smallest TWT value is recorded.

We consider kmax = 25 different neighborhood structures
in the VNS-based subproblem solution procedure. These
neighborhood structures are obtained by varying the k val-
ues in the five basic neighborhood structures described in
Subsect. 4.3. The concrete k values and the sequence of the
neighborhood structures can be found in Bilyk et al. (2014).

We use itermax = 20 iterations in the majority of the
computational experiments with IDA-type heuristics. The
computing time for the VNS-based subproblem solution
procedure is 20 s per parallel machine problem instance.
Therefore, the overall computing time per instance for prob-
lem (1) is around 400 s for a given (α, β) pair. This amount
is often still small enough to allow scheduling decisions in
a real-world environment. Based on some preliminary tests
using a small number of instances, we confirm that using a

larger number of iterations does not lead to significant per-
formance improvements.

In some situations, we use a different number of iterations
and a different amount of computing time per subprob-
lem. For the eight small-size problem instances, a maximum
computing time of 4h is allowed for CPLEX per problem
instance. Moreover, we use a computing time of 6 s per sub-
problem for IDA(VNS, 15) in this situation. This leads to an
overall computing time of 180s per problem instance. The
number of iterations and the computing times for the prob-
lem instances that are used to look at the importance of the
number of iterations vs. the amount of computing time for
the subproblems are already specified in Subsect. 5.1.

We know from some preliminary computational exper-
iments that the iterative decomposition scheme is sen-
sitive to an appropriate selection of the parameters α

and β. Therefore, in our computational experiments we
use α ∈ {0.0, 0.33, 0.66, 1.0, 1.33, 1.66, 2.0} and β ∈
{0.0, 0.33, 0.66, 1.0, 1.33, 1.66, 2.0}, i.e., we consider 49
different pairs in total. Hence, carrying out the computa-
tions on a multi-core computer is reasonable to reduce the
computational burden. In the last experiment where we are
interested in exploring the impact of the number of itera-
tions vs. the amount of computing time per subproblem,
we consider only α = 0.66 and β = 1.66 to reduce the
computational burden. Preliminary experiments were used
to determine this specific setting.

The main characteristics of the different experiments are
summarized inTable 3.Note that the first experiment refers to
the eight small-sized instances to check the correctness of the
implementation. The second experiment is for the instances
specified in Table 1, whereas the third and fourth experiments
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Table 4 Computational results for small-size problem instances

Instance TWT MIP Computing time
MIP

TWT
IDA (VNS, 15)

Computing time
IDA (VNS, 15)

TWT
IDA (TWD, 1)

Imp(VNS, 15)

1 29.961 4h 29.961 180s 31.897 0.94

2 11.440 4h 11.440 180s 12.143 0.94

3 0.965 4h 0.965 180s 0.965 1.00

4 1.008 4h 1.008 180s 1.573 0.64

5 7.500 4h 7.500 180s 10.593 0.71

6 3.471 4h 3.471 180s 5.024 0.69

7 3.827 23min 3.827 180s 3.827 1.00

8 24.395 4h 24.395 180s 27.457 0.89

are related to the impact of non-batching machines on the
second stage and to a different amount of computing time
for the subproblems, respectively.

5.3 Computational results

5.3.1 Results for small-size problem instances

Westart by presenting results for the eight small-size problem
instances described in Subsect. 5.1 (experiment 1 in Table 3).
The corresponding computational results are summarized in
Table 4.

We see from Table 4 that IDA(VNS, 15) is always able to
find the same TWT value as CPLEX. As expected, CPLEX
was only able to prove the optimality of the solution for
one problem instance. For this instance, a computing time
of around 23 minutes is observed. For the remaining seven
instances, the maximum computation time of 4h was used.
In Table 4, we mark the best TWT value for each instance in
bold.

5.3.2 Results for large-size problem instances

We present the computational results for the 384 problem
instances that are specified by the design of experiments sum-
marized in Table 1 (experiment 2 from Table 3). In a first
step, we compare the performance of IDA(TWD, 1) with
IDA(BWEDD, 1). However, since the average TWT values
of IDA(BWEDD, 1) are around 25% larger than the corre-
sponding values obtained by IDA(TWD, 1), we decided not
to perform additional experiments with the WEDD-based
TWD scheme.

Next, we show the absolute average TWT values for the
different bottleneck configurations in Table 5. Instead of
comparing all problem instances individually, the instances
are grouped according to factor levels such as number of jobs,
number of families, etc. For example, results for F1 = 6

imply that all other factors have been varied, but the number
of families for the first stage has been kept constant at 6.

In Table 5, we abbreviate the balanced machine situation
by BL, while the situation where the bottleneck is at the
first or at the second stage is abbreviated by BN1 and BN2,
respectively. In addition, for the content of the column “Best”
we first collect for each unique set of jobs that belongs to a
factor level the TWT values of the corresponding problem
instance with the best performance. The average of these
values is taken for each factor level. This allowsus to compare
the different bottleneck configurations.

Note that the best performing bottleneck configuration for
each group is marked in bold in Table 5 for IDA(VNS, 20)
and IDA(TWD, 1), respectively.

We show the corresponding results for Imp(VNS, 20) in
Table 6. Again, the largest improvements are marked in bold.

The difference betweenTables 5 and 6 is that Table 6 better
represents the improvements of IDA(VNS, 20) compared to
IDA(TWD, 1) for a given bottleneck configuration. The aver-
age computing time of IDA(VNS, 20) per problem instance
is 422s whereas the corresponding time for IDA(TWD, 1) is
only around 0.09 s.

Improvements of up to 21% on average are possible when
IDA(TWD, 20) is considered.We observe a similar behavior
of the IDA(TWD, 20) values with respect to the bottleneck
configuration. It is interesting to see that the average com-
puting time for 20 iterations is less than 2s. Due to space
limitations, we do not present the detailed results.

5.3.3 Results for a flow shop with non-batching machines
on the second stage

We continue by showing computational results for the 16
additional problem instances where non-batching machines
are at the second stage (experiment 3 in Table 3). The corre-
sponding Imp(VNS, 20) values are presented in Table 7.
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Table 5 Results for different bottleneck configurations and large-size problem instances

TWT IDA(VNS, 20) IDA(TWD, 1)

BN1 BL BN2 Best BN1 BL BN2 Best

F

6 2705.81 1450.66 2761.62 1427.40 2984.64 1752.71 3130.33 1718.79

12 2871.36 1870.58 2880.11 1806.81 3356.92 2356.95 3448.00 2232.20

n

240 1808.38 1034.68 1632.98 1002.88 2091.72 1337.47 1994.28 1274.33

360 3768.79 2286.55 4008.75 2231.33 4249.84 2772.19 4584.05 2676.65

(B1, B2)

(2, 2) 3578.76 1817.40 2837.58 1816.55 3897.46 2193.39 3223.21 2192.59

(2, 4) 2140.40 1957.25 4336.09 1809.58 2499.75 2384.74 4965.25 2177.85

(4, 2) 3752.01 1615.47 2075.85 1600.30 4261.06 2010.49 2485.01 1918.68

(4, 4) 1683.17 1252.36 2033.93 1241.99 2024.85 1630.70 2483.17 1612.85

a

0.25 5121.36 3114.76 5119.89 3100.21 5734.95 3763.92 5874.81 3733.25

0.75 455.81 206.47 521.84 133.99 606.61 345.74 703.51 217.73

FF

1.1 2584.89 1489.88 2591.45 1441.70 2921.71 1849.91 2997.05 1768.65

1.3 2992.28 1831.36 3050.28 1792.50 3419.85 2259.75 3581.27 2182.34

Overall 2788.59 1660.62 2820.87 1617.10 3170.78 2054.83 3289.16 1975.49

Table 6 Imp(VNS, 20) Values
for large-size problem instances

Compare BN1 BL BN2

F

6 0.64 0.57 0.63

12 0.67 0.63 0.68

n

240 0.65 0.58 0.63

360 0.66 0.61 0.68

(B1, B2)

(2, 2) 0.63 0.50 0.61

(2, 4) 0.63 0.68 0.79

(4, 2) 0.72 0.61 0.57

(4, 4) 0.64 0.59 0.66

a

0.25 0.85 0.80 0.83

0.75 0.46 0.40 0.49

FF

1.1 0.62 0.55 0.64

1.3 0.69 0.64 0.68

Overall 0.66 0.60 0.66

Again, best results are marked in bold. The average com-
puting time for IDA(VNS, 20) is around 431 s, while the
corresponding time for IDA(TWD, 1) is only 0.16 s.

Table 7 Imp(VNS, 20) values
for non-batching machines on
the second stage

Compare Imp(VNS, 20)

F

6 0.81

12 0.81

n

240 0.80

360 0.82

a

0.25 0.85

0.75 0.77

FF

1.1 0.82

1.3 0.79

Overall 0.81

5.3.4 Results for a varying amount of computing time for
the subproblems

In experiment 4 from Table 3, we are interested in under-
standing the importance of the number of iterations for
IDA(VNS, 20) vs. the amount of computing time per
subproblem. The values for Imp(IDA(VNS,MI)) and
Imp(IDA(VNS,LT)) obtained in a specific iteration are plot-
ted as a function of the number of iterations in Fig. 5.
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Fig. 5 Imp (IDA (VNS,MI))
and Imp (IDA (VNS,LT))

values depending on the number
of iterations
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Note that the blue line corresponds to Imp(IDA(VNS,

MI)),whereas the red line is used to represent Imp(IDA(VNS,

LT)). The average improvement of MI is 34%, while we
observe 32% for LT.

5.4 Analysis and discussion of the computational results

Weknow fromTable 4 that theMIP approach and IDA(VNS,

15) obtain the same results. This indicates that IDA(VNS,

itermax) is correctly implemented and leads to high-quality
solutions (at least) for small-size problem instances. We also
see from Table 4 that IDA(TWD, 1) is clearly outperformed
by IDA(VNS, 15). The average improvement is 15%. As
expected, CPLEX was generally not able to prove the opti-
mality for the solutions within 4h of computing time.

The results presented in Table 5 clearly show that the
balanced bottleneck configuration BL leads to the small-
est average TWT values. This is also confirmed by the
results collected in the columns with the Best label. We also
see that the IDA(VNS, 20) scheme clearly outperforms the
IDA(TWD, 1) approach. This statement is also supported by
Table 6 where the relative improvements of IDA(VNS, 20)
compared to IDA(TWD, 1) are shown.

Up to 60% improvement can be observed by IDA(VNS,

20) in the a = 0.75 case (widespread ready times). The largest
average improvement is obtained for the balanced bottleneck
configuration.We observe an improvement of around 40% in
this situation. Note that the IDA(TWD, 20) approach leads
only up to 21% improvement on average (not shown). The
largest improvements are obtained in the case of a small num-
ber of families and jobs, widespread ready times, and tight
due dates. This behavior is expected because widespread
ready times and tight due dates make the decomposition
approach more important. When the number of families or
the number of jobs is large, the scheduling problem is harder
to solve.

We also see from Table 6 that the largest improvements
are often obtained for the balanced bottleneck configuration
because there is much room for optimization in this situation.

A different behavior is observed in the situation where the
first stage is the bottleneck and (B1, B2) = (2, 4). It seems
that IDA(VNS, 20) is able to make better batching decisions
in case of tight offered capacity. A similar behavior can be
observed for the situation where the bottleneck is on the sec-
ond stage and we have (B1, B2) = (4, 2).

We see from Table 7 that the importance of the different
factors is much smaller when the second stage consists of
non-batching machines, i.e., if we have (B1, B2) = (4, 1).
In contrast to the results obtained for the general case, the
improvements are fairly small, i.e., around 19% while we
have around 40% in the general setting.

When we compare the impact of the number of iterations
vs. the amount of computing time, we see from Fig. 5 that
MI is slightly outperformed by LT from iteration 11–18. But
for iteration 19 and 20, MI performs slightly better. This
behavior is also confirmed by the improvements of around
34% for MI and only 32% for LT. In addition, we observe
from Fig. 5 that using more than 20 iterations does not offer
any advantage in case of MI.

We can summarize our insights from the computational
experiments as follows:

1. A balanced bottleneck configuration is preferable since
the TWT values are smaller than in the two other situa-
tions, and the largest improvements are possible for the
iterative decomposition schemes.

2. If there are bottleneck stages for batch processing
machines then a small maximum batch size offers some
advantage in this situation. This observation is supported
by the common practice in real-world wafer fabs to pre-
scribe a minimum batch size in cases where there is a
large maximum batch size to avoid poor performance
because of undesirable batching decisions.

3. Performing a lot of iterations does not generally pay off.
Using 20 iterations is enough. A fairly small amount of
computing time is enough to solve the subproblems using
the proposed VNS scheme.
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4. The performance of the proposed iterative decomposition
scheme is sensitive to its appropriate parameterization.
From a computing point of view, the use of the iterative
decomposition heuristic with VNS-based subsolution
procedures with many (α, β) pairs from a grid is only
possible if multi-core computers are applied to solve the
scheduling problem.

5. If the time for decision making is crucial, then the itera-
tive decomposition variant with TWD-type subproblem
solution procedures should be used. In this situation even,
a grid search for appropriate (α, β) pairs is possible with-
out using multi-core machines.

6 Conclusions and future research

In this paper, we discussed a scheduling problem for a
two-stage flexible flow shop that includes batch process-
ing machines on each stage. Problems of this type arise in
wafer fabs. An iterative decomposition approach was pro-
posed. It is based on the idea to select internal due dates
and ready times for the jobs at the first and second stage,
respectively. Based on these internal due dates and ready
times, the overall scheduling problem is decomposed in a
series of scheduling problems for parallel batch process-
ing machines. A time window decomposition scheme and a
VNS approach are used to solve these scheduling problems.
Extensive computational experiments on randomly gener-
ated problem instances are used to demonstrate that the
proposed iterative decomposition approach leads to high-
quality solutions in a short amount of computing time. A
fairly small amount of iterations within the decomposition
scheme is enough. Comparing the results of the iterative
scheme including VNS-based subproblem solution proce-
dures with the results obtained after the first iteration and
the TWD approach for solving the two subproblems, we
clearly see the advantage of performing more than a single
iteration. The iterative update scheme is easier to implement
than conventional SBH-type approaches since specific addi-
tional batching nodes are not required. We observed that it is
worthwhile to consider machine configurations that lead to a
balanced workload of the two stages. If bottleneck configu-
rations cannot be avoided, then a small maximum batch size
at the bottleneck stage offers some advantage.

Note that the iterative decomposition approach with
VNS-based subproblem solution procedures tends to be
time-consuming since appropriate parameter values for the
iterations are required. To deal with this problem, multi-core
computers can be applied. If no such computers are avail-
able and the time for decision making is a constraint, then
the iterative decomposition scheme with subproblem solu-
tion procedures based on the time window decomposition

can be applied. However, the performance improvement of
this heuristic is much smaller.

There are several directions for future research. First of
all, we are interested in extending the researched prob-
lem by modeling more real-world details such as unrelated
parallel machines on each stage, machine dedications (i.e.,
only certain job families are allowed on specific machines),
and machine-specific maximum batch sizes. Another avenue
for fruitful research is given by including time constraints
between the first and the second stage, i.e., the start of an
operation on the second stage has to be completed within a
prescribed time window; otherwise, the job will be scraped
due to contamination effects (cf. Klemmt and Mönch 2012
for a more general discussion of time constraints in semicon-
ductor manufacturing).

It is also interesting to spend more effort to parallelize
the scheduling heuristics. We believe that it is worthwhile to
apply graphics processing unit (GPU) computing techniques
to tackle problem (1). This direction is especially important to
reduce the effort to select instance-specific (α, β) parameters
in combination with using VNS to solve the subproblems.
It seems that another fruitful application of parallelization
approaches is sampling techniques that are used to deal with
uncertain data (cf. Shahnaghi et al. 2016) because of the huge
computational burden in this situation. Another interesting
direction is to avoid the grid search approach for choosing
instance-specific (α, β) parameters. We believe that it is pos-
sible to extend the machine learning approaches proposed
in Mönch et al. (2006) to select parameters of BATC-type
rules to the present situation. Moreover, we are interested in
designing a VNS scheme that avoids the stage-based decom-
position. We expect that is possible to extend the approach
from Liao and Huang (2010) to the situation of batch pro-
cessing machines.

As a last research direction, we expect that it is possible to
apply the proposed iterative decomposition approach also for
flexible flow shops with serial batching machines and batch
availability when due date-oriented performance measures
are considered (cf. Shen et al. 2013, 2014 for corresponding
parallel machine scheduling problems).

References

Amin-Naseri, M. R., & Beheshti-Nia, M. A. (2009). Hybrid flow shop
scheduling with parallel batching. International Journal of Pro-
duction Economics, 117(1), 185–196.

Bellanger, A., & Oulamara, A. (2009). Scheduling hybrid flowshop
with parallel batching machines and compatibilities. Computers
& Operations Research, 36(6), 1982–1992.

Bilyk, A., Mönch, L., & Almeder, C. (2014). Scheduling jobs with
ready time and precedence constraints on parallel batch machines
using metaheuristics. Computers & Industrial Engineering, 78,
175–185.

123



J Sched (2018) 21:209–226 225

Chen, C.-L., & Chen, C.-L. (2008). Bottleneck-based heuristic to min-
imize tardy jobs in a flexible flow line with unrelated parallel
machines. International Journal of Production Research, 42(1),
165–181.

Chen, C.-L., & Chen, C.-L. (2009). bottleneck-based heuristic to mini-
mize total tardiness for the flexible flow linewith unrelated parallel
machines. Computers & Industrial Engineering, 56, 1393–1401.

Damodaran, P., & Srihari, K. (2004). Mixed integer formulation to min-
imize makespan in a flow shop with batch processing machines.
Mathematical and Computer Modelling, 40(13), 1465–1472.

Demirkol, E., Mehta, S., & Uzsoy, R. (1997). A computational study
of shifting bottleneck procedures for shop scheduling problems.
Journal of Heuristics, 3, 111–137.

Demirkol, E., & Uzsoy, R. (2000). Decomposition methods for reen-
trant flow shops with sequence-dependent setup times. Journal of
Scheduling, 3, 155–177.

Emmons, H., & Vairaktarakis, G. (2013). Flow shop scheduling: Theo-
retical results, algorithms, and applications. New York: Springer.

Fu, Q., Sivakumar, A. I., & Li, K. (2012). Optimizing of flow-shop
scheduling with batch processor and limited buffer. International
Journal of Production Research, 50(8), 2267–2285.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kann, A. H. G.
(1979). Optimization and approximation in deterministic sequenc-
ing and scheduling: A survey. Annals of Discrete Mathematics, 5,
287–326.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search:
Principles and applications. European Journal of Operational
Research, 130, 449–467.

Jain, A. S., & Meeran, S. (2002). A multi-level hybrid framework
applied to the general flow shop scheduling problem. Computers
& Operations Research, 29, 1873–1901.

Klemmt, A., &Mönch, L. (2012). Scheduling jobswith time constraints
between consecutive process steps in semiconductor manufactur-
ing. InProceedings of the 2012Winter Simulation Conference (pp.
2173–2182).

Koulamas, C. (1998). A guaranteed accuracy shifting bottleneck algo-
rithm for the two-machine flowshop total tardiness problem.
Computers & Operations Research, 25(2), 83–89.

Lee, G.-C., Kim, Y.-D., & Choi, S.-W. (2004). Bottleneck-focused
scheduling for a hybrid flowshop. International Journal of Pro-
duction Research, 42(1), 165–181.

Lei,D.,&Guo,X. (2011).Variable neighborhood search forminimizing
tardiness objectives on flow shop with batch processing machines.
International Journal of Production Research, 49(2), 519–529.

Liao, L.-M., & Huang, C.-J. (2010). Tabu search for non-permutation
flowshop scheduling problem with minimizing total tardiness.
Applied Mathematics and Computation, 217, 557–567.

Liao, L.-M., & Liao, C.-J. (2008). Improved MILP models for two-
machine flowshop with batch processing machines.Mathematical
and Computer Modeling, 48, 1254–1264.

Li, D., Meng, X., Liang, Q., & Zhao, J. (2015). A heuristic-search
genetic algorithm formulti-stage hybrid flow shop schedulingwith
single processing machines and batch processing machines. Jour-
nal of Intelligent Manufacturing, 26(5), 873–890.

Manjeshwar, P. K., Damodaran, P., & Srihari, K. (2009). Minimizing
makespan in aflowshopwith twobatch-processingmachines using
simulated annealing.Robotics andComputer-IntegratedManufac-
turing, 25(3), 667–679.

Mathirajan, M., & Sivakumar, A. (2006). A literature review, classifica-
tion and simplemeta-analysis on scheduling of batch processors in
semiconductor. International Journal of AdvancedManufacturing
Technology, 29, 990–1001.

Mehta, S. V., & Uzsoy, R. (1998). Minimizing total tardiness on a batch
processing machine with incompatible job families. IIE Transac-
tions, 30(2), 165–178.

Mönch, L., Balasubramanian, H., Fowler, J., & Pfund, M. (2005).
Heuristic scheduling of jobs on parallel batch machines with
incompatible job families and unequal ready times. Computers
& Operations Research, 32(11), 2731–2750.

Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., & Rose, O.
(2011). A survey of problems, solution techniques, and future chal-
lenges in scheduling semiconductor manufacturing operations.
Journal of Scheduling, 14(6), 583–595.

Mönch, L., Fowler, J. W., & Mason, S. J. (2013). Production planning
and control for wafer fabrication facilities: Modeling, analysis,
and systems. New York: Springer.

Mönch, L., Zimmermann, J., & Otto, P. (2006). Machine learning tech-
niques for scheduling jobs with incompatible families and unequal
ready times on parallel batch machines. Journal of Engineering
Applications of Artificial Intelligence, 19(3), 235–245.

Mukherjee, S., & Chatterjee, A. K. (2006). Applying machine-based
decomposition in 2-machine flow shops. European Journal of
Operational Research, 169, 723–741.

Oulamara, A. (2012). No-wait scheduling problems with batching
machines. Just-in-time systems. In R. Rios & Y. A. Ríos-Solís
(Eds.), Optimization and its applications. Berlin: Springer.

Robinson, J., Fowler, J. W., & Bard, J. F. (1995). The use of upstream
and downstream information in scheduling semiconductor batch
operations. International Journal of Production Research, 33(7),
1849–1869.

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop
scheduling problem. European Journal of Operational Research,
205(1), 1–18.

Shahnaghi, K., Shahmoradi-Moghadam, H., Noroozi, A., & Mokhtari,
H. (2016). A robust modelling and optimisation framework for a
batch processing flow shop production system in the presence of
uncertainties. International Journal of Computer Integrated Man-
ufacturing, 29(1), 92–106.

Shen, L.,Mönch, L.,&Buscher, U. (2013).An iterative approach for the
serial batching problem with parallel machines and job families.
Annals of Operations Research, 206(1), 425–448.

Shen, L., Mönch, L., & Buscher, U. (2014). Simultaneous and iterative
approach for parallelmachine schedulingwith sequence dependent
family setups. Journal of Scheduling, 17(5), 471–487.

Su, L.H. (2003).Ahybrid two-stage flow shopwith limitedwaiting time
constraints.Computers& Industrial Engineering, 44(3), 409–424.

Sung, C. S., & Kim, Y. H. (2002). Minimizing makespan in a two-
machine flowshop with dynamic arrivals allowed. Computers &
Operations Research, 29(3), 275–294.

Sung, C. S., & Kim, Y. H. (2003). Minimizing due date related per-
formance measures on two batch processing machines. European
Journal of Operational Research, 147(3), 644–656.

Sung, C. S., Kim, Y. H., & Yoon, S. H. (2000). A problem reduction
and decomposition approach for scheduling for a flowshop of batch
processing machines. European Journal of Operational Research,
121(1), 179–192.

Tan, Y., Mönch, L., & Fowler, J. W. (2014). A decomposition heuristic
for a two-machine flow shopwith batch processing. InProceedings
of the 2014 Winter Simulation Conference (pp. 2490–2501).

Tan, Y., Mönch, L., & Fowler, J. W. (2015). Scheduling jobs in a
two-stage flexible flow shop with batch processing machines. In
Proceedings MISTA (pp. 801–804).

Uzsoy, R., Lee, C. Y., &Martin-Vega, L. A. (1992). A review of produc-
tion planning and schedulingmodels in the semiconductor industry
part I: System characteristics, performance evaluation and produc-
tion planning. IIETransactions onScheduling andLogistics,24(4),
47–61.

Vepsalainen, A. P. J., & Morton, T. E. (1987). Priority rules for job
shops with weighted tardiness cost. Management Science, 33(8),
1035–1047.

123



226 J Sched (2018) 21:209–226

Vepsalainen, A. J. P., & Morton, T. E. (1988). Improving local priority
rules with global lead-time estimates: A simulation study. Journal
of Manufacturing and Operations Management, 1, 102–118.

Wang, I.-L., Yang, T., & Chang, Y.-B. (2012). Scheduling two-stage
hybrid flow shops with parallel batch, release time, and machine
eligibility constraints. Journal of Intelligent Manufacturing, 23,
2271–2280.

Yang, Y., Kreipl, S., & Pinedo, M. (2000). Heuristics for minimizing
total weighted tardiness in flexible job shops. Journal of Schedul-
ing, 3, 89–108.

Yugma, C., Dauzère-Pérès, S., Artigues, C., Derreumaux, A., & Sibille,
O. (2012). A batching and scheduling algorithm for the diffu-
sion area in semiconductor manufacturing. International Journal
of Production Research, 50(8), 2118–2132.

123


	A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines
	Abstract
	1 Introduction
	2 Scheduling problem
	2.1 Problem setting
	2.2 MIP formulation

	3 Related work
	4 Hybrid heuristics
	4.1 Iterative decomposition approach
	4.2 Time window decomposition
	4.3 VNS scheme

	5 Computational experiments
	5.1 Design of experiments
	5.2 Implementation issues and parameter setting
	5.3 Computational results
	5.3.1 Results for small-size problem instances
	5.3.2 Results for large-size problem instances
	5.3.3 Results for a flow shop with non-batching machines on the second stage
	5.3.4 Results for a varying amount of computing time for the subproblems

	5.4 Analysis and discussion of the computational results

	6 Conclusions and future research
	References




