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Abstract We study the problem of non-preemptively
scheduling n jobs, each job j with a release time t j , a dead-
line d j , and a processing time p j , on m parallel identical
machines. Cieliebak et al. (2004) considered the two con-
straints |d j−t j | ≤ λp j and |d j−t j | ≤ p j+σ and showed the
problem to be NP-hard for any λ > 1 and for any σ ≥ 2. We
complement their results by parameterized complexity stud-
ies: we show that, for any λ > 1, the problem remainsweakly
NP-hard even for m = 2 and strongly W[1]-hard parameter-
ized by m. We present a pseudo-polynomial-time algorithm
for constantm and λ and a fixed-parameter tractability result
for the parameter m combined with σ .
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1 Introduction

Non-preemptively scheduling jobs with release times and
deadlines on a minimum number of machines is a well-stud-
ied problem both in offline and online variants (Chen et al.
2016; Chuzhoy et al. 2004; Cieliebak et al. 2004; Malucelli
and Nicoloso 2007; Saha 2013). In its decision version, the
problem is formally defined as follows:

Interval-Constrained Scheduling
Input: A set J := {1, . . . , n} of jobs, a number m ∈ N of
machines, each job j with a release time t j ∈ N, a dead-
line d j ∈ N, and a processing time p j ∈ N.

Question: Is there a schedule that schedules all jobs onto
m parallel identical machines such that

1. each job j is executed non-preemptively for p j time
units,

2. each machine executes at most one job at a time, and
3. each job j starts no earlier than t j and is finished by d j .

For a job j ∈ J , we call the half-open interval [t j , d j )

its time window. A job may only be executed during its time
window. The length of the time window is d j − t j .

We study Interval-Constrained Scheduling with
two additional constraints introduced by Cieliebak et al.
(2004). These constraints relate the time window lengths of
jobs to their processing times:

Looseness If all jobs j ∈ J satisfy |d j − t j | ≤ λp j for
some number λ ∈ R, then the instance has looseness λ. By
λ-Loose Interval-Constrained Scheduling we denote
the problem restricted to instances of looseness λ.

Slack If all jobs j ∈ J satisfy |d j − t j | ≤ p j + σ for
some number σ ∈ R, then the instance has slack σ . By σ -
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Table 1 Overview of results on Interval-Constrained Scheduling for various parameter combinations. The parameterized complexity with
respect to the combined parameter λ + σ remains open

Combined with Parameter

Looseness λ Slack σ Number m of machines

λ NP-hard for any λ > 1 (Cieliebak et al.
2004)

? W[1]-hard for parameter m for any λ > 1
(Theorem 3.1),

weakly NP-hard for m = 2 and any λ > 1
(Theorem 3.1),

pseudo-polynomial time for fixed m and λ

(Theorem 4.1)

σ NP-hard for any σ ≥ 2 (Cieliebak et al.
2004)

Fixed-parameter tractable for parameter
σ + m (Theorem 5.1)

m NP-hard for m = 1 (Garey and Johnson
1979)

Slack Interval-Constrained Scheduling we denote
the problem restricted to instances of slack σ .

Both constraints on Interval-Constrained Schedul-
ing are very natural: clients may accept some small deviation
of at most σ from the desired start times of their jobs. More-
over, it is conceivable that clients allow for a larger deviation
for jobs that take long to process anyway, leading to the case
of bounded looseness λ.

Cieliebak et al. (2004) showed that, even for con-
stant λ > 1 and constant σ ≥ 2, the problems λ-Loose
Interval-Constrained Scheduling and σ -Slack In-
terval-Constrained Scheduling are strongly NP-hard.

Instead of giving up on finding optimal solutions and
resorting to approximation algorithms (Chuzhoy et al. 2004;
Cieliebak et al. 2004), we conduct a more fine-grained com-
plexity analysis of these problems employing the framework
of parameterized complexity theory (Cygan et al. 2015;
Downey and Fellows 2013; Flum and Grohe 2006; Nie-
dermeier 2006), which so far received comparatively little
attention in the field of scheduling with seemingly only a
handful of publications (van Bevern et al. 2015a, b; Bodlaen-
der and Fellows 1995; Cieliebak et al. 2004; Fellows and
McCartin 2003; Halldórsson and Karlsson 2006; Hermelin
et al. 2015; Mnich and Wiese 2015). In particular, we inves-
tigate the effect of the parameter m of available machines
on the parameterized complexity of interval-constrained
scheduling without preemption.

Related work Interval-Constrained Scheduling is a
classical scheduling problem and strongly NP-hard already
on one machine (Garey and Johnson 1979, problem SS1).
Besides the task of scheduling all jobs on aminimum number
of machines, the literature contains a wide body of work
concerning the maximization of the number of scheduled
jobs on a bounded number of machines (Kolen et al. 2007).

For the objective of minimizing the number of
machines, Chuzhoy et al. (2004) developed a
factor-O

(√
log n/ log log n

)
-approximation algorithm.

Malucelli and Nicoloso (2007) formalized machine min-
imization and other objectives in terms of optimization
problems in shiftable interval graphs. Online algorithms for
minimizing the number of machines have been studied as
well and we refer to recent work by Chen et al. (2016) for an
overview.

Our work refines the following results of Cieliebak
et al. (2004), who considered Interval-Constrained
Scheduling with bounds on the looseness and the slack.
They showed that Interval-Constrained Scheduling
is strongly NP-hard for any looseness λ > 1 and any
slack σ ≥ 2. Besides giving approximation algorithms for
various special cases, they give a polynomial-time algorithm
for σ = 1 and a fixed-parameter tractability result for the
combined parameter σ and h, where h is the maximum num-
ber of time windows overlapping in any point in time.

Our contributions We analyze the parameterized complex-
ity of Interval-Constrained Scheduling with respect
to three parameters: the number m of machines, the loose-
ness λ, and the slack σ . More specifically, we refine known
results of Cieliebak et al. (2004) using tools of parameterized
complexity analysis. An overview is given in Table 1.

In Sect. 3, we show that, for any λ > 1, λ-Loose Inter-
val-Constrained Scheduling remains weakly NP-hard
even on m = 2 machines and that it is strongly W[1]-
hard when parameterized by the number m of machines.
In Sect. 4, we give a pseudo-polynomial-time algorithm for
λ-Loose Interval-Constrained Scheduling for each
fixed λ and m. Finally, in Sect. 5, we give a fixed-parameter
algorithm for σ -Slack Interval-Constrained Sched-
uling when parameterized by m and σ . This is in contrast
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to our result from Sect. 3 that the parameter combination m
and λ presumably does not give fixed-parameter tractability
results for λ-Loose Interval-Constrained Scheduling.

2 Preliminaries

Basic notation We assume that 0 ∈ N. For two vectors u =
(u1, . . . , uk) and v = (v1, . . . , vk), wewrite u ≤ v if ui ≤ vi
for all i ∈ {1, . . . , k}. Moreover, we write u � v if u ≤ v
and u �= v, that is, u and v differ in at least one component.
Finally, 1k is the k-dimensional vector consisting of k 1-
entries.

Computational complexity We assume familiarity with the
basic concepts of NP-hardness and polynomial-time many-
one reductions (Garey and Johnson 1979). We say that a
problem is (strongly) C-hard for some complexity class C
if it is C-hard even if all integers in the input instance are
bounded from above by a polynomial in the input size. Oth-
erwise, we call it weakly C-hard.

In the following, we introduce the basic concepts of
parameterized complexity theory, which are more detailedly
discussed in the corresponding text books (Cygan et al. 2015;
Downey and Fellows 2013; Flum and Grohe 2006; Nieder-
meier 2006).

Fixed-parameter algorithms The idea in fixed-parameter
algorithms is to accept exponential running times, which are
seemingly inevitable in solving NP-hard problems, but to
restrict them to one aspect of the problem, the parameter.

Thus, formally, an instance of a parameterized problemΠ

is a pair (x, k) consisting of the input x and the parameter k. A
parameterized problemΠ is fixed-parameter tractable (FPT)
with respect to a parameter k if there is an algorithm solv-
ing any instance of Π with size n in f (k) · poly(n) time for
some computable function f . Such an algorithm is called
a fixed-parameter algorithm. It is potentially efficient for
small values of k, in contrast to an algorithm that is merely
running in polynomial time for each fixed k (thus allowing
the degree of the polynomial to depend on k). FPT is the
complexity class of fixed-parameter tractable parameterized
problems.

We refer to the sum of parameters k1+k2 as the combined
parameter k1 and k2.

Parameterized intractability To show that a problem is
presumably not fixed-parameter tractable, there is a para-
meterized analog of NP-hardness theory. The parameterized
analog of NP is the complexity classW[1] ⊇ FPT, where it is
conjectured that FPT �= W[1]. A parameterized problem Π

with parameter k is called W[1]-hard if Π being fixed-pa-
rameter tractable implies W[1] = FPT. W[1]-hardness can

be shown using a parameterized reduction from a known
W[1]-hard problem: a parameterized reduction from a para-
meterized problem Π1 to a parameterized problem Π2 is
an algorithm mapping an instance I with parameter k to an
instance I ′ with parameter k′ in time f (k) · poly(|I |) such
that k′ ≤ g(k) and I ′ is a yes-instance for Π1 if and only
if I is a yes-instance for Π2, where f and g are arbitrary
computable functions.

3 A strengthened hardness result

In this section, we strengthen a hardness result of Cieliebak
et al. (2004), who showed that λ-Loose Interval-Con-
strained Scheduling is NP-hard for any λ > 1. This
section proves the following theorem:

Theorem 3.1 Let λ : N → R be such that λ(n) ≥ 1 + n−c

for some integer c ≥ 1 and all n ≥ 2.
Thenλ(n)-Loose Interval-Constrained Scheduling

of n jobs on m machines is

(i) weakly NP-hard for m = 2, and
(ii) strongly W[1]-hard for parameter m.

Note that Theorem 3.1, in particular, holds for any constant
function λ(n) > 1.

We remark that Theorem 3.1 cannot be proved using
the NP-hardness reduction given by Cieliebak et al. (2004),
which reduces 3- Sat instances with k clauses to In-
terval-Constrained Scheduling instances with m =
3k machines. Since 3- Sat is trivially fixed-parameter tract-
able for the parameter number k of clauses, the reduction of
Cieliebak et al. (2004) cannot yield Theorem 3.1.

Instead, to prove Theorem 3.1, we give a parameterized
polynomial-time many-one reduction from Bin Packing
with m bins and n items to λ(mn)-Loose Interval-Con-
strained Scheduling with m machines and mn jobs.

Bin Packing
Input: A bin volume V ∈ N, a list a1, . . . , an ∈ N of items,
and a number m ≤ n of bins.

Question: Is there a partition S1
 . . .
Sm = {1, . . . , n} such
that

∑
i∈Sk ai ≤ V for all 1 ≤ k ≤ m?

Since Bin Packing is weakly NP-hard for m = 2 bins and
W[1]-hard parameterized by m even if all input numbers are
polynomial in n (Jansen et al. 2013), Theorem3.1will follow.

Our reduction, intuitively, works as follows: for each of
the n items ai in a Bin Packing instance with m bins of
volume V , we create a set Ji := { j1i , . . . , jmi } of m jobs
that have to be scheduled on m mutually distinct machines.
Eachmachine represents one of them bins in theBin Pack-
ing instance. Scheduling job j1i on a machine k corresponds
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Fig. 1 Reduction from Bin Packing with four items a1 = 1, a2 =
a3 = 2, a4 = 3, bin volume V = 3, and m = 3 bins to 3/2-Loose In-
terval-Constrained Scheduling. That is, Construction 3.2 applies
with c = 1, A = 8, and B = 3 · 4 · 8 = 96. The top diagram shows
(not to scale) the jobs created by Construction 3.2. Herein, the process-

ing time of each job is drawn as a rectangle of corresponding length in
an interval being the job’s time window. The bottom diagram shows a
feasible schedule for three machines M1, M2, and M3 that corresponds
to putting items a1 and a3 into the first bin, item a2 into the second bin,
and a4 into the third bin

to putting item ai into bin k and will take B + ai time of
machine k, where B is some large integer chosen by the
reduction. If j1i is not scheduled on machine k, then a job
in Ji \ { j1i } has to be scheduled on machine k, which will
take only B time of machine k. Finally, we choose the latest
deadline of any job as nB + V . Thus, since all jobs have to
be finished by time nB + V and since there are n items, for
each machine k, the items ai for which j1i is scheduled on
machine k must sum up to at most V in a feasible schedule.
This corresponds to satisfying the capacity constraint of V
of each bin.

Formally, the reduction works as follows and is illustrated
in Fig. 1.

Construction 3.2 Given a Bin Packing instance I with
n ≥ 2 items a1, . . . , an and m ≤ n bins, and λ : N → R

such that λ(n) ≥ 1+ n−c for some integer c ≥ 1 and all n ≥
2, we construct an Interval-Constrained Scheduling
instance with m machines and mn jobs as follows. First, let

A :=
n∑

i=1

ai and B := (mn)c · A ≥ 2A.

If V > A, then I is a yes-instance of Bin Packing and
we return a trivial yes-instance of Interval-Constrained
Scheduling.

Otherwise, we have V ≤ A and construct an instance
of Interval-Constrained Scheduling as follows: for

each i ∈ {1, . . . , n}, we introduce a set Ji := {
j1i , . . . , jmi

}

of jobs. For each job j ∈ Ji , we choose the release time

t j := (i − 1)B,

the processing time

p j :=
{
B + ai if j = j1i ,

B if j �= j1i ,
(3.1)

and the deadline

d j :=
{
i B + A if i < n,

i B + V if i = n.

This concludes the construction. ��
Remark 3.3 Construction 3.2 outputs an Interval-Con-
strained Scheduling instance with agreeable deadlines,
that is, the deadlines of the jobs have the same relative order
as their release times. Thus, in the offline scenario, all hard-
ness results of Theorem 3.1 will also hold for instances with
agreeable deadlines.

In contrast, agreeable deadlines make the problem sig-
nificantly easier in the online scenario: Chen et al. (2016)
showed an online algorithm with constant competitive ratio
for Interval-Constrained Scheduling with agreeable
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deadlines, whereas there is a lower bound of n on the com-
petitive ratio for general instances (Saha 2013).

In the remainder of this section, we show that Construc-
tion 3.2 is correct and satisfies all structural properties that
allow us to derive Theorem 3.1.

First, we show that Construction 3.2 indeed creates an
Interval-Constrained Scheduling instance with small
looseness.

Lemma 3.4 Given a Bin Packing instance with n ≥
2 items and m bins, Construction 3.2 outputs an Interval-
Constrained Scheduling instance with

(i) at most m machines and mn jobs and
(ii) looseness λ(mn).

Proof It is obvious that the output instance has at most
mn jobs and m machines and, thus, (i) holds.

Towards (ii), observe that mn ≥ n ≥ 2, and hence, for
each i ∈ {1, . . . , n} and each job j ∈ Ji , (3.1) yields

|d j − t j |
p j

≤ (i B + A) − (i − 1)B

B
= B + A

B
= 1 + A

B

= 1 + A

(mn)c · A = 1 + (mn)−c ≤ λ(mn). ��

We now show that Construction 3.2 runs in polynomial time
and that, if the inputBin Packing instance has polynomially
bounded integers, then so has the output Interval-Con-
strained Scheduling instance.

Lemma 3.5 Let I be a Bin Packing instance with n ≥ 2
items a1, . . . , an and let amax := max1≤i≤n ai . Construc-
tion 3.2 applied to I

(i) runs in time polynomial in |I | and
(ii) outputs an Interval-Constrained Scheduling

instance whose release times and deadlines are bounded
by a polynomial in n + amax.

Proof We first show (ii), thereafter we show (i).
(ii) It is sufficient to show that the numbers A and B in

Construction 3.2 are bounded polynomially in n+amax since
all release times and deadlines are computed as sums and
products of three numbers not larger than A, B, or n. Clearly,
A = ∑n

i=1 ai ≤ n · max1≤i≤n ai , which is polynomially
bounded in n + amax. Since mn ≤ n2, also B = (mn)c · A is
polynomially bounded in n + amax.

(i) The sum A = ∑n
1=1 ai is clearly computable in

time polynomial in the input length. It follows that also
B = (mn)c · A is computable in polynomial time. ��

It remains to prove that Construction 3.2 maps yes-instances
of Bin Packing to yes-instances of Interval-Con-
strained Scheduling, and no-instances to no-instances.

Lemma 3.6 Given a Bin Packing instance I with m bins
and the items a1, . . . , an, Construction 3.2 outputs an In-
terval-Constrained Scheduling instance I ′ that is a
yes-instance if and only if I is.

Proof (⇒)Assume that I is a yes-instance forBin Packing.
Then, there is a partition S1 
 . . . 
 Sm = {1, . . . , n} such
that

∑
i∈Sk ai ≤ V for each k ∈ {1, . . . ,m}. We construct a

feasible schedule for I ′ as follows. For each i ∈ {1, . . . , n}
and k such that i ∈ Sk , we schedule j1i on machine k in the
interval

⎡

⎣(i − 1)B +
∑

j∈Sk , j<i

a j , i B +
∑

j∈Sk , j<i

a j + ai

⎞

⎠

and each of them−1 jobs Ji \{ j1i } on a distinct machine � ∈
{1, . . . ,m} \ {k} in the interval
⎡

⎣(i − 1)B +
∑

j∈S�, j<i

a j , i B +
∑

j∈S�, j<i

a j

⎞

⎠ .

It is easy to verify that this is indeed a feasible schedule.
(⇐) Assume that I ′ is a yes-instance for Interval-Con-

strained Scheduling. Then, there is a feasible schedule
for I ′. We define a partition S1 
 . . .
 Sm = {1, . . . , n} for I
as follows. For each k ∈ {1, . . . ,m}, let

Sk :={i ∈ {1, . . . , n} | j1i is scheduled on machine k}. (3.2)

Since, for each i ∈ {1, . . . , n}, the job j1i is scheduled on
exactly one machine, this is indeed a partition. We show that∑

i∈Sk ai ≤ V for each k ∈ {1, . . . ,m}. Assume, towards a
contradiction, that there is a k such that

∑

i∈Sk
ai > V . (3.3)

By (3.1), for each i ∈ {1, . . . , n}, the jobs in Ji have the
same release time, each has processing time at least B, and
the length of the time window of each job is at most B+ A ≤
B+B/2 < 2B. Thus, in any feasible schedule, the execution
times of the m jobs in Ji mutually intersect. Hence, the jobs
in Ji are scheduled on m mutually distinct machines. By the
pigeonhole principle, for each i ∈ {1, . . . , n}, exactly one
job j∗i ∈ Ji is scheduled on machine k. We finish the proof
by showing that,
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∀i ∈ {1, . . . , n}, job j∗i is not finished before time

i B +
∑

j∈Sk , j≤i

a j . (3.4)

This claim together with (3.3) then yields that job j∗n is not
finished before

nB +
∑

j∈Sk , j≤n

a j = nB +
∑

j∈Sk
a j > nB + V,

which contradicts the schedule being feasible, since jobs in Jn
have deadline nB+V by (3.1). It remains to prove (3.4). We
proceed by induction.

The earliest possible execution time of j∗1 is, by (3.1),
time 0. The processing time of j∗1 is B if j∗1 �= j11 , and B+a1
otherwise. By (3.2), 1 ∈ Sk if and only if j11 is scheduled on
machine k, that is, if and only if j∗1 = j11 . Thus, job j∗1 is not
finished before B + ∑

j∈Sk , j≤i a j and (3.4) holds for i = 1.
Now, assume that (3.4) holds for i−1.We prove it for i . Since
j∗i−1 is not finished before (i − 1)B + ∑

j∈Sk , j≤i−1 a j , this
is the earliest possible execution time of j∗i . The processing
time of j∗i is B if j∗i �= j1i and B + ai otherwise. By (3.2),
i ∈ Sk if and only if j∗i = j1i . Thus, job j∗i is not finished
before i B + ∑

j∈Sk , j≤i a j and (3.4) holds. ��

We are now ready to finish the proof of Theorem 3.1.

Proof (of Theorem 3.1) By Lemmas 3.4 to 3.6, Construc-
tion 3.2 is a polynomial-time many-one reduction from Bin
Packing with n ≥ 2 items and m bins to λ(mn)-Loose In-
terval-Constrained Scheduling, where λ : N → R

such that λ(n) ≥ 1 + n−c for some integer c ≥ 1 and
all n ≥ 2. We now show the points (i) and (ii) of Theo-
rem 3.1.

(i) follows sinceBin Packing isweaklyNP-hard form =
2 (Jansen et al. 2013) and since, by Lemma 3.4(i), Construc-
tion 3.2 outputs instances of λ(mn)-Loose Interval-Con-
strained Scheduling with m machines.

(ii) follows since Bin Packing is W[1]-hard parameter-
ized by m even if the sizes of the n items are bounded by a
polynomial in n (Jansen et al. 2013). In this case, Construc-
tion 3.2 generates λ(mn)-Loose Interval-Constrained
Scheduling instances for which all numbers are bounded
polynomially in the number of jobs by Lemma 3.5(ii). More-
over, Construction 3.2 maps the m bins of the Bin Packing
instance to the m machines of the output Interval-Con-
strained Scheduling instance. ��

Concluding this section, it is interesting to note that The-
orem 3.1 also shows W[1]-hardness of λ-Loose Inter-
val-Constrained Scheduling with respect to the height
parameter considered by Cieliebak et al. (2004):

Definition 3.7 (Height) For an Interval-Constrained
Scheduling instance and any time t ∈ N, let

St := { j ∈ J | t ∈ [t j , d j )}

denote the set of jobs whose time window contains time t .
The height of an instance is

h := max
t∈N

|St |.

Proposition 3.8 Let λ : N → R be such that λ(n) ≥ 1+n−c

for some integer c ≥ 1 and all n ≥ 2.
Thenλ(n)-Loose Interval-Constrained Scheduling

of n jobs on m machines is W[1]-hard parameterized by the
height h.

Proof Proposition 3.8 follows in the same way as Theo-
rem 3.1; one additionally has to prove that Construction 3.2
outputs Interval-Constrained Scheduling instances of
height at most 2m. To this end, observe that, by (3.1), for each
i ∈ {1, . . . , n}, there are m jobs released at time (i − 1)B
whose deadline is no later than i B + A < (i + 1)B since
A ≤ B/2. These are all jobs created by Construction 3.2.
Thus, St contains only the m jobs released at time �t/B� · B
and the m jobs released at time �t/B − 1� · B, which are
2m jobs in total. ��
Remark 3.9 Proposition 3.8 complements findings of
Cieliebak et al. (2004), who provide a fixed-parameter
tractability result for Interval-Constrained Schedul-
ing parameterized by h + σ : our result shows that their
algorithm presumably cannot be improved towards a fixed-
parameter tractability result for Interval-Constrained
Scheduling parameterized by h alone.

4 An algorithm for bounded looseness

In the previous section, we have seen that λ-Loose In-
terval-Constrained Scheduling for any λ > 1 is
stronglyW[1]-hard parameterized bym andweakly NP-hard
for m = 2. We complement this result by the following the-
orem, which yields a pseudo-polynomial-time algorithm for
each constant m and λ.

Theorem 4.1 λ-Loose Interval-Constrained Sched-
uling is solvable in �O(λm) · n + O(n log n) time, where
� := max j∈J |d j − t j |.
The crucial observation for the proof of Theorem 4.1 is the
following lemma. It gives a logarithmic upper bound on the
height h of yes-instances (as defined in Definition 3.7). To
prove Theorem 4.1, we will thereafter present an algorithm
that has a running time that is single exponential in h.
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Lemma 4.2 Let I be a yes-instance of λ-Loose Interval-
Constrained Scheduling with m machines and � :=
max j∈J |d j − t j |. Then, I has height at most

2m ·
(

log �

log λ − log(λ − 1)
+ 1

)
.

Proof Recall fromDefinition 3.7 that the height of an Inter-
val-Constrained Scheduling instance is maxt∈N |St |.

We will show that, in any feasible schedule for I and at
any time t , there are at most N jobs in St that are active on
the first machine at some time t ′ ≥ t , where

N ≤ log �

log λ − log(λ − 1)
+ 1. (4.1)

By symmetry, there are at most N jobs in St that are active
on the first machine at some time t ′ ≤ t . Since there are
m machines, the total number of jobs in St at any time t , and
therefore the height, is at most 2mN .

It remains to show (4.1). To this end, fix an arbitrary time t
and an arbitrary feasible schedule for I . Then, for any d ≥ 0,
let J (t + d) ⊆ St be the set of jobs that are active on the first
machine at some time t ′ ≥ t but finished by time t + d. We
show by induction on d that

|J (t + d)| ≤
{
0 if d = 0,

− log d
log(1−1/λ)

+ 1 if d ≥ 1.
(4.2)

If d = 0, then |J (t + 0)| = 0 and (4.2) holds. Now, consider
the case d ≥ 1. If no job in J (t+d) is active at time t+d−1,
then J (t+d) = J (t+d−1) and (4.2) holds by the induction
hypothesis. Now, assume that there is a job j ∈ J (t +d) that
is active at time t+d−1. Then, d j ≥ t+d and, since j ∈ St ,
t j ≤ t . Hence,

p j ≥ |d j − t j |
λ

≥ |t + d − t |
λ

= d

λ
.

It follows that

|J (t + d)| ≤ 1 + |J (t + d − �d/λ�)|. (4.3)

Thus, if d − �d/λ� = 0, then |J (t + d)| ≤ 1 + |J (t)| ≤ 1
and (4.2) holds. If d − �d/λ� > 0, then, by the induction
hypothesis, the right-hand side of (4.3) is

≤ 1 − log(d − �d/λ�)
log(1 − 1/λ)

+ 1

≤ 1 − log(d(1 − 1/λ))

log(1 − 1/λ)
+ 1

= 1 − log d + log(1 − 1/λ)

log(1 − 1/λ)
+ 1

= − log d

log(1 − 1/λ)
+ 1,

and (4.2) holds. Finally, since � = max1≤ j≤n |d j − t j |, no
job in St is active at time t + �. Hence, we can now prove
(4.1) using (4.2) by means of

N ≤ |J (t + �)| ≤ − log �

log(1 − 1/λ)
+ 1

= − log �

log
(

λ−1
λ

) + 1

= − log �

log(λ − 1) − log λ
+ 1

= log �

log λ − log(λ − 1)
+ 1. ��

The following proposition gives some intuition on how the
bound behaves for various λ.

Proposition 4.3 For any λ ≥ 1 and any b ∈ (1, e], it holds
that

1

logb λ − logb(λ − 1)
≤ λ.

Proof It is well-known that (1−1/λ)λ < 1/e for any λ ≥ 1.
Hence, λ logb(1−1/λ) = logb(1−1/λ)λ < logb 1/e ≤ −1,
that is, −λ logb(1 − 1/λ) ≥ 1. Thus,

1

−λ logb(1 − 1/λ)
≤ 1 and

1

− logb(1 − 1/λ)
≤ λ.

Finally,

1

− logb(1 − 1/λ)
= 1

− logb(
λ−1
λ

)

= 1

− logb(λ − 1) + logb λ
.

��
Towards our proof of Theorem 4.1, Lemma 4.2 provides a
logarithmic upper bound on the height h of yes-instances
of Interval-Constrained Scheduling. Our second step
towards the proof of Theorem 4.1 is the following algorithm,
which runs in time that is single exponential in h. We first
present the algorithm and, thereafter, prove its correctness
and running time.

Algorithm 4.4 Wesolve Interval-Constrained Sched-
uling using dynamic programing. First, for an Interval-
Constrained Scheduling instance, let � := max j∈J |d j−
t j |, let St be as defined in Definition 3.7, and let S<

t ⊆ J be
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the set of jobs j with d j ≤ t , that is, that have to be finished
by time t .

We compute a table T that we will show to have the fol-
lowing semantics. For a time t ∈ N, a subset S ⊆ St of jobs
and a vector b = (b1, . . . , bm) ∈ {−�, . . . , �}m ,

T [t, S, b]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if all jobs in S ∪ S<
t can be scheduled so that

machine i is idle from time t + bi for each

i ∈ {1, . . . ,m},
0 otherwise.

To compute T , first, set T [0,∅, b] := 1 for every vector b ∈
{−�, . . . , �}m . Now we compute the other entries of T by
increasing t , for each t by increasing b, and for each b by S
with increasing cardinality. Herein, we distinguish two cases.

(a) If t ≥ 1 and S ⊆ St−1, then set T [t, S, b] := T [t −
1, S′, b′], where

S′ := S ∪ (St−1 ∩ S<
t ) and b′ := (b′

1, . . . , b
′
m) with

b′
i := min{bi + 1, �} for each i ∈ {1, . . . ,m}.

(b) Otherwise, set T [t, S, b] := 1 if and only if at least one
of the following two cases applies:

i) there is a machine i ∈ {1, . . . ,m} such that bi > −�

and T [t, S, b′] = 1, where b′ := (b′
1, . . . , b

′
m) with

b′
i ′ :=

{
bi − 1 if i ′ = i,

bi ′ if i ′ �= i,

or
ii) there is a job j ∈ S and a machine i ∈ {1, . . . ,m}

such that bi > 0, t + bi ≤ d j , t + bi − p j ≥ t j , and
T [t, S \{ j}, b′] = 1, where b′ := (b′

1, . . . , b
′
m)with

b′
i ′ :=

{
bi − p j if i ′ = i,

bi ′ if i ′ �= i.

Note that, since j ∈ St , one has t j ≥ t − � by
definition of �. Hence, b′

i ≥ −� is within the allowed
range {−�, . . . , �}.

Finally,we answer yes if and only if T [tmax, Stmax , 1m ·�] = 1,
where tmax := max j∈J t j . ��

Lemma 4.5 Algorithm 4.4 correctly decides Interval-
Constrained Scheduling.

Proof We prove the following two claims: For any time 0 ≤
t ≤ tmax, any set S ⊆ St , and any vector b = (b1, . . . , bm) ∈
{−�, . . . , �}m ,

if T [t, S, b] = 1, then all jobs in S ∪ S<
t can be scheduled

so that machine i is idle from time t + bi

for each i ∈ {1, . . . ,m}, (4.4)

and

if all jobs in S ∪ S<
t can be scheduled so that machine i

is idle from time t + bi for each i ∈ {1, . . . ,m},
then T [t, S, b] = 1. (4.5)

From (4.4) and (4.5), the correctness of the algorithm easily
follows: observe that, in any feasible schedule, all machines
are idle from time tmax + � and all jobs J ⊆ Stmax ∪ S<

tmax
are

scheduled. Hence, there is a feasible schedule if and only if
T [tmax, Stmax , 1m ·�] = 1. It remains to prove (4.4) and (4.5).

First, we prove (4.4) by induction. For T [0,∅, b] = 1,
(4.4) holds since there are no jobs to schedule. We now prove
(4.4) for T [t, S, b] under the assumption that it is true for all
T [t ′, S′, b′] with t ′ < t or t ′ = t and b′

� b.
If T [t, S, b] is set to 1 in Algorithm 4.4(a), then, for S′

and b′ as defined in Algorithm 4.4(a), T [t − 1, S′, b′] = 1.
By the induction hypothesis, all jobs in S′ ∪ S<

t−1 can be
scheduled so that machine i is idle from time t−1+b′

i ≤ t+
bi . Moreover, S∪S<

t = S′∪S<
t−1 since S

′ = S∪(St−1∩S<
t ).

Hence, (4.4) follows.
If T [t, S, b] is set to 1 in Algorithm 4.4(bi), then one has

T [t, S, b′] = 1 for b′ as defined in Algorithm 4.4(bi). By the
induction hypothesis, all jobs in S ∪ S<

t can be scheduled so
that machine i ′ is idle from time t + b′

i ′ ≤ t + bi ′ , and (4.4)
follows.

If T [t, S, b] is set to 1 in Algorithm 4.4(bii), then T [t, S \
{ j}, b′] = 1 for j and b′ as defined in Algorithm 4.4(bii).
By the induction hypothesis, all jobs in (S \ { j}) ∪ S<

t can
be scheduled so that machine i ′ is idle from time t + b′

i ′ . It
remains to schedule job j on machine i in the interval [t +
b′
i , t+bi ), which is of length exactly p j by the definition ofb′.
Then, machine i is idle from time t+bi and anymachine i ′ �=
i is idle from time t + b′

i ′ = t + bi ′ , and (4.4) follows.
It remains to prove (4.5). We use induction. Claim (4.5)

clearly holds for t = 0, S = ∅, and any b ∈ {−�, . . . , �}m
by the way Algorithm 4.4 initializes T . We now show (4.5)
provided that it is true for t ′ < t or t ′ = t and b′

� b.
If S ⊆ St−1, then S ∪ S<

t = S′ ∪ S<
t−1 for S

′ as defined in
Algorithm 4.4(a). Moreover, since no job in S′ ∪ S<

t−1 can be
active from time t − 1+ � by definition of �, each machine i
is idle from time t−1+min{bi +1, �} = t−1+b′

i , for b′ =
(b′

1, . . . , b
′
m) as defined in Algorithm 4.4(a). Hence, T [t −

1, S′, b′] = 1 by the induction hypothesis, Algorithm 4.4(a)

123



J Sched (2017) 20:255–265 263

applies, sets T [t, S, b] := T [t − 1, S′, b′] = 1, and (4.5)
holds.

If some machine i is idle from time t+bi −1, then, by the
induction hypothesis, T [t, S, b′] = 1 in Algorithm 4.4(bi),
the algorithm sets T [t, S, b] := 1, and (4.5) holds.

In the remaining case, every machine i is busy at time t +
bi − 1 and K := S \ St−1 �= ∅. Thus, there is a machine i
executing a job from K . For each job j ′ ∈ K , we have t j ′ ≥ t .
Since machine i is idle from time t + bi and executes j ′, one
has bi > 0. Let j be the last job scheduled on machine i .
Then, since machine i is busy at time t + bi − 1, we have
d j ≥ t +bi > t and j /∈ S<

t . Hence, j ∈ St . Since machine i
is idle from time t + bi , we also have t + bi − p j ≥ t j .
Now, if we remove j from the schedule, then machine i is
idle from time t + bi − p j and each machine i ′ �= i is idle
from time t+b′

i ′ = t+bi ′ . Thus, by the induction hypothesis,
T [t, S \{ j}, b′] = 1 in Algorithm 4.4(bii), the algorithm sets
T [t, S, b] := 1, and (4.5) holds. ��
Lemma 4.6 Algorithm 4.4 can be implemented to run in
O(2h · (2� + 1)m · (h2m + hm2) · n� + n log n) time, where
� := max j∈J |d j−t j |and h is the height of the input instance.
Proof Concerning the running time of Algorithm 4.4, we
first bound tmax. If tmax > n�, then there is a time t ∈
{0, . . . , tmax} such that St = ∅ (cf. Definition 3.7). Then,
we can split the instance into one instance with the jobs S<

t
and into one instance with the jobs J \ S<

t . We answer “yes”
if and only if both of them are yes-instances. Henceforth, we
assume that tmax ≤ n�.

In a preprocessing step, we compute the sets St and St−1∩
S<
t , which can be done in O(n log n + hn + tmax) time by

sorting the input jobs by deadlines and scanning over the
input time windows once: if no time window starts or ends
at time t , then St is simply stored as a pointer to the St ′ for
the last time t ′ where a time window starts or ends.

Now, the table T of Algorithm 4.4 has at most (tmax +
1) · 2h · (2� + 1)m ≤ (n� + 1) · 2h · (2� + 1)m entries. A
table entry T [t, S, b] can be accessed in O(m+h) time using
a carefully initialized trie data structure (van Bevern 2014)
since |S| ≤ h and since b is a vector of length m.

To compute an entry T [t, S, b], we first check, for each
job j ∈ S, whether j ∈ St−1. If this is the case for each j , then
Algorithm 4.4(a) applies. We can prepare b′ in O(m) time
and S′ in O(h) time using the set St−1 ∩ S<

t computed in the
preprocessing step. Then, we access the entry T [t−1, S′, b′]
in O(h + m) time. Hence, (a) takes O(h + m) time.

If Algorithm 4.4(a) does not apply, then we check whether
Algorithm 4.4(bi) applies. To this end, for each i ∈ {1, . . . ,
m}, we prepare b′ in O(m) time and access T [t, S, b′] in
O(h + m) time. Hence, it takes O(m2 + hm) time to check
(bi).

To check whether Algorithm 4.4(bii) applies, we try
each j ∈ S and each i ∈ {1, . . . ,m} and, for each, prepare b′

in O(m) time and check T [t, S \ { j}, b′] in O(h +m) time.
Thus (bii) can be checked in O(h2m + hm2) time. ��
With the logarithmic upper bound on the height h of
yes-instances of Interval-Constrained Scheduling
given by Lemma 4.2 and using Algorithm 4.4, which, by
Lemma 4.6, runs in time that is single exponential in h for a
fixed numberm ofmachines, we can nowproveTheorem4.1.

Proof (of Theorem 4.1) We use the following algorithm. Let

h := 2m ·
(

log �

log λ − log(λ − 1)
+ 1

)
.

If, for any time t ∈ N, we have |St | > h, then we are facing
a no-instance by Lemma 4.2 and immediately answer “no”.
This can be checked in O(n log n) time: one uses the interval
graph coloring problem to check whether we can schedule
the time windows of all jobs (as intervals) onto h machines.

Otherwise, we conclude that our input instance has
height at most h. We now apply Algorithm 4.4, which, by
Lemma 4.6, runs in O(2h · (2� + 1)m · (h2m + hm2) · n� +
n log n) time. Since, by Proposition 4.3, h ∈ O(λm log �),
this running time is �O(λm)h · n + O(n log n). ��
Anatural question iswhetherTheorem4.1 can be generalized
to λ = ∞, that is, to Interval-Constrained Sched-
uling without looseness constraint. This question can be
easily answered negatively using a known reduction from 3-
Partition to Interval-Constrained Scheduling given
by Garey and Johnson (1979):

Proposition 4.7 If there is an �O(m) · poly(n)-time algo-
rithm for Interval-Constrained Scheduling, where
� := max j∈J |d j − t j |, then P = NP.

Proof Garey and Johnson (1979, Theorem 4.5) showed
that Interval-Constrained Scheduling isNP-hard even
on m = 1 machine. In their reduction, � ∈ poly(n). A
supposed �O(m) · poly(n)-time algorithm would solve such
instances in polynomial time. ��

5 An algorithm for bounded slack

So far, we considered Interval-Constrained Sched-
uling with bounded looseness λ. Cieliebak et al. (2004)
additionally considered Interval-Constrained Sched-
uling for any constant slack σ .

Recall that Cieliebak et al. (2004) showed that λ-Loose
Interval-Constrained Scheduling is NP-hard for any
constant λ > 1 and that Theorem 3.1 shows that having a
small number m of machines does make the problem signif-
icantly easier.
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Similarly, Cieliebak et al. (2004) showed that σ -Slack
Interval-Constrained Scheduling is NP-hard already
for σ = 2. Now we contrast this result by showing that
σ -Slack Interval-Constrained Scheduling is fixed-
parameter tractable for parameter m + σ . More specifically,
we show the following:

Theorem 5.1 σ -Slack Interval-Constrained Sched-
uling is solvable in time

O
(
(σ + 1)(2σ+1)m · n · σm · log σm + n log n

)
.

Similarly as in the proof of Theorem 4.1, we first give an
upper bound on the height of yes-instances of Interval-
Constrained Scheduling as defined in Definition 3.7. To
this end, we first show that each job j ∈ St has to occupy
some of the (bounded) machine resources around time t .

Lemma 5.2 At any time t in any feasible schedule for σ -
Slack Interval-Constrained Scheduling, each job
j ∈ St is active at some time in the interval [t − σ, t + σ ].
Proof If the time window of j is entirely contained in [t −
σ, t +σ ], then, obviously, j is active at some time during the
interval [t − σ, t + σ ].

Now, assume that the time window of j is not contained
in [t−σ, t+σ ]. Then, since j ∈ St , its timewindowcontains t
byDefinition 3.7 and, therefore, one of t−σ or t+σ . Assume,
for the sake of contradiction, that there is a schedule such that
j is not active during [t − σ, t + σ ]. Then j is inactive for at
least σ + 1 time units in its time window—a contradiction.

��
Now that we know that each job in St has to occupy machine
resources around time t , we can bound the size of St in the
amount of resources available around that time.

Lemma 5.3 Anyyes-instanceofσ -Slack Interval-Con-
strained Scheduling has height at most (2σ + 1)m.

Proof Fix any feasible schedule for an arbitrary yes-instance
of σ -Slack Interval-Constrained Scheduling and
any time t . ByLemma5.2, each job in St is active at some time
in the interval [t −σ, t +σ ]. This interval has length 2σ +1.
Thus, on m machines, there is at most (2σ + 1)m available
processing time in this time interval. Consequently, there can
be at most (2σ + 1)m jobs with time intervals in St . ��
We finally arrive at the algorithm to prove Theorem 5.1.

Proof (of Theorem 5.1) Let h := (2σ + 1)m. In the same
way as for Theorem 4.1, in O(n log n) time we discover that
we face a no-instance due to Lemma 5.3 or, otherwise, that
our input instance has height at most h. In the latter case,
we apply the O(n · (σ + 1)h · h log h)-time algorithm due to
Cieliebak et al. (2004). ��

6 Conclusion

Despite the fact that there are comparatively few studies on
the parameterized complexity of scheduling problems, the
field of scheduling indeed offers many natural parameteri-
zations and fruitful challenges for future research. Notably,
Marx (2011) saw one reason for the lack of results on “para-
meterized scheduling” in the fact that most scheduling prob-
lems remainNP-hard even for a constant number ofmachines
(a very obvious andnatural parameter indeed), hencedestroy-
ing hope for fixed-parameter tractability results with respect
to this parameter. In scheduling interval-constrained jobs
with small looseness and small slack, we also have been
confronted with this fact, facing (weak) NP-hardness even
for two machines.

The natural way out of this misery, however, is to con-
sider parameter combinations, for instance combining the
parameter number of machines with a second one. In our
study, thesewere combinationswith looseness andwith slack
(see also Table 1). In a more general perspective, this con-
sideration makes scheduling problems a prime candidate
for offering a rich set of research challenges in terms of a
multivariate complexity analysis (Fellows et al. 2013; Nie-
dermeier 2010). Herein, for obtaining positive algorithmic
results, research has to go beyond canonical problem para-
meters, since basic scheduling problems remain NP-hard
even if canonical parameters are simultaneously bounded by
small constants, as demonstrated by Kononov et al. (2012).1

Natural parameters to be studied in future research on In-
terval-Constrained Scheduling are the combination of
slack and looseness—the open field in our Table 1—and the
maximumandminimumprocessing times,whichwere found
to play an important role in the online version of the problem
(Saha 2013).

Finally, we point out that our fixed-parameter algo-
rithms for Interval-Constrained Scheduling are easy
to implement and may be practically applicable if the loose-
ness, slack, and number of machines are small (about three
or four each). Moreover, our algorithms are based on upper
bounds on the height of an instance in terms of its num-
ber of machines, its looseness, and slack. Obviously, this
can also be exploited to give lower bounds on the number
of required machines based on the structure of the input
instance, namely, on its height, looseness, and slack. These
lower bounds may be of independent interest in exact branch

1 The results of Kononov et al. (2012) were obtained in context of
a multivariate complexity analysis framework described by Sevas-
tianov (2005), which is independent of the framework of parameterized
complexity theory considered in our work: it allows for systematic clas-
sification of problems as polynomial-time solvable or NP-hard given
concrete constraints on a set of instance parameters. It is plausible that
this framework is applicable to classify problems as FPT or W[1]-hard
as well.
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and bound or approximation algorithms for themachinemin-
imization problem.
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