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Abstract This paper studies the problem of scheduling
three-operation jobs in a two-machine flowshop subject to
a predetermined job processing sequence. Each job has
two preassigned operations, which are to be performed on
their respective dedicated machines, and a flexible operation,
whichmaybeprocessedon either of the twomachines subject
to the processing order as specified. Five standard objective
functions, including the makespan, the maximum lateness,
the total weighted completion time, the total weighted tardi-
ness, and the weighted number of tardy jobs are considered.
We show that the studied problem for either of the five con-
sidered objective functions is ordinary NP-hard, even if the
processing times of the preassigned operations are zero for
all jobs. A pseudo-polynomial time dynamic programming
framework, coupled with brief numerical experiments, is
then developed for all the addressed performance metrics
with different run times.

Keywords Flowshop · Three-operation job · Fixed job
sequence · NP-hardness · Dynamic program

1 Introduction

This paper investigates a two-stage flowshop problem for
scheduling a given sequence of jobs, each of which con-
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sists of three operations. The setting without the presumption
of a fixed job sequence is formulated and studied by Gupta
et al. (2004) for the performance metric of makespan. The
three-operation flowshop scheduling problem is described as
follows. A set of n jobs J = {J1, . . . , Jn} is to be processed
in a two-machine flowshop, consisting of machine A at stage
1 and machine B at stage 2. Each job J j ∈ J has three
operations, OA

j , O
B
j , and OC

j with non-negative processing
times a j , b j , and c j , respectively, and is associated with due
date d j and weightw j . The three operations of each jobmust
follow the processing order (OA

j , OC
j , OB

j ). Operations OA
j

and OB
j are preassigned to be performed on their respective

dedicated machines A and B. Operation OC
j is flexible and

may be processed on either of the twomachines subject to the
processing order as specified. The problem with makespan
minimization is at least binary NP-hard for it corresponds
to the parallel machine scheduling problem P2||Cmax when
a j = b j = 0 for all jobs J j ∈ J . This problem becomes
the traditional two-machine flowshop scheduling problem,
which can be solved by Johnson’s rule (Johnson 1954), pro-
vided that an optimal assignment of the flexible operations
to the two machines is given (Gupta et al. 2004). Gupta et al.
(2004) presented a 3

2 -approximation algorithm and devel-
oped a polynomial time approximation scheme.

The above problem with identical jobs was discussed by
Crama and Gultekin (2010), Gultekin (2012), and Uruk et al.
(2013). Crama and Gultekin (2010) proposed some optimal-
ity properties and polynomial-time algorithms for various
cases where the number of jobs is either finite or infinite, and
where the buffer capacity in between machines is either zero,
limited, or unlimited. Gultekin (2012) later considered the
scenario of non-identicalmachines, viz., the processing times
of the flexible operation are different on the two machines,
and developed a constant-time solution procedure for the
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caseswith no buffer and unlimited buffer capacity in between
machines. Uruk et al. (2013) investigated the scenario where
the processing times of the preassigned and flexible opera-
tions are controllable and can be any value within the given
interval, and the manufacturing cost of an operation is a
nonlinear function of its processing time. Mixed integer non-
linear programs were derived for the bi-criteria objective
of makespan and total manufacturing cost, and a heuristic
algorithm was designed for large-scale instances. The prac-
tical applications of the three-operation flowshop scheduling
problem could be found in flexible manufacturing systems
with machine linkage, inventory control transit centers with
bar-coding operations, and scheduling in farming (Gupta
et al. 2004). Crama and Gultekin (2010) also described the
industrial settings in the assembly of printed circuit boards
and in automated computer numerical control machines.

Since the three-operation flowshop scheduling problem
is intractable and involves the decisions of partitioning and
sequencing, it could be worth investigating the restricted
problem where one of the decisions is predetermined, espe-
cially from theperspective on solution approachdevelopment
which will be addressed later. In this paper, we discuss the
problem subject to the assumption of a fixed job sequence,
i.e., the processing sequence of all jobs is known and
given a priori. Five standard objective functions, namely the
makespan (Cmax), the maximum lateness (Lmax), the total
weighted completion time (

∑
w jC j ), the total weighted

tardiness (
∑

w j Tj ), and weighted number of tardy jobs
(
∑

w jU j ), are considered. Without loss of generality, the
predetermined job sequence is (J1, J2, . . . , Jn). The condi-
tion of a fixed job sequence requires that on machine A as
well as machine B, job Ji should precede job J j if i < j .

In the design of branch-and-bound algorithms, local
search-based methods and meta-heuristics for handling
intractable problems, the sequence- or permutation-based
representations for candidate solutions are commonly adopted.
It is demanded to have efficient algorithms for determin-
ing the objective values of given job/operation sequences.
In the classification of complexity status, special properties,
e.g. agreeable conditions, could also suggest the optimality
of specific job orderings. One envisaged industrial applica-
tion of the fixed-job-sequence setting in the three-operation
flowshop scheduling problem could be the scheduling of
bar-coding operations in inventory or stock control sys-
tems,where theFirst-Come-First-Servedprinciple is applied.
For each item J j ∈ J , operations OA

j , O
C
j , and OB

j are
unpacking, bar-coding process, and repacking, respectively.
It is commonly regarded fair by customers and easy to be
implemented by processors that the unpacking and repack-
ing sequences of items are identical and predetermined by
the item/order receiving times. Other theoretical and practi-
cal justifications of the fixed-job-sequence assumption from
the technological or managerial considerations can be found

in, e.g. Shafransky and Strusevich (1998), Lin and Hwang
(2011), Hwang et al. (2012, 2014) and Lin et al. (2016).

The remainder of this paper is organized as follows. In
Sect. 2, we discuss the NP-hardness of the studied problem
for the considered performance metrics. Section 3 contains
the development of pseudo-polynomial time dynamic pro-
gramming algorithms. We conclude the paper and suggest
some research issues in Sect. 4.

2 NP-hardness

The requirement of operation processing order and the condi-
tion of fixed job sequence jointly imply the standard format
of a feasible schedule, where for each job J j the flexible
operation OC

j is immediately preceded by the correspond-

ing preassigned operation OA
j or immediately followed by

the corresponding preassigned operation OB
j . The studied

fixed-job-sequence problem can thus be regarded as the prob-
lem of finding an optimal partition of the flexible operations.
The determination of its complexity status, however, is not
straightforward as will be shown later. Before proving the
NP-hardness of the problem under study, an optimality prop-
erty is described as follows.

Lemma 1 For any regular objective function, there exists an
optimal schedule in which the flexible operation of the first
job, i.e. OC

1 , goes to machine B and that of the last job, i.e.
OC
n , goes to machine A.

Proof Let σ be an optimal schedule that does not satisfy the
specified property. We move operation OC

1 from machine A
to machine B to derive another schedule σ ′. Depletion of
the processing on machine A lets all the operations behind
OA
1 on machine A start earlier by c1 units of time. Merging

OC
1 into OB

1 will not defer the completion of any operation
on machine B. Therefore, the completion times C j (σ

′) ≤
C j (σ ) for all jobs J j ∈ J . Next, we consider operation OC

n .
Depleting OC

n from machine B will decrease machine B’s
completion time by cn . Appending it to machine Awill delay
the start time of operation OB

n by at most cn . Therefore, the
derived schedule has a regular objective function value not
greater than that of σ ′ and thus σ . ��
Theorem 1 The studied fixed-job-sequence problem for
makespan minimization is NP-hard in the ordinary sense,
even if a j = b j = 0 for all jobs J j ∈ J .

Proof Let integer bound E and integer sizes e1, e2, . . . , em
with

∑m
j=1 e j = 2E be an instance of Partition. We create a

scheduling instance with m + 2 jobs as follows:

Job J0 : c0 = E;
Job J j : c j = e j , j ∈ {1, . . . ,m};
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Fig. 1 Configuration of a feasible schedule with a makespan of 2E

Job Jm+1 : cm+1 = E .

Note that a j = b j = 0 for all j ∈ {0, 1, . . . ,m + 1} and the
jobs abide by the processing sequence (J0, J1, . . . , Jm+1).
We claim that the answer to Partition is affirmative if and only
if there is a feasible schedule with a makespan of 2E . Recall
that it is necessary and sufficient to consider the schedules
where each flexible operation OC

j is immediately preceded

by the corresponding operation OA
j or immediately followed

by the corresponding operation OB
j .

Let X1 and X2 be a partition of them indices in Partition.A
feasible schedule is constructed as follows. Machines A and
B are initializedwith two processing sequences of operations
(OA

0 , OA
1 , . . . , OA

m+1) and (OB
0 , OB

1 , . . . , OB
m+1), respec-

tively. Then operations OC
0 and operation OC

m+1 are assigned
to machine B and machine A, respectively. Let each oper-
ation OC

j , j ∈ X1 processed on machine A immediately

preceded by OA
j , and each operation OC

j ′ , j
′ ∈ X2 processed

on machine B immediately followed by OB
j ′ . The makespan

is exactly 2E as depicted in Fig. 1.
Assume now that there is a feasible schedule themakespan

of which is exactly 2E . Since the sum of the processing loads
of all jobs is 4E , no idle time is allowed on either machine.
By Lemma 1, we assume that OC

0 and OC
m+1 are processed

on machine B and machine A, respectively. Let the set JA

contain the jobs whose flexible operations are assigned to
machine A. If

∑
J j∈JA

c j > E , then the completion time

of OC
m+1 on machine A is larger than 2E , which contra-

dicts the assumption. On the other hand, if
∑

J j∈JA
c j < E ,

then
∑

J j∈{J1,...,Jm }\JA
c j > E and the completion time of

machine B is greater than 2E . Therefore, we must have∑
J j∈JA

c j = E , and a partition is obtained. ��
The relationships between the standard objective func-

tions lead to the following corollary.

Corollary 1 The studied fixed-job-sequence problem for
Lmax,

∑
w jC j ,

∑
Tj or

∑
Uj is NP-hard in the ordinary

sense, even if a j = b j = 0 for all jobs J j ∈ J .

Proof The minimization of maximum lateness is a natural
generalization of makespan minimization since Cmax is a
special case of Lmax by setting d j = 0 for all jobs J j ∈ J .

In the studied fixed-job-sequence problem, makespan min-
imization also corresponds to a special case of minimizing
∑

w jC j with w j = 0, j ∈ {1, 2, . . . , n − 1} and wn = 1.
As for the objective function

∑
Tj or

∑
Uj , the proof tech-

nique utilized in Theorem 1 can be applied to show the
NP-hardness by deploying arguments with d j = 2E for all
jobs J j ∈ J and a feasible schedule retaining

∑
Tj = 0 or∑

Uj = 0. ��

3 Pseudo-polynomial time dynamic programs

In this section, pseudo-polynomial time dynamic programs
are proposed for the five addressed objective functionsCmax,
Lmax,

∑
w jC j ,

∑
w j Tj , and

∑
w jU j . The notion of the

developed dynamic programming stems from the observa-
tion that a feasible schedule can be decomposed into several
subschedules separated by the machine-B idle times. Then
a subschedule in some state can be defined by the sched-
ule shape characteristics. In the designed two-phase dynamic
programming framework, optimal subschedules of all states
are constructed in the first phase. Then an optimal sched-
ule can be assembled by concatenating appropriate optimal
subschedules in the second phase.

3.1 Makespan

For a particular subschedule, the difference between the com-
pletion times of the two machines is called the lag of this
subschedule. Define a subschedule named schedule block in
state (k, i, j, �) as a subschedule for jobs {Ji , Ji+1, . . . , J j }
satisfying the following conditions: (1) no idle time exists
between any two consecutive operations on the machines,
i.e. block property; (2) the first flexible operation OC

i goes
to machine k ∈ {A, B}; (3) the lag is exactly �. The shape
characteristics of the schedule blocks in some state can be
delineated in terms of the above three conditions. A sched-
ule block in state (k, i, j, �), where i < j , can be built up
by suffixing J j to an appropriate schedule block in state
(k, i, j − 1, �′). Two possible construction scenarios are
depicted in Fig. 2, where k = A. Let function f (k, i, j, �)
denote the minimum machine-A processing span among
the blocks in state (k, i, j, �). The schedule block retaining
f (k, i, j, �) is called the optimal block in state (k, i, j, �). To
facilitate further presentation, define the Kronecker delta

δkB =
{
0, if k = A;
1, if k = B,

and the aggregate quantities a[i : j] = ∑ j
h=i ah , c[i : j] =

∑ j
h=i ch , b[i : j] = ∑ j

h=i bh , and w[i : j] = ∑ j
h=i wh , 1 ≤

i ≤ j ≤ n. The block property of a schedule block in state
(k, i, j, �), where i < j , implies
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(a)

(b)

Fig. 2 Construction of a block in state (A, i, j, �) from a block in state
(A, i, j − 1, �′)

ciδkB + b[i : j] − a[i+1: j] − c[i+1: j] ≤ � ≤ ciδkB

+ b[i : j] + c[i+1: j] − a[i+1: j],

and the block exists only if � ≥ b j . Denote

� = max{b j , ciδkB + b[i : j] − a[i+1: j] − c[i+1: j]},

and

� = ciδkB + b[i : j] + c[i+1: j] − a[i+1: j].

It thus suffices to consider � over the interval
[
�, �

]
, which

is valid if the condition � ≥ b j can be ensured. Actually,
given a 3-tuple k, i, j , the value �, which denotes the upper
limit to �, is calculated by assuming that the flexible opera-
tion(s) including OC

j go to machine B, and thus a schedule

block can be constructed only if � ≥ c j + b j . The dynamic
programs for block construction can be described in the
following.

Block construction (Cmax)
Initial conditions:

f (k, i, j, �) =
⎧
⎨

⎩

ai + ci , if k = A, i = j, and � = bi ;
ai , if k = B, i = j, and � = ci + bi ;
∞, otherwise.

Recursions:
for each 4-tuple k, i, j, � satisfying k ∈ {A, B}, 1 ≤ i < j ≤ n, and
� ≤ � ≤ �,
/∗ The recursion runs only if � ≥ c j + b j .∗/

Case 1 (Operation OC
j being assigned to machine A):

y1 = f (k, i, j − 1, � + a j + c j − b j ) + (a j + c j ), (1)
Case 2 (Operation OC

j being assigned to machine B):

y2 =
{

f (k, i, j − 1, � + a j − c j − b j ) + a j , if � ≥ c j + b j ;
∞, otherwise,

f (k, i, j, �) = min{y1, y2}.

The formulation is justified as follows. Given a feasible
combination of k, i, j, �, the derivation of f (k, i, j, �) can be
done by considering two scenarios regarding the assignment
of the last flexible operation OC

j . Case 1 is for assigning

operation OC
j tomachine A, as shown in Fig. 2a. By suffixing

the two operations OA
j and OC

j on machine A, and operation

OB
j onmachine B to the optimal block in state (k, i, j−1, �′),

we have (a j + c j ) + � = �′ + b j , subject to the condition
of block property �′ ≥ a j + c j . Thus, it can be shown that
�′ = � + a j + c j − b j , as given in Eq. (1), subject to the
condition � + a j + c j − b j ≥ a j + c j , i.e. � ≥ b j , which
is satisfied anyway in the recursions owing to the definition
of �, the lower limit on �. In Case 2 where operation OC

j
is processed on machine B as shown in Fig. 2b, we have
a j + � = �′ + (c j + b j ), subject to the condition �′ =
� + a j − c j − b j ≥ a j , i.e. � ≥ c j + b j . Note that the two
cases are not disjoint about the associated conditions � ≥ b j

and � ≥ b j + c j and the first condition subsumes the second
one. If � ≥ c j +b j is satisfied, then operation OC

j is allowed
to be dispatched to either of the machines.

After the block construction, a complete schedule can be
generatedwith a concatenation of appropriate optimal blocks
in backward recursion. Notice that in a schedule any two
adjacent optimal blocks are separated by an inserted idle time
on machine B to ensure that each optimal block is maximal
for inclusion. Define by a partial schedule in state (k, i) a
schedule of jobs {Ji , Ji+1, . . . , Jn}, the prefix of which is an
optimal block having the leading job Ji and operation OC

i
processed on machine k. Denote by g(k, i) the minimum
makespan among all the partial schedules in state (k, i). The
dynamic program for schedule concatenation,wherewe need
a dummy job Jn+1 with an+1 = cn+1 = ∞, is depicted in
Schedule Concatenation (Cmax).

The algorithm procedure is validated as follows. There are
two cases for assembling a partial schedule in (k, i) by pre-
fixing an optimal block in (k, i, j, �). In Case 1, the optimal
block in (k, i, j, �) is attached to the front end of the optimal
partial schedule in (A, j + 1), as illustrated in Fig 3a, where
k = B. To satisfy the schedule concatenation property about
idle times, the inequality � < a j+1+c j+1 is required. As for
Case 2, we have the optimal block in (k, i, j, �) prefixed to
the optimal partial schedule in (B, j +1) as shown in Fig. 3b
(where k = B), and thus � < a j+1. Notice again that the first
associated condition � < a j+1 + c j+1 subsumes the second
one � < a j+1. The term �
 j

n � is added for the scenario where
j = n.
The run time of the developed dynamic program can be

analysed as follows. In the block construction, there are at
most O(n2

∑n
h=1 ch) states, each of which needs O(1) time

for calculation, since the size of the interval
[
�, �

]
is in the

order of O(
∑n

h=1 ch). Thus, the run time for block construc-
tion is O(n2

∑n
h=1 ch). In the schedule concatenation, there
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Schedule concatenation (Cmax)

Initial conditions:
for each k ∈ {A, B},
g(k, i) =

{
0, if i = n + 1, ;
∞, otherwise.

Recursions:
for each 2-tuple k, i satisfying k ∈ {A, B}, and 1 ≤ i ≤ n,
g(k, i) = mini≤ j≤n;

�≤�≤�

{z1, z2}, (2)

where z1 and z2 are calculated as in the following:
Case 1 (The optimal block in (k, i, j, �) being attached to the optimal
partial schedule in (A, j + 1)):

z1 =
{

f (k, i, j, �) + �
 j
n � + g(A, j + 1), if � < a j+1 + c j+1;

∞, otherwise,

Case 2 (The optimal block in (k, i, j, �) being attached to the optimal
partial schedule in (B, j + 1)):

z2 =
{

f (k, i, j, �) + �
 j
n � + g(B, j + 1), if � < a j+1;

∞, otherwise.

Goal: min
k∈{A,B}{g(k, 1)}.

(a)

(b)

Fig. 3 Schedule concatenation (Cmax) for assembling a partial sched-
ule in state (B, i) by prefixing an optimal block in (B, i, j, �)

are O(n) states, each of which takes at most O(n
∑n

h=1 ch)
time due to the loops over all possible subscripts of the min
operator in Eq. (2). So the run time for schedule concatena-
tion is O(n2

∑n
h=1 ch). The total run time of the presented

dynamic program is therefore O(n2
∑n

h=1 ch).

Theorem 2 The studied fixed-job-sequence problem for
makespan minimization is pseudo-polynomially solvable in
O(n2

∑n
h=1 ch) time.

In the following subsections, we extend the design of
the above dynamic programming algorithm to the perfor-
mance metrics of Lmax,

∑
w jC j ,

∑
w j Tj , and

∑
j w jU j .

The development starts with the maximum lateness and the
total weighted completion time. The solution procedure will
then be adapted for the total weighted tardiness and weighted
number of tardy jobs.

3.2 Maximum lateness and total weighted completion
time

In the previous subsection, the block construction is carried
out by minimizing the processing span of machine A subject
to a specified lag. For the objective function of Lmax, we
however cannot obtain a shortest machine-A processing span
of a block while minimizing the maximum lateness within
this block. The same difficulty also arises in the pursuit of
the minimum total weighted completion time. Therefore, we
introduce another parameter to freeze machine-A processing
spans of the constructed blocks.

Define a schedule block in state (k, i, j, S, �) as a sub-
schedule for jobs {Ji , Ji+1, . . . , J j } satisfying the following
four conditions: (1) no idle time is inserted between any two
consecutive operations on the machines; (2) the first flexi-
ble operation OC

i is assigned to machine k ∈ {A, B}; (3) the
machine-A processing span is exactly S; (4) the lag is exactly
�. Let function f (k, i, j, S, �) denote the optimal maximum
lateness of the jobs {Ji , Ji+1, . . . , J j } among the blocks in
state (k, i, j, S, �). Then, the dynamic program for block con-
struction is formulated as follows.

Block construction (Lmax)
Initial conditions:

f (k, i, j, S, �) =
⎧
⎨

⎩

ai + ci + bi − di , if k = A, i = j, S = ai + ci , and � = bi ;
ai + ci + bi − di , if k = B, i = j, S = ai , and � = ci + bi ;
∞, otherwise.

Recursions:
for each 5-tuple k, i, j, S, � satisfying k ∈ {A, B}, 1 ≤ i < j ≤ n, a[i : j] ≤ S ≤
a[i : j] + c[i : j], and � ≤ � ≤ �,
/∗ The recursion runs only if � ≥ c j + b j .∗/

Case 1 (Operation OC
j being assigned to machine A, as shown in Fig. 4):

y1 = max{ f (k, i, j − 1, S − a j − c j , � + a j + c j − b j ), S + � − d j }),
Case 2 (Operation OC

j being assigned to machine B):

y2 =
⎧
⎨

⎩

max{ f (k, i, j − 1, S − a j , �+a j − c j − b j ), S + � − d j }, if � ≥ c j + b j ;
∞, otherwise,

f (k, i, j, S, �) = min{y1, y2}.

After the block construction procedure,we can then gener-
ate complete schedules for a sequence of jobs with idle times
inserted between blocks. Let a partial schedule in state (k, i)
be a schedule of jobs {Ji , Ji+1, . . . , Jn}, the prefix ofwhich is
an optimal block having the leading job Ji and operation OC

i

Fig. 4 Construction of a block in (A, i, j, S, �) from a block in
(A, i, j − 1, S′, �′)
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processed on machine k. Denote by g(k, i) the optimal max-
imum lateness among all the partial schedules in state (k, i).
The dynamic program for schedule concatenation, where we
introduce a dummy job Jn+1 with an+1 = cn+1 = ∞, is
shown below.

Schedule concatenation (Lmax)

Initial conditions:
for k ∈ {A, B},
g(k, i) =

{ −∞, if i = n + 1, ;
∞, otherwise.

Recursions:
for each 2-tuple k, i satisfying k ∈ {A, B}, and 1 ≤ i ≤ n,
g(k, i) = min i≤ j≤n;

a[i : j]≤S≤a[i : j]+c[i : j];
�≤�≤�

{z1, z2},

where z1 and z2 are calculated as in the following:
Case 1 (The optimal block in (k, i, j, S, �) being attached to the
optimal partial schedule in (A, j + 1), as illustrated in Fig. 5):

z1 =
{
max{ f (k, i, j, S, �), S + g(A, j + 1)}, if � < a j+1 + c j+1;
∞, otherwise,

Case 2 (The optimal block in (k, i, j, S, �) being attached to the
optimal partial schedule in (B, j + 1)):

z2 =
{
max{ f (k, i, j, S, �), S + g(B, j + 1)}, if � < a j+1;
∞, otherwise.

Goal: min
k∈{A,B}{g(k, 1)}.

Regarding the run time, there are atmostO(n2(
∑n

h=1 ch)
2)

states, each of which needs O(1) time for calculation of
f (k, i, j, S, �). Thus, the run time for block construction is
thus O(n2(

∑n
h=1 ch)

2). In the schedule concatenation, there
areO(n) states, each ofwhich takes atmostO(n(

∑n
h=1 ch)

2)

time due to the loops over all possible subscripts of the
min operator. So the run time for schedule concatenation
is O(n2(

∑n
h=1 ch)

2). The total run time of the presented
dynamic program is therefore O(n2(

∑n
h=1 ch)

2).

Theorem 3 The studied fixed-job-sequence problem for
minimizing the maximum lateness is pseudo-polynomially
solvable in O(n2(

∑n
h=1 ch)

2) time.

Next, we consider the objective function of total weighted
completion time. The algorithm framework for maximum
lateness minimization can be readily adapted for the min-
imization of total weighted completion time with slight
modifications. Let f (k, i, j, S, �) be the minimum total

Fig. 5 Case-1 schedule concatenation (Lmax) for assembling a partial
schedule in state (B, i)

weighted completion time of the state (k, i, j, S, �). Def-
initions of initial conditions, z1, and z2 used in Block
construction (Lmax) are modified as

f (k, i, j, S, �)

=
⎧
⎨

⎩

wi (ai + ci + bi ), if k = A, i = j, S = ai + ci , and � = bi ;
wi (ai + ci + bi ), if k = B, i = j, S = ai , and � = ci + bi ;
∞, otherwise,

y1 = f (k, i, j − 1, S − a j − c j , � + a j + c j − b j ) + w j (S + �),

y2

=
{

f (k, i, j − 1, S − a j , �+a j − c j − b j )+w j (S+�), if �≥c j + b j ;
∞, otherwise.

Definitions of initial conditions, z1, and z2 used inSched-
ule concatenation (Lmax) are also modified as

g(k, i) =
{
0, if i = n + 1, ;
∞, otherwise.

z1

=
{

f (k, i, j, S, �) + g(A, j + 1) + w[ j+1:n]S, if � < a j+1 + c j+1;
∞, otherwise,

z2

=
{

f (k, i, j, S, �) + g(B, j + 1) + w[ j+1:n]S, if � < a j+1;
∞, otherwise.

Theorem 4 The studied fixed-job-sequence problem for
minimizing the total weighted completion time is pseudo-
polynomially solvable in O(n2(

∑n
h=1 ch)

2) time.

3.3 Total weighted tardiness and weighted number of
tardy jobs

To design pseudo-polynomial time algorithms for the two
objective functions,

∑
w j Tj and

∑
w jU j , some further

modifications are needed. The tardiness status of the jobs
within the blocks and partial schedules created via the pro-
cedures for Lmax and

∑
w jC j cannot be fathomed. We

therefore instead determine the optimal objective value for∑
w j Tj or

∑
w jU j within the blocks and partial schedules

subject to the condition that the first job starts at a specified
time point. In both Block construction and Schedule
concatenation procedures, we introduce an extra para-
meter λ, which is the lead time to specify the exact total
length before the start of the block or partial schedule. Define
state (k, i, j, S, �, λ) to include the subschedules for jobs
{Ji , Ji+1, . . . , J j }which satisfy the following conditions: (1)
no idle time is inserted between any two consecutive opera-
tions on the machines; (2) the first flexible operation OC

i is
assigned to machine k ∈ {A, B}; (3) the machine-A process-
ing span is exactly S; (4) the lag is exactly �; (5) job i starts
at time λ, which is the lead time strictly imposed in front
of the block. Let function f (k, i, j, S, �, λ) denote the opti-
mal total weighted tardiness of the jobs {Ji , Ji+1, . . . , J j }
among the blocks in state (k, i, j, S, �, λ). To facilitate nota-
tion, we denote the tardiness and the tardiness status of
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job J j completing at time t in some block, respectively, by
Tj (t) = max{0, t − d j } and

Uj (t) =
{
1, if t > d j ;
0, otherwise.

A dummy job J0 with a0 = c0 = 0 is needed for the follow-
ing procedures as shown below.

Block construction (
∑

w j Tj )
Initial conditions:
for each λ satisfying a[0:i−1] ≤ λ ≤ a[0:i−1] + c[0:i−1],

f (k, i, j, S, �, λ) =
⎧
⎨

⎩

wi Ti (λ + ai + ci + bi ), if k = A, i = j, S = ai + ci , and � = bi ;
wi Ti (λ + ai + ci + bi ), if k = B, i = j, S = ai , and � = ci + bi ;
∞, otherwise. (3)

Recursions:
for each 6-tuple k, i, j, S, �, λ satisfying k∈{A, B}, 1 ≤ i < j ≤ n, a[i : j] ≤ S ≤ a[i : j] + c[i : j], � ≤ � ≤ �, and a[0:i−1] ≤ λ ≤ a[0:i−1] + c[0:i−1],
/∗ The recursion runs only if � ≥ c j + b j .∗/

Case 1 (Operation OC
j going to machine A, as shown in Fig. 6):

y1 = f (k, i, j − 1, S − a j − c j , � + a j + c j − b j , λ) + w j Tj (λ + S + �), (4)
Case 2 (Operation OC

j going to machine B):

y2 =
{

f (k, i, j − 1, S − a j , � + a j − c j − b j , λ) + w j Tj (λ + S + �), if � ≥ c j + b j ;
∞, otherwise, (5)

f (k, i, j, S, �, λ) = min{y1, y2}.

With the derived blocks, we can then find an optimal com-
plete schedule through the concatenation of optimal blocks.
Let state (k, i, λ) include the partial schedules consisting
of jobs {Ji , Ji+1, . . . , Jn} that are prefixed with an opti-
mal block having operation OC

i processed on machine k
and job Ji starting exactly at time λ. Denote by g(k, i, λ)

the optimal total weighted tardiness among all the partial
schedules in state (k, i, λ). The dynamic program for sched-
ule concatenation with another dummy job Jn+1 retaining
an+1 = cn+1 = ∞ is shown below.

Schedule concatenation (
∑

w j Tj )

Initial conditions:
for each 2-tuple k, λ satisfying k ∈ {A, B}, and a[1:n] ≤ λ ≤
a[1:n] + c[1:n],

g(k, i, λ) =
{
0, if i = n + 1, ;
∞, otherwise.

Recursions:
for each 3-tuple k, i, λ satisfying k ∈ {A, B}, 1 ≤ i ≤ n, and a[0:i−1] ≤
λ ≤ a[0:i−1] + c[0:i−1],
g(k, i, λ) = min i≤ j≤n;

a[i : j]≤S≤a[i : j]+c[i : j];
�≤�≤�

{z1, z2},

where z1 and z2 are calculated as in the following:
Case 1 (The optimal block in (k, i, j, S, �, λ) being attached to the
optimal partial schedule in (A, j + 1, S + λ), as shown in Fig. 7):

z1 =
{

f (k, i, j, S, �, λ) + g(A, j + 1, S + λ), if � < a j+1 + c j+1;
∞, otherwise,

Case 2 (The optimal block in (k, i, j, S, �, λ) being attached to the
optimal partial schedule in (B, j + 1, S + λ)):

z2 =
{

f (k, i, j, S, �, λ) + g(B, j + 1, S + λ), if � < a j+1;
∞, otherwise.

Goal: min
k∈{A,B}{g(k, 1, 0)}.

The procedures Block construction (
∑

w j Tj ) and
Schedule concatenation (

∑
w j Tj ) both requires O(n2

(
∑n

h=1 ch)
3), in which the lead time parameter λ induces an

extra term
∑n

h=1 ch . The following theorem follows.

Theorem 5 The studied fixed-job-sequence problem for
minimizing the total weighted tardiness is pseudo-polyno-
mially solvable in O(n2(

∑n
h=1 ch)

3) time.

The above two procedures for
∑

w j Tj can be easily
adapted for the minimization of weighted number of tardy
jobs with the same time complexity by replacing function
Tj (·) with Uj (·) in Eq. (3), (4), and (5).

Theorem 6 The studied fixed-job-sequence problem for
minimizing the weighted number of tardy jobs is pseudo-
polynomially solvable in O(n2(

∑n
h=1 ch)

3) time.

Fig. 6 Construction of a block in (A, i, j, S, �, λ) from a block in
(A, i, j − 1, S′, �′, λ)

Fig. 7 Case-1 schedule concatenation (
∑

w j Tj ) for assembling a par-
tial schedule in state (B, i, λ)
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3.4 Computational experiments

To demonstrate the practical performance of the developed
dynamic programming framework, we conducted brief com-
putational experiments for the objective function Cmax. The
numerical experiments were implemented in Mathematica
10.1 on a laptop computer equipped with an Intel Core i5-
4310M CPU, 8GB RAM and Windows 7 64-bit operating
system. Regarding the experimental setting, the processing
time a j or b j for each job J j ∈ J was generated as an uni-
formly distributed randomnumberwithin the interval [0, 20].
The processing times of the flexible operations were pro-
duced by a random partition of a given amount

∑n
h=1 ch into

n values such that c j ≥ 0, j ∈ {1, . . . , n}. The first experi-
ment was performed for 10 ≤ n ≤ 100 (with an interval of
5) and 100 ≤ ∑n

h=1 ch ≤ 300 (with an interval of 10). For
each combination of n and

∑n
h=1 ch , we generate 25 ran-

dom test instances. The average run times of 25 instances
for all combinations are given in Table 1, and the regres-
sion result is illustrated in Fig. 8, where the dots denote the
experimental data of test instances and the associated best-fit
regression polynomial reflects the computational complexity
O(n2

∑n
h=1 ch).

The second experiment was concerned with large-scale
instances, where 50 ≤ n ≤ 200 (with an interval of 50) and
500 ≤ ∑n

h=1 ch ≤ 1000 (with an interval of 500). Table 2
summarizes the average and maximum run times of 25 ran-
dom test instances. Given n = 50, even the maximum run
time is no more than 26 s for the case with

∑n
h=1 ch = 1000.

Fig. 8 Regression surface of the average run time and (n,
∑n

h=1 ch)

Table 2 Average and maximum run times (in seconds) of 25 instances
for 50 ≤ n ≤ 200 and 500 ≤ ∑n

h=1 ch ≤ 1000

n
∑n

h=1 ch = 500
∑n

h=1 ch = 1000

Average Maximum Average Maximum

50 9.81 13.03 20.49 25.09

100 30.92 44.09 71.67 105.35

150 67.34 107.56 160.44 198.54

200 117.83 168.03 295.79 399.22

Table 3 Complexity results of the studied fixed-job-sequence problems

Performance
metric

Complexity Run time Remark

Cmax Ordinary NP-hard O(n2
∑n

h=1 ch) Theorem 2

Lmax Ordinary NP-hard O(n2(
∑n

h=1 ch)
2) Theorem 3

∑
C j Open O(n2(

∑n
h=1 ch)

2) Theorem 4
∑

w jC j Ordinary NP-hard O(n2(
∑n

h=1 ch)
2) Theorem 4

∑
w j Tj Ordinary NP-hard O(n2(

∑n
h=1 ch)

3) Theorem 5
∑

w jU j Ordinary NP-hard O(n2(
∑n

h=1 ch)
3) Theorem 6

Ifn = 200 is considered, then the average run time is less than
118 s for

∑n
h=1 ch = 500 and 296 s for

∑n
h=1 ch = 1000.

4 Conclusions

This paper investigated the problem of scheduling three-
operation jobs in a two-machine flowshop subject to a given
job processing sequence for five standard performance met-
rics, viz. Cmax, Lmax,

∑
w jC j ,

∑
w j Tj , and

∑
w jU j . We

showed that the studied problem is ordinary NP-hard even
if the processing times of the preassigned operations are all
zero. Although the extremely restricted case remains NP-
hard, the general setting is pseudo-polynomially solvable
with the development of dynamic programs. The detailed
complexity results of the studied fixed-job-sequence prob-
lem is provided in Table 3. It shall be highlighted that this
study is mainly aimed at contributing to the three-operation
flowshop scheduling problem from the perspective on solu-
tion technique development.

For future research, we could first clarify the complexity
status of the total completion timeminimization problem, the
polynomial solvability of which is not ruled out. The follow-
ing twoobservations suggest that a polynomial-time dynamic
programming algorithmdesign similar toHwang et al. (2012,
2014) may not be applicable to the

∑
C j problem:

(1) In the development of a dynamic programwith backward
(or forward) recursion for the open problem, the shape
of the block (or partial schedule) cannot be fixed with a
constant number of state variables the ranges of which
are polynomial in the number of jobs, i.e., the machine-
A or machine-B processing span of a block (or partial
schedule) cannot be realized without specifying exactly
which flexible operations are onmachine A or B. Thus, it
is inevitable to include a temporal state variable S to enu-
merate the machine-A processing span in the recursive
function.

(2) If the aforementioned difficulty can be overcomeby some
technique, thenwewill be able to avoid the temporal state
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variable � with the same approach. It thus will make the
studied problem for the makespan minimization polyno-
mially solvable,which contradicts theNP-hardness result
in Theorem 1.

Therefore, the development of an algorithm other than block-
based dynamic program is suggested for investigating the
polynomial solvability. It would be essential to delve into the
structural properties of scheduleswith respect to the objective
function

∑
C j . As for the conjecture about NP-hardness, an

unconventional proving scheme could be necessary for the
flexibility in job manipulation could be limited by the fixed-
job-sequence assumption. Another direction is to devise
fully polynomial time approximation schemes for the five
considered performance metrics. A further extension is to
investigate the generalized fixed-sequence scenario where
the requirement for the flexible operation being immediately
preceded or followed by the corresponding preassigned oper-
ations is relaxed. This relaxation may render much more
interleaving combinations of operations on either machine,
and make the problem more challenging. The consideration
of preemption, particularly for the flexible operations could
also be an interesting extension.
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