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Abstract Weconsider a singlemachine scheduling problem
with changing processing times. The processing conditions
are subject to a general cumulative effect, in which the
processing time of a job depends on the sum of certain
parameters associatedwith previously scheduled jobs. In pre-
vious papers, these parameters are assumed to be equal to
the normal processing times of jobs, which seriously limits
the practical application of this model. We further generalize
this model by allowing every job to respond differently to
these cumulative effects. For the introduced model, we solve
the problem of minimizing the makespan, with and without
precedence constraints. For the problem without precedence
constraints, we also consider a situation in which a mainte-
nance activity is included in the schedule, which can improve
the processing conditions of the machine, not necessarily
to its original state. The resulting problem is reformulated
as a variant of a Boolean programming problem with a
quadratic objective, known as a half-product, which allows
us to develop a fully polynomial-time approximation scheme
with the best possible running time.
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1 Introduction

Scheduling models, in which the actual processing times of
jobs are not constant but are subject to various effects, have
recently generated a considerable volume of publications.
Traditionally, in the literature on scheduling with changing
processing times, two opposite effects are studied: deterio-
ration and learning. Under a deterioration effect, the later a
job starts, the more time is required to process it. A common
rationale for deterioration effects is that the processing qual-
ity of a machine tool gets worse. On the other hand, under a
learning effect, the actual processing times for the jobs that
are scheduled later appear to be shorter, which can be illus-
trated by an example of human operators who improve their
skills in performing similar activities by gaining experience.

We are given the jobs of set N = {1, 2, . . . , n} to be
processed on a single machine. Each job j ∈ N is associ-
ated with an integer p j that is called its “normal” processing
time. This value can be understood as the actual processing
duration of job j , provided that the machine is in a perfect
condition.

In the scheduling literature, the effects that may affect the
actual processing time of a job j ∈ N usually belong to one
of the following types (or their combination):

• Time-dependent effect: the actual processing time of job
j depends on the start time of the job; see the book by
Gawiejnowicz (2008) which gives a detailed exposition
of scheduling models with this effect;

• Positional effect: the actual processing time of job j
depends on p j and on the position of the job in the
sequence; see a focused survey byRustogi andStrusevich
(2012b) and a discussion in Agnetis et al. (2014);

• Cumulative effect: the actual processing time of job j
depends on p j and on an accumulated value of some
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parameter, typically, on the sum of normal processing
times of all jobs sequenced earlier; see Kuo and Yang
(2006a, b), where a similar effect is introduced.

In this paper, we address several versions of a single
machine scheduling problem to minimize the maximum
completion time, provided that a generalized linear job-
dependent cumulative effect is applied. Suppose that the jobs
are processed on a single machine in accordance with the
sequence π = (π (1) , π (2) , . . . , π (n)). Under the most
studied cumulative effect, introduced by Kuo and Yang
(2006a, b), the actual processing time of job j scheduled in
the r -th position of permutation π is defined by

p j (π; r) = p j

(
1 + b

r−1∑
h=1

pπ(h)

)A

, (1)

where A is a given constant, and b is either equal to 1 or to
−1, in the case of deterioration or of learning, respectively.
The extensions and generalizations of this basic model can
be found in Yin et al. (2009) and Huang andWang (2015). A
commondrawbackof papers on schedulingwith a cumulative
effect is that normally no convincing practical motivation of
the model is given. In particular, it is not well justified why
the actual processing time of a job should depend on total
normal time of previously scheduled jobs.

In this paper, we study a cumulative effect that arises when
a job j ∈ N is associated not onlywith the normal processing
time p j but also with two additional parameters, b j and q j >

0. Here q j is a quantity, not necessarily equal to the normal
processing time, such that its accumulated value affects the
actual processing time of later scheduled jobs. Formally, the
actual processing time of job j scheduled in the r -th position
of permutation π is defined by

p j (π; r) = p j

(
1 + b j

r−1∑
h=1

qπ(h)

)
, (2)

where b j > 0 under a deterioration effect and b j < 0 under
a learning effect. Unlike (1), the effect (2) is represented not
by a polynomial but by a linear function of the accumulated
quantities. On the other hand, no explicit dependence on the
normal time of previously scheduled jobs is assumed and
the values of b j can be understood as job-dependent rates
that reflect how sensitive a particular job is to the previously
scheduled jobs.

For illustration of our model, suppose that a floor sanding
machine is used to treat floors in several rooms. The normal
time p j is the time requirement for sanding floors in room j ,
provided that a new sanding belt/disc is used. The value of q j

can be seen as the amount of generated saw dust or an appro-
priately measured wear of the sanding belt/disc, which does

not necessarily depend on the time of treatment. For some
rooms, the actual treatment time can be seriously affected by
the quality of the equipment, and for some rooms, the effect
may be less noticeable, and this job dependency is captured
by the rate parameter b j . It is not difficult to identify a similar
cumulative deterioration effect in other activities/industries.

To illustrate the effect (2) in a learning environment, con-
sider the following situation. A computer programmer is
supposed to write n software pieces for a particular project.
These pieces can be developed in any order. Developing these
pieces requires particular transferable technical skills (such
as manipulating a certain data structure), which the program-
mer initially does not possess. In the beginning of the process,
a software piece j ∈ N can be completed in p j time units.
Assume that after completing a particular software piece j ,
the technical skill of the programmer increases by q j appro-
priately measured units, and that skill might help to speed up
the creation of any piece to follow. Thus, the actual time
needed to create a particular piece depends on the accu-
mulated skills gained during the development of previously
created pieces. Formally, the development time of a software
piece decreases linearly with the technical skill of the pro-
grammer, so that the actual time taken to write a software
piece j = π(r) is given by p j (π; r) = p j −a j

∑r−1
h=1 qπ(h),

where the quantity a j defines how sensitive the development
time for software piece j is to the gained technical skills.
This formulation can be written in terms of the effect (2)
with b j = −a j/p j , j ∈ N .

Adopting standard scheduling notation, we denote the
problem of minimizing the makespan Cmax, i.e., the max-
imum completion time, under the effect (1) by 1

∣∣p j (π; r)
= p j (1 + bPr )A

∣∣Cmax, where Pr stands for the sum of the
normal processing times of the jobs scheduled prior to job
π (r). A similar problem under the effect (2) is denoted by
1
∣∣p j (π; r) = p j

(
1 + b j Qr

)∣∣Cmax, where Qr represents
the sum of the q j values of the jobs scheduled prior to job
π (r).

Apart from problem 1
∣∣p j (π; r) = p j

(
1 + b j Qr

)∣∣Cmax

in which the jobs of set N are independent, we also study
its version in which precedence constraints are imposed
on the set of jobs, so that only those permutations of jobs
which respect the constraints are feasible. These prece-
dence constraints are given in a form of an acyclic directed
graph, with the nodes representing the jobs and the arcs
linking immediate successors and predecessors. Provided
that the digraph that defines precedence constraints is
series-parallel, we denote the problems under effects (1)
and (2) by 1

∣∣p j (π; r) = p j (1 + bPr )A ,SP-prec
∣∣Cmax and

1
∣∣p j (π; r) = p j

(
1 + b j Qr

)
,SP-prec

∣∣Cmax, respectively.
See Gordon et al. (2008) for a range of results on single
machine scheduling with series-parallel precedence con-
straints and various effects (positional, time-dependent, and
cumulative), including problem1

∣∣p j (π; r)= p j (1+Pr )A,
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SP-prec|Cmax. Extending our floor sanding machine exam-
ple given above, problem 1

∣∣p j (π; r) = p j
(
1 + b j Qr

)
,

SP-prec|Cmax can arise if precedence constraints occur due
to a particular physical layout of the building in which the
rooms to be sanded are located.

For scheduling problems with a deterioration effect, the
actual processing times grow. In order to prevent the process-
ing times to become unacceptably large, a maintenance
period (MP) can be introduced into a schedule. During an
MP, no processing takes place, and after the MP, the process-
ing facility is in better processing conditions. The duration
of an MP either is a constant or depends on its start time τ .
See Rustogi and Strusevich (2012a, 2014, 2015) for stud-
ies of scheduling models with maintenance under positional
effects, combined effects and time-dependent effects, respec-
tively.

Kellerer et al. (2013) study problems 1
∣∣p j (π; r) = p j

(1 + bPr ) ,MP (0)|Cmax and 1
∣∣p j (π; r)= p j (1 + bPr ) ,

MP (λ)|Cmax with exactly one MP introduced into a sched-
ule. Here, MP (λ) means that the duration of the MP is a
linear function of its start time τ , and is given by

�(τ) = λτ + μ, (3)

where μ ≥ 0 and λ ≥ 0 are known constants. In
particular, the term MP (0) corresponds to an MP of con-
stant duration μ. In this paper, we address more general
problems 1

∣∣p j (π; r) = p j
(
1 + b j Qr

)
,MP (0)

∣∣Cmax and
1
∣∣p j (π; r) = p j

(
1 + b j Qr

)
,MP (λ)

∣∣Cmax with a single
maintenance period. Notice that in the models studied by
Kellerer et al. (2013), the MP is assumed to fully restore
the processing conditions, so that after the maintenance the
machine is “as good as new”. In this paper, we consider the
MP as a rate-modifying activity, as introduced by Lee and
Leon (2001), and assume that for a job j ∈ N scheduled
after an MP, the normal processing time changes from p j to
σ p j , where σ is a given positive constant.

The problems with a single MP are NP-hard, and we
focus on the design of fully polynomial-time approximation
schemes (FPTAS). Recall that for a problem of minimizing a
function �(x), where x is a collection of decision variables,
a polynomial-time algorithm that finds a feasible solution xH

such that �(xH ) is at most ρ ≥ 1 times the optimal value
�(x∗) is called aρ-approximation algorithm; the value ofρ is
called aworst-case ratio bound.A family ofρ-approximation
algorithms is called a fully polynomial-time approximation
scheme (FPTAS) if ρ = 1 + ε for any ε > 0 and the run-
ning time is polynomial with respect to both the length of the
problem input and 1/ε.

The remainder of this paper is organized as follows.
In Sect. 2, problem 1

∣∣p j (π; r) = p j
(
1 + b j Qr

)∣∣Cmax is
reduced to the classical scheduling problem 1 | | ∑w jC j

to minimize the sum of the weighted completion times on

a single machine and is therefore solvable in O (n log n)

time. Using the theory of minimizing priority-generating
functions under series-parallel precedence constraints, in
Sect. 3,we show that problem1

∣∣p j (π; r) = p j
(
1 + b j Qr

)
,

SP-prec|Cmax is also solvable in O (n log n) time. In Sect. 4,
we present a fast FPTAS for problem 1

∣∣p j (π; r) = p j(
1+ b j Qr

)
,MP (λ)

∣∣Cmax with a singlemaintenanceperiod.
Some concluding remarks can be found in Sect. 5.

2 Minimization of makespan

For a scheduling problem to minimize a function � over
a set of permutations, an optimal solution can be found by
applying a priority rule, i.e., by associating each job j ∈ N
with a valueω ( j) and sorting the jobs in non-increasing order
of ω ( j)’s. The values ω ( j) , j ∈ N , are called 1-priorities.
The most popular 1-priorities are ω ( j) = p j , j ∈ N , and
ω ( j) = 1/p j , j ∈ N , which correspond to the well-known
LPT and SPT priority rules, respectively.

Problem 1
∣∣p j (π; r) = p j (1 + bPr )A

∣∣Cmax is known to
be solvable by the SPT rule if A < 0 (learning, see Kuo and
Yang (2006b)) and if A > 1 (fast deterioration, see Gordon
et al. (2008)). For the problem with A = 1, the objective
function is sequence independent, i.e., any permutation is
optimal; see Gordon et al. (2008).

Another well-known scheduling priority rule is theWSPT
(or Smith’s) rule. This rule is based on 1-priorities ω ( j) =
w j/p j , j ∈ N , and finds an optimal permutation for prob-
lem 1 | | ∑w jC j of minimizing the sum of the weighted
completion times.

Assume that in problem 1 | | ∑ w jC j the processing time
of a job j ∈ N is denoted by q j . Then the value of the objec-
tive function for a schedule associated with a permutation
π = (π (1) , π (2) , . . . , π (n)) is given by

n∑
r=1

wπ(r)Cπ(r) =
n∑

r=1

wπ(r)

r∑
h=1

qπ(h),

and, as proved by Smith (1956), an optimal permutation can
be found in O (n log n) time by sorting the jobs in non-
increasing order of the 1-priorities ω ( j) = w j/q j .

We use this result to solve problem 1
∣∣p j (π; r) =

p j
(
1 + b j Qr

)∣∣Cmax.

Theorem 1 For problem 1
∣∣p j (π; r) = p j

(
1 + b j Qr

)∣∣
Cmax, an optimal permutation can be found in O (n log n)

time by sorting the jobs in non-increasing order of the ratios(
p jb j

)
/q j , j ∈ N.

Proof We reduce the problem under consideration to prob-
lem 1 | | ∑ w jC j , with the processing times equal to q j and
the weights defined by
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w j = b j p j , j ∈ N . (4)

Given a permutation π = (π (1) , π (2) , . . . , π (n)) of
jobs, let Cmax (π) denote the makespan for a schedule in
which the jobs are processed according to permutation π .
Then for the original problem, we have

Cmax (π) = pπ(1) +
n∑

r=2

pπ(r)

(
1 + bπ(r)

r−1∑
h=1

qπ(h)

)

=
n∑

r=1

pπ(r) +
n∑

r=2

bπ(r) pπ(r)

r−1∑
h=1

qπ(h)

=
n∑

r=1

pπ(r) +
n∑

r=1

bπ(r) pπ(r)

r−1∑
h=1

qπ(h),

where the last equality is due to
∑0

h=1 qπ(h) = 0.
Using (4), we further rewrite

Cmax (π) =
n∑

r=1

pπ(r) +
n∑

r=1

wπ(r)

r−1∑
h=1

qπ(h)

=
n∑

r=1

pπ(r)+
n∑

r=1

wπ(r)

r∑
h=1

qπ(h)−
n∑

r=1

wπ(r)qπ(r)

=
n∑

r=1

wπ(r)

r∑
h=1

qπ(h) +
n∑
j=1

(
p j − w j q j

)
.

Thus, Cmax (π) is minimized if the minimum of∑n
r=1 wπ(r)

∑r
h=1 qπ(h) is attained. The latter expression

is the objective function in problem 1 | | ∑w jC j , so that
the optimal permutation can be found by the WSPT rule.
In terms of the original problem, an optimal permutation is
obtained by sorting the jobs in non-increasing order of the
ratios

(
p jb j

)
/q j . ��

Reformulating Theorem 1, we conclude that for the
problem of minimizing the makespan under effect (2) the 1-
priority is ω ( j) = b j p j/q j , j ∈ N . Notice that Theorem 1
holds irrespective of the sign of b j , i.e., for both deterioration
and learning effects.

Theorem 1 can be applied to an effect that resembles (1)
with A = 1.

Corollary 1 If effect (2) is applied with q j = p j , for all j ∈
N, then the resulting problem 1

∣∣p j (π; r) = p j
(
1 + b j Pr

)∣∣
Cmax is solvable in O (n log n) time by sequencing jobs
in non-increasing order of b j . Moreover, if b j = 1,
for all j ∈ N, then an arbitrary permutation of jobs
results in an optimal solution to the resulting problem
1
∣∣p j (π; r) = p j (1 + Pr )

∣∣Cmax.

Notice that the latter part of Corollary 1 for problem
1
∣∣p j (π; r) = p j (1 + Pr )

∣∣Cmax is also proved in Gordon
et al. (2008).

3 Minimization of makespan with precedence
constraints

In this section, we study problem 1
∣∣p j (π; r) = p j(

1 + b j Qr
)
,SP-prec

∣∣Cmax, inwhichprecedence constraints
are imposed on the set of jobs, and the graph that defines
these constraints is series-parallel; see Valdes et al. (1982)
and Tanaev et al. (1984) for definitions and notions related
to this well-studied class of graphs.

Research on scheduling problems under series-parallel
precedence constraints was initiated by Lawler (1978), who
presented a polynomial-time algorithm for minimizing the
weighted sum of the completion times on a single machine
subject to series-parallel constraints. Soon after, it was dis-
covered that many other scheduling problems can be solved
by a similar approach, provided that their objective functions
possess specific properties, related to an extended notion of
a priority function that is defined for subsequences of jobs
rather than just for individual jobs. The definition below can
be found in Tanaev et al. (1984) and Monma and Sidney
(1979).

Definition 1 Let παβ = (π ′αβπ ′′) and πβα = (π ′βαπ ′′)
be two permutations of n jobs that differ only in the order
of the subsequences α and β (here subsequences π ′ and/or
π ′′ can be dummy permutations with no elements). For a
function �(π) that depends on a permutation, suppose that
there exists a function ω(π) such that for any two permu-
tations παβ and πβα , the inequality ω(α) > ω(β) implies
that �(παβ) ≤ �(πβα), while the equality ω(α) = ω(β)

implies that �(παβ) = �(πβα). In this case, function �

is called a priority-generating function, while function ω is
called its priority function. For a (partial) permutation π , the
value of ω(π) is called the priority of π .

A priority function applied to a single job becomes
a 1-priority for that job. Thus, for function �(π) to be
priority-generating, it is necessary that the problem of min-
imizing �(π) admits 1-priorities. On the other hand, the
existence of 1-priorities does not imply that they can be
extended to a priority function. Intuitively, a priority function
allows us to rank not only individual jobs but also par-
tial permutations. The fastest known algorithm minimizes a
priority-generating function under series-parallel precedence
constraints in O(n log n) time; see, e.g., Monma and Sidney
(1979) and Tanaev et al. (1984).

Various single machine scheduling problems with time-
changing effects and series-parallel precedence constraints
have been studied in Gordon et al. (2008), Wang and Xia
(2005) and Dolgui et al. (2012). In particular, Gordon
et al. (2008) study problem 1

∣∣p j (π; r) = p j (1 + Pr )A ,

SP -prec|Cmax for a positive integer A. For A = 1, the
objective function is sequence independent (see Corollary 1),
and the problem is solvable in O (n) time under arbitrary
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precedence constraints since any feasible permutation is opti-
mal. For A = 2, the objective function is proved to be
priority-generating and the problem is therefore solvable in
O (n log n) time. On the other hand, for A = 3, the objective
function is proved not to generate a priority function.

Below, we use Definition 1 to prove that for problem
1
∣∣p j (π; r) = p j

(
1 + b j Qr

)
,SP-prec

∣∣Cmax the objective
function is priority-generating.

Theorem 2 For the single machine problem to minimize the
makespan under the cumulative effect (2), the objective func-
tion is priority-generating and

ω(π) =
∑|π |

j=1 pπ( j)bπ( j)∑|π |
j=1 qπ( j)

(5)

is its priority function, so that problem 1
∣∣p j (π; r) = p j(

1 + b j Qr
)
, SP-prec

∣∣Cmax is solvable in O (n log n) time.

Proof For a (partial) permutation π , we denote the length
of π , i.e., the number of jobs in π , by |π |. For a par-
tial permutation π consider a schedule S such that π

is contained as a subsequence in a full permutation that
defines schedule S. Assume that for S the following holds:
(i) the first job in π starts at time τ ; and (ii) the sum
of the q j values of the jobs that precede the first job
in π , i.e., those completed by time τ , is equal to ζ .
Under these assumptions, let Cmax(π; τ ; ζ ) denote the max-
imum completion time of the jobs in π . By definition, for
problem 1

∣∣p j (π; r) = p j
(
1 + b j Qr

)
,SP-prec

∣∣Cmax we
deduce

Cmax(π; τ ; ζ ) = τ + Cmax(π; 0; ζ )

= τ +
|π |∑
k=1

pπ(k)

(
1+bπ(k)

(
ζ +

k−1∑
i=1

qπ(i)

))
.

Let παβ = (π1αβπ2) and πβα = (π1βαπ2) be two
permutations of all jobs that only differ in the order of the
subsequencesα (containingu jobs) andβ (containing v jobs).
Define�C = Cmax(π

αβ)−Cmax(π
βα) and let ζ ′ denote the

total sum of the q j values of the jobs in π1. Then �C =
Cmax(αβπ2; 0; ζ ′) − Cmax(βαπ2; 0; ζ ′). Furthermore,

Cmax(αβπ2; 0; ζ ′)

= Cmax(αβ; 0; ζ ′)

+
|π2 |∑
k=1

pπ2(k)

⎛
⎝1 + bπ2(k)

⎛
⎝ζ ′ +

u∑
i=1

qα(i) +
v∑
j=1

qβ( j) +
k−1∑
i=1

qπ2(i)

⎞
⎠

⎞
⎠ ,

Cmax(βαπ2; 0; ζ ′)

= Cmax(βα; 0; ζ ′)

+
|π2 |∑
k=1

pπ2(k)

⎛
⎝1 + bπ2(k)

⎛
⎝ζ ′ +

v∑
j=1

qβ( j) +
u∑

i=1

qα(i) +
k−1∑
i=1

qπ2(i)

⎞
⎠

⎞
⎠ ,

so that �C = Cmax(αβ; 0; ζ ′) − Cmax(βα; 0; ζ ′). To prove
the theorem, we derive conditions under which �C ≤ 0.

Further, we deduce

Cmax(αβ; 0; ζ ′)
= Cmax(α; 0; ζ ′)

+
v∑

k=1

pβ(k)

⎛
⎝1 + bβ(k)

⎛
⎝ζ ′ +

u∑
i=1

qα(i) +
k−1∑
j=1

qβ( j)

⎞
⎠

⎞
⎠

=
u∑

k=1

pα(k)

(
1 + bα(k)

(
ζ ′ +

k−1∑
i=1

qα(i)

))

+
v∑

k=1

pβ(k)

⎛
⎝1 + bβ(k)

⎛
⎝ζ ′ +

u∑
i=1

qα(i) +
k−1∑
j=1

qβ( j)

⎞
⎠

⎞
⎠ ,

Cmax(βα; 0; ζ ′)
= Cmax(β; 0; ζ ′)

+
u∑

k=1

pα(k)

⎛
⎝1 + bα(k)

⎛
⎝ζ ′ +

v∑
j=1

qβ( j) +
k−1∑
i=1

qα(i)

⎞
⎠

⎞
⎠

=
v∑

k=1

pβ(k)

⎛
⎝1 + bβ(k)

⎛
⎝ζ ′ +

k−1∑
j=1

qβ( j)

⎞
⎠

⎞
⎠

+
u∑

k=1

pα(k)

⎛
⎝1 + bα(k)

⎛
⎝ζ ′ +

v∑
j=1

qβ( j) +
k−1∑
i=1

qα(i)

⎞
⎠

⎞
⎠ ,

so that for �C we derive

�C =
u∑

k=1

pα(k)

⎛
⎝

⎛
⎝1 + bα(k)

⎛
⎝ζ ′ +

k−1∑
i=1

qα(i)

⎞
⎠

⎞
⎠

−
⎛
⎝1 + bα(k)

⎛
⎝ζ ′ +

v∑
j=1

qβ( j) +
k−1∑
i=1

qα(i)

⎞
⎠

⎞
⎠

⎞
⎠

+
v∑

k=1

pβ(k)

⎛
⎝

⎛
⎝1 + bβ(k)

⎛
⎝ζ ′ +

u∑
i=1

qα(i) +
k−1∑
j=1

qβ( j)

⎞
⎠

⎞
⎠

−
⎛
⎝1 + bβ(k)

⎛
⎝ζ ′ +

k−1∑
j=1

qβ( j)

⎞
⎠

⎞
⎠

⎞
⎠ .

Proceeding further, we obtain

�C = −
u∑

k=1

pα(k)bα(k)

v∑
j=1

qβ( j)

+
v∑

k=1

pβ(k)bβ(k)

u∑
i=1

qα(i).

Dividingby
∑u

k=1 qα(k)
∑v

i=1 qβ(i),wededuce that�C ≤
0, provided that
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∑u
k=1 pα(k)bα(k)∑u

k=1 qα(k)
≥

∑v
i=1 pβ(i)bβ(k)∑v

i=1 qβ(i)
.

For an arbitrary (partial) permutation π , define the func-
tion ω(π) by (5). It is easily verified that ω(α) > ω(β)

implies Cmax(π
αβ) ≤ Cmax(π

βα), while ω(α) = ω(β)

implies Cmax(π
αβ) = Cmax(π

βα), as required by Defini-
tion 1. ��

Theorem 2 holds irrespective of the sign of b j , j ∈ N .
Observe that if (5) is applied to a single job j , i.e., to a per-
mutation of length one, then the priority function becomes
a 1-priority function ω( j) = (

p jb j
)
/q j , which is consis-

tent with Theorem 1. Besides, if q j = p j and b j = b for
all j ∈ N , then ω( j) becomes constant, i.e., for problem
1
∣∣p j (π; r) = p j (1 + bPr )

∣∣Cmax any permutation is opti-
mal, which is consistent with Corollary 1 and Gordon et al.
(2008).

4 Minimization of makespan with machine
maintenance

In this section, we consider the effect (2) in the deterioration
form, i.e., with b j > 0. A single rate-modifying mainte-
nance activity is introduced into a schedule, which is able to
improve the processing quality of the machine.

An instance of problem 1
∣∣p j (π; r) = p j

(
1 + b j Qr

)
,

MP(λ)|Cmax is defined by the arrays of positive numbers
p j , q j and b j , j ∈ N , as well as by positive numbers λ,μ

and σ . The duration of the maintenance period (MP) is given
by (3). For a job j ∈ N scheduled after the MP, the normal
processing time changes from p j to σ p j .

In a schedule with a single MP, the jobs are split into two
groups: group 1 consists of the jobs scheduled before the
maintenance and group 2 contains all other jobs. Let Ni be
the set of jobs in group i and |Ni | = ni , for i ∈ {1, 2}. Due
to Theorem 1, we may assume that the jobs in each group
are sequenced in non-increasing order of the 1-priorities(
p jb j

)
/q j . This is why throughout this section the jobs are

renumbered so that

p1b1
q1

≥ p2b2
q2

≥ · · · ≥ pnbn
qn

. (6)

Let x = (x1, x2, . . . , xn) denote a vector with 0–1 compo-
nents. Problem1

∣∣p j (π; r) = p j
(
1 + b j Qr

)
,MP(λ)

∣∣Cmax

belongs to a range of scheduling problems that can be reduced
to minimizing a function of the form

F (x) = H (x) + K , (7)

where

H (x) =
n∑

1≤i< j≤n

uiv j xi x j −
n∑
j=1

h j x j , (8)

is known as the half-product function. The coefficients u j

and v j are non-negative integers, while h j is an integer that
can be either negative or positive.

Let a vector that is optimal for the problem of min-
imizing function (8), or equivalently, (7) be denoted by
x∗ = (

x∗
1 , x

∗
2 , . . . , x

∗
n

)
. Notice that we are only interested

in the instances of the problem of minimizing function (8)
for which the optimal value H (x∗) is strictly negative; other-
wise, setting all decision variables to zero solves the problem.
On the other hand, below and in fact in most known applica-
tions it is assumed that constant K is such that F (x∗) > 0.

To proceed, we need to refine the definition of an FPTAS
for the problem of minimizing function H(x) which takes
both positive and negative values. For such a problem, an
FPTAS delivers a solution vector xε such that H(xε) −
H(x∗) ≤ ε |H(x∗)|. For the problem of minimizing a func-
tion of the form (7) with F (x∗) > 0, an FPTAS outputs a
solution vector xε such that F(xε) ≤ (1 + ε) F(x∗).

Badics and Boros (1998) prove that the problem of
minimizing function (8) is NP-hard. The first FPTAS for
minimizing function (8) in strongly polynomial time is due
to Erel andGhosh (2008), with the running time of O

(
n2/ε

)
.

This running time should be seen as the best possible, since
just computing the value of the objective function for a given
vector x takes O

(
n2

)
time. However, it is known that an

FPTAS for minimizing the function H(x) does not necessar-
ily behave as an FPTAS for minimizing the function F(x)
of the form (7) with an additive constant. This is due to the
fact that the optimal value of H(x) is negative and K can be
positive; see Erel and Ghosh (2008), Kellerer and Strusevich
(2012, 2016) for discussion and examples.

For the problem of minimizing a function of the form
(7), Erel and Ghosh (2008) outline a procedure, which may
behave as an FPTAS.

Theorem 3 For the problem of minimizing a function of the
form (7), denote the lower and upper bounds on the value of
F(x∗) by LB and UB, respectively, i.e., LB ≤ F(x∗) ≤ UB.
If the ratio UB/LB is bounded from above by some positive
γ , then there exists an algorithm that delivers a solution x0

such that F(x0) − LB ≤ εLB in O(γ n2/ε) time.

Theorem 3 is proved by Erel and Ghosh (2008). If the
value of γ is bounded from above by a polynomial of the
length of the input of the problem, then the algorithm from
Theorem 3 designed by Erel and Ghosh (2008) behaves as
an FPTAS. Moreover, if γ is a constant, then such an FPTAS
requires the best possible running time of O

(
n2/ε

)
. In what
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follows, we refer to the algorithm from Theorem 3 as the
γ -FPTAS.

Given problem 1
∣∣p j (π; r) = p j

(
1 + b j Qr

)
,MP(λ)

∣∣
Cmax, introduce a Boolean variable x j in such a way that

x j =
{
1, if job j is scheduled in the first group
0, otherwise

for each job j, 1 ≤ j ≤ n.
Taking the jobs in order of their numbering given by (6),

if job j ∈ N is scheduled in the first group, then it completes
at time

C j = p j x j

⎛
⎝1 + b j

j−1∑
i=1

qi xi

⎞
⎠ ,

so that theMPstarts at time τ =∑n
j=1 p j x j

(
1+b j

∑ j−1
i=1 qi xi

)
.

If job j is scheduled in the second group, then its completion
time is given by

C j = τ +(λτ +μ) + σ p j (1 − x j )

⎛
⎝1 + b j

j−1∑
i=1

qi (1 − xi )

⎞
⎠

= (λ + 1)
n∑
j=1

p j x j

⎛
⎝1 + b j

j−1∑
i=1

qi xi

⎞
⎠

+ σ p j (1 − x j )

⎛
⎝1 + b j

j−1∑
i=1

qi (1 − xi )

⎞
⎠ + μ.

This implies that in order to solve problem 1
∣∣p j (π; r)

= p j
(
1 + b j Qr

)
,MP (λ)

∣∣Cmax, we need to minimize the
function

Z (x) = (λ + 1)
n∑
j=1

p j x j

⎛
⎝1 + b j

j−1∑
i=1

qi xi

⎞
⎠

+ σ

n∑
j=1

p j (1 − x j )

⎛
⎝1 + b j

j−1∑
i=1

qi (1 − xi )

⎞
⎠ + μ

=
n∑
j=1

(λ + 1) b j p j x j

⎛
⎝ j−1∑

i=1

qi xi

⎞
⎠

+
n∑
j=1

σb j p j (1 − x j )

⎛
⎝ j−1∑

i=1

qi (1 − xi )

⎞
⎠

+ (λ + 1)
n∑
j=1

p j x j + σ

n∑
j=1

p j (1 − x j ) + μ.

We show that the above function admits a representation
in the form (7). As in (4), define w j = b j p j , j ∈ N , and
rewrite Z (x) as

Z (x) =
∑

1≤i< j≤n

(λ + 1) qiw j xi x j

+
σ∑

1≤i< j≤n

qiw j (1 − xi )(1 − x j )

+ (λ + 1)
n∑
j=1

p j x j + σ

n∑
j=1

p j (1 − x j ) + μ. (9)

Function (9) is written in the form that appears as an
objective function in the so-called symmetric quadratic knap-
sack problem; see Kellerer and Strusevich (2012, 2016) for
reviews.

Since∑
1≤i< j≤n

qiw j (1 − xi )(1 − x j )

=
∑

1≤i< j≤n

qiw j xi x j −
n∑
j=1

⎛
⎝w j

⎛
⎝ j−1∑

i=1

qi

⎞
⎠

+ q j

⎛
⎝ n∑

i= j+1

wi

⎞
⎠

⎞
⎠ x j +

∑
1≤i< j≤n

qiw j ,

and

(λ + 1)
n∑
j=1

p j x j + σ

n∑
j=1

p j (1 − x j )

= (λ − σ + 1)
n∑
j=1

p j x j + σ

n∑
j=1

p j ,

function (9) derived above may be written as

Z (x) =
∑

1≤i< j≤n

(λ + σ + 1) qiw j xi x j

+
n∑
j=1

⎛
⎝(λ − σ + 1) p j − σ

⎛
⎝w j

⎛
⎝ j−1∑

i=1

qi

⎞
⎠

+ q j

⎛
⎝ n∑

i= j+1

wi

⎞
⎠

⎞
⎠

⎞
⎠ x j

+
⎛
⎝μ + σ

⎛
⎝ ∑

1≤i< j≤n

qiw j +
n∑
j=1

p j

⎞
⎠

⎞
⎠ . (10)

This is clearly a representation in the form (7) with

u j = (λ + σ + 1) w j , v j = q j , j ∈ N ;

h j = (λ − σ + 1) p j − σ

⎛
⎝w j

⎛
⎝ j−1∑

i=1

qi

⎞
⎠
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+ q j

⎛
⎝ n∑

i= j+1

wi

⎞
⎠

⎞
⎠ , j ∈ N ;

K = μ + σ

⎛
⎝ ∑

1≤i< j≤n

qiw j +
n∑
j=1

p j

⎞
⎠ .

According to Theorem 3, in order to obtain a γ -FPTAS
for the problem of minimizing a function of the form (7), we
are required to find the bounds LB and UB on the value of
Z(x∗) and to prove that the ratio UB/LB is bounded from
above by a constant γ . Notice, since we aim at obtaining an
FPTAS with the best possible running time of O

(
n2/ε

)
, we

need to find the required lower and upper bounds in no more
than O

(
n2

)
time. This can be done as described below.

Assume that the integrality constraint of the decision vari-
ables x j is relaxed, i.e., the condition x j ∈ {0, 1} is replaced
by 0 ≤ x j ≤ 1, j ∈ N . If xC = (xC1 , . . . , xCn ), 0 ≤ xCj ≤ 1,

is the corresponding solution vector and Z(xC ) denotes
the optimal value of the function (10) for the continuous
relaxation, then clearly Z(xC ) ≤ Z(x∗), i.e., we may set
LB = Z(xC ).

As demonstrated in Kellerer and Strusevich (2010), the
relaxation of the problem of minimizing a convex function
of the form (7), even with an additional linear knapsack
constraint, reduces to finding the minimum cost flow with
a convex quadratic cost function in a special network. The
latter problem is studied by Tamir (1993) who gives a solu-
tion algorithm that in the case under consideration requires
O

(
n2

)
time.

Notice that a function of the form (8) is proved convex,
provided that the items are numbered in non-decreasing order
of the ratios v j/u j , j ∈ N ; see Kellerer and Strusevich
(2010). In our case, the required numbering is guaranteed
by (6), so that the objective function Z(x) as given in (10)
is convex and Tamir’s algorithm is applicable. Thus, a lower
bound LB = Z(xC ) on the value Z(x∗) can be found in
O

(
n2

)
time.

To obtain an upper bound, we perform an appropriate
rounding of the fractional components of vector xC . A simple
rounding algorithm is described below.

Algorithm round

Step 1. Given a vector xC = (xC1 , . . . , xCn ), 0 ≤ xCj ≤ 1,
a solution to the continuous relaxation of the prob-
lem of minimizing (10), determine the sets I1 ={
j ∈ N , xCj ≤ 1

2

}
and I2 =

{
j ∈ N , xCj > 1

2

}
and

find vector xH = (xH1 , . . . , xHn ) with components

xHj =
{
0 if j ∈ I1
1 if j ∈ I2

.

Step 2. Output vector xH = (xH1 , . . . , xHn ) as a heuristic
solution to the problem of minimizing function (10),
and therefore, function (9).

The running time of Algorithm Round is O (n). Clearly,
the inequalities Z(xC ) ≤ Z(x∗) ≤ Z(xH ) hold, i.e., we
may take Z(xH ) as an upper bound UB on the optimal
value Z(x∗). We now estimate the ratio γ = UB/LB =
Z(xH )/Z(xC ).

Theorem 4 Let xC be an optimal solution of the continuous
relaxation of the problem of minimizing function Z(x) of the
form (10), and xH be a vector found by Algorithm Round.
Then

γ = Z(xH )

Z(xC )
≤ 4.

Proof For a vector xC , let I1 and I2 be the index sets found in
Step 2 of Algorithm Round. For a vector x = (x1, . . . , xn),
where 0 ≤ x j ≤ 1, using the representation (9) define

Z1 (x) = (λ + 1)
∑

1≤i< j≤n
i, j∈I1

qiw j xi x j

+ σ
∑

1≤i< j≤n
i, j∈I1

qiw j (1 − xi )
(
1 − x j

) ;

Z2 (x) = (λ + 1)
∑

1≤i< j≤n
i∈I1, j∈I2

qiw j xi x j

+ σ
∑

1≤i< j≤n
i∈I1, j∈I2

qiw j (1 − xi )
(
1 − x j

) ;

Z3 (x) = (λ + 1)
∑

1≤i< j≤n
i∈I2, j∈I1

qiw j xi x j

+ σ
∑

1≤i< j≤n
i∈I2, j∈I1

qiw j (1 − xi )
(
1 − x j

) ;

Z4 (x) = (λ + 1)
∑

1≤i< j≤n
i, j∈I2

qiw j xi x j

+ σ
∑

1≤i< j≤n
i, j∈I2

qiw j (1 − xi )
(
1 − x j

) ;

Z5 (x) = (λ + 1)
∑
j∈I1

p j x j + σ
∑
j∈I1

p j (1 − x j );

Z6 (x) = (λ + 1)
∑
j∈I2

p j x j + σ
∑
j∈I2

p j (1 − x j ).
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By the rounding conditions in Step 2 of AlgorithmRound,
we derive

Z2(xH ) = Z3(xH ) = 0,

while

Z1(xH ) = σ
∑

1≤i< j≤n
i, j∈I1

qiw j ;

Z1(xC ) ≥ σ

4

∑
1≤i< j≤n
i, j∈I1

qiw j ;

Z4(xH ) = (λ + 1)
∑

1≤i< j≤n
i, j∈I2

qiw j ;

Z4(xC ) ≥ λ + 1

4

∑
1≤i< j≤n
i, j∈I2

qiw j ;

Z5(xH ) = σ
∑
j∈I1

p j ;

Z5(xC ) ≥ σ

2

∑
j∈I1

p j ;

Z6(xH ) = (λ + 1)
∑
j∈I2

p j ;

Z6(xC ) ≥ λ + 1

2

∑
j∈I2

p j .

Thus, we have that

Z(xH ) =
6∑

k=1

Zk(xH ) + μ = Z1(xH ) + Z4(xH )

+ Z5(xH ) + Z6(x
H ) + μ

≤ 4Z1(xC ) + 4Z4(xC ) + 2Z5(xC ) + 2Z6(x
C ) + μ

≤ 4
6∑

k=1

Zk(xC ) + 4μ = 4Z(xC ),

as required. ��
It follows immediately from Theorem 4 that for the prob-

lem of minimizing function (9) (or, equivalently, function
(10)), Theorem 3 is applicable, i.e., the problem admits a
γ -FPTAS with γ = 4. Hence, in terms of the original
scheduling problem, we obtain the following statement.

Theorem 5 Problem 1
∣∣p j (π; r)= p j

(
1+ b j Qr

)
,MP(λ)

∣∣
Cmax admits an FPTAS that requires O

(
n2/ε

)
time.

Notice that Theorem 5 cannot be improved for prob-
lem 1

∣∣p j (π; r) = p j
(
1 + b j Qr

)
,MP(0)

∣∣Cmax, i.e., for
the case of a constant MP duration, since the underlying

Boolean programming problem still remains that of mini-
mizing a half-product function.

This is in contrast with the results obtained in Kellerer
et al. (2013) for a similar, but simpler problem 1

∣∣p j

(π; r) = p j (1 + bPr ) ,MP(λ)
∣∣Cmax, in which it is addi-

tionally assumed that σ = 1, i.e., the MP fully restores
the machine back to the default conditions. For prob-
lem 1

∣∣p j (π; r) = p j (1 + bPr ) ,MP(0)
∣∣Cmax, an FPTAS

requires only O (n/ε) time, since the underlying Boolean
programming problem takes the form of a Subset-sum prob-
lem, with a linear objective function.

For the case of λ > 0, Kellerer et al. (2013) also
rely on Theorem 3, but in order to demonstrate that prob-
lem 1

∣∣p j (π; r) = p j (1 + bPr ) ,MP(λ)
∣∣Cmax with σ = 1

admits a γ -FPTAS, an approximate solution to 1
∣∣p j (π; r)

= p j (1 + bPr ) ,MP(0)
∣∣Cmax is used as a lower bound LB,

and the ratio UB/LB is proved to be bounded by γ , where
γ is found as a linear function of λ. To make Theorem 3
applicable, an additional assumption is made that λ ≤ 1.

The approach described in this paper, based on Algo-
rithm Round and Theorem 4, can also be applied to
handle problem 1

∣∣p j (π; r) = p j (1 + bPr ) ,MP(λ)
∣∣Cmax

with λ > 0 and σ = 1. It will lead to a γ -FPTAS with the
running time of O

(
n2/ε

)
, as in Kellerer et al. (2013), but no

additional assumptions regarding the value of λ are needed.
Notice that the results in this section can be extended to

handle an enhanced model in which it is assumed that the
normal processing time of a job j ∈ N scheduled after the
MP changes from p j to σ j p j , with a job-dependent factor
σ j > 0, provided that these factors are such that for each pair
of jobs i and j , the inequality

piwi

qi
≤ p jw j

q j

implies

σi piwi

qi
≤ σ j p jw j

q j
.

Similar assumptions are common in the literature on
scheduling with rate-modifying maintenance, see, e.g., Lee
and Leon (2001) who argue in favour of their practical rele-
vance.

5 Conclusion

The paper introduces a rather general model for schedul-
ing with changing processing times under a cumulative
effect. For the problem of minimizing the makespan on a
single machine, we adopt Smith’s rule to solve the prob-
lem in O (n log n) time. We show that the problem with
series-parallel precedence constraints can also be solved
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in O (n log n) time since its objective function is priority-
generating. The problem with a rate-modifying maintenance
activity, which allows us to (partly) restore the processing
conditions of the machine, is linked to a Boolean program-
ming problemwith a quadratic objective function, namely the
half-product problem.Adapting the results previously known
for that problem, we provide an FPTAS that takes O

(
n2/ε

)
time to solve the problem of minimizing the makespan with
a single maintenance period.

The next step in studying themodelswith cumulative dete-
rioration could be a search for approximation algorithms or
schemes that would allow us to handle multiple maintenance
periods.
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