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Abstract We introduce two scheduling problems, the flex-
ible bandwidth allocation problem (FBAP) and the flexible
storage allocation problem (FSAP). In both problems, we
have an available resource, and a set of requests, each con-
sists of a minimum and a maximum resource requirement,
for the duration of its execution, as well as a profit accrued
per allocated unit of the resource. In FBAP, the goal is to
assign the available resource to a feasible subset of requests,
such that the total profit is maximized, while in FSAP we
also require that each satisfied request is given a contiguous
portion of the resource. Our problems generalize the classic
bandwidth allocation problem (BAP) and storage allocation
problem (SAP) and are therefore NP-hard. Our main results
are a 3-approximation algorithm for FBAP and a (3 + ε)-
approximation algorithm for FSAP, for any fixed ε > 0.
These algorithms make nonstandard use of the local ratio
technique. Furthermore, we present a (2+ ε)-approximation
algorithm for SAP, for any fixed ε > 0, thus improving the
best known ratio of 2e−1

e−1 + ε. Our study is motivated also
by critical resource allocation problems arising in all-optical
networks.

A preliminary version of this paper appeared in the proceedings of the
39th International Symposium on Mathematical Foundations of
Computer Science(MFCS), 2014.
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1 Introduction

1.1 Background

Scheduling activities with resource demands arise in a wide
range of applications. In these problems, we have a set of
activities competing for a reusable resource. Each activity
utilizes a certain amount of the resource for the duration of
its execution and frees it upon completion. The problem is to
find a feasible schedule for a subset of the activities which
satisfies certain constraints, including the requirement that
the total amount of resource allocated simultaneously for
executing activities never exceeds the amount of available
resource. Two classic problems that fit in this scenario are
the bandwidth allocation problem (BAP) and the storage
allocation problem (SAP). In BAP, the goal is to assign the
available resource to a feasible subset of activities, such that
the total profit is maximized, while in SAP it is also required
that any satisfied activity is given the same contiguous portion
of the resource for its entire duration (for references and
further discussion see Sect. 1.4). We introduce two variants
of these problems where each activity has a minimum and a
maximum possible request size, as well as a profit per unit
of the resource allocated to it. We refer to these variants as
the flexible bandwidth allocation problem (FBAP) and the
flexible storage allocation problem (FSAP).

1.2 Problem statement

In this work, we study FBAP and FSAP on a path network. In
graph-theoretical terms, the input for FBAP and FSAP con-
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sists of a path P = (V, E) and a set I of n intervals on P .
Each interval I ∈ I requires the utilization of a given, lim-
ited, resource. The amount of resource available, denoted by
W > 0, is fixed over P . Each interval I ∈ I is defined by the
following parameters: (i) a left endpoint, l(I ) ≥ 0, and a right
endpoint, r(I ) > l(I ). Thus, I is associated with the half-
open interval [l(I ), r(I )) on P . (ii) The amount of resource
range required by each interval I , where a(I ), b(I ) are inte-
gers satisfying 0 ≤ a(I ) ≤ b(I ) ≤ W . Thus, I can take any
value in the possible range for I , given by [a(I ), b(I )], or
0. (iii) The profit w(I ) gained for each unit of the resource
allocated to I , where w(I ) ≥ 0 is an integer.1

A feasible allocation has to satisfy the following condi-
tions. (i) Each assigned interval I ∈ I is allocated an amount
of the resource in its possible range or is not allocated at all.
(ii) The specific resources allocated to an interval are fixed
along the interval. (iii) The total amount of the resource allo-
cated at any time does not exceed the available amount W .
In FBAP, we seek a feasible allocation which maximizes the
total profit accrued by the intervals. In FSAP, we add the
requirement that the allocation to each interval is a contigu-
ous block of the resource for the entire duration. Note that a
solution for FSAP is a solution for FBAP, while the converse
is not necessarily true.

Example Consider a path consisting of the nodes {0, 1, . . . ,
5}, and the set of intervals in the form I = ([l(I ), r(I )), a(I ),
b(I ), w(I )), I1 = ([0, 1), 1, 2, 2), I2 = ([0, 2), 1, 2, 2),
I3 = ([1, 3), 1, 1, 2), I4 = ([1, 4), 1, 1, 2), I5 = ([0, 4), 1,
1, 1), I6 = ([2, 4), 1, 1, 2), I7 = ([3, 5), 1, 2, 2), and I8 =
([4, 5), 1, 2, 2). The amount of resource available is W = 4.
A possible FBAP and FSAP solution is illustrated in Fig.
1a, it has a total profit of 19. Figure 1b illustrates a better
FBAP solution, which assigns one more resource block to
I2 and I7, while the interval I5 is not assigned at all. This
assignment has a total profit of 22. We note that this cannot
be a feasible solution for FSAP, since interval I8 is assigned
a non-contiguous block of the resource. To have a feasible
FSAP solution, the assignment for interval I8 is reduced to
one resource unit, as illustrated in Fig. 1c. This assignment
has a total profit of 20.

Approximation algorithms We develop approximation
algorithms and analyze their worst case performance. For
ρ ≥ 1, a ρ-approximation algorithm for a maximization
problemΠ yields in polynomial time a solution whose value
is at least within a factor 1/ρ of the optimum, for any input
for Π .

1 We note that our results can be adapted also to instances when a(I ),
b(I ) and w(I ) are non-integers.
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Fig. 1 Example for FBAP and FSAP, where a is a possible FBAP and
FSAP solution, b is an optimal FBAP solution, and c is an optimal
FSAP solution

1.3 Applications of FSAP and FBAP

The problems FSAP and FBAP have important applications
in real-time scheduling. Consider, for example, a reusable
resource of fixed size and activities that have a minimum and
amaximum range for contiguous or non-contiguous resource
requirement. The resourcemay bememory, computing units,
servers in a Cloud, or network bandwidth. The allocated
amount of resource for the activities actually determines it
performance, quality of service, or processing time. In the
following, we present the application of FBAP and FSAP in
optimizing spectrum assignment in all-optical networks.
Spectrum assignment in all-optical networks In mod-
ern optical networks, several high-speed signals are sent
through a single optical fiber. A signal transmitted opti-
cally from some source node to some destination node over
a wavelength is termed lightpath (for comprehensive sur-
veys on optical networks, see, e.g., Ramaswami et al. 2009;
Ali Norouzi andUstundag 2011). Traditionally, the spectrum
of light that can be transmitted through the fiber has been
divided into frequency intervals of fixed width, with a gap of
unused frequencies between them. In this context, the term
wavelength refers to each of these predefined frequency inter-
vals. An emerging architecture, which moves away from the
rigid model toward a flexible model, was suggested in Jinno
et al. (2009), Gerstel (2010). In this model, the usable fre-
quency intervals are of variablewidth (even within the same
link). Every lightpath has to be assigned a frequency interval
(sub-spectrum),which remains fixed through all of the links it
traverses. As in the traditionalmodel, two different lightpaths
using the same link must be assigned disjoint sub-spectra.
This technology is termed flex-grid (or flex-spectrum), as
opposed to the fixed-grid (or fixed-spectrum) traditional tech-
nology. The network implications of this new architecture are
described in detail in Gerstel (2011). The following spectrum
assignment problems arising in the fixed-grid and flex-grid
technology correspond to FBAP and FSAP, respectively. We
are given a set of flexible connection requests, each with a
lower and upper bound on the width of its spectrum request,
as well as an associated positive profit per allocated spectrum
unit. In the fixed-grid (or flex-grid) technology, the goal is to
find a non-contiguous (or contiguous) spectrum assignment
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for a subset of requests that maximizes the total profit. A
detailed description of this module is given in Shachnai et al.
(2014).

1.4 Related work

Bandwidth allocation problem (BAP) We are given a
network having some available bandwidth and a set of con-
nection requests. Each request consists of a path in the
network, a bandwidth requirement, and a weight. The goal
is to feasibly assign bandwidth to a maximum weight sub-
set of requests. BAP is strongly NP-hard even for uniform
profit on a path network Chrobak et al. (2012). Bar-Noy
et al. (2001) presented a 3-approximation algorithm for the
problem. Călinescu et al. (2011) gave a randomized approx-
imation algorithm with expected performance ratio of 2+ ε,
for any ε > 0. The best known result is a deterministic
(2+ε)-approximation algorithm due toChekuri et al. (2007).
The generalized version of BAP, in which edge capacities
are non-uniform, is known as the unsplittable flow problem
(UFP). Bansal et al. (2006) developed a deterministic quasi-
polynomial time approximation scheme for UFP on the line,
assuming a quasi-polynomial bound on all edge capacities
and demands in the input instance.
Storage allocation problem (SAP) In this special case of
BAP, we require that each activity is allocated a single con-
tiguous block of resource for all of its edges. SAP is NP-hard.
It was first studied by Bar-Noy et al. (2001) and by Leonardi
et al. (2000). An approximation algorithm of Bar-Noy et al.
(2001) yields a ratio of 7. Chen et al. (2002) studied the
special case in which all resource requirements are multi-
ples of 1/K , for some integer K ≥ 1. They presented an
O(n(nK )K ) time dynamic programming algorithm to solve
this special case and also gave an approximation algorithm
with ratio e

e−1 + ε, for any ε > 0, assuming the maximum
resource requirement of any activity is O(1/K ). Bar-Yehuda
et al. (2009) presented a randomized (2 + ε)-approximation
algorithm for SAP, along with a deterministic ( 2e−1

e−1 + ε)-
approximation algorithm, for any fixed ε > 0. Mömke and
Wiese (2015) studied the generalized version of SAP, in
which edge capacities are non-uniform.Theypresented a ran-
domized LP-based approximation algorithm with expected
performance ratio of 2 + ε, for any ε > 0.
The flex non-contiguous (FNC) and flex contiguous (FC)
problems FNC and FC are restricted variants of FBAP and
FSAP, respectively, in which all intervals have to be assigned
an amount of resource in their required range, i.e., for each
interval I ∈ I, the amount of the assigned resource is at
least a(I ). We note that the special case of FNC and FC in
which a(I ) = 0, for all I ∈ I, is also a special case of FBAP
and FSAP, respectively. The papers Shalom et al. (2013),
Shachnai et al. (2014), Katz et al. (2016) consider FNC and
FC. Shalom et al. (2013) showed that FNC is polynomially

solvable. In contrast, Shachnai et al. (2014) observed that FC
cannot be approximated within any bounded ratio, unless
P = N P . They showed that FC is NP-hard in the strong
sense for the subclass of instances where a(I ) = 0 for all I ∈
I, and presented a (2+ ε)-approximation algorithm for such
instances, for any fixed ε > 0. For this subclass, Katz et al.
(2016) presented a (5/4+ε)-approximation algorithm in the
special case where the input is a proper interval graph, for
any fixed ε > 0. The paper Katz et al. (2016) also extends our
hardness result for FSAP, as given in the preliminary version
of this paper, by showing that FC is NP-hard even if for all
I ∈ I, a(I ) = 0, b(I ) = Max for some 1 ≤ Max ≤ W , and
w(I ) = 1. For this special case, the authors obtain a ( 2k

2k−1 )-

approximation algorithm, where k = � W
Max �, and show that

this subclass admits apolynomial timeapproximation scheme
(PTAS).

1.5 Our results

We study the scheduling problems FBAP and FSAP. We
note that both problems are NP-hard and show that, in fact,
FSAP is NP-hard in the strong sense for any instance I where
a(I ) �= b(I ) for all I ∈ I. We first give a 3-approximation
algorithm for FBAP. We then show that this algorithm can
be extended to yield a (3 + ε)-approximation for FSAP, for
any fixed ε > 0. Finally, we consider SAP, the special case
of FSAP where a(I ) = b(I ) for all I ∈ I. We present a
(2 + ε)-approximation algorithm, for any fixed ε > 0, thus
improving the best known ratio of 2e−1

e−1 + ε, due to Bar-
Yehuda et al. (2009).
Techniques In developing our approximation algorithm for
FBAP, wemake nonstandard use of the local ratio technique.
In particular, we apply the technique for a maximization
problem, where instances are associated with profit per unit
vectors, and the output solution has a continuous as well as
discrete component. Indeed, this is due to the fact that the
amount of resource allocated to each request can either be in
its possible range, or else equal to zero. To the best of our
knowledge, this interpretation of the local ratio technique
is given here for the first time. We note that a straightfor-
ward application of an algorithm of Bar-Noy et al. (2001),
combined with allocation of integral powers of (1 + ε) in
the range [a(I ), b(I )], for any I ∈ I, yields a polynomial
time (4+ ε)-approximation for FBAP. Our algorithm, which
allows any allocation in the continuous range [a(I ), b(I )],
has better running time and yields an improved ratio of
3.
Organization of the paper In Sect. 2, we give some defi-
nitions and notation, our proof of hardness for FSAP and a
short overview of the local ratio technique. We study FBAP
in Sect. 3, FSAP in Sect. 4, and SAP in Sect. 5. We conclude
in Sect. 6 with a summary and directions for future work.
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2 Preliminaries

Throughout the paper, we use graph-theoretical coloring ter-
minology. Specifically, the set of requests I is represented as
a set of n intervals on a path P = (V, E). For an interval I , we
denote by l(I ) and r(I ) its left endpoint and right endpoint,
respectively. The amount of available resource, W , can be
viewed as the amount of available distinct colors. Each inter-
val I ∈ I has a minimum a(I ) and a maximum b(I ) color
requirements, 0 ≤ a(I ) ≤ b(I ) ≤ W , and a positive profit
per allocated color (or profit per unit)w(I ), where a(I ), b(I )
and w(I ) are nonnegative integers.

The set of available colors isΛ = {1, . . . ,W }. A contigu-
ous range of colors is any setΛ j

i = {t : 1 ≤ i ≤ t ≤ j ≤ W },
and is termed an interval of colors. A (multi)coloring is a
function σ : I �→ 2Λ that assigns to each interval I ∈ I a
subset of the set Λ of colors. A coloring σ is feasible if for
every I ∈ I a(I ) ≤ |σ(I )| ≤ b(I ), or |σ(I )| = 0, and for
any two intervals I, I ′ ∈ I such that I ∩ I ′ �= ∅ we have
σ(I ) ∩ σ(I ′) = ∅. A contiguous color assignment is a col-
oring σ that assigns a contiguous range of colors. For any
disjoint subsets I ′, I ′′ ⊆ I, a coloring function σ for I ′ can
be expanded to a coloring function σ for I ′ ∪ I ′′ such that
σ(I ) = σ(I ) for each I ∈ I ′ and σ(I ) = ∅ for each I /∈ I ′.
The total profit of a feasible coloring σ of I ′ ⊆ I is given by

profitσ (I ′) de f= ∑
I∈I ′ |σ(I )| · w(I ). When there is no ambi-

guity regarding the set of intervals, we simply write profitσ .
We denote by E(I ) the set of edges that are contained in I .
For an edge e, we denote by Ie the subset of I consisting of
the intervals containing e.
The problems We first introduce the following coloring
problem FBAP:

FBAP(I,W )

Input: A tuple (I,W ), where I is a set of intervals, and
W is a positive integer.
Output: A feasible coloring function σ for I.
Objective: Maximize profitσ (I).

A solution S for FBAP consists of the intervals that were
assigned at least one color, i.e., a set of pairs, where the first
entry of each pair is an interval I ∈ I, and the second entry
is the interval coloring size |σ(I )|.

The second problem is the contiguous color assignment
variant, FSAP, in which the goal is to find a feasible contigu-
ous coloring σ for I that maximizes profitσ (I).

FSAP(I,W )

Input: A tuple (I,W ), where I is a set of intervals, and
W is a positive integer.
Output: A feasible contiguous coloring function σ for I.
Objective: Maximize profitσ (I).

A solution S for FSAP consists of the intervals that were
assigned at least one color, i.e., a set of triples, where the first
entry of each triple is an interval I ∈ I, the second entry
is the interval coloring size |σ(I )|, and the third entry is its
lowest color index.

Given a solution S to FSAP (or FBAP), we denote by IS
the intervals of S and by σS their coloring function. Note that
for FBAP it is impossible to return a solution of the exact
color assignment σ in polynomial time. For example, sup-
pose we are given a path and a set of intervals I = {I }where
a(I ) = 0 and b(I ) = W . Presenting a coloring solution σ

such that |σ(I )| = polylog(W ) is not polynomial in the
input size. Therefore, following the description of the algo-
rithm for FBAP, we explain how to achieve the exact color
assignment.

We note thatBAP and SAP are special cases of FBAP and
FSAP, respectively (where a(I ) = b(I ) for every I ∈ I).
BAP and SAP are NP-hard since they include the Knapsack
problem as a special case, where all intervals share the same
edge; thus, we have that FSAP and FBAP are NP-hard. In
addition, following the hardness result of Katz et al. (2016),
FSAP is NP-hard for the subclass in which for all I ∈ I,
a(I ) = 0, b(I ) = Max for some 1 ≤ Max ≤ W , and
w(I ) = 1. For another subclass, where a(I ) �= b(I ) for
all I ∈ I, we show that the problem remains NP-hard in
the strong sense, even where all intervals have the same unit
profit.

Lemma 1 FSAP is NP-hard in the strong sense, even for
uniform profit instances, where a(I ) �= b(I ) for all I ∈ I.
Proof We show that the decision version of FSAP is
NP-complete.
FSAP(I,W, B) Decision Problem
Input: A tuple (I,W, B), where I is a set of intervals, and
W and B are positive integer.
Question: Is there a feasible contiguous coloring function σ

for I such that profitσ (I) ≥ B?
The reduction is from the dynamic storage allocation

(DSA) problem. The DSA problem deals with packing a
given set of rectangles that can only move vertically, into
a horizontal strip of minimum height, such that no two rect-
angles overlap. The problem is known to be NP-complete in
the strong sense (problem SR2 in Garey and Johnson 1979).
Formally, the input for the DSA problem is a tuple (R, D),
where R is the set of items to be stored; each item r ∈ R
has a size s(r) ∈ Z

+, an arrival time ar(r) ∈ Z
+
0 , and a

departure time de(r) ∈ Z
+. D ∈ Z

+ is the storage size. The
goal is to determine whether there is a feasible allocation of
storage for R, i.e., a function h : R �→ {1, 2, . . . , D}, such
that (i) for each r ∈ R, the allocated storage interval I (r) =
{h(r), . . . , h(r) + s(r) − 1} is contained in {1, . . . , D}, and
(i i) for each r, r ′ ∈ R, if I (r) ∩ I (r ′) �= ∅ then either
de(r) ≤ ar(r ′) or de(r ′) ≤ ar(r ′).
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Given an instance I = (R, D) of the DSA problem, we
form a corresponding instance I ′ = (I,W, B) of FSAP as
follows. For each r ∈ R, we define an interval Ir where
l(Ir ) = ar(r), r(Ir ) = de(r), a(Ir ) = s(r) − 1, b(Ir ) =
s(r), and w(Ir ) = 1. We set the amount of available colors
W = D, and finally set the profit B = ∑

r∈R s(r). We have
to show that there exists a solution for I iff there exists a
solution for I ′.

Assume that there is a feasible allocation storage func-
tion h for I as described above. Then, the contiguous color
assignment σ for the corresponding interval Ir ∈ I is
σ(Ir ) = {h(r), . . . , h(r) + s(r) − 1}. The profit of this allo-
cation is

∑
I∈I |σ(P)| · 1 = ∑

r∈R s(r) = B. Therefore,
there exists a solution for I ′.

Conversely, suppose there is a feasible contiguous color-
ing function σ for I ′ with profit of at least B = ∑

r∈R s(r).
Thus, each interval Ir ∈ I got a color interval of size
b(Ir ) as follows: σ(Ir ) = {i, . . . , i + b(Ir ) − 1} for some i ,
1 ≤ i ≤ W +1−b(Ir ). Then, the solution for the DSA prob-
lem, i.e., the function h for the corresponding item r ∈ R is
h(r) = i . This allocation is contained in {1, . . . , D}. In addi-
tion, since σ is a feasible contiguous color assignment, for
each r, r ′ ∈ R, if I (r)∩ I (r ′) �= ∅ then either de(r) ≤ ar(r ′)
or de(r ′) ≤ ar(r). Therefore, there is a feasible allocation of
storage for I . We note that this is a polynomial time transfor-
mation. In addition, given a solution forFSAP, its correctness
can be verified in polynomial time; therefore, the FSAP deci-
sion problem is NP-complete. ��

Narrow and wide intervals In deriving our approximation
results, for a given set of interval requests, we form two new
interval sets. We solve separately the problem for each set,
and then the solution of higher profit is expanded into a
solution for the original instance. Formally, given a set of
intervals I and a parameter δ ∈ (0, 1], we form two sets
of intervals Inarrow and Iwide as follows. For any I ∈ I
for which a(I ) ≤ δW , we define an interval Inarrow with
the same left and right endpoint as I , a(Inarrow) = a(I ),
b(Inarrow) = min{b(I ), �δW�}, and w(Inarrow) = w(I ). We
call this set of intervals Inarrow. For any I ∈ I for which
b(I ) > δW , we define an interval Iwide with the same left
and right endpoint as I , a(Iwide) = max{a(I ), �δW� + 1},
b(Iwide) = b(I ), and w(Iwide) = w(I ). This set of intervals
is termed Iwide.

Given feasible colorings of Inarrow and Iwide, we choose
the set that yields higher profit and assign the same colors
to the corresponding intervals in I. Formally, the feasible
coloring σnarrow (or σwide) of the instance (Inarrow, W ) (or
(Iwide,W )) is expanded it to a feasible coloring σ

expand
narrow (or

σ
expand
wide ) for (I,W ) such that, for any I ∈ I, ifa(I ) ≤ δW (or

b(I ) > δW ) then σ
expand
narrow (I ) = σnarrow(I ) (or σ

expand
wide (I ) =

σwide(I )); otherwise, σ
expand
narrow (I ) = ∅ (or σ

expand
wide (I ) = ∅).

We note that our technique generalizes a well-known
approximation technique, in which the input is partitioned
into two subsets; the problem is then solved separately for
each set, and the output is the solution of larger profit (see,
e.g., Bar-Noy et al. 2001; Chen et al. 2002; Bar-Yehuda et al.
2009; Călinescu et al. 2011; Mömke and Wiese 2015). In
contrast, our technique forms two new interval sets Inarrow
and Iwide, i.e., we do not necessarily have that Inarrow ⊆ I, or
Iwide ⊆ I. Indeed, it may be the case that our transformation
changes the range of possible colors for some intervals in the
original instance. The next lemma shows that the approxima-
tion ratio guaranteed by the common partitioning technique
holds also for our technique.

Lemma 2 Let (I,W ) be an instance of FBAP (or FSAP).
For any δ ∈ (0, 1], let σnarrow and σwide be a ρnarrow-
approximate solution for the instance (Inarrow,W ) and
a ρwide-approximate solution for the instance (Iwide,W ),
respectively, for ρnarrow, ρwide ≥ 1. Then, the solution
of larger profit can be expanded to a (ρnarrow + ρwide)-
approximate solution for the instance (I,W ).

Proof Let σ ∗, σ ∗
narrow, and σ ∗

wide be optimal solutions for the
instances (I,W ), (Inarrow,W ), and (Iwide,W ), respectively.

Given a feasible coloring function σ of (I,W ) we
derive feasible coloring function σ narrow and σwide for
(Inarrow,W ) and (Iwide,W ), respectively, as follows. For
the instance (Inarrow,W ), for any interval Inarrow ∈ Inarrow
if the corresponding interval I ∈ I was assigned with
|σ(I )| ≤ δW colors, then σ narrow(Inarrow) = σ(I ). Oth-
erwise, σ narrow(Inarrow) = ∅. For the instance (Iwide,W ),
for any interval Iwide ∈ Iwide if the corresponding inter-
val I ∈ I was assigned with |σ(I )| > δW colors,
then σwide(Iwide) = σ(I ). Otherwise, σwide(Iwide) = ∅.
Thus we have that for any feasible coloring σ of (I,W ),
profitσ (I) = profitσ

narrow
(Inarrow)+profitσ

wide
(Iwide). There-

fore, we conclude that profitσ
∗
(I) ≤ profitσ

∗
narrow(Inarrow) +

profitσ
∗
wide(Iwide). Assume w.l.o.g that profitσnarrow(Inarrow) ≥

profitσwide(Iwide). Then,

profitσ
∗
(I)

≤ profitσ
∗
narrow(Inarrow) + profitσ

∗
wide(Iwide)

≤ ρnarrow · profitσnarrow(Inarrow)

+ρwide · profitσwide(Iwide)
≤ (ρnarrow + ρwide) · profitσnarrow(Inarrow)

= (ρnarrow + ρwide) · profitσ expand
narrow (I).

��
The local ratio techniqueThe technique, initially developed
by Bar-Yehuda and Even (1985), with later extensions, e.g.,
in Bafna et al. (1999), Bar-Yehuda (2000), Bar-Noy et al.
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(2001), is based on the Local Ratio Theorem. Let w ∈ R
n

be a profit vector, and let F be a set of feasibility constraints
on vectors x ∈ R

n . A vector x ∈ R
n is a feasible solution

to a given problem instance (F,w) if it satisfies all of the
constraints in F . Its value is the inner product w · x.

Theorem 1 (Bar-Noy et al. (2001)) Let F be a set of con-
straints and let w, w1, and w2 be profit vectors such that
w = w1 + w2. Then, if x is an r-approximate solution with
respect to (F,w1) and with respect to (F,w2), then it is an
r-approximate solution with respect to (F,w).

In this paper, we apply the technique, taking w to be the
vector of profit per unit for the elements, and the solution
vector x specifies the amount of resource units allocated to
the input elements. The amount of resource allocated to each
element can either be in its possible range, or else equal to
zero.

3 A 3-approximation algorithm for FBAP

In this section,wepresent a polynomial time3-approximation
algorithm for FBAP. Given an instance (I,W ) of FBAP, the
algorithm starts by forming two sets of intervals: Iwide and
Inarrow, using δ = 1/2 as defined in Sect. 2. For the wide
intervals, Iwide, the algorithm reduces the problem to max-
imum weight independent set (MWIS) on interval graphs,
which has an optimal polynomial time algorithm (Golumbic
1980). Since each interval requires at least more than half
of the resource, no pair of intersecting intervals can be col-
ored together; therefore, by reducing it to an interval with a
width of its maximal resource requirement, we get an opti-
mal solution. For the narrow intervals, Inarrow, we present a
2-approximation algorithm. The algorithm returns expansion
to I of the color assignment of larger profit. By Lemma 2,
we obtain a 3-approximation for FBAP(I,W ).
FBAP on narrow intervals In the following, we describe
algorithm NarrowFBAP and then prove that it yields a 2-
approximation for the narrow intervals. The input for the
algorithm is a tuple (I, w), where I is a set of intervals andw

is the profit per unit function of I. AlgorithmNarrowFBAP
uses the local ratio technique; it is recursive and works as
follows. The algorithm starts by removing all intervals of
non-positive profit per unit value as they do not change the
optimum value. If no intervals remain, then it returns ∅.
Otherwise, it chooses an interval Ĩ with the minimum right
endpoint. It constructs a new profit per unit function w1,
which assign profit only to intervals which intersect Ĩ and
solves the problem recursively on w2 = w − w1. Then, if
the solution that was computed recursively has at least a( Ĩ )
colors available for Ĩ , it adds Ĩ to the solution with the max-
imal amount of colors such that the feasibility is maintained.

For a profit per unit function w, the total profit of a feasi-
ble coloring function σ of a subset I ′ ⊆ I is denoted by
prof i tσ (I ′, w). Given a solution S, the load of an edge e in

S is defined as load(S, e)
de f= ∑

I∈Ie∩IS
|σS(I )|.

Algorithm 1 NarrowFBAP(I, w)

1: I ← I \ {I ∈ I : w(I ) ≤ 0}
2: If I = ∅ then return ∅
3: Select an interval Ĩ ∈ I with a minimum right endpoint
4: Define for each I ∈ I

w1(I ) = w( Ĩ ) ·

⎧
⎪⎨

⎪⎩

1 I = Ĩ ,
b( Ĩ )

W−a( Ĩ )
I �= Ĩ , I ∩ Ĩ �= ∅,

0 otherwise.

and w2 = w − w1
5: S′ ← NarrowFBAP(I, w2)

6: ẽ ← argmaxe∈E( Ĩ ) load(S
′, e)

7: If a( Ĩ ) ≤ W − load(S′, ẽ) then S ← S′ ∪ {( Ĩ ,min{b( Ĩ ),W −
load(S′, ẽ)})}

8: Else S ← S′
9: Return S

Wenote that algorithmNarrowFBAP returns the number
of colors assigned to each interval. The algorithm can be
easily modified to return the coloring of the intervals, by
changing Line 7 to add to the solution the list of assigned
colors, rather than their number.

Theorem 2 Algorithm NarrowFBAP(I, w) computes in
polynomial time a 2-approximate solution for any FBAP
instance in which b(I ) ≤ W/2 for all I ∈ I.

Proof Clearly, the first step, in which intervals of non-
positive profit are deleted, does not change the optimum
value. Thus, it is sufficient to show that S is a 2-approximation
with respect to the remaining intervals. The proof is by
induction on the number of recursive calls. At the basis of
the recursion, the solution returned is optimal and is a 2-
approximation, since I = ∅. For the inductive step, we show
that the returned solution S is a 2-approximation with respect
tow1 andw2, and thus, by theLemma2, it is 2-approximation
with respect tow. Assuming that S′ is a 2-approximationwith
respect to w2, we have to show that S is a 2-approximation
with respect to w2. Since w2( Ĩ ) = 0 and S′ ⊆ S, it follows
that S is a 2-approximation with respect to w2.

We now show that S is a 2-approximation with respect to
w1. In order to prove this, we need the following claims.

Claim 1 For the solution S, prof i tσS (IS, w1) ≥ w1( Ĩ ) ·
b( Ĩ ).

Proof The claim holds since, either Ĩ ∈ IS and a( Ĩ ) ≤∣
∣
∣σS( Ĩ )

∣
∣
∣ ≤ b( Ĩ ), or S′ ∪ {( Ĩ , a( Ĩ ))} is infeasible. For the case
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that Ĩ ∈ IS , if
∣
∣
∣σS( Ĩ )

∣
∣
∣ = b( Ĩ ), then prof i tσS (IS, w1) ≥

w1( Ĩ ) · b( Ĩ ); else, Ĩ ∈ IS and thus the profit accrued by the

intervals intersecting Ĩ is w1( Ĩ ) · b( Ĩ )
W−a( Ĩ )

· (W −
∣
∣
∣σS( Ĩ )

∣
∣
∣). In

addition,
∣
∣
∣σS( Ĩ )

∣
∣
∣ < b( Ĩ ), and since b( Ĩ ) ≤ W/2, we have

that a( Ĩ ) + b( Ĩ ) ≤ W , and thus

profitσS (IS, w1)

= w1( Ĩ ) ·
∣
∣
∣σS( Ĩ )

∣
∣
∣ + w1( Ĩ ) · b( Ĩ )

W − a( Ĩ )
·
(
W −

∣
∣
∣σS( Ĩ )

∣
∣
∣
)

= w1( Ĩ ) ·
∣
∣
∣σS( Ĩ )

∣
∣
∣ ·

(

1 − b( Ĩ )

W − a( Ĩ )

)

+w1( Ĩ ) · b( Ĩ ) · W

W − a( Ĩ )

≥ w1( Ĩ ) · b( Ĩ ).

Consider now the case where Ĩ /∈ IS . Since S′ ∪
{( Ĩ , a( Ĩ ))} is infeasible, it follows that prof i tσS (IS, w1) ≥
w1( Ĩ ) · b( Ĩ )

W−a( Ĩ )
· (W − a( Ĩ ) + 1) ≥ w1( Ĩ ) · b( Ĩ ). Therefore

we conclude that prof i tσS (IS, w1) ≥ w1( Ĩ ) · b( Ĩ ). ��
Claim 2 Foranyoptimal solution S∗, pro f i tσS∗ (IS∗ , w1) ≤
2 · w1( Ĩ ) · b( Ĩ ).
Proof The claim holds since if

∣
∣
∣σS∗( Ĩ )

∣
∣
∣ ≥ a( Ĩ ), then

profitσS∗ (I, w1)

≤ w1( Ĩ ) ·
∣
∣
∣σS∗( Ĩ )

∣
∣
∣+w1( Ĩ ) · b( Ĩ )

W − a( Ĩ )
·
(
W −

∣
∣
∣σS∗( Ĩ )

∣
∣
∣
)

≤ w1( Ĩ ) · b( Ĩ ) + w1( Ĩ ) · b( Ĩ ) ·
⎛

⎝
W −

∣
∣
∣σS∗( Ĩ )

∣
∣
∣

W − a( Ĩ )

⎞

⎠

≤ 2 · w1( Ĩ ) · b( Ĩ ).

Else,
∣
∣
∣σS∗( Ĩ )

∣
∣
∣ = 0, and thus we have that prof i tσS∗ (I, w1)

≤ w1( Ĩ ) · b( Ĩ )
W−a( Ĩ )

· W , and since a( Ĩ ) ≤ W/2 we get that

prof i tσS∗ (IS∗ , w1) ≤ 2 · w1( Ĩ ) · b( Ĩ ). ��
Combining Claims 1 and 2, we have that S is a 2-

approximate solution with respect to w1. By Theorem 1, S is
also a 2-approximate solution with respect tow. The running
time is polynomial, since the number of recursive call is at
most the number of input intervals, and each call requires
linear time. ��

Combining the exact algorithm for MWIS in interval
graphs of Golumbic (1980), Theorem 2, and Lemma 2, we
have

Theorem 3 There exists a polynomial time 3-approximation
algorithm for FBAP.

4 A (3+ ε)-approximation algorithm for FSAP

We now show that our result for FBAP can be extended to
yield almost the same bound for FSAP. Given an instance
(I,W ) of FSAP, we form two sets of intervals: Inarrow and
Iwide (as defined in Sect. 2), using a parameter δ > 0 (to
be determined). For the wide intervals, Iwide, we present a
(1+ε)-approximation algorithm for any fixed ε > 0. For the
narrow intervals, Inarrow, we give a (2 + ε)-approximation
algorithm for any fixed ε > 0. The algorithm selects the color
assignment of larger profit among the assignments found for
Inarrow and Iwide. This assignment is then expanded into a
solution for the original instance I. By Lemma 2, we obtain a
(3+ ε)-approximate solution for FSAP, for any fixed ε > 0.
We note that any future improvements in the approximation
ratio for FBAP on narrow intervals would improve also the
approximation ratio of our algorithm for FSAP.
FSAP on wide intervals We describe below a (1 + ε)-
approximation algorithm for a wide instance of FSAP. The
algorithm is based on rounding data combined with dynamic
programming. We note that dynamic programming algo-
rithms are widely used for this class of allocation problems
(see, e.g., Chen et al. 2002; Bar-Yehuda et al. 2009). Given an
instance (I,W ) of FSAP, we say that σ is a feasible rounded
color assignment if it is a feasible coloring and for every
I ∈ I, |σ(I )| = kσ · �δ2 · W�, such that kσ ∈ {0, . . . , � 1

δ2
�}.

A rounded solution for FSAP is a solution having a rounded
color assignment. We present an optimal polynomial time
dynamic programming algorithm for this rounded version of
FSAP on the Iwide intervals and prove that it yields a (1+ε)-
approximation algorithm for the original Iwide instance of
FSAP.

Lemma 3 Givenan instance (I,W )ofFSAPand δ ∈ (0, 1],
where a(I ) ≥ �δW� + 1 for all I ∈ I, there is a polyno-
mial time algorithm that computes an optimal rounded color
assignment for (I,W ).

Proof Assume σ is a feasible contiguous color assignment
for (I,W ). Then, at any given point on the path, there are
at most 1/δ intervals that were assigned at least one color.
Therefore, the constant L = �1/δ� bounds the number of
such intervals. Let v ∈ {0, · · · , n}. We denote by I N v the
instance obtained from (I,W ) by restricting the interval set
to contain intervals that start at the pointv or earlier. Formally,
I N v = (Iv,W ), where Iv = {I ∈ I : l(I ) ≤ v}.

We say that two color assignments σ, σ ′ of the subsets
Q, Q′ agree if σ(I ) = σ ′(I ) whenever I ∈ Q ∩ Q′, and
we use the notation σ ∼ σ ′. For a rounded color assignment
σ , let σev be the color assignment of the intervals Iev , where
ev denotes the edge (v, v + 1), and Iev denotes the intervals
containing ev . We denote by OPT(INv, σev ) the profit of an
optimum FSAP rounded solution for texti t I N v that agrees
with σev . Consider a contiguous rounded color assignment
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σv of Iv , and a contiguous rounded color assignment σv−1

of Iv−1 that agrees with σv . We have

profitσ
v

(Iv) = profitσ
v−1

(
Iv−1

)
+

∑

I s.t l(I )=v

∣
∣σv(I )

∣
∣ · w(I ).

Therefore, given a rounded color assignment σev of Iev , the
value OPT(INv, σev ) is obtained as follows.

OPT(INv, σev ) = max
σev ∼σev−1

{
OPT

(
I N v−1, σev−1

)}

+
∑

I s.t l(I )=v

∣
∣σev (I )

∣
∣ · w(I ). (1)

Thus, we have that

max
{
OPT(INn−1, σ ) : σ is a contiguous rounded

coloring of Ien−1

}

is an optimal rounded solution for FSAP.
We note that any contiguous rounded color assignment σev

of the intervals Iev assigns colors to at most L intervals, and
for each I ∈ I, σev (I ) = {i · �δ2W�, . . . , j · �δ2W� : L ≤
i ≤ j ≤ L2}. Therefore, the number of possible nonzero

color assignments is bounded by
∑L

l=0

(L2

l

) = O(L2L+2).
In addition, there are at most nL possibilities for choosing the
intervals for the assignment, and the number of their permu-
tations is bounded by L! < LL . Thus, we have that for each
ev such that v ∈ {0, · · · , n} there are O(nL L3L+2) rounded
color assignments of the intervals Iev .

Thedynamicprogramming table is of sizeO(nL+1L3L+2),
and it is defined as follows. For each v ∈ {0, · · · , n−1}, and
for each feasible rounded color assignment σ of Iev , we have
an entry containing the value OPT (I N v, σ ). We initialize
the table by setting for each feasible rounded color assign-
ment σ of Ie0 OPT(IN0, σ ) = ∑

I s.t l(I )=0 |σ(I )| · w(I ).
We use the recursive formulation in (1) to compute all other
entries. To compute each entry OPT (I N i , σei ), we need
to go through all the optimal rounded solutions of all pos-
sible rounded color assignment of Iei−1 . There are at most
O(nL L3L+2) possibilities. Therefore, the total running time
is O(n2L+1L6L+4). ��

Applying the algorithm of Lemma 3 we have

Lemma 4 Given an instance (I,W ) of FSAP, for any fixed
ε > 0, there exists δ ∈ (0, 1], such that there is a polynomial
time (1 + ε)-approximation algorithm for (Iwide,W ).

Proof Let S be the returned solution after applying the
algorithm of Lemma 3. For each I ∈ IS , there exists
an integer kS(I ) ∈ {� 1

δ
�, . . . , � 1

δ2
�}, such that |σS(I )| =

kS(I ) · �δ2W�. Let S∗ be an optimal solution for Iwide and

OPT = profitσS∗ (Iwide). For each I ∈ IS∗ , there exists an
integer kS∗(I ) ∈ {� 1

δ
�, . . . , � 1

δ2
�}, such that kS∗(I )·�δ2W� <

|σS∗(I )| ≤ (kS∗(I ) + 1) · �δ2W�, and thus

|σS∗(I )| −
⌊
δ2W

⌋
≤ kS∗(I ) ·

⌊
δ2W

⌋
. (2)

Furthermore, we can derive a feasible rounded solution
from S∗, S∗round, such that IS∗round = IS∗ and for each
I ∈ IS∗ where σS∗(I ) = {i, . . . , j}, σS∗round (I ) =
{� i

δ2W
��δ2W�, . . . , � j

δ2W
��δ2W�}. Thus,

∣
∣σS∗round (I )

∣
∣ ≥ (kS∗(I ) − 2) ·

⌊
δ2W

⌋
. (3)

We note that, for each I ∈ Iwide, δW < a(I ), and thus

∑

I∈IS∗
δWw(I ) < profitσS∗ (IS∗). (4)

Hence,

profitσS (Iwide) =
∑

I∈IS

kS(I ) ·
⌊
δ2W

⌋
· w(I )

≥
∑

I∈I
S∗round

∣
∣σS∗round (I )

∣
∣ · w(I )

(by Ineq. (3)) ≥
∑

I∈I
S∗round

(kS∗(I ) − 2) ·
⌊
δ2W

⌋
· w(I )

=
∑

I∈IS∗
(kS∗(I ) − 2) ·

⌊
δ2W

⌋
· w(I )

(by Ineq. (2)) ≥
∑

I∈IS∗

(
|σS∗(I )| − 3

⌊
δ2W

⌋)
· w(I )

(by Ineq. (4)) > profitσS∗ (IS∗) − 3δprofitσS∗ (IS∗)

= OPT − 3δOPT .

By choosing δ ≤ ε
3(1+ε)

, we have a polynomial time (1+ ε)-
approximation algorithm for Iwide. ��

FSAP on narrow intervals We now show how to obtain a
(2+ε)-approximate solution for the Inarrow intervals. Recall
that, inBAP, we are given a path having one unit of available
resource, and a set I of intervals on the path. Each inter-
val I ∈ I consists of an arrival time and departure time, a
resource requirement s(I ) ∈ [0, 1], and a profit p(I ) ∈ Z.
The goal is to assign the resource to a maximum weight sub-
set of requests. A solution S forBAP consists of the assigned

intervals. The profit S is given by prof i t (S)
de f= ∑

I∈S p(I ).
SAP is a special case of BAP in which we require that each
interval is allocated a single contiguous block of resource for
its entire duration.
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We use as subroutines algorithm NarrowFBAP (of Sect.
3) and a subroutine of an algorithm for SAP due to Bar-
Yehuda et al. (2009), which transforms in polynomial time
a BAP solution into a SAP solution, as formulated in the
following lemma.

Lemma 5 (Bar-Yehuda et al. 2009) There exists constants
δ0 ∈ (0, 1] and C0 > 0, such that S is a solution for BAP
on intervals I for which s(I ) ≤ δ for all I ∈ I, where
δ ∈ (0, δ0), then S can be transformed in polynomial time

into a solution for SAP with profit at least (1−C0δ
1
7 ) profit

(S).

Combining Theorem 2 and Lemma 5, we have

Lemma 6 Given an instance (I,W ) of FSAP, for any fixed
ε > 0, there exists δ > 0, such that there is a polynomial
time (2 + ε)-approximation algorithm for (Inarrow,W ).

Proof Given ε > 0, choose δ, such that δ < min{δ0, ε
C0(2+ε)

)7}.
Then, applying as a subroutine algorithm NarrowFBAP,
we have a non-contiguous color assignment for the Inarrow
intervals achieving a ratio of 2 to the optimum for FBAP.
Taking this assignment as an input for the subroutine of
Lemma 5, we have a contiguous color assignment with ratio
1−C0δ

1
7

2 > 1
2+ε

. Overall, we have a polynomial running time,
since we use as subroutines two polynomial time algorithms.

��
Combining Lemmas 4, 6, and 2, we obtain

Theorem 4 There exists a polynomial time (3 + ε)

-approximation algorithm for FSAP, for any fixed ε > 0.

5 A (2+ ε)-approximation algorithm for SAP

In this section, we consider SAP, the special case of FSAP
where a(I ) = b(I ) for all I ∈ I. We present a polynomial
time (2 + ε)-approximation algorithm for any fixed ε > 0.

In deriving the algorithm, we use a technique similar
to the one used for solving general instances of FSAP.
Given an instance I of SAP, we partition the intervals into
two sets: narrow and wide, using a parameter δ > 0 (to
be determined). Specifically, narrow intervals are those for
which |s(I )| ≤ δW and wide intervals are those for which
|s(I )| > δW . For the wide intervals, we use the (1 + ε)-
approximation algorithm of Lemma 4 (for FSAP on Iwide
intervals). For the narrow intervals, we show how to obtain
a (1 + ε)-approximate solution. The algorithm returns the
color assignment of greater profit. By Lemma 2, this yield a
(2 + ε)-approximation algorithm for SAP.
SAP on narrow intervals In the following, we show how to
obtain a (1 + ε)-approximate solution for the narrow inter-
vals. We use as subroutines two known algorithms: for BAP

and SAP. ForBAP, the paper (Chekuri et al. 2007) presents a
(2+ε)-approximation algorithm, for any ε > 0. The authors
obtain the result by dividing the input intervals into wide and
narrow intervals, for some δ ∈ (0, 1). They use dynamic
programming to compute an optimal solution for the wide
intervals, and LP-based algorithm to obtain a (1+O(1)

√
δ)-

approximate solution for the narrow intervals, as stated in
the next result.

Lemma 7 (Chekuri et al. 2007) There exist constants δ1 ∈
(0, 1) and C1 > 0, such that for any δ ∈ (0, δ1) there exists
a (1+C1

√
δ)-approximation algorithm for the narrow inter-

vals of BAP.

The second subroutine that we use is an algorithm for SAP
of Bar-Yehuda et al. (2009), which transforms in polynomial
time a BAP solution into a SAP solution (Lemma 5).

Combining Lemmas 7 and 5, we have

Lemma 8 For any fixed ε > 0, there exists δ > 0, such that
there is a polynomial time (1+ ε)-approximation algorithm
for the narrow intervals of SAP.

Proof Given ε > 0, choose δ, such that such that δ <

min{δ0, δ1, ( ε
C1+C0(1+ε)

)7}, where the constants δ0 ∈ (0, 1]
and C0 > 0 are of Lemma 5 and δ1 ∈ (0, 1) and C1 > 0 are
of Lemma 7. Then, calling as a subroutine the algorithm of
Lemma 7 yields a resource assignment for the narrow inter-
vals with ratio (1 + C1

√
δ). Taking this assignment as an

input for the subroutine of Lemma 5, we have a contiguous

resource assignment with ratio 1−C0δ
1
7

1+C1
√

δ
> 1

1+ε
. Overall, we

have a polynomial running time, since we use as subroutines
two polynomial time algorithms. ��

Summarizing the above discussion, we have

Theorem 5 For any fixed ε > 0, there is a polynomial time
(2 + ε)-approximation algorithm for SAP.

Proof Given an instance for SAP, by Lemma 8, there exists a
constant δ > 0 for which there is a polynomial time (1+ ε)-
approximation algorithm for the narrow intervals. A (1 +
ε)-approximate solution for the wide intervals can be found
using the algorithm of Lemma 4. By Lemma 2, taking the
better of the two solutions, we obtain a (2+ε)-approximation
algorithm for any fixed ε > 0. ��

6 Summary and future work

In this paper, we studied FBAP and FSAP. We observed that
both problems are NP-hard even for highly restricted inputs,
and presented a 3-approximation and a (3+ε)-approximation
algorithm for general inputs of FBAP and FSAP, respec-
tively. We point to a few of the many problems that remain
open.
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• We showed that FSAP is NP-hard for the subclass of
instances where a(I ) �= b(I ) for all I ∈ I. For this case,
it would be interesting to obtain a better approximation
ratio than the one derived for general instances.

• Our results for intervals on a line call for the study of
FBAP and FSAP in other graph, especially those that are
relevant in optical networks.

• The flex-grid technology enables to combine non-conti-
guous and contiguous spectrum assignment; thus, a
request can be assigned either a contiguous or non-
contiguous set of colors. In this setting, a non-contiguous
color assignment for any request requires accumulatively
more spectrum than contiguous color assignment of the
same request (due to the gap of unused frequencies
between wavelengths). This affects the total amount of
the spectrum used and may imply different profits per
unit for each assignment. This practical setting opens up
an unexplored terrain for future study.

• It would be interesting to extend FSAP and FBAP to the
case of variable bandwidth available per interval. This
case is not only challenging from theoretical point of
view, but also of practical interest.

• Finally, as stated above, FSAP and FBAP are the flexible
variants of classic SAP and BAP, respectively. There is
much importance in exploring the implications of these
new problems and our results in the context of resource
allocation in emerging computing and network technolo-
gies.

Acknowledgements We thank Dror Rawitz for valuable discussions.
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