
J Sched (2018) 21:349–365
https://doi.org/10.1007/s10951-016-0505-x

New strategies for stochastic resource-constrained project
scheduling

Salim Rostami1,2 · Stefan Creemers1,3 · Roel Leus2

Published online: 12 January 2017
© Springer Science+Business Media New York 2017

Abstract We study the stochastic resource-constrained
project scheduling problem or SRCPSP, where project activ-
ities have stochastic durations. A solution is a scheduling
policy, and we propose a new class of policies that is a
generalization of most of the classes described in the lit-
erature. A policy in this new class makes a number of a
priori decisions in a preprocessing phase, while the remain-
ing scheduling decisions are made online. A two-phase local
search algorithm is proposed to optimizewithin the class.Our
computational results show that the algorithm has been effi-
ciently tuned toward finding high-quality solutions and that
it outperforms all existing algorithms for large instances. The
results also indicate that the optimality gap even within the
larger class of elementary policies is very small.

Keywords Project scheduling · Uncertainty · Stochastic
activity durations · Scheduling policies

1 Introduction

A project is a temporary endeavor to achieve clearly defined
goals. Project management deals with the planning, orga-

B Roel Leus
roel.leus@kuleuven.be

Salim Rostami
s.rostami@ieseg.fr; salim.rostami@kuleuven.be

Stefan Creemers
s.creemers@ieseg.fr; stefan.creemers@kuleuven.be

1 IESEG School of Management, Lille, France

2 ORSTAT, KU Leuven, Leuven, Belgium

3 Research Centre for Operations Management, KU Leuven,
Leuven, Belgium

nization, execution, monitoring (controlling) and closing of
a project in order to attain the project’s objectives (Project
Management Institute 2013). A project entails a set of
activities that have to be executed while respecting prece-
dence constraints and resource and time limitations. Project
scheduling belongs to the planning phase of project manage-
ment, in which a schedule is developed that decides when to
start and finish the activities in order to achieve the project’s
goals. Practical project management is usually confronted
with scarceness of the resources available for processing
the activities. Over the last decades, this has given rise to
a large body of literature on resource-constrained project
scheduling, with the so-called resource-constrained project
scheduling problem (RCPSP) as a central problem.

In practice, some of the scheduling parameters may be
uncertain. The exact duration of an activity, for instance,
might not be known at the beginning of the project. One
of the earliest sources for this observation is Malcolm
et al. (1959). Similarly, the number of available resources is
another parameter that may not be known before project exe-
cution. These uncertainties may be due to different sources,
including estimation errors, unforeseen weather conditions,
late delivery of some required resources, unpredictable inci-
dents such as machine breakdown or worker accidents. For
further motivation for the study of uncertainty in project
scheduling, we refer to Lambrechts (2007), Yu andQi (2004)
and Wang (2004).

In the classic problemRCPSP, the goal is to find a schedule
with minimum schedule length, or makespan. This is indeed
by far the most frequently studied objective in the project
management literature, although other objectives such as
net present value and weighted earliness/tardiness have also
received some attention. The stochastic RCPSP or SRCPSP
is the optimization problem that results when the activity
durations in RCPSP are modeled as stochastic variables.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-016-0505-x&domain=pdf

350 J Sched (2018) 21:349–365

The uncertainty in processing times can have various causes,
among which machine breakdowns (see Pinedo 2008). Since
makespan is a function of the activity durations, the goal in
SRCPSP is to minimize the expected makespan, and this
will also be the objective in this article. All other parame-
ters of RCPSP, in particular the resource requirements and
availabilities, are assumed to be fully known at the time
of scheduling. For examples of other objective functions in
stochastic project scheduling, we refer to Leus (2003), Ben-
david and Golany (2011), Bruni et al. (2011), Van de Vonder
et al. (2008) and Deblaere (2010).

Based on the foregoing, SRCPSP can be seen as a
generalization of the deterministic problem RCPSP. Since
RCPSP is NP-hard (Blazewicz et al. 1983), the stochastic
counterpart can also be expected to be intractable. Addi-
tionally, solution procedures for RCPSP may not be valid
anymore; the main reason is that a solution to SRCPSP
can no longer be represented as a single schedule (Stork
2001). Indeed, it needs to be decided for each possible sce-
nario of activity durations when to start which activities,
and so different schedules may result for different scenar-
ios. A solution to SRCPSP is therefore a policy: a set of
rules that prescribe how to dynamically schedule the activi-
ties in each possible scenario (Radermacher 1981). We will
formalize this concept and discuss different policy classes in
Sect. 2.

We distinguish three main strategies for tackling uncer-
tainty in scheduling problems. Firstly, the decision maker
may try to find a schedule that can tolerate minor devia-
tions from the predicted values for the activity durations.
This approach is typically called robust or proactive schedul-
ing. The robustness of a schedule increases with its ability
to absorb variability. For example, see Artigues et al. (2013).
The resulting schedule is often called a baseline schedule,
predictive schedule or preschedule for short.

The second strategy, reactive scheduling, iteratively
“repairs” an initial schedule in order to adjust it to the real-
izations of the underlying stochastic variables, which are
progressively observed during the execution of the project.
This repair step focuses on rendering the schedule feasible
again, minimizing the effect of disruptions and maintaining
a good score on the initial objective (e.g., low makespan).
In proactive scheduling, some simplifying assumptions are
typically made about this repair step. In particular, it is to be
noted that proactive and reactive scheduling are not mutu-
ally exclusive, but rather that they can be complementary.
For more details, see Deblaere et al. (2011), Van de Vonder
et al. (2005) and Chtourou and Haouari (2008).

The third type of strategy for executing a project in the
context of SRCPSP is often called stochastic scheduling, and
this is also the approach followed in this article. Here, no
preschedule is built before the execution of the project, but
starting from an empty initial schedule, a complete schedule

(containing all activities) is constructed gradually as time
progresses by means of a scheduling policy, exploiting the
information that was gathered up until the current time (e.g.,
realized activity durations) as well as the a priori available
information on the uncertainty of activity durations. The poli-
cies that we study are static (not modifiable during project
execution), but decision making using a policy is dynamic,
meaning that the policy typically responds differently in var-
ious scenarios, leading to different final schedules. Due to the
absence of a baseline schedule, this approach is sometimes
referred to as a purely reactive or online strategy. Schedul-
ing policies can also be applied if a baseline schedule is
used. This latter combination only appears rather rarely in
the literature, however; see Leus and Herroelen (2004) for
an example.

The main contributions of this work are fourfold: (1) A
new class of policies is proposed that is a generalization
of most of the classes described in the literature. (2) Our
computational results show that our proposed procedure,
optimizing within this new class, outperforms all existing
algorithms, in the sense that it obtains higher-quality solu-
tions with the same computational effort. (3) The results also
indicate that the algorithm has been efficiently tuned toward
finding high-quality solutions in the larger search space of
the new class. In particular, for small instances, the optimal-
ity gap even within the larger class of elementary policies is
very small—which is also a sign that the policy class itself
contains very good elementary policies. (4) As an alterna-
tive to simulation-based evaluation of scheduling policies,
we also examine an exact Markov chain evaluation subrou-
tine. To this aim, a generalization of the Kulkarni–Adlakha
Markov chain (Kulkarni and Adlakha 1986) is proposed to
include start-to-start precedence constraints. Next to these
four main contributions, we also describe a counterexample
that shows that the class of elementary policies does not nec-
essarily include a globally optimal policy within the class of
static policies. Although we mainly evaluate our proposed
algorithm based on the number of generated schedules dur-
ing simulation, we also report our computation times as an
alternative measure of computational effort, which can be
useful for future works that are not merely based on simula-
tion.

The remainder of this article is organized as follows:
A number of definitions are provided in Sect. 2, together
with a description of RCPSP, SRCPSP and scheduling poli-
cies. Section 3 outlines our ideas to extend the class of
the so-called preprocessor policies, and solution evalua-
tion is the subject of Sect. 4. A two-phase metaheuristic
algorithm is proposed in Sect. 5 that allows us to find
high-quality members within the newly proposed class of
policies. Extensive computational results are reported in
Sect. 6. A summary and some conclusions are given in
Sect. 7.

123

J Sched (2018) 21:349–365 351

2 Definitions

We first introduce the problem RCPSP in Sect. 2.1. Sub-
sequently in Sect. 2.2, we provide a formal statement of
SRCPSP. We then introduce different scheduling policies
in Sect. 2.3, and in Sect. 2.4, we describe why the so-called
elementary policies are not globally optimal.

2.1 The deterministic case

One of the inputs of an instance of RCPSP is a set of activ-
ities N = {0, . . . , n} with known deterministic durations
di ∈ N for each activity i ∈ N . In SRCPSP, which is the
central problem of this work, the assumption of known val-
ues for activity durations is relaxed, and the durations are
modeled as random variables (see Sect. 2.2). All activities
are executed without pre-emption, which means that once an
activity is started, it is executed without interruption until its
completion. Furthermore, K is a set of renewable resource
types; each type k ∈ K has a finite capacity ak that remains
unchanged throughout the project. Each activity i ∈ N occu-
pies rik units of each resource type k ∈ K for the entire
duration of its execution; we assume 0 ≤ rik ≤ ak . Activi-
ties 0 and n are dummy activities, serving as start and end of
the project, with zero duration (d0 = dn = 0) and without
resource usage (r0k = rnk = 0 for all k ∈ K).

A solution to (an instance of) RCPSP is a schedule, which
is denoted by a vector s = (s0, . . . , sn), in which si is the
starting time of activity i ∈ N in the schedule. Without
loss of generality, we restrict starting times to integer values.
The starting times have to respect a given set of precedence
constraints, which are described by a directed acyclic graph
G(N , A), with A a partial-order relation on N (a binary rela-
tion that is transitive and irreflexive). Below, we will call
such a relation A on N a precedence relation. Activity 0 is
predecessor, and activity n is successor of all other activities.

We can now provide the following conceptual formulation
of RCPSP:

minimize sn
subject to

si + di ≤ s j ∀(i, j) ∈ A (1)
∑

i∈A(s,t)

rik ≤ ak ∀t ∈ N0,∀k ∈ K (2)

si ∈ N ∀i ∈ N (3)

The constraint set (1) describes the precedence constraints
between the activities. These are all of the finish-to-start (FS)
type: The successor cannot be started before the predecessor
is finished. Later in this text, we will also use start-to-start
(SS) constraints: If activity pair (i, j) ⊂ N × N defines an

SS-constraint, then this implies si ≤ s j . Equation (2) rep-
resents the resource constraints, where set A(s, t) contains
the activities that are in process during time period t (time
interval [t − 1, t]) according to schedule s:

A(s, t) = {i ∈ N : si ≤ (t − 1) ∧ (si + di) ≥ t}.

A schedule s that respects constraints (1)–(3) is called a fea-
sible schedule.

Surveys of solution methods for RCPSP are provided in
Demeulemeester and Herroelen (2002) and Neumann et al.
(2006). While various exact methods have been described
in the literature for obtaining optimal solutions for RCPSP,
development of heuristic procedures has also received exten-
sive attention as the computation time required for finding a
guaranteed optimal solution becomes unacceptably large as
the size of the instances grows. Priority rules are among
the fastest of these heuristics; they build feasible sched-
ules using a schedule generation scheme (SGS). Such SGSs
are important for this text because some of the scheduling
policies for SRCPSP are derived from them. We discuss
the two major types of SGS below. Both types take an
activity (priority) list (i.e., a complete ordering of N) as
input, and both stepwise add activities to a partial sched-
ule.

1. The parallel SGS iteratively moves from one decision
point to the next at which activities can be added (time
incrementation). These decision points correspond with
the beginning of the time horizon and with the comple-
tion times of already scheduled activities, and thus, at
most n decision points need to be considered. At each
decision point, each eligible activity is selected in the
order of the priority list and it is scheduled on condition
that no resource conflict arises. An activity is eligible if
it is unscheduled and if all its predecessors according to
A have been completed.

2. The serial SGS picks the next activity in the priority
list in each iteration (activity incrementation), and the
earliest possible starting time is assigned such that no
precedence and resource constraints are violated. Con-
sequently, exactly n iterations are needed to obtain a
compete schedule.

It should be noted that the parallel SGS produces non-
delay schedules, which are schedules in which activities
cannot start earlier without delaying another activity even
if activity pre-emption is allowed. The serial scheme, on
the other hand, produces active schedules, which are sched-
ules in which none of the activities can start earlier without
delaying another activity without activity pre-emption. Any
non-delay schedule is an active schedule, but the oppo-
site is not true. While it can be shown that for each

123

352 J Sched (2018) 21:349–365

RCPSP instance, there is at least one optimal active sched-
ule, an optimal non-delay schedule does not necessarily
exist. Additionally, for each active schedule there exists
at least one activity list that will yield the schedule using
the serial SGS, and similarly each non-delay schedule
can be found via the parallel SGS. We refer to Kolisch
(1996a, b) and Sprecher (2000) for details and applica-
tions.

2.2 The stochastic RCPSP

Contrary to RCPSP, in SRCPSP the duration of activ-
ity i ∈ N is a random variable (r.v.) Di , following a
known probability distribution. If we denote the probabil-
ity of event e by Pr [e], then ∀i ∈ N , we have Pr [Di <

0] = 0; we also assume Pr [D0 = 0] = Pr [Dn =
0] = 1. The distributions may be fitted using histori-
cal data or experts’ judgments; for a detailed discussion
of the selection of a suitable distribution, see Schatte-
man et al. (2008), Al-Bahar and Crandall (1990), Chap-
man and Ward (2000), Dawood (1998) and Shtub et al.
(2005). All durations are gathered in r.v. vector D =
(D0, D1, . . . , Dn).

A scheduling policy decides at each decision point which
activities, if any, should be started. Decision points are typ-
ically the beginning of the time horizon and the completion
time of each activity. At each decision point t , a policy
can only use information that has become available up to
t , together with a priori knowledge of the distributions. This
restriction is called the non-anticipativity constraint (Stork
2001). Fernandez et al. (1996, 1998) note that some of
the commercial project scheduling software available in the
1990s failed to take this constraint into account and conse-
quently could produce misleading results.

A realization or scenario is a vector d = (d0, d1, . . . , dn),
where each value di is a realization of Di . Radermacher
(1981) proposes to view a policy Π as a function R

n+1≥ →
R
n+1≥ that maps scenarios d of activity durations to feasible

schedules s = Π(d). Thus, for a given scenario d, [Π(d)]i
represents the starting time of activity i under policy Π ;
the makespan of schedule Π(d) is then [Π(d)]n . The goal
of SRCPSP is to find a policy that minimizes E[[Π(D)]n],
where E[·] is the expectation operator with respect to D.
This minimization is often restricted to a search over a spe-
cific class of policies. We will introduce a number of such
classes that are of direct interest to this text in Sect. 2.3.

Most of the general concepts used in this section (such as
scenarios, optimal policies, non-anticipativity) are not spe-
cific to stochastic scheduling only, but are borrowed from
the literature on stochastic optimization. For further details,
we refer to Wets (1989), Rockafellar and Wets (1991) and
Escudero et al. (1993).

2.3 Scheduling policies

Scheduling policies may be optimized prior to project execu-
tion, with all the parameters decided and unchanged during
the realization of the project. Such policies are referred to as
static (open-loop) policies, and their class is denoted by CS.
Alternatively, a dynamic (closed-loop) policy runs an opti-
mization routine for selecting the best set of starting activities
at each decision point, based on the latest system infor-
mation. While closed-loop policies are adaptive and more
flexible than open-loop policies, they are generally perceived
as being computationally very hard to manage. Conse-
quently, work on optimization in this class of policies has
remained very limited. In recent work, Li andWomer (2015)
propose an approximate dynamic programming algorithm
to find closed-loop policies for SRCPSP. Their computa-
tional results indicate that at the cost of significantly higher
runtimes, the closed-loop algorithm outperforms open-loop
algorithms for instances with asymmetric duration distribu-
tions, although open-loop policies remain superior for other
instances.

In this work, we focus on open-loop policies. One par-
ticular subset of CS is the elementary policies (EL-policies),
whose class is denoted by CEL. An elementary policy starts
jobs only at completion times of other activities and at time
0. Direct optimization over class CEL has only rarely been
considered in the literature. In a recent article, Creemers
(2015) models SRCPSP with phase-type distributions as a
Markov decision process and proposes an exact algorithm
for finding an optimal elementary policy. Unfortunately, an
elementary policy does not always have a representation that
is compact (polynomial) in the size of the instance, which
limits optimization (either exact or heuristic) to small- and
medium-sized instances. Below, we present some subclasses
of elementary policies that have a more compact combinato-
rial structure.

2.3.1 RB-policies

Resource-based policies (RB-policies) are a direct extension
of priority rules with the parallel SGS for RCPSP. An RB-
policy takes an activity list as input and at each decision
point tries to start each eligible activity in the order of the
priority list. These policies are fast and easy to implement,
but they have some disadvantages. In the function view of
policies (Radermacher 1981), RB-policies are neither mono-
tone nor continuous. One reason is that they suffer from the
so-calledGraham anomalies (Graham 1966): There is a pos-
sibility of increasing the project makespan when the duration
of one or more activities is decreased. Additionally, even
with deterministic processing times, there are instances for
which no activity list yields an optimal schedule following
an RB-policy. These observations are referred to by some

123

J Sched (2018) 21:349–365 353

researchers (e.g., Möhring 2000) as “unsatisfactory stability
behavior” or “inadequate structural firmness” and have been
invoked by some as a motivation to eliminate these policies
from further study. We denote the class of RB-policies by
symbol CRB.

RB-policies, as well the other policy classes that will fol-
low, are static: A policy is fully specified prior to project
execution. As outlined in Sect. 2.2, a mapping is set up
from scenarios to decisions (yielding schedules). Note, how-
ever, that thismapping is algorithmic in nature (progressively
producing a schedule) and is not merely an analytic mathe-
matical function.

2.3.2 AB-policies

Activity-based policies [AB-policies, also referred to as “job-
based policies” (Stork 2001)]. These policies proceed simi-
larly as RB-policies with the addition of the SS-constraints:

[Π(d; L)]i ≤ [Π(d; L)] j , ∀{i, j} ⊂ N ; i ≺L j.

In words, for a given scenario d, an RB-policy defined by
an activity list L cannot start an activity j earlier than any
of its predecessors i in L . Value [Π(d; L)]i is the starting
time of activity i obtained from policy Π . Elimination of
the SS-constraints yields a simple RB-policy with Graham
anomalies, but the extra constraints improve the stability.
AB-policies require more attention for the specification of
the priority list. Define a feasible instance of SRCPSP to be
an instance for which there exists a policy yielding a feasible
schedule for every scenario. For a feasible instance, an RB-
policy with an arbitrary input list will generate a feasible
schedule for each scenario, but this is not always true for AB-
policies. More precisely, for AB-policies, the activity list L
should define a linear extension of the input order A, meaning
that i ≺L j for each (i, j) ∈ A. AB-policies are derived
logically from priority rules with the serial SGS for RCPSP,
and this is why they are sometimes referred to as “stochastic
serial SGS” (Ballestín 2007). This class is denoted by CAB.

2.3.3 ES-policies

The class of earliest-start policies (ES-policies), denoted
by CES, was first proposed by Radermacher (1981) and
Igelmund and Radermacher (1983). For a binary relation E
on N , let T (E) denote its transitive closure, which is the
(inclusion-)minimal transitive relation such that T (E) ⊆ E .
A forbidden set F ⊂ N is a set of activities that are pair-
wise not precedence related (�{i, j} ⊂ F : (i, j) ∈ A), but
that cannot be processed simultaneously due to the resource
constraints (∃k ∈ K : ∑

i∈F rik > ak). A minimal forbid-
den set (MFS) is an inclusion-minimal forbidden set. We
denote the set of MFSs for precedence relation E by F(E).

A policy Π ∈ CES is parameterized by a set of activity pairs
X ⊂ (N×N)\A such thatF(T (A∪X)) = ∅ andG(A∪X)

is acyclic. Such a policy is said to “break” all MFSs, mean-
ing that for each F ∈ F(A), there will be at least one pair
{i, j} ∈ F such that (i, j) ∈ T (A ∪ X): In effect, we are
adding additional FS-constraints via X such that all poten-
tial resource conflicts are resolved beforehand.What remains
is a new scheduling instance without resource constraints but
with a denser precedence graph. This new instance is trivially
solved for a given scenario d by starting each activity as early
as possible, as follows:

[Π(d; X)] j = max
(i, j)∈A∪X

{[Π(d; X)]i + di }, ∀ j ∈ N\{0}

and [Π(d; X)]0 = 0. ES-policies are convex, monotone and
continuous. Furthermore, Radermacher (1986) shows that
any convex policy is an ES-policy. For further details and
definitions, we refer to Radermacher (1985), Igelmund and
Radermacher (1983), Stork (2001) and Radermacher (1981).

2.3.4 Preprocessor policies

The class CPP of preprocessor policies (PP-policies) was first
introduced by Ashtiani et al. (2011). A PP-policy Π ∈ CPP
is defined by a set of activity pairs X ⊂ N × N together
with an activity list L , with G(N , A ∪ X) acyclic. Each pair
in X induces an additional FS-constraint, and all remaining
sequencing decisions are made dynamically during project
execution by an RB-policy defined by L for the graph
G(N , A ∪ X). Consequently, a PP-policy makes a number
of a priori sequencing decisions before the project is started
in a preprocessing step under the form of X . Note that this
class is defined without specific attention to MFSs: an extra
edge in X may or may not resolve resource conflicts, so that
0 ≤ |F(T (A∪X))| ≤ |F(A)|. In fact, the inclusion of edges
that do not break any MFS may also have a beneficial effect
on the expected makespan (Ashtiani et al. 2011).

2.3.5 Comparison

Amajor computational disadvantage of ES-policies, in com-
parison with policies using activity lists, is their dependence
on computing allMFSs, the number ofwhichgrows exponen-
tially with n. Stork (2001) concludes that, for large instances,
usingAB-policies is the only remaining alternative since they
do not require the representation of resource constraints by
MFSs. He considers RB-policies to be “inadequate” based
on the statement that a minimal requirement for a policy is
monotonicity and continuity (in view of policies as func-
tions). We do not follow this argument: In line with Ashtiani
et al. (2011), we conjecture that this absence of theoretical
qualities hardly, if ever, constitutes an issue to a practical

123

354 J Sched (2018) 21:349–365

decision maker when the expected makespan is appropri-
ately low. Let ρτ be the minimum expected makespan for
policy class Cτ . Stork compares the minimum makespan for
different classes of policies in the deterministic case and con-
cludes that ρES = ρAB ≤ ρRB. For stochastic environments,
on the other hand, he finds that the foregoing three policy
classes are incomparable, providing examples with ρ1 < ρ2

as well as with ρ2 > ρ1 for each pair of classes {C1, C2} out
of CRB, CAB and CES.

The computational disadvantage of enumerating MFSs
for extension of the precedence graph was circumvented
by Ashtiani et al. (2011) by eliminating the requirement
that extra precedence constraints break MFSs in the defi-
nition of PP-policies. Ashtiani et al. show that combining
the SS-constraints that are inherent in AB-policies with the
FS-constraints that come with ES-policies in the same way
as PP-policies were formed, leads to a new class that is not
a proper generalization of CES, which is why they prefer
to combine ES-policies with RB-policies rather than with
AB-policies. Clearly, (CRB ∪ CES) ⊂ CPP: PP-policies com-
bine the computational benefits and real-time dispatching
features of CRB with the structural stability and unconditional
sequencing decisions of CES. This does not mean, however,
that CPP automatically contains better solutions than CAB or
an extension of that class, although Ashtiani et al. do pro-
vide empirical evidence that PP-policies tend to be better
than AB-policies, especially for medium- to high-variability
duration distributions.

2.4 Elementary policies are not globally optimal

The recent literature on computational solutions for SRCPSP
has always focused on optimizing over CEL or over a subset
of this class. It should be noted, however, that the class of
elementary policies does not necessarily include the optimal
policies with respect to all static policies. To the best of our
knowledge, this observation has not been explicitly reported
in the literature before, although the authors of earlier the-
oretical work in the 1980s were clearly implicitly aware of
this, but did not pay much attention to it; see, for instance,
Möhring et al. (1984) and (especially) Möhring and Rader-
macher (1989).

In the remainder of this text, we refer to an optimal static
policy as a globally optimal policy. For the instance depicted
in Fig. 1, the optimal elementary policy is dominated by a
non-elementary (static) policy. Each node in the graph corre-
sponds with one activity, with activity durations drawn from
the finite set ωi and resource requirement ri for each i ∈ N .
The network is the transitive reduction of the graphG(N , A),
meaning that transitive edges such as (1, 4) are not included
(although (1, 4) ∈ A). For activity 2, each of the two values
inω2 has equal probability of 0.5 and the other activities only

1

{0}

0

2

{1, 9}

1

3

{8}

1

4

{1}

2

5

{4}

1

6

{0}

0

i

ωi

ri1

Fig. 1 A counterexample to show that elementary policies are not nec-
essarily globally optimal

Table 1 Makespan for three
policies, dependent on the
duration of activity 2

D2 Πalt
EL Π∗

EL Π1

1 10 13 10

9 18 14 14

Average 14 13.5 12

have one possible duration. There is one renewable resource
type with availability a1 = 2.

Table 1 summarizes themakespan values of three different
policies. The optimal elementary policy Π∗

EL starts activities
2 and 3 in parallel, followed by activities 4 and 5 (in series).
For information, we also include the details of an alterna-
tive elementary policy Πalt

EL, which starts activity 3 together
with activity 5 after the completion of activity 4. Finally, we
also consider the following non-elementary policyΠ1, which
starts activity 2 at time t = 0, and in which the decision when
to start activity 3 is made at t = 1. If activity 2 is finished at
t = 1, then activity 4 is started immediately and activity 3
will be started together with activity 5 afterward. Otherwise,
activity 3 is started at t = 1. This policy is not elementary
because when D2 = 9, then the decision point t = 1 is not
the completion time of any activity.

The table shows that Π1 dominates its two elementary
counterparts when it comes to expected makespan. Similar
counterexamples can be constructed with continuous dura-
tion distributions, but these are typically less intuitive. In
spite of this undesirable feature of elementary policies, the
new policy class that we propose in Sect. 3 is also elementary
because this will allow for a concise and structured descrip-
tion of the class, which makes it easier to develop an efficient
optimization procedure.

3 Generalized preprocessor policies

3.1 Definition

We propose the new class of generalized preprocessor poli-
cies (GP-policies), denoted by CGP. A policy Π ∈ CGP is

123

J Sched (2018) 21:349–365 355

defined by an activity list L together with two sets of activity
pairs X,Y ⊂ N × N . Each activity pair (i, j) ∈ X defines
an FS-constraint from activity i to activity j , while each
(i, j) ∈ Y induces an SS-constraint from i to j . The sets
X and Y thus contain sequencing decisions made before the
project starts. All remaining decisions are made dynamically
during project execution by an RB-policy defined by L that
respects all precedence constraints in A∪X∪Y . The reasons
why the inclusion of SS-constraints (next to FS-constraints)
might be beneficial formakespanminimization are explained
in Sect. 3.3.

We say that GP-policy Π(D; L , X,Y) is feasible if for
any realization of D, the embedded parallel SGS (in the RB-
policy) produces a feasible schedule given the constraints
in L , X and Y . Theorem 1 states a necessary and sufficient
condition for feasibility of a GP-policy.

Theorem 1 A policy Π ∈ CGP is feasible if and only if
G(N , A ∪ X ∪ Y) is acyclic.

Proof Assume there is a cycle in G(N , A ∪ X ∪ Y). First,
consider the case where all constraints (i, j) forming the
cycle are of type SS. If there are sufficient available resources
to start all activities of the cycle at the same time, then a
feasible schedulemight exist, but it cannot be produced by an
RB-policy. This is due to the fact that using an SGS, activities
of the priority list are scanned one at a time, and for each
activity to be eligible, all of its predecessors should already
be started. In other words, starting all activities of the cycle
simultaneously is not considered by the SGS. The case with
oneormoreFS-constraints (i, j) in the cycle canbediscussed
in a similar fashion, with the additional observation that a
feasible schedule will certainly not exist in scenarios with
Di > 0.

Now assume that the policy Π(D; L , X,Y) ∈ CGP is not
feasible, so there exists at least one scenario for which the
parallel SGS cannot produce a feasible schedule. Since we
only consider instances where maxi∈N rik ≤ ak , ∀k ∈ K ,
the resource constraints alone cannot cause this infeasibil-
ity, as one can always process all the activities consecutively,
one at a time. Consider a scenario in which the SGS can-
not produce a feasible schedule. Applying the SGS in this
scenario, we gradually construct a partial schedule up to the
point where the remaining activities cannot be scheduled. At
the end of the latest finishing activity in this partial schedule,
the SGS scans all the unscheduled activities one at a time in
the order of L to see if any is eligible, but no such activity is
found. Thus, for each unscheduled activity j , there is another
activity i that has not yet been started and that needs to be
either started (for an SS-constraint) or completed (for an FS-
constraint) before j could be scheduled. In the graph induced
by the nodes corresponding with the unscheduled activities,
the edges corresponding with these SS-constraints and FS-

CES

CAB

CRB

CPP

CGP CEL CS

Fig. 2 Hierarchy of different policy classes

constraints necessarily contain a cycle (since the activities
cannot be linearly ordered). ��

3.2 Hierarchy

The hierarchy of the policy classes is graphically depicted
in Fig. 2. An arc from one class to another means that the
first class is included in the second one. The class of GP-
policies encompasses CPP as well as CAB, and therefore, the
new class theoretically dominates CPP and CAB. From a com-
putational point of view, however, we need to verify whether
a search procedure can be developed that is able to find solu-
tions within the new class GP that are better than those found
in the subclasses with the same computational effort, because
the search area of the generalized class of policies is substan-
tially larger than the search area of its subsets. The heuristic
search procedure will be presented in Sect. 5, and computa-
tional results will be shown in Sect. 6.

3.3 Illustration and discussion

In essence, the functionality of additional FS-constraints in
CES is to “break” MFSs. Once all MFSs are resolved, an
SGS is actually redundant since earliest possible start times
can be obtained by means of critical path method (CPM)
calculations, disregarding resource constraints altogether. In
this case, FS-constraints have a clear advantage over SS-
constraints in the sense that any single FS-constraint between
two activities of an MFS resolves the MFS, while this is
not necessarily true for SS-constraints. In CPP, however, not
all MFSs need to be resolved by the extra FS-constraints,
and resource constraints cannot be neglected (hence, the
priority list), and so the reasoning above for superiority of
FS-constraints over SS-constraints does not hold. In any case,
we know that the SS-constraints inherent in a serial SGS can
sometimes help to find an optimal schedule for the determin-
istic RCPSP. Moreover, Ashtiani et al. (2011) have shown
that FS-constraints in CPP that do not break any MFS can
still help to achieve superior solutions. Below, we further
illustrate the potential use of SS-constraints.

The first example, depicted in Fig. 3, shows a case where
a feasible GP-policy outperforms an optimal member of CPP.

123

356 J Sched (2018) 21:349–365

4

{3, 5}

1

1

{0}

0

3

{3, 5}

1

2

{3}

2

5

{3, 5}

1

6

{5}

1

7

{3}

0

8

{0}

0

i

ωi

ri1

a1 = 4

Fig. 3 Aproject instancewhere a feasibleΠGP outperforms an optimal
Π∗

PP

In this example, each of the possible durations in ω3, ω4 and
inω5 has equal probability 0.5. It is optimal to postpone activ-
ity 2 to be started not earlier than activities 3, 4 and 5, and

also to postpone activity 6 to be started not earlier than activ-
ity 2. This policy assures that activity 2 is started following
whichever activity with uncertain duration that finishes the
earliest, and also that it is not postponed because of activity 6.
Define L1 = (1, 3, 4, 5, 2, 6, 7, 8). For shorthand notation,
throughout the remainder of the text, we will often identify
the class of a policy by a subscript and omit the argument
if there is no danger of confusion, so ΠRB(L1) is an RB-
policy with parameter L1. It can be shown thatΠRB(L1) and
ΠPP(L1, {(3, 6)}) are both optimal within their class. While
E[[ΠRB(L1)]n] = 10.00 and E[[ΠPP(L1, {(3, 6)})]n] =
9.75, we have E[[ΠGP(L1,∅, {(2, 6)})]n] = 9.63.

Secondly, from an optimization point of view, there are
also indications that, with the same computational effort,
we are more likely to find high-quality solutions within the
larger search space of CGP (which is empirically confirmed in
Sect. 6). The example depicted inFig. 4a shows a casewhere a
given activity list L is only improvable via SS-constraints and
not by FS-constraints. In this example, each of the durations
inω5 and inω6 has equal probability 0.5. For any elementary
policy, it is a dominant decision to postpone activity 3 to be
started not earlier than activities 5 and 6. This ensures that
activity 3 is started following the earliest finish from among
activities 5 and 6. Table 2 compares different policies that
achieve this. Define activity lists L1 = (1, 2, 4, 5, 6, 3, 7)
and L2 = (1, 2, 3, 4, 5, 6, 7), and sets of additional SS-

Fig. 4 A project instance to
demonstrate the importance of
SS-constraints

3

{5}

1

1

{0}

0

2

{1}

0

4

{1}

0

5

{4, 10}

1

6

{4, 10}

1

i

ωi

ri1

7

{0}

0

a1 = 2

(a)

3

{5}

1

1

{0}

0

2a

2b

2c

{1}

0

4a

4b

4c

{1}

0

5

{4, 10}

1

6

{4, 10}

1

7

{0}

0

FS

FS

SS

SS

(b)

Table 2 Makespan for some RB-, PP- and GP-policies under different scenarios

(D5, D6) ΠRB(L1) ΠGP(L1,∅, Y1) ΠPP(L1, X1) ΠRB(L2) ΠGP(L2,∅, Y1) ΠPP(L2, X1)

(4,4) 9 10 10 9 10 9

(4,10) 15 11 11 15 11 15

(10,4) 11 11 11 11 11 11

(10,10) 15 16 16 15 16 16

Average 12.5 12 12 12.5 12 12.75

123

J Sched (2018) 21:349–365 357

constraints Y1 = {(5, 3), (6, 3)} and FS-constraints X1 =
{(2, 3), (4, 3)}. It can be shown that ΠRB(L1), ΠRB(L2) and
ΠPP(L1, X1) are each optimal within their class and that
ΠPP(L2,∅) is the best PP-policy with list L2. We observe
that while both RB-policies are improvable via additional
SS-constraints, only one of them (ΠRB(L1)) is also improv-
able with FS-constraints. This insight is important in view
of the two-stage algorithm proposed Sect. 5, which selects
an activity list in a separate stage prior to adding precedence
constraints. If we worked with CPP, selection of L2 rather
than L1 in the first stage would then lead to a local optimum.

Finally, the example depicted in Fig. 4b presents a case
where given an activity list that is improvable by both SS-
and FS-constraints, it is easier to find the set Y1 of SS-
constraints rather than the set of FS-constraints required for
equivalent performance. The example is an extension of the
previous example where activities 2 and 4 are divided into
three parallel activities, each with the same duration and
resource requirements as before. Hence, the number of the
predecessors of 5 and 6 is increased. Consequently, to adapt
ΠPP(L1, X1) so as to stay equivalent with ΠGP(L1,∅,Y1)
(green arrows), X1 must include all the FS-constraints from
the sets of activities 2 and 4 to activity 3 (red arrows). In this
example, from an optimization point of view, finding the set
Y1 (with |Y1| = 2) with the same optimization effort is more
likely than identifying X1 (with |X1| = 6).

4 Solution evaluation

Apart from the speed of convergence to optimality, the effi-
ciency of optimization efforts for SRCPSP is also dependent
on the accuracy and runtime for the evaluation of a policy.
In line with the recent literature on SRCPSP, we will assess
the quality of a scheduling policy based on the percentage
difference between the expected makespan and the critical
path length (CPL) using the average durations. We will test
twodifferent calculationmethods for the expectedmakespan,
namely using simulation and using a Markov chain.

Simulation is commonly used for expectedmakespan esti-
mation. Stork (2001) uses a large set of scenarios (200) in
each evaluation in order to increase the precision, while other
researchers (for instance, Ballestín 2007 and Ashtiani et al.
2011) opt for a rather low number of replications (e.g., 10)
in order to investigate more policies within the same simu-
lation budget. The latter choice implies less accuracy for a
given evaluation, but Ballestín (2007) shows that examining
a larger set of policies is favorable for obtaining a better final
outcome.

Creemers (2015) proposes an exact algorithm for SRCPSP
with phase-type activity durations by making optimal deci-
sions via dynamic programming in a Markov decision
process; one of the prominent features of this procedure is

efficient memory management for storing all required states
of the decision process. Although this algorithm by itself is
not computationally viable for large instances, we can derive
from this procedure an exact evaluation subroutine that mod-
els the project execution as a Markov chain, and which can
serve as an alternative to simulation. Some modifications are
needed to the original procedure, for instance the inclusion
of SS-constraints. More details on thisMarkov chain are pro-
vided in “Appendix” section.

5 A two-phase metaheuristic algorithm for CGP

Metaheuristics are general algorithmic frameworks, often
nature inspired, designed to solve complex optimization
problems (Bianchi et al. 2009). In this section, we devise
a two-phase metaheuristic that consists of a greedy random-
ized adaptive search procedure (abbreviated as GRASP) and
a genetic algorithm (GA) to find high-qualityΠGP(L , X, Y).

GRASP, which was introduced by Feo and Resende
(1995), consists of iterations made up from successive con-
structions of a greedy randomized solution and subsequent
iterative improvements through local searches and self-
learning techniques. Considering sequences as individuals,
for example, each new sequence is divided into a number of
subsequences. In order to fill each subsequence, a reference
will be chosen. A reference may be to fill the elements of a
subsequence randomly or according to another already-built
randomly chosen sequence.

The population-based adaptive search procedure known
as GA was introduced by Holland (1975) and is a heuristic
search algorithm thatmimics the process of natural evolution.
A GA starts with the construction of an initial popula-
tion (often called “first generation”) and computes the next
generations by applying crossover, mutation and selection
operators. The initial population is randomly divided into
pairs (parents); the crossover operator then produces two
new offspring per pair, followed by the mutation operator.
Lastly, the next generation is created by invoking the selec-
tion operator that determines which individuals are carried
over to the next generation andwhich ones are eliminated.We
refer to Goldberg (1989) for a detailed discussion on GAs.
The overall structure of the proposed two-phase metaheuris-
tic is described in Sect. 5.1. Phase 1 is discussed in detail in
Sect. 5.2, and Phase 2 is the subject of Sect. 5.3.

5.1 Global structure of the algorithm

Our search procedure consists of two phases. The first phase
produces adequate activity lists bymeans of a GRASP, and in
the secondphase, aGAfinds additional constraints to obtain a
GP-policy with each list. Throughout the procedure, we dis-
tinguish between high-variability (HV) and low-variability

123

358 J Sched (2018) 21:349–365

Algorithm 1 Overall structure

if HV then
ElectList = RB-GRASP
for i = 1 to NoList do
Arc-Add-GA(ElectList(i))

end for
else if LV then
ElectList = AB-GRASP
for i = 1 to NoList do
Arc-Remove-GA(ElectList(i))

end for
end if
Return the best solution found

settings (LV); our detailed criteria to distinguish between
HV and LV are described in Sect. 6.1. This distinction is
motivated by the observation thatAB-policies (which impose
numerous additional SS-constraints) are globally optimal for
deterministic durations and also perform quite well for LV in
general, whereas RB-policies have empirically been found
to be far better for HV (see Ashtiani et al. 2011; Ballestín
and Leus 2009). This is only logical, because the latter class
retains more flexibility for managing unforeseen circum-
stances. Thus, for instances with HV, GRASP looks for a
good RB-policy, whereas in LV, the first phase produces a
good AB-policy. In both cases, the output is a set of activity
lists, which is passed to the next phase. The overall structure
of the proposed method is depicted in Algorithm 1: The set
ElectList holds the best NoList solutions passed from Phase
1 to Phase 2.

5.2 Phase 1: activity lists

A general overview of the procedure RB-GRASP is shown
in Algorithm 2, where the set CurSolPop is the current
solution population. The LV-version of the function (AB-
GRASP) is completely similar. The key element of the
procedure is the BuildNewList function, which produces
new individuals. A justification technique is employed in
order to improve the quality of newly produced activity lists.
A more detailed description of the main concepts follows.

Individuals and fitness Each individual is a precedence-
feasible activity list L . An RB- or AB-policy Π then
associates an expected makespan value E[[Π(D; L)]n]
with this list, which is the fitness indicator of L . This
fitness value can be computed via exact methods such as
a Markov chain, or estimated by means of simulation.

Buildingnew listsTheBuildNewList functionbuilds new
individuals. An overview of this function is provided in
Algorithm 3. Firstly, each list is divided into multiple
sublists. Each sublist is then filled according to a specific

Algorithm 2 RB-GRASP
CurSolPop = ∅

while TerminationCriterion not met do
L = BuildNewList(CurSolPop)
s = ΠAB(E[D]; L)

s = Justification(s)
L = ScheduleToList(s)
Compute E[[ΠRB(D; L)]n]
if Cardinality(CurSolPop) < PopSize1 then
CurSolPop = CurSolPop ∪ {L}

else if L is better than the worst solution L ′ ∈ CurSolPop then
CurSolPop = (CurSolPop \ {L ′}) ∪ {L}

end if
end while
ElectList = the NoList best solutions of CurSolPop
Return ElectList

Algorithm 3 BuildNewList(CurSolPop)
i = 0
FP = 0
while i < n do
if FP = 0 then
reference = SelectReference(CurSolPop)
if reference �= LFT or random then
FP ∈ [FPmin,FPmax]

end if
else
FP = FP − 1

end if
Select an activity j ∈ E according to the reference
L(i) = j
i = i + 1

end while
Return the activity list L

reference.A random reference fills a sublist by randomly
choosing activities from the set of eligible activities E .
An eligible activity is an unselected activity for which all
of the predecessors have already been selected. If LFT is
chosen as a reference, biased random selection is applied,
where activities have a higher chance of being selected
if they have a small CPM-based latest finish time LFT.
In order to make such selections, we incorporate regret-
based biased random sampling (RBRS) such that:

π j = ρ j + 1∑
k∈E (ρk + 1)

, ∀ j ∈ E,

where π j is the selection probability of activity j and
ρ j = maxk∈E {LFTk} − LFT j . The third reference type,
pattern, is to choose activities from E according to
another already-built activity list. The functioning period
(FP) of a reference is the maximum number of times that
the reference is allowed to be used before we choose
a new one. For random or LFT patterns FP = 1,
while for a pattern reference, it is chosen randomly from
[FPmin,FPmax]. A new list is produced when all its sub-
lists are filled.

123

J Sched (2018) 21:349–365 359

Selecting reference Function SelectReference is used
in order to assign references to sublists. To ensure suf-
ficient diversity of the initial population, the reference
type for the first PopSize1 (population size in Phase 1)
solutions is restricted to random (with probabilitypRan-
dom) and LFT (with probability 1−pRandom). For the
next solutions, choosing pattern as a reference is possi-
ble (with probability 1 − pRandom − pLFT). For this
type, a reference activity list L ∈ CurSolPop is ran-
domly chosen.
Justification In order to improve each new activity list,
we apply a double justification technique (see Li and
Willis 1992; Özdamar and Ulusoy 1996). Valls et al.
(2005) show that justification is an effective technique
to enhance RCPSP solutions without substantially more
computational efforts. Both for HV and LV, a sched-
ule s is first built by applying the serial SGS to the list
over a single scenario with expected durations. A dou-
ble justification consists of shifting activities to the right
as far as possible in non-increasing order of their fin-
ish times without altering the start of activity n and then
re-shifting them to the left. The justified s is then re-
converted into a list via ScheduleToList by ordering
activities in non-decreasing order of their starting times.
Preliminary experiments have indicated that using the
parallel SGS for the justification of activity lists signifi-
cantly decreases the diversity of the produced solutions
in a population and leads to undesirable convergence to
local optima.

5.3 Phase 2: additional precedence constraints

The second phase comprises aGA that finds sets of additional
precedence constraints, which together with each activity list
L in ElectList form a complete GP-policy. Dependent on
the variability setting, the details of this phase differ slightly.
For HV, we identify sets X and Y of additional FS- and SS-
constraints to form ΠGP(L , X,Y) that improves upon the
RB-policy ΠGP(L ,∅,∅). In LV, on the other hand, starting
from ΠGP(L ,∅, Ŷ) we look for a set Y ⊂ Ŷ that leads to
a good policy ΠGP(L ,∅,Y), where Ŷ = {(i, j)|i ≺L j}.
The two variants of the algorithm are further elaborated in
Sects. 5.3.1 and 5.3.2.

5.3.1 Phase 2 in HV

The goal is to find sets X and Y of additional precedence
constraints such that

E[[ΠGP(D; L , X,Y)]n] < E[[ΠRB(D; L)]n].

For each L ∈ ElectList, the GA produces an initial popula-
tion and then iteratively builds new populations via crossover
and mutation operators. Each population has size PopSize2.

Individuals An individual Z = {X,Y } contains two
unordered sets of activity pairs (i, j) /∈ A. The individual
is said to be feasible if and only if G(N , A ∪ X ∪ Y) is
acyclic.
Initial population Each initial population member con-
tains between one and npairs activity pairs, with all
cardinalities having equal probability. Note thatmembers
of subsequent generations can contain a number of ele-
ments that is not in {1, . . . , npairs}. First,ΠRB(E[D]; L) is
constructed, where at each decision point t , we encounter
a set Nt ⊂ N of activities that are either eligible to be
started or are already in process. The set CSS of candi-
date SS-constraints then contains each (i, j) ∈ Nt × Nt

encountered at any decision point t for which the follow-
ing criterion holds:

[ΠGP(E[D]; L , ∅, {(i, j)})]n < [ΠGP(E[D]; L , ∅, ∅)]n

and the same for CFS with the following condition:

[ΠGP(E[D]; L , {(i, j)}, ∅)]n < [ΠGP(E[D]; L , ∅, ∅)]n .

The initial population is then constructedwith individuals
Z = {X,Y } such that X ⊂ CFS and Y ⊂ CSS, and more
improving candidates have a higher selection probability.
Crossover The crossover operators for lists cannot be
applied here; hence, we use a uniform crossover as fol-
lows. The two parents are randomly selected from the
current population, with selection probability propor-
tional to their quality. Each edge in the father is assigned
to the son with probability pcross; otherwise, it is added
to the daughter. Each edge in the mother is analogously
assigned to either daughter or son.
Mutation The mutation operator modifies some individ-
uals in order to retain diversity in the population. Each
solution Z is mutated with probability pmut. If mutation
occurs, then one randomly selected pair is removed with
probability px ; a random pair from CFS\X and CSS\Y is
added to Z , otherwise.
Selection The selection operator is the same as in Phase
1: The solutions are ranked according to their objective
value. The first PopSize2 solutions are then retained as
the new generation.

5.3.2 Phase 2 in LV

In Phase 2 for LV, we search for a good policyΠGP(L ,∅, Y),
so we only add SS-constraints and no FS-constraints. Each

123

360 J Sched (2018) 21:349–365

population again has size PopSize2, and the initial popula-
tion is constructed as follows: PopSize2 − 1 solutions are
generated similarly as in HV but with candidate set Ŷ , and
one initial solution is the output of a greedy subroutine. For
any j ∈ N , let Y j = {(i, j)|i ∈ N , i ≺L j} be the set of all
SS-constraints imposed on activity j . Starting from Y ′ = Ŷ ,
the greedy subroutine iteratively evaluates the condition

E[ΠGP(D; L , ∅,Y ′\Y j)]n] < E[ΠGP(D; L , ∅,Y ′)]n]

for each j ∈ N in order of list L . If the condition is satisfied,
then Y ′ is updated as Y ′ := Y ′\Y j . The algorithm stops when
no further improvement is possible.

Similarly to Sect. 5.3.1, GA produces a final set Y by
adding and/or removing constraints, and new generations are
again iteratively constructed using similar crossover, muta-
tion and selection functions. The algorithm halts when the
simulation budget of the second phase is fully used.

6 Computational results

6.1 Experimental setup

All experiments have been performed on a personal com-
puter with Intel i7-3770 CPU with 3.40 GHz clock speed
and 8.00 GB of RAM. The algorithms are coded inMicrosoft
Visual Studio C++. Our main data set is the J120 instance set
from the PSBLIB library, whichwas generated using the Pro-
Gen generator (Kolisch and Sprecher 1996). It includes 600
RCPSP instances with 120 non-dummy activities each. We
will also use the J30 and J60 sets from the same library, which
contain 480 instances with 30, resp. 60, activities each.

In line with Ashtiani et al. (2011), Ballestín and Leus
(2009), Stork (2001), Fang et al. (2015) and Ballestín (2007),
which are the most important works in the literature on
SRCPSP that report computational results on large instances,
we choose uniform, beta and exponential distributions for
the activity durations. The expected activity durations are
equal to the deterministic processing times d∗ ∈ N

n+1 in
the PSPLIB data sets. We use five different distributions to
model the duration of an activity i ∈ N : two continuous uni-
form distributions with support [d∗

i − √
d∗
i ; d∗

i + √
d∗
i] and

[0; 2d∗
i]; one exponential distribution with rate parameter

d∗−1

i ; and two beta (generalized truncated) distributions with

variance d∗
i /3 and d∗2

i /3, both with support [d∗
i /2; 2d∗

i]. In
the remainder of this text, we will refer to these five distribu-
tions as U1, U2, Exp, B1 and B2, respectively. The variances
of these distributions are, in the same order, d∗

i /3, d∗2
i /3, d∗2

i ,

d∗
i /3 and d∗2

i /3. Thus, U1 and B1 have relatively low vari-
ance, U2 and B2 have medium variability, and Exp displays
high variability. Below, we will work with the HV-setting of

our algorithm for the last three distributions, and with LV for
U1 and B1. In both beta distributions, the parameter β = 2α;
for B1, we use α = (d∗

i /2) − (1/3), and for B2, we have
α = (d∗

i /2) − (1/6).
Based on some preliminary experiments and on the find-

ings of Ashtiani et al. (2011), we choose the probabilities
pcross = px = 0.5 and pmut = 0.05, the population size in
the first phase PopSize1 = 40 and the number of returned
activity lists NoList = 1. In the second phase, we set the
maximum number of additional constraints in the initial pop-
ulation npairs = 7, the population size PopSize2 = 20 and
the parameters FPmin = 1 and FPmax = 30.

6.2 Policy evaluation

6.2.1 Simulation

The evaluation of the quality of an algorithm is based on
the average percentage distance of E[[Π(D)]n] from the
CPLwith deterministic durationsd∗. The expectedmakespan
is estimated via simulation or is obtained by means of a
Markov chain evaluation subroutine (see Sect. 4). In most
of the existing literature, scenarios are generated via simple
Monte Carlo sampling, but Saliby (1990) observes that sim-
ple random sampling may lead to an imprecise description
of known input distributions, which will increase the inaccu-
racy of simulations. In particular, since we intend to run only
few generations, this problem might become severe. Con-
sequently, in line with Ashtiani et al. (2011) and Ballestín
and Leus (2009), we use descriptive sampling as a variance
reduction technique, in which we use a random permutation
of quantiles of the distribution at hand.

In the literature on SRCPSP, in order to compare different
proposed algorithms despite the use of different computers,
the optimization effort is controlled by allowing an equal sim-
ulation budget. More precisely, algorithm A is better than
algorithm B if it finds better solutions with an equal num-
ber of generated schedules. In line with Ballestín and Leus
(2009), Ballestín (2007), Ashtiani et al. (2011) and Fang et al.
(2015), we use two upper bounds on the number of gen-
erated schedules, namely 5000 and 25,000. Ashtiani et al.
(2011) observe that generating a schedule with a member
from CRB or CPP requires approximately twice as much time
as CAB. Since GP-policies require the same computational
requirement as PP-policies, we decide to adopt the follow-
ing counting convention: One GP-policy in Phase 1 will be
counted as 1 (schedule with RB-policy) + 2 (for applying the
justification operator) + nsim (number of simulations for eval-
uation) = nsim + 3. In Phase 2, each iteration of GA and each
iteration of the greedy subroutine corresponds to nsim scenar-
ios. The number of iterations of the algorithm should be set
based on this counting convention and the upper bound (5000
or 25,000) on the total number of schedule generations. In

123

J Sched (2018) 21:349–365 361

Table 3 Comparing E[[Π(D)]n] for GP-H(SIM), GP-H(MC) and
Exact in J30

Procedure J30

Makespan Gap (%) CPU

GP-H(SIM) 75.22 0.91 0.07

GP-H(MC) 74.89 0.36 88.27

Exact 74.60 0.00 0.49

our implementation, we will evenly distribute the total bud-
get of generated schedules among the two phases. Following
Ashtiani et al. (2011) and Ballestín and Leus (2009), we opt
for nsim = 10.

6.2.2 Comparison of simulation-based and exact policy
evaluation

We have examined the effect of replacing the simulation
subroutine of our two-phase metaheuristic procedure, sub-
sequently referred to as GP-H, with an exact evaluation
subroutine based on a Markov chain approach (see Sect. 4).
Both versions of the algorithm, denoted by GP-H(SIM) and
GP-H(MC), have been applied to the J30 data set with expo-
nential durations. The simulation budget in GP-H(SIM) is
limited to 25,000 generated schedules; the number of poli-
cies examined byGP-H(MC) is the same as forGP-H(SIM).
The results are then compared to the optimal elementary poli-
cies obtained by the exact algorithm proposed by Creemers
(2015) (Exact). The details are provided in Table 3. The
column labeled “gap” contains the percentage gap between
optimal and heuristic makespan; runtimes are expressed in
seconds. We observe that the Markov chain evaluation con-
sumes significantly more CPU time (an increase by a factor
of over 1000). The benefit, however, is that the average opti-
mality gap is reduced to only one-third of its value with
simulation evaluation, so there is a clear trade-off to be struck
between runtime and quality of the solutions found. In the
remainder of this text, we will only apply the simulation sub-
routine to estimate expected makespan because only in this
way can comparisons be made with the published results for
other procedures.

6.3 Comparison with other policies

Table 4 shows the comparison between our two-phase meta-
heuristic procedure (GP-H in the table) optimizing in CGP
with a GA for CAB proposed by Ballestín (2007) (AB-
GA), the GRASP algorithm for CAB proposed by Ballestín
and Leus (2009) (AB-GR), the two-phase GA for CPP pro-
posed by Ashtiani et al. (2011) (PP-GA) and the so-called
estimation-of-distribution algorithm of Fang et al. (2015)

Table 4 Average percentage difference between themakespan andCPL
for different algorithms for J120

Procedure # Schedules Distribution

U1 U2 Exp B1 B2

AB-GA 5 × 103 51.49 78.65 120.22 – –

25 × 103 49.63 75.38 116.83 – –

AB-GR 5 × 103 46.84 72.58 114.42 47.17 75.97

25 × 103 45.21 70.95 112.37 45.60 74.17

PP-GA 5 × 103 48.86 58.91 76.03 49.01 58.82

25 × 103 47.21 58.07 74.56 47.25 57.95

RB-EDA 5 × 103 47.29 56.54 72.50 47.65 58.29

25 × 103 46.66 56.07 72.05 47.04 57.82

GP-H 5 × 103 46.71 55.95 71.71 46.87 55.95

25 × 103 44.98 55.37 71.29 45.12 55.42

Table 5 Comparing the output of AB-GR and GP-H with optimal
elementary policies in J30 and J60

Procedure J30 J60

Makespan Gap (%) CPU Makespan Gap (%) CPU

AB-GR 81.88 10.10 – 122.92 18.41 –

GP-H 75.22 0.91 0.07 112.13 1.19 0.30

Exact 74.60 0.00 0.49 110.59 0.00 831.58

(RB-EDA), for the J120 data set. We observe that GP-H
outperforms all other algorithms in all five distributions. This
supports the theoretical dominance of CGP over CAB and CPP
discussed in Sect. 3. Since the search space is significantly
larger for CGP than for the other policy classes, these results
also indicate that the proposed two-phase algorithm has been
efficiently tuned toward finding high-quality solutions in this
large search space.

The exact method of Creemers (2015) (Exact) for finding
optimal elementary policies cannot be applied to this data set
due to excessive memory usage: The largest instances that
can be solved by the procedure have 30 to 60 activities. In
Table 5, the results of the exact algorithm are compared with
GP-H and AB-GR applied to J30 and J60, considering only
exponential durations. The simulation budget in GP-H and
AB-GR is limited to 25,000 generated schedules. Note that
not all instances of J60 could be solved via Exact, so this
comparison only includes the solved instances (227 out of
480). As before, “gap” is the percentage gap between optimal
and heuristic makespan. Runtimes are expressed in seconds.
We observe that the gap between the solutions obtained using
our proposed algorithm and the optimal values is around 1%
in both J30 and J60,while this gap forAB-GR is significantly
higher.

123

362 J Sched (2018) 21:349–365

Table 6 Runtimes (in seconds) for GP-H under different settings for
J120

Procedure # Schedules Distribution

U1 U2 Exp B1 B2

GP-H(LV) 5 × 103 92.7 93.4 94.8 207.6 201

25 × 103 394.8 401.6 395.2 518.2 524.5

GP-H(HV) 5 × 103 339 331 301.6 450.9 432

25 × 103 799.9 755.2 794.2 888.6 943.9

Note that we have assessed the performance of our
algorithm compared to optimal elementary policies in this
section, although elementary policies are not necessarily
globally optimal (see Sect. 2.4). To the best of our knowl-
edge, however, there are no publications in the literature that
solve over a larger class of static policies with an expected
makespan objective (although a limited number of studies
have also looked into other than only elementary policies for
other, so-called “non-regular,” objectives, see, for instance,
Buss and Rosenblatt 1997 and Bendavid and Golany 2011).

6.4 Runtimes

Although counting schedule generations is an accepted
method for eliminating the impact of different computation
devices (see Hartmann and Kolisch 2000, for instance), it
is incompatible with approaches that are different from mere
simulation-optimization (e.g., Creemers 2015; Li andWomer
2015). The goal of this section is therefore to report run-
times, as an alternative measure for computational effort,
so that future researchers can evaluate their algorithms
based on these times as well. Table 6 shows the runtimes
of GP-H applied to J120 for all five distributions. GP-
H(LV) refers to the GP-H algorithm with HV-setting (see

Sect. 5.3.1), whileGP-H(HV) is the LV-version described in
Sect. 5.3.2.

The higher runtimes for GP-H(HV) are mainly due to the
inclusion of preprocessing calculations in Phase 2 to create
CSS and CFS. Also, due to the more time-consuming gener-
ation of random numbers, both versions of the algorithm are
slightly slower for the beta distribution compared to U1, U2
and Exp.

6.5 Makespan as a function of computational effort

Recent work on SRCPSP using simulation-optimization
methods has typically limited computational effort to 5000
and 25,000 schedules. In this section, we examine how
these bounds affect the performance of the proposed algo-
rithm. For this purpose, we have run GP-H on J120
(all five distributions) and J30 (only exponential distri-
bution), with the budget on the schedule count vary-
ing from 103 to 200 × 103. Some of the parameters,
including nsim, PopSize and the number of iterations in
GRASP and GA, are modified according to this bud-
get.

Figures 5 and 6 summarize our findings. In all plots, the
horizontal andvertical axis represent the number of schedules
and the percentage difference betweenCPLand E[[Π(D)]n],
respectively. In Fig. 6, the output of Exact and GP-H are
compared for the exponential distribution. As depicted in the
figures, in LV (U1 and B1) and also for the small instances
(J30), a budget of 25 × 103 generated schedules seems to
be sufficient to achieve the best performance of the heuristic
algorithm. In HV (U2, B2 and Exp), on the other hand, a
more extensive search yields a noticeably better final out-
come. This suggests that extending the upper bound on
the number of schedules can be useful for these distribu-
tions.

0 0.5 1 1.5 2
·105

44

45

46

47

48

schedules

ga
p
(%

)
b
et
w
ee
n
C
P
L

an
d

E
[[Π

(D
)]

n
]

U1
B1

0 0.5 1 1.5 2
·105

70.5

71

71.5

72

schedules

Exp

0 0.5 1 1.5 2
·105

54.5

55

55.5

56

56.5

schedules

U2
B2

Fig. 5 Effect of the number of schedules on the performance of GP-H in J120

123

J Sched (2018) 21:349–365 363

0 0.5 1 1.5 2
·105

74.5

75

75.5

76

schedules

ga
p
(%

)
b
et
w
ee
n
C
P
L

an
d

E
[[Π

(D
)]

n
]

GP-H
Exact

Fig. 6 Effect of the number of schedules on the performance of GP-H
in J30 with exponential durations

7 Summary and conclusions

In this article, we have proposed the new class of gener-
alized preprocessor policies (GP-policies) for the stochastic
resource-constrained project scheduling problem (SRCPSP).
The class of GP-policies is a generalization of the existing
classes ofRB-,AB-,ES- andPP-policies.AGP-policymakes
a number of a priori scheduling decisions in a preprocessing
phase under the form of additional precedence constraints,
while the remaining decisions are made online by adhering
to a priority list.

We have developed a two-phase algorithm for finding
high-quality GP-policies. Our computational results show
that the algorithm outperforms all existing procedures for
large instances and that the algorithm has been efficiently
tuned toward finding high-quality solutions in the larger
search space of the new class. In addition, for small instances,
the average optimality gap is very low although we compare
with optimal elementary policies, which belong to an even
larger class. This indicates that class of GP-policies by itself
also contains very good elementary policies.

As an alternative to simulation-based evaluation of
scheduling policies, we have also examined an exact Markov
chain evaluation subroutine. To this aim,we have generalized
the Kulkarni–Adlakha Markov chain in order to also include
start-to-start precedence constraints.We find that theMarkov
chain evaluation is significantly more time-consuming, but
also substantially increases the quality of the solutions found
within the same number of evaluated solutions.

In this work, the additional precedence constraints (repre-
senting preprocessing decisions) are chosen by a local search
algorithm with randomly evolving generations. For future
work, it would be interesting to focus on adding more intel-

ligence in the search for additional constraints, for instance
by describing specific settings under which extra precedence
constraints are particularly useful, or should be avoided.

Appendix: Exact evaluation of GP-policies for expo-
nential distributions

In this appendix, we describe an exact evaluation proce-
dure for the expected makespan of a feasible GP-policy
Π(L , X,Y), when each activity i has an exponentially dis-
tributed duration with rate parameter λi .

We use a Markov chain in which a state is represented by
a pair (I, O), where I and O are the sets of idle and ongo-
ing activities, respectively. The set F of finished activities is
fully defined by given choices for I and O . In a state (I, O),
an activity i ∈ N is eligible to start if the following three
conditions hold:

1. i ∈ I ,
2. j ∈ F for all j for which (j, i) ∈ A,

3. rik ≤
(
ak − ∑

j∈O r jk
)
for all k ∈ K .

For a given state (I, O), let H denote the set of eligible
activities and W ⊆ H the set of activities to be started in
that state (following the given policyΠ(L , X,Y)). Activities
i ∈ H are considered in order of L for inclusion into W and
are included if the following two conditions apply:

1. j ∈ (O ∪ F) for all j for which (j, i) ∈ Y ,
2. j ∈ F for all j for which (j, i) ∈ X .

If |W | > 0, then an immediate transition is made toward
state (I\W, O ∪ W). Otherwise (if W is empty), no activi-
ties are started and a transition takes place after completion
of the first activity in O . The probability that an activity
i ∈ O finishes first equals λi/

∑
j∈O λ j . The time until the

first completion is exponentially distributed and has expected
value

(∑
i∈O λi

)−1.
With each state (I, O), we associate a value function

G(I, O) that represents the expected time when state (I, O)

is visited, and π(I, O) denotes the probability that the
state is visited. We stepwise update both values. If W �=
∅, then π(I\W, O ∪ W) is increased by π(I, O) and
G(I\W, O ∪ W) is increased by G(I, O)π(I, O). Oth-
erwise (W = ∅), probability π(I, O\ {i}) is increased
by π(I, O)λi/

∑
j∈O λ j , and value function G(I, O\ {i})

is augmented with
(
G(I, O) + (∑

i∈O λi
)−1

)
π(I, O)λi/∑

j∈O λ j .
Memory rather than computation time is typically the

bottleneck when evaluating a Markovian PERT network. In
our implementation, we have used techniques described in

123

364 J Sched (2018) 21:349–365

Creemers et al. (2010) and Creemers (2015) to delete states
from memory when they are no longer needed.

References

Al-Bahar, J. F., & Crandall, K. C. (1990). Systematic risk management
approach for construction projects. Journal of Construction Engi-
neering and Management, 116, 533–546.

Artigues, C., Leus, R., & Talla Nobibon, F. (2013). Robust optimization
for resource-constrained project schedulingwith uncertain activity
durations. Flexible Services and Manufacturing Journal, 25(1–2),
175–205.

Ashtiani, B., Leus, R., & Aryanezhad, M. (2011). New competitive
results for the stochastic resource-constrained project schedul-
ing problem: Exploring the benefits of pre-processing. Journal
of Scheduling, 14(2), 157–171.

Ballestín, F. (2007). When it is worthwhile to work with the stochastic
RCPSP? Journal of Scheduling, 10(3), 153–166.

Ballestín, F., & Leus, R. (2009). Resource-constrained project schedul-
ing for timely project completionwith stochastic activity durations.
Production and Operations Management, 18, 459–474.

Bendavid, I., & Golany, B. (2011). Predetermined intervals for start
times of activities in the stochastic project scheduling problem.
Annals of Operations Research, 186, 429–442.

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009).
A survey on metaheuristics for stochastic combinatorial optimiza-
tion. Natural Computing, 8(2), 239–287.

Blazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Schedul-
ing subject to resource constraints.Discrete Applied Mathematics,
5, 11–24.

Bruni, M. E., Beraldi, P., Guerriero, F., & Pinto, E. (2011). A heuristic
approach for resource constrained project scheduling with uncer-
tain activity durations. Computers & Operations Research, 38,
1305–1318.

Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic
project networks. Operations Research, 45(1), 126–139.

Chapman, C., & Ward, S. (2000). Estimation and evaluation of uncer-
tainty: A minimalist first pass approach. International Journal of
Project Management, 18, 369–383.

Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based
algorithm for robust resource-constrained project scheduling.
Computers & Industrial Engineering, 55, 183–194.

Creemers, S. (2015). Minimizing the expected makespan of a project
with stochastic activity durations under resource constraints. Jour-
nal of Scheduling, 18(3), 263–273.

Creemers, S., Leus,R.,&Lambrecht,M. (2010). SchedulingMarkovian
PERT networks to maximize the net present value. Operations
Research Letters, 38(1), 51–56.

Dawood, N. (1998). Estimating project and activity duration: A risk
management approach using network analysis.ConstructionMan-
agement and Economics, 16, 41–48.

Deblaere, F. (2010). Resource constrained project scheduling under
uncertainty. Ph.D. thesis, Department of Applied Economics, KU
Leuven, Belgium.

Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive
policies for the stochastic resource-constrained project scheduling
problem.European Journal ofOperational Research,214(2), 308–
316.

Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: A
research handbook. Boston: Kluwer Academic Publishers.

Escudero, L. F., Kamesam, P. V., King, A. J., & Wets, R. J. B. (1993).
Production planning via scenario modelling. Annals of Operations
Research, 43, 311–335.

Fang, C., Kolisch, R., Wang, L., & Mu, C. (2015). An estimation
of distribution algorithm and new computational results for the
stochastic resource-constrained project scheduling problem. Flex-
ible Services and Manufacturing Journal, 27(4), 585–605.

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive
search procedures. Journal ofGlobalOptimization, 6(2), 109–133.

Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. (1996). The
role of the non-anticipativity constraint in commercial software
for stochastic project scheduling. Computers and Industrial Engi-
neering, 31, 233–236.

Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. (1998). Under-
standing simulation solutions to resource constrained project
scheduling problems with stochastic task durations. Engineering
Management Journal, 10, 5–13.

Goldberg, D. E. (1989).Genetic algorithms in search, optimization, and
machine learning. Reading, MA: Addison-Wesley.

Graham, R. L. (1966). Bounds on multiprocessing timing anomalies.
Bell System Technical Journal, 45, 1563–1581.

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-
of-the-art heuristics for the resource-constrained project schedul-
ing problem. European Journal of Operational Research, 127,
394–407.

Holland, H. J. (1975). Adaptation in natural and artificial systems. Ann
Arbor: University of Michigan Press.

Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for
the optimization of stochastic project networks under resource con-
straints. Networks, 13, 1–28.

Kolisch, R. (1996a). Efficient priority rules for the resource-constrained
project scheduling problem. Journal of Operations Management,
14, 172–192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project
scheduling methods revisited: Theory and computation. European
Journal of Operational Research, 90, 320–333.

Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project scheduling
problem library. European Journal of Operational Research, 96,
205–216.

Kulkarni, V. G., & Adlakha, V. G. (1986). Markov and Markov-
regenerative PERT networks. Operations Research, 34(5), 769–
781.

Lambrechts, O. (2007). Robust project scheduling subject to resource
breakdowns. Ph.D. thesis, KU Leuven, Belgium.

Leus, R. (2003). The generation of stable project plans. Ph.D. thesis,
Department of Applied Economics, KU Leuven, Belgium.

Leus, R., & Herroelen, W. (2004). Stability and resource allocation in
project planning. IIE Transactions, 36(7), 667–682.

Li, H., &Womer, N. K. (2015). Solving stochastic resource-constrained
project scheduling problems by closed-loop approximate dynamic
programming.European Journal ofOperationalResearch,246(1),
20–33.

Li, K. Y., & Willis, R. J. (1992). An iterative scheduling technique
for resource-constrained project scheduling. European Journal of
Operational Research, 56, 370–379.

Malcolm, D. G., Rosenbloom, J. M., Clark, C. E., & Fazar, W. (1959).
Application of a technique for research and development program
evaluation. Operations Research, 7, 646–669.

Möhring, R. H. (2000). Scheduling under uncertainty: Optimizing
against a randomizing adversary. In Lecture Notes in Computer
Science (Vol. 1913/2000), pp. 651–670.

Möhring, R. H., & Radermacher, F. J. (1989). The order-theoretic
approach to scheduling: The stochastic case. In R. Slowinski,
J. Weglarz (Eds.), Advances in Project Scheduling, chapter III.4.
Elsevier.

Möhring, R., Radermacher, F., &Weiss, G. (1984). Stochastic schedul-
ing problems I—General strategies. ZOR: Zeitschrift für Opera-
tions Research, 28, 193–260.

123

J Sched (2018) 21:349–365 365

Neumann, K., Schwindt, C., & Zimmermann, J. (2006). Project
scheduling with time windows. Berlin: Springer.

Özdamar, L., & Ulusoy, G. (1996). A note on an iterative for-
ward/backward scheduling techniquewith reference to a procedure
by Li and Willis. European Journal of Operational Research, 89,
400–407.

Pinedo, M. L. (2008). Scheduling: Theory, algorithms, and systems.
Berlin: Springer.

Project Management Institute. (2013). A guide to the project manage-
ment body of knowledge (PMBOK®Guide). Project Management
Institute Inc.

Radermacher, F. J. (1981). Cost-dependent essential systems of ES-
strategies for stochastic scheduling problems. Methods of Opera-
tions Research, 42, 17–31.

Radermacher, F. J. (1985). Scheduling of project networks. Annals of
Operations Research, 4, 227–252.

Radermacher, F. J. (1986). Analytical vs. combinatorial characteriza-
tions of well-behaved strategies in stochastic scheduling.Methods
of Operations Research, 53, 467–475.

Rockafellar, R. T., & Wets, R. J. B. (1991). Scenarios and policy
aggregation in optimization under uncertainty. Mathematics of
Operations Research, 16, 119–147.

Saliby, E. (1990). Descriptive sampling: A better approach to Monte
Carlo simulation. Journal of the Operational Research Society,
41, 1133–1142.

Schatteman, D., Herroelen, W., Van de Vonder, S., & Boone, A. (2008).
A methodology for integrated risk management and proactive
scheduling of construction projects. Journal of Construction Engi-
neering and Management, 134, 885–893.

Shtub, A., Bard, J. F., & Globerson, S. (2005). Project management:
Processes, methodologies, and economics. New Jersey: Pearson
Prentice Hall.

Sprecher, A. (2000). Scheduling resource-constrained projects compet-
itively at modest memory requirements.Management Science, 46,
710–723.

Stork, F. (2001). Stochastic resource-constrained project scheduling.
Ph.D. thesis, Technische Universität Berlin.

Valls, V., Ballestín, F., & Quintanilla, S. (2005). Justification and
RCPSP: A technique that pays. European Journal of Operational
Research, 165, 375–386.

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008).
Proactive heuristic procedures for robust project scheduling: An
experimental analysis.European Journal ofOperationalResearch,
189(3), 723–733.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R.
(2005). The use of buffers in project management: The trade-off
between stability and makespan. International Journal of Produc-
tion Economics, 97, 227–240.

Wang, J. (2004). A fuzzy robust scheduling approach for product devel-
opment projects. European Journal of Operational Research, 152,
180–194.

Wets, R. J. B. (1989). The aggregation principle in scenario analysis
and stochastic optimization, volume F51 of Nato ASI Series (pp.
91–113). Springer.

Yu, G., & Qi, X. (2004).Disruption management—Framework, models
and applications. New Jersey: World Scientific.

123

	New strategies for stochastic resource-constrained project scheduling
	Abstract
	1 Introduction
	2 Definitions
	2.1 The deterministic case
	2.2 The stochastic RCPSP
	2.3 Scheduling policies
	2.3.1 RB-policies
	2.3.2 AB-policies
	2.3.3 ES-policies
	2.3.4 Preprocessor policies
	2.3.5 Comparison

	2.4 Elementary policies are not globally optimal

	3 Generalized preprocessor policies
	3.1 Definition
	3.2 Hierarchy
	3.3 Illustration and discussion

	4 Solution evaluation
	5 A two-phase metaheuristic algorithm for mathcalCGP
	5.1 Global structure of the algorithm
	5.2 Phase 1: activity lists
	5.3 Phase 2: additional precedence constraints
	5.3.1 Phase 2 in HV
	5.3.2 Phase 2 in LV

	6 Computational results
	6.1 Experimental setup
	6.2 Policy evaluation
	6.2.1 Simulation
	6.2.2 Comparison of simulation-based and exact policy evaluation

	6.3 Comparison with other policies
	6.4 Runtimes
	6.5 Makespan as a function of computational effort

	7 Summary and conclusions
	Appendix: Exact evaluation of GP-policies for exponential distributions
	References

