
J Sched (2017) 20:147–164
DOI 10.1007/s10951-016-0477-x

Improved approaches to the exact solution of the machine
covering problem

Rico Walter1 · Martin Wirth2 · Alexander Lawrinenko3

Published online: 22 April 2016
© Springer Science+Business Media New York 2016

Abstract For the basic problem of scheduling a set of n
independent jobs on a set of m identical parallel machines
with the objective of maximizing the minimum machine
completion time—also referred to as machine covering—we
propose a new exact branch-and-bound algorithm. Its most
distinctive components are a different symmetry-breaking
solution representation, enhanced lower and upper bounds,
and effective novel dominance criteria derived from struc-
tural patterns of optimal schedules. Results of a comprehen-
sive computational study conducted on benchmark instances
attest to the effectiveness of our approach, particularly for
small ratios of n to m.

Keywords Identical parallel machines · Machine
covering · Dominance criteria · Branch-and-bound

B Rico Walter
rico.walter@gmail.com; rico.walter@itwm.fraunhofer.de

Martin Wirth
wirth@bwl.tu-darmstadt.de

Alexander Lawrinenko
alexander.lawrinenko@uni-jena.de

1 Department of Optimization, Fraunhofer Institute for
Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663
Kaiserslautern, Germany

2 Fachgebiet Management Science & Operations Research,
Technische Universität Darmstadt, Hochschulstraße 1, 64289
Darmstadt, Germany

3 Lehrstuhl für ABWL/Management Science,
Friedrich-Schiller-Universität Jena, Carl-Zeiß-Straße 3,
07743 Jena, Germany

1 Introduction

One of the most fundamental and well-studied NP-hard
problems in the field of machine scheduling is the makespan
minimization on identical parallel machines where a set of
n independent jobs J = {J1, . . . , Jn} with positive process-
ing times t1, . . . , tn has to be assigned to m identical parallel
machinesM = {M1, . . . , Mm} in order to minimize the lat-
est machine completion time. A related and in some sense
dual but by far not as well-studied NP-hard problem is
obtained when the objective is changed from minimizing
the makespan Cmax to maximizing the minimum comple-
tion time Cmin = min{C1, . . . ,Cm}—without introducing
idle times—where Ci is the sum of processing times of all
jobs assigned to Mi . While the former problem (which is
denoted by P||Cmax using the three-field notation of Gra-
ham et al. 1979) is a kind of packing problem, the latter
problem (abbreviated as P||Cmin), which is the subject of this
paper, belongs to the class of covering problems and therefore
is also referred to as the machine covering problem. It has
been first described by Friesen and Deuermeyer (1981) in the
context of spare parts assignments to machines that undergo
repeated repair. As another application of P||Cmin, Haouari
and Jemmali (2008) mentioned (fair) regional allocations of
investments.

Although both problems basically intend to balance the
workload among a given set of resources, P||Cmin has
received less attention than itsmuchmore prominent counter-
part P||Cmax. To the best of our knowledge, the rather scarce
literature on P||Cmin is limited to a few studies on approxi-
mation algorithms and their worst-case ratios and up to now
only one exact solution procedure has been proposed. For the
well-known longest processing time rule (LPT), Deuermeyer
et al. (1982) showed the minimum completion time of the
LPT-schedule CLPT

min to never be less than 3/4 times the opti-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-016-0477-x&domain=pdf

148 J Sched (2017) 20:147–164

mal minimum completion time C∗
min. Ten years later, Csirik

et al. (1992) tightened this performance bound by proving
that CLPT

min /C∗
min ≥ (3m − 1)/(4m − 2) is fulfilled for any

fixed m. In this context, Walter (2013) recently examined
the performance relationship between the LPT-rule and a
restricted version of it—known as RLPT—and he proved that
CLPT
min ≥ CRLPT

min . Further publications are concerned with a
polynomial-time approximation scheme (PTAS) (cf. Woeg-
inger 1997) and on-line as well as semi-on-line versions of
P||Cmin (cf., e.g., Azar and Epstein 1998; He and Tan 2002;
Luo and Sun 2005; Ebenlendr et al. 2006; Cai 2007; Tan and
Wu 2007; Epstein et al. 2011). The sole publication devoted
to exact solution procedures is due to Haouari and Jem-
mali (2008). The main features of their branch-and-bound
algorithm are tight lower and upper bounds and a symmetry-
breaking solution structure. However, except for small-sized
instances, computational results revealed that their algorithm
fails to (quickly) solve instances where the ratio of n to m
ranges between two and about three.

To overcome this drawback, we approach the
machine covering problem from a similar perspective as
done by Walter and Lawrinenko (2014) for the dual prob-
lem P||Cmax. In their very recent contribution, the authors
present structural properties of (potentially) makespan-
optimal schedules. These properties are then transformed
into problem-specific dominance criteria and implemented
in a tailored branch-and-bound algorithm that performs very
well on instances with small n/m-values.

Motivated by Walter and Lawrinenko’s results, in this
paper we propose a tailored branch-and-bound algorithm
for problem P||Cmin. Our contribution differs substantially
from the contribution by Walter and Lawrinenko (2014)
in the following respects: (i) we show that their central
result on makespan-optimal schedules also applies to prob-
lem P||Cmin, (ii) we extend their basic dominance criterion
by several novel P||Cmin-specific dominance criteria derived
from properties of optimal P||Cmin-schedules, and (iii) we
develop new upper bounds on C∗

min. Some of these bounds
are derived from the solution structure, while others exploit
the coherence between P||Cmin and the bin covering prob-
lem (BCP). The latter problem consists in packing a set of
indivisible items into as many bins as possible so that the
total weight of each bin equals at least C . To the best of our
knowledge, this coherence has not been mentioned before in
the literature.

The paper is organized as follows. In the technical part we
describe properties of Cmin-optimal schedules (cf. Sect. 2)
and translate them into novel P||Cmin-specific dominance
criteria (cf. Sect. 3). In the algorithmic part, we provide a

concise description of the proposed branch-and-bound algo-
rithm (Sect. 4) and we evaluate its performance on different
sets of benchmark instances (cf. Sect. 5). The paper con-
cludes with a short summary and some interesting ideas for
future research in Sect. 6.

For economy of notation, we usually identify both
machines and jobs by their index. Moreover, w.l.o.g, we
assume the jobs to be indexed so that t1 ≥ · · · ≥ tn . In addi-
tion, to avoid trivial instances we presuppose n > m ≥ 2.

2 Theoretical background

In this section, we derive structural properties of Cmin-
optimal schedules, which will be transformed later into
problem-specific dominance criteria.

2.1 Solution representation and illustration

Throughout this paper, we assume schedules to be non-
permuted. According to Walter and Lawrinenko (2014), a
schedule S ∈ {1, 2, . . . ,m}n—where S(j) = i means that
job j is assigned to machine i—is said to be non-permuted
if S fulfills the following two conditions:

(i) S(1) = 1 and

(ii) S(j) ∈
{
1, . . . ,min{m, 1 + max1≤k≤ j−1 S(k)}

}
for all

j = 2, . . . , n.

Note that due to this representation, symmetric reflections
obtained by a simple renumbering of the machines are
avoided.

Furthermore, instead of using Gantt charts we adopt the
illustration of schedules as sets of paths which has also
been introduced by Walter and Lawrinenko (2014). More
precisely, a schedule S is represented by

(m
2

)
paths P(i1,i2)

S —
one for each pair (i1, i2) of machines (1 ≤ i1 < i2 ≤ m).
Each path is a string of length n + 1 where the j-th entry
(j = 1, . . . , n) represents the difference between the num-
ber of jobs assigned to i1 and i2 in S after the assignment of
the j longest jobs. Additionally, to allow for initially empty
machines, we set P(i1,i2)

S (0) = 0 for all pairs. In a graphical
illustration, the entries of a path are linearly connected (see
Example 2.1).

Example 2.1 Let n = 4, m = 3, and consider the non-
permuted schedule S = (1, 2, 2, 3). The corresponding paths
P(1,2)
S = (0, 1, 0,−1,−1), P(1,3)

S = (0, 1, 1, 1, 0), and

P(2,3)
S = (0, 0, 1, 2, 1) are illustrated below.

123

J Sched (2017) 20:147–164 149

j

P
(1,2)
S (j)

1 2 3 4−1

1
2

j

P
(1,3)
S (j)

1 2 3 4−1

1
2

j

P
(2,3)
S (j)

1 2 3 4−1

1
2

2.2 Potential optimality

The concept of potential optimality has recently been pro-
posed byWalter and Lawrinenko (2014) and originates from
the question: “Are there certain general patterns in the struc-
ture of schedules that cannot lead to optimal solutions?”
Admittedly, at first glance, this approach appears to be a bit
unusual as actually we intend to derive properties of optimal
solutions. However, by identifying properties of solutions
that can never become (uniquely) optimal, we also implic-
itly gain insights into the structure of solutions that have the
potential to become (uniquely) optimal—which are therefore
called potentially (unique) optimal.

At this point,wewant tomention that the concept of poten-
tial optimality is to some extent related with the concept
of inverse optimization (for a review, see Ahuja and Orlin
2001, as well as Heuberger 2004) where unknown exact val-
ues of some adjustable parameters, e.g., processing times,
should be determined within given boundaries in such a way
that a pre-specified solution becomes optimal and the devi-
ation between the determined and the given values of the
parameters is minimal. Although inverse optimization has
attracted many researchers in different areas of combinator-
ial optimization during the last two decades, applications to
scheduling problems (e.g., see Koulamas 2005, as well as
Brucker and Shakhlevich 2009, 2011) are still rather rare.
Our approach—which differs slightly from the basic idea of
inverse optimization in that we intend to identify a preferably
large set of solutions for which we cannot select process-
ing times so that any of these solutions becomes uniquely
P||Cmin-optimal—constitutes another contribution in this
field.

Aswill be seen next (cf. Theorem2.2), solutions contained
in the set S play a crucial role in the context of potentially
unique optimal P||Cmin-schedules. The set S is formally
defined as

S =
{
S : for each pair (i1, i2) there exists either a

j ∈ {3, . . . , n} so that P(i1,i2)
S (j) < 0,

or 0 < j1 ≤ j2 < n so that P(i1,i2)
S (j) = 1 for

j = j1, . . . , j2 and P(i1,i2)
S (j) = 0 else

}

and contains all schedules where each machine processes
at least one job and each path of a pair of machines that
processesmore than two jobs in total has at least one negative
entry. We say that schedules in S fulfill the path-conditions
or, equivalently, all

(m
2

)
paths fulfill their respective path-

condition.
Revisiting the schedule S = (1, 2, 2, 3) introduced in Exam-
ple 2.1, we readily see that S is no element of S, although
no machine remains empty and the paths P(1,2)

S and P(1,3)
S

fulfill their path-condition. However, the path P(2,3)
S does not

fulfill its path-condition as it has no negative entry, although
the two machines process more than two jobs in total.

Ourmain theoremonpotential optimality reads as follows.

Theorem 2.2 Let S be a schedule which is no element of S.
Then, S is not a potentially unique Cmin-optimal solution.

Proof Consider an arbitrary schedule S which is no element
of S. Then, there exists a pair of machines—say (i1, i2)—
whose corresponding path does not fulfill the path-condition.
These two machines and the respective set of jobs currently
assigned to them constitute a solution to the machine cov-
ering problem on two identical parallel machines. Since
machine covering andmakespanminimization on two identi-
cal parallel machines are equivalent, we can apply a result by
Walter and Lawrinenko (2014). They proved that with their
so-called two-machine path-modification, a two-machine
schedule which does not fulfill its path-condition can be
turned into a schedule whose respective path does fulfill its
path-condition without increasing the maximum completion
time of i1 and i2. Note that the latter is equivalent to the
fact that the minimum completion time of i1 and i2 does not
decrease during the modification of the given schedule.

As the two-machine path-modification does not affect any
jobs on the remaining m − 2 machines, the minimum com-
pletion time of the transformed schedule cannot be smaller
than the minimum completion time of S. Hence, S cannot be
potentially unique Cmin-optimal. ��

Summarizing the result of Theorem 2.2, we know that
every instance of the problem P||Cmin has an optimal
solution where all corresponding

(m
2

)
paths fulfill their path-

condition.
In what follows, we will make use of the previous result
and deduce several P||Cmin-specific dominance criteria—

123

150 J Sched (2017) 20:147–164

subsumed under the term path-related dominance criteria—
which will later on prove to be effective in guiding the search
of a tailored branch-and-bound algorithm toward schedules
which are elements of S.

3 Dominance criteria based on potential optimality

For a better understanding, we start with a brief repetition
of the basic dominance criterion developed by Walter and
Lawrinenko (2014). All other dominance criteria presented
within this section are novel and P||Cmin-specific.

3.1 The basic criterion

Given a partial solution S̃ where the k longest jobs have
already been assigned, the basic criterion is readily obtained
from the characterization of potentially unique optimal
schedules (cf. Theorem 2.2). Recalling that each pair (i1, i2)
ofmachines 1 ≤ i1 < i2 ≤ m has to fulfill its path-condition,
for each i2 ∈ {m,m − 1, . . . , 2} we simply have to count the
minimum number of jobs vki2 that still have to be assigned to
i2 so that all paths fulfill their path-condition. According to
Walter and Lawrinenko (2014), vki2 can be computed as

vki2 = max
i1=1,...,i2−1

PF
(i1,i2)

S̃
(k)=0

{
P(i1,i2)
S̃

(k)
} + γ k

i2 , (1)

where PF (i1,i2)
S̃

(k) = 0 indicates that the pair (i1, i2) does

not currently fulfill its path-condition and γ k
i2
is a correction

term that is either 0 (iff all machines i1 < i2 process at most
one of the first k jobs) or 1 (iff at least one machine i1 < i2
processes more than one job), respectively. Clearly, vki2 is set
to 0 if all pairs (i1, i2) currently fulfill their path-condition.
Then, the basic criterion reads as follows.

Criterion 3.1 If

m∑
i=1

vki > n − k (2)

for some k < n, then the current partial solution can be
fathomed.

With regard to the next section, we define vk1 = 0 for all
k > 1.

3.2 Further improvements

Up to now, the basic dominance Criterion 3.1 does not con-
sider any machine completion times and therefore offers the

C1 C2
C3 C4

L + 1
δ3 δ4

M1 M2 M3 M4

Fig. 1 Illustration of δi

potential for some improvements. Clearly, in a new incum-
bent solution, each machine completion time has to be at
least as large as L + 1 where L is the best known minimum
completion time so far. Based on this information, at first we
will show how some of the demands vki can be tightened and
secondly we will check whether the current partial solution
admits the possibility to become the new incumbent.

Recalling that we consider a partial solution where the k
longest jobs have already been assigned,we let LOWk denote
the set of machines with current completion time Ck

i at most
L , i.e., LOWk = {i : Ck

i ≤ L}, and δki = L + 1 − Ck
i for

i ∈ LOWk denotes the gap between L+1 andCk
i (see Fig. 1).

In other words, to improve on the currently best solution
(i.e., the incumbent), machine i ∈ LOWk has to run at least
δki units of time longer than now. Thus, at least

lki = min
{
β ∈ {1, . . . , n − k} :

β∑
j=1

tk+ j ≥ δki

}
(3)

jobs still have to be assigned to i ∈ LOWk in order to finally
yield Ci > L . If no such β exists, then it is impossible to
complete the current partial solution in such a way that a new
incumbent solution is obtained. In this case, we set lki = ∞.
Eventually, the number of required jobs can be updated:

v̄ki =
{
max{vki , lki } if i ∈ LOWk

vki else.
(4)

Hence, a tighter version of Criterion 3.1 reads as follows.

Criterion 3.2 If

m∑
i=1

v̄ki > n − k (5)

for some k < n, then the current partial solution can be
fathomed.

After having updated the number of required jobs, we will
incorporate the processing times of the remaining jobs and
derive further criteria. Therefore, we let T k

rem = ∑n
j=k+1 t j

denote the total remaining processing time and we define

123

J Sched (2017) 20:147–164 151

Δk = ∑
i∈LOWk δki . Then, it is easy to observe that there is

no need to further consider a partial solution if T k
rem < Δk .

In this case, it is not realizable to assign the remaining jobs to
the machines in LOWk so that finally Ci > L is fulfilled for
all i ∈ LOWk , i.e., no matter how we complete the current
partial solution, we cannot obtain a new incumbent solution.

In what follows, we are concerned with tightening the
inequality T k

rem < Δk , i.e., we want to identify (at low
computational costs) a feasible value Rk > 0 so that the cur-
rent solution can already be excluded from further searching
whenever

T k
rem − Rk < Δk (6)

is fulfilled. For this purpose, in a first step we take a look at
those machines which already run longer than L but require
at least one more job to fulfill the path-conditions. We sum-
marize these machines in the set PATHk = {i : Ck

i > L
and vki > 0} and define

V k
PATH =

∑

i∈PATHk

vki (7)

which gives the number of required jobs added over all i ∈
PATHk . Then, we readily observe that at least V k

PATH of the
remaining n − k jobs cannot be used to fill the gaps on the
machines in LOWk or, equivalently, not more than n − k −
V k
PATH jobs are available for being assigned to the machines

in LOWk . Hence, we can conclude that Rk is at least as
large as the sum of the V k

PATH shortest processing times, i.e.,

Rk = ∑V k
PATH
j=1 tn− j+1, and (6) appears as follows.

Criterion 3.3 If

T k
rem −

V k
PATH∑
j=1

tn− j+1 < Δk (8)

for some k < n, then the current partial solution can be
fathomed.

To shorten notation, in the remainder of this section,we set
n′ := n−V k

PATH. Moreover, for sake of readability and since
we always consider a partial solution after the assignment of
the k longest jobs, we will omit the upper index k.

We will now show that there is still some potential to fur-
ther increase the value of R. So far, we do not adequately take
into account that the jobs are indivisible. Since preemption
is not allowed, the processing of a job cannot be interrupted
and continued on another machine. Therefore, in contrast to
our current criteria, if it is not realizable to select some of the
remaining n′ − k jobs so that a machine i ∈ LOW finishes
exactly at time L + 1, then the time difference (or surplus)
Ci − (L + 1) on machine i cannot be used to increase the

completion time of other machines in LOW. Recalling that
each machine i ∈ LOW requires at least v̄i more jobs to
fulfill its path-conditions and to allow for a new incumbent,
we simply check whether the sum of the v̄i shortest avail-
able jobs, i.e., n′, . . . , n′ − v̄i + 1, already exceeds the gap
δi on that machine. If this is the case, then R can be further
increased as follows. For each i ∈ LOW, we compute

si = max

⎧⎨
⎩Ci +

v̄i∑
j=1

tn′− j+1 − (L + 1), 0

⎫⎬
⎭ (9)

which we call the individual surplus on machine i as well as

S =
∑

i∈LOW
si (10)

which represents a lower bound on the cumulative surplus
caused by the machines i ∈ LOW. Then, it is obvious
that in any complete solution, R will be at least as large

as
∑V k

PATH
j=1 tn− j+1 + S.

At this point, we shall remark that (9) (and 10) still assume
the VPATH overall shortest jobs to be assigned to themachines
in PATH. This assumption is correct because of the following
trivial lemma which we state without giving a proof.

Lemma 3.4 If it is possible to fill all gaps on the machines
in LOW using at most z ≤ n′ − k of the jobs k + 1, . . . , n,
then it is possible to fill all gaps on these machines using the
z longest jobs k + 1, . . . , k + z.

Asmentioned above, the calculation of the individual sur-
plus si for each i ∈ LOW (cf. Eq. 9) is a basic approach
because the shortest available jobs are supposed to be repeat-
edly assignable to each machine in LOW. Clearly, this
constitutes an essential simplification since in a feasible
schedule each job has to be assigned to one machine. Tak-
ing this into account, for the subset of machines LOW1 :=
{i ∈ LOW : li = 1}, we will now propose an alternative
approach to calculate a lower bound on the cumulative sur-
plus caused by thesemachines.Aswill be seen, the restriction
to the subset LOW1 of LOW ensures the alternative cumula-
tive surplus to be easily and fast computable. The approach
builds on the fact that in total (at least) |LOW1| jobs have to
be assigned to the machines in LOW1 and, since li = 1 for
all i ∈ LOW1, it might be sufficient to assign a single job to
each machine i ∈ LOW1 to fill the gaps. So, we can take the
|LOW1| shortest available jobs, i.e., n′, . . . , n′−|LOW1|+1,
and—assuming that each of which is assigned to exactly one
machine in LOW1—we can calculate a lower bound on the
cumulative surplus caused by the machines in LOW1 as fol-
lows. Let

s′
i (j) = max{Ci + t j − (L + 1), 0} for i ∈ LOW1 (11)

123

152 J Sched (2017) 20:147–164

C1 C2
C3 C4

L + 1
s3(j)

j
δ4

M1 M2 M3 M4

Fig. 2 Illustration of s′
i (j)

denote the (single) surplus generated by assigning job j to
machine i ∈ LOW1 (see also Fig. 2), the following lemma is
readily verified.

Lemma 3.5 Consider two jobs j1, j2 with t j1 ≥ t j2 and two
machines i1, i2 ∈ LOW1 with Ci1 ≥ Ci2 . Then, s

′
i1
(j2) +

s′
i2
(j1) ≤ s′

i1
(j1) + s′

i2
(j2).

Proof If s′
i1
(j2) = 0, then s′

i1
(j2) + s′

i2
(j1) = s′

i2
(j1) ≤

s′
i1
(j1) ≤ s′

i1
(j1) + s′

i2
(j2) since Ci2 + t j1 − (L + 1) ≤

Ci1 + t j1 − (L + 1).
If s′

i2
(j1) = 0, then s′

i1
(j2)+s′

i2
(j1) = s′

i1
(j2) ≤ s′

i1
(j1) ≤

s′
i1
(j1)+s′

i2
(j2) sinceCi1+t j2−(L+1) ≤ Ci1+t j1−(L+1).

Now, assume thatCi1 + t j2 > L+1 andCi2 + t j1 > L+1.
Then,

s′i1(j2) + s′i2 (j1) = Ci1 + t j2 − (L + 1) + Ci2 + t j1 − (L + 1)

= Ci1 + t j1 − (L + 1) + Ci2 + t j2 − (L + 1)

≤ s′i1(j1) + s′i2 (j2).

��
According to Lemma 3.5, assigning the longer job to the

machine with the larger gap in LOW1 and the shorter job
to the machine with the smaller gap results in a smaller
cumulative surplus (on these two machines) than the other
way round. Clearly, this pairwise consideration can easily
be extended to all machines in LOW1 as summarized in the
following corollary.

Corollary 3.6 Assume the machines in LOW1 to be sorted
according to non-increasing gaps. Then, the smallest cumu-
lative surplus caused by the machines in LOW1 is obtained
by assigning the |LOW1| shortest available jobs in non-
decreasing order of processing times to the machines in
LOW1.

Proof The corollary can easily be proved by contradiction.
At first, observe that considering any |LOW1| jobs out of
k + 1, . . . , n′ cannot yield a smaller cumulative surplus than
selecting the |LOW1| shortest ones because the surpluses are
monotonically increasing in increasing processing times.

Now, assume that the smallest cumulative surplus is not
achieved by the assignment described in Corollary 3.6. Then,

there must exist a pair of machines (and jobs) where the
machine with the larger gap is assigned the job with the
shorter processing time and the machine with the smaller
gap is assigned the job with the longer processing time.
According to Lemma 3.5, swapping these two jobs results
in a smaller cumulative surplus, which is a contradiction. ��

Formally, we can summarize Corollary 3.6 as follows: Let
π be a permutation of the machines in LOW1 so thatCπ(1) ≥
Cπ(2) ≥ · · · ≥ Cπ(|LOW1|), then the smallest cumulative
surplus S1′ is obtained by assigning job n′ − i+1 to machine
π(i) for i = 1, . . . , |LOW1|, i.e.,

S1′ =
|LOW1|∑

i=1

s′
π(i)(n

′ − i + 1). (12)

Note that again Lemma 3.4 is taken as granted in the com-
putation of the cumulative surplus S1′ on the machines in
LOW1.

Altogether,wehavedeveloped twodifferent approaches to
calculate a lower bound on the cumulative surplus caused by
themachines inLOW1, namely S1 := ∑

i∈LOW1 si and S1
′.

It is readily verified that neither S1 dominates S1′ (think of
caseswhere v̄i = li = 1 for all i ∈ LOW1)nor S1′ dominates
S1. Hence, a lower bound on the cumulative surplus caused
by all machines in LOW is given by

S̄ =
∑

i∈LOW\LOW1

si + max{S1, S1′} = S − S1 + max{S1, S1′}.

(13)

Consequently, we can further increase R by S̄ and (6)
results in the following criterion that is tighter than Criterion
3.3.

Criterion 3.7 If

Trem −
VPATH∑
j=1

tn′+ j − S̄ < Δ, (14)

then the current partial solution can be fathomed.

Summarizing the results developed within this subsec-
tion, we can record the following. Given a partial solution
where the k longest jobs have already been assigned, in order
to obtain a new incumbent solution that fulfills the path-
conditions at least R = ∑VPATH

j=1 tn′+ j + S̄ units of the total
remaining processing time Trem cannot be used effectively
to fill the gaps on the machines in LOW—no matter how the
remaining n − k jobs will be assigned.

Example 3.8 The following example briefly illustrates the
functionality of the four proposeddominance criteria.Assume
n = 12, m = 5, and the vector of processing times

123

J Sched (2017) 20:147–164 153

Table 1 Completion times and
gaps

Mi 1 2 3 4 5

Ci 95 93 149 141 129

δi 36 38 – – 2

Table 2 Number of required
jobs

Mi 1 2 3 4 5
∑

vi 0 0 0 1 0 1

li 1 1 – – 1 3

v̄i 1 1 0 1 1 4

Table 3 Surpluses Mi 1 2 5
∑

si 0 0 8 8

s′
i 0 7 8 15

T = (95, 93, 87, 86, 66, 63, 62, 55, 45, 25, 10, 6) for which
a lower and an upper bound value of L = 130 and U = 136
can be determined (cf. Sect. 4), respectively. Furthermore,
let S̃ = (1, 2, 3, 4, 5, 5, 3, 4) be the current partial schedule
where the k = 8 longest jobs have already been assigned and
Trem = ∑12

j=9 t j = 45 + 25 + 10 + 6 = 86.
Table 1 contains the current machine completion timesCi

and the gaps δi . The number of required jobs according to
Criteria 3.1 and 3.2 is given in Table 2. Since n − k = 4 jobs
still have to be assigned, the current partial schedule cannot
be fathomed on the basis of the first two criteria.

From Tables 1 and 2, we get LOW = LOW1 = {1, 2, 5},
PATH = {4}, and VPATH = 1 so that in a first step R is equal
to t12 = 6. Since Trem − R = 86 − 6 is not smaller than
Δ = 36+38+2 = 76, we cannot fathom the current partial
solution yet (cf. Criterion 3.3).

Table 3 contains the results of the two alternative surplus
computations for themachines inLOW1.According toCrite-
rion 3.7, the current partial solution can be fathomed because
Trem − 6 − S̄ = 86 − 6 − 15 = 65 < 76.

4 A branch-and-bound algorithm

This section provides details on the developed branch-and-
bound algorithm.

4.1 Upper bounds

4.1.1 A trivial bound and its worst-case ratio

Let Tsum = ∑n
j=1 t j , then U0 =

⌊
Tsum
m

⌋
represents the

simplest upper bound on the optimal minimum machine
completion time C∗

min (cf. Haouari and Jemmali 2008). It
is readily verified that the worst-case performance ofU0 can

be arbitrarily bad. For instance, assume n = m + 1 and con-
sider the processing times t1 = K
 1 and t j = 1 for
j = 2, . . . , n. Then, U0 = �K/m� + 1, whereas C∗

min = 1
so that the ratio U0/C∗

min approaches infinity as K grows.
However, based on the following two observations, the

performance ofU0 can be drastically improved. Firstly, note
that in case n = m + k (k ∈ {1, . . . ,m − 1}) at least m − k
machines will process exactly one job in any optimal solu-
tion. Thus, the minimum of tm−k and � 1

k

∑n
j=m−k+1 t j� is

a valid upper bound on C∗
min. Secondly, note that any job

whose processing time is greater than or equal to U0 can be
eliminated so that � 1

m−|J ′|
∑

j∈J \J ′ t j� where J ′ = { j :
t j ≥ U0} constitutes a valid upper bound on C∗

min. Note that
|J ′| ≤ m − 1. Moreover, note that the aforementioned elim-
ination (or reduction) can possibly be repeated up to m − 1
times in an iterative manner.

As a result of the previous observations, we can reduce
any given instance I to Ĩ in such a way that (i) the number
of remaining jobs is at least twice the number of remaining
machines and (ii) the longest (remaining) processing time is
smaller than U0(Ĩ). Then, we can prove that U0(Ĩ) is never
more than 2 − 1/m times the optimal minimum completion
time.

Theorem 4.1 Let I be an instance of P||Cmin which fulfills
both n ≥ 2m and t1 < U0(I). Then,

U0(I)

C∗
min(I)

≤ 2 − 1

m
(15)

for all instances I and this bound is asymptotically tight for
any fixed m ≥ 2.

Proof We prove the theorem by contradiction. Assume that
U0(I)/C∗

min(I) > 2− 1/m. This is equivalent to C∗
min(I) <

U0(I)/(2−1/m) ≤ Tsum/(2m−1). So, in an optimal sched-
ule, the completion time of at least one machine, say i1, is
less than Tsum/(2m − 1). Consequently, there exists at least
another machine, say i2, whose completion time Ci2 is at
least (Tsum −Tsum/(2m−1))/(m−1) = 2Tsum/(2m−1) >

Tsum/m > t1. Thus, i2 processes at least two jobs among
which the shortest job’s processing time is at most Ci2/2 ≥
Tsum/(2m − 1). Shifting this job from i2 to i1 yields a better
schedule which is a contradiction.

To verify that the bound is asymptotically tight for any
fixed m ≥ 2, consider n = 2m jobs with processing times
t1 = · · · = tn−1 = K
 1 and tn = 1. Then, C∗

min = K +1,
whereas U0 = (2 − 1/m)K + 1/m. Hence, the ratio of U0

to C∗
min approaches 2 − 1/m as K grows. ��

4.1.2 Improvements derived from P||Cmax

Following Haouari and Jemmali (2008), an upper bound on
C∗
min can be derived from a known lower bound LCmax on the

123

154 J Sched (2017) 20:147–164

optimal makespan by computation of

U1 =
⌊
Tsum − LCmax

m − 1

⌋
. (16)

To obtain a good lower bound on the optimal makespan,
we implemented an enhanced version (due to Haouari and
Jemmali 2008) of the bound L3 by Dell’Amico andMartello
(1995). For further details, we refer the reader to the litera-
ture.

4.1.3 Lifting procedure and further enhancement

Haouari and Jemmali (2008) proposed two procedures to
tighten upper bounds for P||Cmin. The first one is the so-
called lifting procedure which bases upon the fact that in
any feasible schedule there exists at least a set of l machines
(1 ≤ l ≤ m) that process at most

μl(n) = l�n/m� + max{0, n − m(�n/m� + 1) + l} (17)

jobs (cf. Haouari and Jemmali 2008). Then, a lifted bound
can be obtained by applying an upper bound procedure on
the partial instance restricted to l machines and the μl(n)

longest jobs.
The second procedure (cf. Haouari and Jemmali 2008)

aims at enhancing a given upper bound value U by solving
a specific subset sum problem (SSP) that checks whether
there exists a subset of J whose processing times sum up
to exactlyU . If no such subset exists, the smallest realizable
sum (denoted by USSP) of processing times that does not
exceed U constitutes an upper bound.

4.1.4 Improvements derived from bin covering

To the best of our knowledge, we are the first to describe the
coherence between P||Cmin and the bin covering problem
(BCP) in order to improve upper bounds on C∗

min. The idea
is to transform a given P||Cmin-instance into a BCP-instance
where (i) jobs and processing times correspond to items and
weights, respectively, and (ii) the capacityC of the bins is set
to the best known upper bound on the minimum completion
time. Then, a procedure is applied to determine an upper
bound on the maximum number of bins that can be covered.
If this number is at most m − 1, then the optimal minimum
completion time of the corresponding P||Cmin-instance is at
most C − 1.

In our implementation, we used four BCP-upper bounds
(U0 from Peeters and Degraeve 2006, as well asU1,U2, and
U3 from Labbé et al. 1995, including their reduction Criteria
1 and 2) and an improvement procedure (see Theorem 5 in
Labbé et al. 1995). Again, we refrain from reporting any

further details on these bounding techniques but refer the
interested reader to the literature.

4.1.5 Bounds derived from the solution structure

Assume that a lower bound L onC∗
min is given (cf. Sect. 4.2).

Then, in order to generate a new incumbent solution,
i.e., Cmin > L , we can deduce that at least

jmin = min{k : t1 + · · · + tk > L} (18)

and at most

jmax = max{k : tn−k+1 + · · · + tn ≤ C̄} (19)

jobs have to be assigned to each machine and

C̄ = max
{
C :

⌊Tsum − C

m − 1

⌋
> L

}
. (20)

Note that if a machine’s completion time is greater than C̄ ,
it is impossible that each of the remaining m − 1 machines
runs longer than L .

When the special case jmax = jmin+1 occurs, an immedi-
ate upper bound is obtained after determining the number of
machines mmin (mmax) on which exactly jmin (jmax) jobs are
processed each. It is readily verified thatmmin = jmax ·m−n
and mmax = n − jmin · m. The resulting upper bound is

U (L) = min

⎧⎨
⎩

⎢⎢⎢⎣ 1

mmin

jmin·mmin∑
j=1

t j

⎥⎥⎥⎦ ,

⎢⎢⎢⎣ 1

mmax

jmax·mmax∑
j=1

t j

⎥⎥⎥⎦
⎫⎬
⎭ .

(21)

In case jmax = 2, note that an optimal solution is readily
obtained by assigning job j (j = 1, . . . ,m) to machine j
and job m + k (k = 1, . . . , n − m) to machine m − k + 1.

If jmax > jmin + 1, we propose the following strategy.
Firstly, if �(Tsum− t1−· · ·− t jmin)/(m−1)� ≤ L , it is impos-
sible to obtain a new incumbent by assigning the longest
jmin jobs to the same machine. In general, a new incum-
bent can only be obtained at all if none of the machines runs
longer than C̃ := max{C > L : � Tsum−C

m−1 � > L}. Thus,
if there exists no jmin-element subset of J whose cumula-
tive processing time falls into the interval [L + 1, C̃] we can
increase jmin.

Instead of checking each subset individually, we solve
the following binary program (requiring pseudo-polynomial
time) for a possible increase of jmin:

Minimize j̃min = ∑n
j=1 x j

subject to
(22)

123

J Sched (2017) 20:147–164 155

L + 1 ≤
n∑
j=1

t j x j ≤ C̃ (23)

x j ∈ {0, 1} ∀ j = 1, . . . , n. (24)

In case that now jmax = j̃min + 1, an immediate upper
bound can be determined as described above.

Secondly, we consider restricted instances with l (l =
m − 1,m − 2, . . . , 2) machines and the longest μl out of all
n jobs where μl is determined according to Eq. (17). Then,
for each l, we compute a (restricted) Cmin-lower bound Ll

by application of the LPT-rule and we take the maximum of
L and Ll (note that the optimal restricted Cmin-value is at
least as large as L) to determine jmin(l) (cf. Eq. 18) as well
as jmax(l) (cf. Eq. 19). In case jmax(l) = jmin(l) + 1, we
obtain an upper bound U (Ll) according to Eq. (21).

4.2 Lower bounds

We implemented three construction procedures as well as
an improvement procedure. The first constructive algorithm
is the prominent longest processing time (LPT)-rule due to
Graham (1969). As a second procedure, we implemented a
randomized LPT-version due to Haouari and Jemmali (2008)
that randomly decides in each iteration whether the longest
or the second longest unassigned job is assigned to the next
machine available. Our third procedure is an adaptation of
a construction heuristic—referred to as Multi-Subset (MS)
(cf. Alvim et al. 2004)—and consists of two phases. In the
first phase, the machines are considered one by one. For each
machine, a subset of the yet unassigned jobs is determined (by
solving a subset sum problem) so that the longest unassigned
job is contained and the sum of the respective processing
times is closest to—without exceeding—a given target value
T . If not all jobs are assigned after phase 1, the second phase
completes the partial solution by assigning the remaining
jobs according to the LPT-rule. We used two different values
for T , namely T = UBbest and T = LBbest+1whereUBbest

and LBbest are the best known upper and lower bound values
so far, respectively. The better of the two solutions produced
by MS is chosen as theMS-solution.

The implemented improvement heuristic—referred to as
Multi-Start Local Search (MSLS)—is also due to Haouari
and Jemmali (2008). Startingwith an initial solution, the pro-
cedure attempts to balance the workloads of the machines by
iteratively solving a sequence of specific P2||Cmin-instances.
For further details, we refer to Haouari and Jemmali (2008).

4.3 Application of the bounds

At the root node, the bounds are computed in the following
order (as long as no optimal solution has been verified). Pre-
supposing a (possibly preprocessed) instance where n ≥ 2m,

at first we determineU0 andwe apply the LPT-rule yielding a
global lower bound value LG . Secondly, we make use of the
lifting and enhancement procedure (see Sect. 4.1.3), i.e., for
l = m,m−1, . . . , 2 we computeU1 restricted to l machines
and the μl longest jobs and afterward we solve for each l
the respective SSP. Thirdly, we iteratively apply the bound-
ing techniques derived from bin covering (see Sect. 4.1.4)
as long as at least one of them leads to an improved global
upper bound UG . In a fourth step, we try to further improve
LG by application of (i) MS and (ii) MSLS (see Sect. 4.2).
The latter is applied to the LPT-solution, the MS-solution as
well as to 25 randomized LPT-solutions. Lastly, we apply our
upper bounds derived from the solution structure as devel-
oped within Sect. 4.1.5.

At each node in the tree, we pursue the following two
ideas to obtain local upper bounds. Firstly, we adopt the ratio-
nale behindU0 as follows. In the current partial solution, we
replace each currently unassigned job j (j = k + 1, . . . , n)

by t j jobs of length 1 and apply the LPT-rule to assign the
T k
rem jobs of length 1 to the current partial solution. Clearly,

the resulting minimum completion time constitutes a local
upper bound which we denote by Umod

0 .
Secondly, we partition M into two subsets MUB− =

{Mi ∈ M : Ck
i < UBloc} and MUB+ = M \ MUB− where

UBL denotes the best known local upper bound for the con-
sidered node. Note that UBloc is the minimum of Umod

0 and
the parent node’s upper bound value. Then, we compute the
following modified variant Umod

1 of U1:

Umod
1 =

⌊
Tsum − ∑

i∈MUB+ Ck
i − L3

|MUB−| − 1

⌋
. (25)

Here L3 is computed for a transformed instance restricted to
(i) the machines in MUB− , (ii) the n − k remaining jobs, and
(iii) |MUB−| fictitious jobs having processing times Ck

i (i ∈
MUB−).

To possibly improve on the lower bound, we apply the
LPT-rule to partial solutions for which at least m jobs have
already been assigned and no more than 2m jobs remain
unassigned.

4.4 The branching scheme

We implemented a depth-first branching scheme which has
originally been proposed byDell’Amico andMartello (1995)
in the context of solving P||Cmax. We decided on this
scheme as it allows for a straightforward incorporation of
the path-related dominance criteria. It is different from the
one developed by Haouari and Jemmali (2008) and works
as follows. At level k, the current node generates at most m
son-nodes by sequentially assigning job k, i.e., the longest
unassigned job, to eachmachineMi that fulfills bothC

k−1
i <

123

156 J Sched (2017) 20:147–164

UBloc and |Mi | < jmax. The corresponding machines are
selected according to increasing current completion times.

Clearly, each new incumbent solution updates the global
lower bound. As soon as an optimal solution has been iden-
tified, the branching process stops immediately.

4.5 Dominance criteria

In case that a current partial solution at level k cannot be fath-
omed due to the computation of the local upper bounds and
not each pair ofmachines currently fulfills its path-condition,
we apply the path-related dominance criteria in the same
order as they are introduced in Sect. 3.

Furthermore, we apply the following criterion derived
from Sect. 4.1.5.

Criterion 4.2 If |Mi | + v̄ki > jmax for some i ∈ {1, . . . ,m},
then the current partial solution can be fathomed.

The branching process itself can be limited according
to four dominance criteria that have originally been intro-
duced by Dell’Amico and Martello (1995). In Walter and
Lawrinenko (2014) it is shown how these four criteria have
to bemodified in order to be compatible with the path-related
criteria. For further details, we refer to the literature.

5 Computational study

We have coded the algorithm described within Sect. 4 in
C++ using theVisual C++ 2010 compiler and experimentally
tested its performance on (i) various difficult sets of P||Cmin-
instances as reported by Haouari and Jemmali (2008) and (ii)
a large set of instances from the literature. Our computational
experiments were performed on a personal computer with an
Intel Core i7-2600 processor and 8GB RAM while running
Windows 7 Professional SP 1 (64-bit). The maximal compu-
tation time per instance was set to 600s.

5.1 Performance on Dell’Amico and Martello’s
instances

In a first experiment, we have run our algorithm (denoted
by WWL) on the following five problem classes originally
proposed by Dell’Amico and Martello (1995):

• Class 1: discrete uniform distribution on [1, 100]
• Class 2: discrete uniform distribution on [20, 100]
• Class 3: discrete uniform distribution on [50, 100]
• Class 4: cut-off normal distribution with μ = 100 and

σ = 50
• Class 5: cut-off normal distribution with μ = 100 and

σ = 20

According to the results stated in the paper by Haouari
and Jemmali (2008), with their algorithm (denoted by HJ)
branching was required for only 166 out of 2050 instances.
Since our global bounds are in general at least as strong,
there is no need to reconsider all of their investigated constel-
lations. Instead,we restricted our study to the difficult (n,m)-
constellations (10, 3), (10, 5), (25, 10), (25, 15), (50, 15)
where branching was required by HJ. Like Haouari and Jem-
mali (2008), for each constellationwe randomly generated 10
independent instances resulting in a total of 250 instances. A
summary of the results is provided in Table 4. In this table we
document themeanCPU time in seconds (labeled as “Time”)
aswell as themean number of explored nodes (“NN”).More-
over, the number of unsolved instances if greater than 0 is
given in brackets. The results of algorithm HJ are taken from
Haouari and Jemmali (2008). Their algorithm was coded in
Visual C++ 6.0 and ran on a Pentium IV 3.2GHz with 3GB
RAM. The time limit for HJ was set to 800s.

Additionally, in Table 4, we report on the performance
of the new upper and lower bound techniques (cf. columns
labeled as “UBimpr” and “LBMS”) introduced within the
Sects. 4.1.4, 4.1.5, and 4.2. Concerning the new upper
bounds, the column labeled as “#” gives the number of
instances where the new upper bounds improved on the
best upper bound obtained by the existing procedures
(cf. Sects. 4.1.1–4.1.3). Numbers in brackets indicate for how
many instances (if less than 10) the application of at least one
of the two new upper bounding techniques has been needed.
The columns labeled as “avg” and “max”give the average and
maximum relative deviation (in %) between the best existing
upper bound and the best new upper bound. Concerning the
new lower bound, the column labeled as “#” gives the num-
ber of instances where Multi-Subset (MS) generates the best
lower bound value. Numbers in brackets indicate for how
many instances (if less than 10) the application of MS has
been needed. For those cases, the columns labeled as “avg”
and “max” give the average and maximum relative deviation
(in %) between the best lower bound value and the value
produced by MS.

As can be seen from the entries in Table4, except for con-
stellation (50, 15) where algorithm HJ performed generally
better than WWL, the opposite is true for each of the four
other constellations. Here, our algorithm is strictly superior
to algorithm HJ in terms of NN. Moreover, WWL was able
to quickly solve all 200 instances, while algorithm HJ failed
to solve two of them. The dominance ofWWL is particularly
impressive for the constellations (25, 10) and (25, 15)where
the average number of generated nodes and the computation
time were reduced to fractions of up to 1/14,500,000 and
1/8650, respectively. However, the benefit of the dominance
criteria (cf. Sect. 3) seems to be limited to constellations
where n/m ≤ 2.5. These observations comply with the find-
ings in Walter and Lawrinenko (2014) for problem P||Cmax.

123

J Sched (2017) 20:147–164 157

Table 4 Results on difficult instances generated according to Dell’Amico and Martello (1995)

n m Class HJ WWL

Time NN Time NN UBimpr LBMS

avg max # avg max

10 3 1 0.001 90 0.016 21 0 0 0 4 2.307 5.645

2 0.001 137 0.010 13 1 0.054 0.543 4 1.627 2.183

3 0.002 48 0.020 16 0 0 0 3 1.161 3.309

4 0.002 215 0.011 6 2 0.095 0.610 5 1.342 2.215

5 0.002 100 0.012 30 0 0 0 3 1.265 2.652

10 5 1 0.002 128 0.010 3 5 (9) 3.179 13.084 4 (5) 0.323 1.613

2 0.002 152 0.009 3 9 5.573 12.598 1 (3) 10.149 19.200

3 <0.001 188 0.015 2 9 1.868 3.472 0 (1) 4.138 4.138

4 0.003 150 0.009 2 9 2.939 8.938 0 (1) 7.292 7.292

5 0.002 140 0.009 5 8 7.093 18.239 1 (4) 4.968 10.329

25 10 1 85.000 19,649,828 0.115 3,534 0 0 0 0 3.300 5.185

2 129.000 (1) 31,675,367 0.083 1,965 5 0.325 0.704 0 5.226 8.725

3 1.380 235,178 0.027 34 3 0.340 1.143 0 3.308 5.650

4 19.625 4,294,945 0.018 13 5 1.001 3.196 0 1.830 3.644

5 38.675 10,014,760 1.599 53,203 5 0.708 3.968 0 5.412 8.696

25 15 1 128.000 (1) 24,572,119 0.019 26 1 (5) 0.606 3.030 1 (5) 10.868 28.000

2 1.900 268,948 0.009 4 1 (1) 5.952 5.952 0 (1) 2.500 2.500

3 0.006 42 0.023 1 0 (0) – – 0 (0) – –

4 77.878 14,537,221 0.009 1 0 (0) – – 0 (0) – –

5 0.005 48 0.010 22 0 (1) 0 0 0 (1) 1.515 1.515

50 15 1 0.003 17 4.050 (1) 95,149 0 0 0 0 6.963 12.500

2 0.001 21 0.015 (1) 1 0 0 0 1 3.021 6.283

3 0.001 (2) 1 104.883 (6) 2,740,736 0 0 0 0 4.740 6.996

4 20.335 4,498,587 93.392 (2) 1,961,145 0 0 0 0 5.683 6.548

5 0.001 (2) 1 94.611 (4) 2,146,798 0 0 0 0 5.883 15.805

The performance of the new bounding techniques can
be summarized as follows. Starting with the upper bounds,
application of the new techniques has been required for 206
out of 250 instances and improvements were achieved for 63
of them (mostly due to the bounds derived fromBCP).While
the overall average relative improvement is about 1.153%,
maximum relative improvements of up to almost 19% were
obtained (cf. constellation (10, 5), Class 5). The new upper
bounding techniques performed remarkably well at constel-
lation (10, 5) where upper bounds could be tightened for 40
(of 49) instances. With regard to the new lower bound, appli-
cation of the MS-heuristic has been required for 171 out of
250 instances (note that for the remaining 79 instances the
LPT-solution had already been identified as an optimal solu-
tion). For 27 of the 171 instances, MS generated the best
lower bound or, in other words, the MSLS-heuristic was not
able to improve the MS-solution. All in all, our proposed
construction heuristic MS performed quite well yielding a

deviation from the MSLS-value of less than 3.5% on aver-
age.

5.2 Performance on Haouari and Jemmali’s instances

In the second experiment, we have run our algorithm on
a class of problems where the processing times are drawn
from a discrete uniform distribution on [1, n] as proposed
by Haouari and Jemmali (2008). Again, we restricted our
study to those (n,m)-constellations where not all of the 10
generated instances in Haouari and Jemmali (2008) had been
solved at the root node by their algorithm. This time, these
are the three constellations (10, 5), (25, 10), and (25, 15).
For each of them we randomly generated 10 instances. Table
5 provides a comparison of our results with the ones reported
in Haouari and Jemmali (2008).

Obviously, our findings of the first experiment also apply
to the results obtained for the second experiment (see Table5)

123

158 J Sched (2017) 20:147–164

Table 5 Results on instances
generated according to Haouari
and Jemmali (2008)

n m HJ WWL

Time NN Time NN UBimpr LBMS

avg max # avg max

10 5 <0.001 101 0.013 1 0 (0) – – 0 (0) – –

25 10 21.165 3,954,509 0.017 169 0 (6) 0 0 1 (6) 4.163 6.250

25 15 73.786 12,301,985 0.014 15 1 (4) 1.191 4.762 1 (3) 9.450 13.636

which reveal a clear dominance of our algorithm for the con-
stellations (25, 10) and (25, 15). Compared to algorithm HJ,
our approach reduced the average number of generated nodes
and the computation time to fractions of up to 1/820,000 and
1/5270, respectively.

5.3 Performance on benchmark instances

In a third experiment, we investigated WWL’s performance
on 780 benchmark instances originally proposed by França
et al. (1994) as well as Frangioni et al. (2004) for prob-
lem P||Cmax. While the former set consists of 390 uniform
instances, the latter contains 390 non-uniform instances.
For a detailed description, we refer to the literature. All

instances can be downloaded from http://www.or.deis.unibo.
it/research.html. To the best of our knowledge, we are the
first to use this established benchmark set in the context of
P||Cmin.

Table 6 reports on the results obtained by our algorithm.
In addition to the mean CPU time and the mean num-
ber of nodes, this time we also document the average as
well as maximum relative deviation in % (labeled as “Gap”
and “maxGap,” respectively) between the best upper bound
value and the best lower bound value computed at the root
node. Averages are taken over all 10 instances per triple
(n,m, I nterval).

The results indicate that WWL’s performance on the uni-
form instances is better than that on the set of non-uniform

Table 6 Results on benchmark instances

n m Interval Uniform Non-uniform

Time NN Gap maxGap Time NN Gap maxGap

10 5 [1, 102] 0.011 5 0.820 5.747 0.015 1 0 0

[1, 103] 0.009 5 0.681 6.570 0.010 1 0 0

[1, 104] 0.034 7 2.643 9.320 0.010 1 0 0

50 5 [1, 102] 0.009 1 0 0 – (10) – 3.078 3.807

[1, 103] 0.017 1 0 0 – (10) – 3.561 4.224

[1, 104] 0.125 1 0 0 – (10) – 3.605 4.274

10 [1, 102] 0.012 1 0 0 – (10) – 13.826 17.085

[1, 103] 0.016 (5) 1 0.021 0.044 – (10) – 14.397 17.485

[1, 104] – (10) – 0.016 0.025 – (10) – 14.471 17.561

25 [1, 102] 0.192 3,881 3.280 10.000 0.009 1 0 0

[1, 103] 3.124 (3) 29,326 5.292 16.404 0.021 1 0 0

[1, 104] 25.984 (5) 17,577 4.850 10.069 0.103 1 0 0

100 5 [1, 102] 0.009 1 0 0 0.017 1 0 0

[1, 103] 0.033 1 0 0 0.117 (1) 1 0.001 0.005

[1, 104] 0.182 1 0 0 2.236 1 0 0

10 [1, 102] 0.012 1 0 0 – (10) – 3.460 4.566

[1, 103] 0.037 1 0 0 – (10) – 3.813 4.813

[1, 104] 0.335 1 0 0 – (10) – 3.859 4.856

25 [1, 102] 0.015 1 0 0 0.035 (6) 1 12.560 22.923

[1, 103] – (10) – 0.075 0.112 – (10) – 21.047 23.617

[1, 104] – (10) – 0.051 0.087 – (10) – 21.127 23.741

123

http://www.or.deis.unibo.it/research.html
http://www.or.deis.unibo.it/research.html

J Sched (2017) 20:147–164 159

Table 6 continued

n m Interval Uniform Non-uniform

Time NN Gap maxGap Time NN Gap maxGap

500 5 [1, 102] 0.006 1 0 0 0.085 1 0 0

[1, 103] 0.334 1 0 0 0.567 1 0 0

[1, 104] 2.679 1 0 0 5.293 1 0 0

10 [1, 102] 0.019 1 0 0 0.127 1 0 0

[1, 103] 0.395 1 0 0 0.787 1 0 0

[1, 104] 2.418 1 0 0 4.989 1 0 0

25 [1, 102] 0.058 1 0 0 0.114 1 0 0

[1, 103] 0.443 1 0 0 1.076 1 0 0

[1, 104] 3.027 1 0 0 7.302 1 0 0

1000 5 [1, 102] 0.008 1 0 0 0.304 1 0 0

[1, 103] 0.434 1 0 0 1.825 1 0 0

[1, 104] 9.559 1 0 0 19.402 1 0 0

10 [1, 102] 0.011 1 0 0 0.220 1 0 0

[1, 103] 1.044 1 0 0 1.798 1 0 0

[1, 104] 8.543 1 0 0 17.481 1 0 0

25 [1, 102] 0.063 1 0 0 0.373 1 0 0

[1, 103] 1.630 1 0 0 3.568 1 0 0

[1, 104] 8.857 1 0 0 24.293 1 0 0

instances. While 347 out of the 390 uniform instances have
been solved optimally, only 273 out of the 390 non-uniform
instances have been solved optimally leading to a total num-
ber of 620 solved benchmark instances within the time
limit of 600s per instance. The unsolved uniform instances
belong to the three (n,m)-constellations (50, 10), (50, 25),
and (100, 25) and the intervals [1, 103] and [1, 104]. In con-
trast, all but one of the unsolved instances of the non-uniform
set belong to the four (n,m)-constellations (50, 5), (50, 10),
(100, 10), and (100, 25) and all three intervals. Taking a
look at the entries in the columns Gap and maxGap of the
unsolved instances, we record considerably smaller values
for the uniform than for the non-uniform instances. For the
latter, we observed average andmaximum deviations of up to
21.1 and23.7%, respectively. This indicates that non-uniform
instances seem to be more difficult to solve than uniform
instances.

To allow for future comparisons, we document detailed
results on the best found objective function value as well as
the best foundupper boundvalue for eachof the 780 instances
in the “Appendix”.

6 Conclusions

The paper on hand addressed the machine covering prob-
lem P||Cmin and its exact solution. We identified structural

properties of optimal schedules from which we deduced the
so-called path-related dominance criteria. Representing the
key characteristic of the proposed branch-and-bound algo-
rithm, these novel criteria proved to be effective in limiting
the search space—particularly in the case of rather small
ratios of n to m. For those constellations, our approach
is superior to the one presented in Haouari and Jemmali
(2008).

For future research on P||Cmin, we suggest three inter-
esting directions with regard to exact as well as heuristic
procedures. Firstly, a quite promising advancement of our
branch-and-bound algorithm might consist in the imple-
mentation of a sophisticated branching scheme that (even)
more directly exploits the structural properties of potentially
(unique) optimal solutions and thus enforces the generation
of respective (partial) solutions. Secondly, we encourage the
development of an innovative dynamic programming (DP)
formulation of P||Cmin that makes use of the structural prop-
erties identified in this paper to trim the state space of the
DP aiming at a possible improvement on the time complex-
ity or the space requirements of the sole PTAS existing so
far. Thirdly, due to the exponential nature of exactly solv-
ing the machine covering problem, efficient (meta-) heuristic
approaches such as Tabu search or population-based algo-
rithms are still needed to tackle large-sized instances. Here,
it is conceivable to punish the non-fulfillment of the path-

123

160 J Sched (2017) 20:147–164

conditions by adequately reducing the fitness value of such
solutions.

Acknowledgements Wewould like to thank the two anonymous refer-
ees for their valuable comments that helped to improve the presentation
of the paper and for suggesting shorter proofs of Theorem 4.1 and
Lemma 3.5.

Appendix: Detailed results on benchmark instances

Tables7 and 8 contain detailed results for each of the 390
uniform and 390 non-uniform benchmark instances, respec-
tively. Each row corresponds to a triple (n,m, Interval) and
each column to one of the 10 instances per triple. For each

Table 7 Detailed results on all 390 uniform instances

n m Interval No.

0 1 2 3 4 5 6 7 8 9

10 5
[
1, 102

]
Best 87 75 101 100 68 95 93 89 100 85

UB 92 76 101 100 68 95 93 90 100 85[
1, 103

]
Best 1149 898 844 1046 631 805 545 1066 1112 939

UB 1149 957 846 1046 631 805 545 1066 1112 939[
1, 104

]
Best 11,493 10,634 8813 6763 9454 8970 9943 10,016 9968 10,223

UB 11,493 10,634 8813 6823 9454 9806 9943 10,016 10,878 10,948

50 5
[
1, 102

]
Best 514 559 451 571 539 496 540 535 471 497

UB 514 559 451 571 539 496 540 535 471 497[
1, 103

]
Best 4950 5810 4624 4854 4409 5072 5148 5007 5485 5334

UB 4950 5810 4624 4854 4409 5072 5148 5007 5485 5334[
1, 104

]
Best 55,927 53,504 50,056 45,688 55,528 51,621 45,106 41,226 51,986 42,169

UB 55,927 53,504 50,056 45,688 55,528 51,621 45,106 41,226 51,986 42,169

10
[
1, 102

]
Best 241 226 209 271 251 276 256 229 234 234

UB 241 226 209 271 251 276 256 229 234 234[
1, 103

]
Best 2546 2308 2497 2176 2612 2403 2417 2795 2283 2456

UB 2547 2309 2498 2176 2612 2404 2417 2795 2284 2456[
1, 104

]
Best 26,660 26,227 23,667 27,758 27,202 25,289 23,383 25,476 32,262 26,701

UB 26,661 26,233 23,673 27,764 27,204 25,295 23,387 25,478 32,265 26,706

25
[
1, 102

]
Best 97 96 95 99 99 100 94 86 93 100

UB 102 97 99 99 99 110 94 86 94 107[
1, 103

]
Best 863 997 953 989 951 907 921 940 942 908

UB 899 1073 977 999 1107 929 938 1059 950 936[
1, 104

]
Best 10,355 9013 7807 7390 9311 9802 8267 9856 8819 9079

UB 11,004 9306 7884 7483 9572 10,789 8537 10,674 9361 9298

100 5
[
1, 102

]
Best 921 951 972 1050 1008 1082 1044 976 1063 1004

UB 921 951 972 1050 1008 1082 1044 976 1063 1004[
1, 103

]
Best 10,472 10,858 10,028 10,236 9070 9234 10,537 10,133 10,270 9001

UB 10,472 10,858 10,028 10,236 9070 9234 10,537 10,133 10,270 9001[
1, 104

]
Best 105,081 91,044 91,927 96,921 91,927 96,925 98,933 106,194 110,073 105,081

UB 105,081 91,044 91,927 96,921 91,927 96,925 98,933 106,194 110,073 105,081

10
[
1, 102

]
Best 545 441 507 492 517 529 515 514 493 460

UB 545 441 507 492 517 529 515 514 493 460[
1, 103

]
Best 5335 5416 5011 5005 5183 4722 4984 5034 5503 5016

UB 5335 5416 5011 5005 5183 4722 4984 5034 5503 5016[
1, 104

]
Best 46,655 46,158 52,285 51,413 52,540 56,580 45,522 52,421 48,460 53,151

UB 46,655 46,158 52,285 51,413 52,540 56,580 45,522 52,421 48,460 53,151

25
[
1, 102

]
Best 194 194 198 199 190 218 193 213 204 202

UB 194 194 198 199 190 218 193 213 204 202

123

J Sched (2017) 20:147–164 161

Table 7 continued

n m Interval No.

0 1 2 3 4 5 6 7 8 9

[
1, 103

]
Best 2089 1934 1940 1950 1790 2125 2192 1877 1894 2195

UB 2091 1935 1941 1952 1792 2127 2193 1878 1895 2197[
1, 104

]
Best 21,161 17,181 21,561 20,830 20,557 20,682 20,014 19,260 20,591 19,111

UB 21,168 17,196 21,571 20,841 20,567 20,694 20,020 19,271 20,597 19,123

500 5
[
1, 102

]
Best 5106 4970 5085 4887 4925 5220 5152 4840 4917 5004

UB 5106 4970 5085 4887 4925 5220 5152 4840 4917 5004[
1, 103

]
Best 49,375 49,881 49,375 52,902 51,401 52,852 49,558 50,613 47,180 48,867

UB 49,375 49,881 49,375 52,902 51,401 52,852 49,558 50,613 47,180 48,867[
1, 104

]
Best 504,251 500,430 513,001 485,975 501,999 492,923 508,864 488,853 494,248 505,127

UB 504,251 500,430 513,001 485,975 501,999 492,923 508,864 488,853 494,248 505,127

10
[
1, 102

]
Best 2519 2450 2537 2392 2504 2541 2533 2512 2568 2543

UB 2519 2450 2537 2392 2504 2541 2533 2512 2568 2543[
1, 103

]
Best 24,921 24,640 24,255 24,218 25,308 25,086 24,206 25,992 25,876 24,875

UB 24,921 24,640 24,255 24,218 25,308 25,086 24,206 25,992 25,876 24,875[
1, 104

]
Best 265,229 263,643 256,023 244,038 249,160 261,390 239,883 257,333 241,659 254,780

UB 265,229 263,643 256,023 244,038 249,160 261,390 239,883 257,333 241,659 254,780

25
[
1, 102

]
Best 1015 950 997 994 1012 974 990 999 952 987

UB 1015 950 997 994 1012 974 990 999 952 987[
1, 103

]
Best 9628 9924 10,107 9988 10,224 10,474 10,227 9729 10,128 9683

UB 9628 9924 10,107 9988 10,224 10,474 10,227 9729 10,128 9683[
1, 104

]
Best 99,712 101,630 96,835 96,084 96,221 102,001 102,493 100,419 99,712 97,049

UB 99,712 101,630 96,835 96,084 96,221 102,001 102,493 100,419 99,712 97,049

1000 5
[
1, 102

]
Best 9989 10,262 10,072 10,105 9903 9782 10,048 9860 10,064 9826

UB 9989 10,262 10,072 10,105 9903 9782 10,048 9860 10,064 9826[
1, 103

]
Best 102,391 98,203 98,085 101,873 99,749 100,072 98,725 99,387 101,817 99,329

UB 102,391 98,203 98,085 101,873 99,749 100,072 98,725 99,387 101,817 99,329[
1, 104

]
Best 1,001,418 993,453 1,012,868 1,011,507 988,262 968,878 996,506 1,006,553 999,716 1,012,238

UB 1,001,418 993,453 1,012,868 1,011,507 988,262 968,878 996,506 1,006,553 999,716 1,012,238

10
[
1, 102

]
Best 4836 5020 5109 4925 5118 4884 4954 5152 4854 4885

UB 4836 5020 5109 4925 5118 4884 4954 5152 4854 4885[
1, 103

]
Best 50,317 48,373 48,582 50,546 50,555 49,107 49,300 50,101 50,232 49,954

UB 50,317 48,373 48,582 50,546 50,555 49,107 49,300 50,101 50,232 49,954[
1, 104

]
Best 495,462 482,122 494,773 502,895 483,590 488,311 492,996 511,505 506,910 512,238

UB 495,462 482,122 494,773 502,895 483,590 488,311 492,996 511,505 506,910 512,238

25
[
1, 102

]
Best 2024 1930 2026 2023 2007 1958 2032 1965 2024 2047

UB 2024 1930 2026 2023 2007 1958 2032 1965 2024 2047[
1, 103

]
Best 20,305 20,100 19,821 20,462 19,360 20,021 20,556 20,319 20,122 19,119

UB 20,305 20,100 19,821 20,462 19,360 20,021 20,556 20,319 20,122 19,119[
1, 104

]
Best 202,497 198,820 205,820 202,422 197,545 203,788 195,468 201,132 202,464 200,507

UB 202,497 198,820 205,820 202,422 197,545 203,788 195,468 201,132 202,464 200,507

123

162 J Sched (2017) 20:147–164

Table 8 Detailed results on all 390 non-uniform instances

n m Interval No.

0 1 2 3 4 5 6 7 8 9

10 5
[
1, 102

]
Best 100 115 103 104 110 113 102 119 113 107

UB 100 115 103 104 110 113 102 119 113 107[
1, 103

]
Best 992 1135 1030 1035 1093 1121 1006 1187 1124 1066

UB 992 1135 1030 1035 1093 1121 1006 1187 1124 1066[
1, 104

]
Best 9913 11,335 10,290 10,351 10,921 11,204 10,055 11,862 11,230 10,653

UB 9913 11,335 10,290 10,351 10,921 11,204 10,055 11,862 11,230 10,653

50 5
[
1, 102

]
Best 902 912 905 893 898 901 906 901 909 914

UB 935 931 931 927 925 932 935 931 941 931[
1, 103

]
Best 8984 9068 9004 8901 8942 8987 9032 8956 9051 9100

UB 9348 9307 9316 9277 9265 9328 9348 9312 9406 9321[
1, 104

]
Best 89,811 90,647 90,001 88,978 89,389 89,836 90,290 89,511 90,473 90,953

UB 93,483 93,084 93,162 92,781 92,647 93,283 93,477 93,118 94,053 93,214

10
[
1, 102

]
Best 398 413 410 412 419 405 414 410 410 402

UB 466 465 468 468 465 463 469 465 464 465[
1, 103

]
Best 3969 4103 4084 4102 4181 4034 4120 4084 4082 4005

UB 4663 4660 4677 4678 4654 4638 4691 4654 4649 4660[
1, 104

]
Best 39,661 41,002 40,811 40,991 41,800 40,314 41,176 40,820 40,796 40,026

UB 46,626 46,602 46,776 46,777 46,548 46,382 46,907 46,547 46,495 46,604

25
[
1, 102

]
Best 104 117 105 108 101 103 109 113 118 119

UB 104 117 105 108 101 103 109 113 118 119[
1, 103

]
Best 1039 1162 1044 1076 1006 1028 1085 1125 1176 1183

UB 1039 1162 1044 1076 1006 1028 1085 1125 1176 1183[
1, 104

]
Best 10,378 11,614 10,432 10,751 10,054 10,266 10,843 11,244 11,750 11,825

UB 10,378 11,614 10,432 10,751 10,054 10,266 10,843 11,244 11,750 11,825

100 5
[
1, 102

]
Best 1873 1861 1863 1864 1873 1870 1862 1869 1867 1866

UB 1873 1861 1863 1864 1873 1870 1862 1869 1867 1866[
1, 103

]
Best 18,718 18,616 18,641 18,654 18,727 18,700 18,625 18,690 18,667 18,656

UB 18,718 18,616 18,641 18,654 18,728 18,700 18,625 18,690 18,667 18,656[
1, 104

]
Best 187,165 186,177 186,406 186,542 187,273 187,000 186,260 186,915 186,668 186,557

UB 187,165 186,177 186,406 186,542 187,273 187,000 186,260 186,915 186,668 186,557

10
[
1, 102

]
Best 911 898 908 904 910 901 898 905 896 895

UB 934 933 936 930 934 933 939 936 930 933[
1, 103

]
Best 9081 8959 9039 9010 9078 8963 8955 9016 8937 8925

UB 9339 9338 9356 9304 9344 9329 9386 9360 9301 9333[
1, 104

]
Best 90,767 89,548 90,354 90,068 90,754 89,582 89,513 90,114 89,331 89,213

UB 93,390 93,386 93,568 93,040 93,441 93,293 93,860 93,596 93,016 93,328

25
[
1, 102

]
Best 304 312 303 312 305 318 314 306 313 301

UB 373 312 370 374 371 370 314 306 313 370[
1, 103

]
Best 3030 3111 3022 3110 3042 3169 3136 3047 3127 3002

UB 3730 3734 3706 3739 3721 3703 3741 3734 3748 3711[
1, 104

]
Best 30,288 31,091 30,209 31,086 30,410 31,671 31,345 30,454 31,260 29,995

UB 37,310 37,338 37,071 37,398 37,216 37,043 37,416 37,343 37,481 37,116

500 5
[
1, 102

]
Best 9406 9419 9398 9400 9380 9407 9380 9395 9371 9391

UB 9406 9419 9398 9400 9380 9407 9380 9395 9371 9391

123

J Sched (2017) 20:147–164 163

Table 8 continued

No.

n m Interval 0 1 2 3 4 5 6 7 8 9

[
1, 103

]
Best 94,044 94,178 93,985 94,003 93,820 94,064 93,822 93,937 93,761 93,884

UB 94,044 94,178 93,985 94,003 93,820 94,064 93,822 93,937 93,761 93,884[
1, 104

]
Best 940,444 941,762 939,851 940,029 938,230 940,641 938,208 939,385 937,623 938,833

UB 940,444 941,762 939,851 940,029 938,230 940,641 938,208 939,385 937,623 938,833

10
[
1, 102

]
Best 4702 4698 4685 4700 4695 4705 4703 4706 4694 4705

UB 4702 4698 4685 4700 4695 4705 4703 4706 4694 4705[
1, 103

]
Best 47,012 46,979 46,863 46,998 46,953 47,061 47,022 47,055 46,943 47,060

UB 47,012 46,979 46,863 46,998 46,953 47,061 47,022 47,055 46,943 47,060[
1, 104

]
Best 470,117 469,780 468,636 469,993 469,537 470,608 470,225 470,546 469,430 470,592

UB 470,117 469,780 468,636 469,993 469,537 470,608 470,225 470,546 469,430 470,592

25
[
1, 102

]
Best 1877 1877 1875 1878 1881 1881 1880 1883 1883 1878

UB 1877 1877 1875 1878 1881 1881 1880 1883 1883 1878[
1, 103

]
Best 18,775 18,769 18,755 18,782 18,810 18,805 18,804 18,824 18,830 18,783

UB 18,775 18,769 18,755 18,782 18,810 18,805 18,804 18,824 18,830 18,783[
1, 104

]
Best 187,751 187,692 187,560 187,824 188,102 188,060 188,047 188,245 188,291 187,832

UB 187,751 187,692 187,560 187,824 188,102 188,060 188,047 188,245 188,291 187,832

1000 5
[
1, 102

]
Best 18,801 18,804 18,801 18,821 18,812 18,824 18,807 18,818 18,820 18,805

UB 18,801 18,804 18,801 18,821 18,812 18,824 18,807 18,818 18,820 18,805[
1, 103

]
Best 188,043 188,038 188,013 188,211 188,106 188,206 188,081 188,167 188,169 188,061

UB 188,043 188,038 188,013 188,211 188,106 188,206 188,081 188,167 188,169 188,061[
1, 104

]
Best 1,880,395 1,880,345 1,880,141 1,882,117 1,881,050 1,882,024 1,880,834 1,881,686 1,881,697 1,880,627

UB 1,880,395 1,880,345 1,880,141 1,882,117 1,881,050 1,882,024 1,880,834 1,881,686 1,881,697 1,880,627

10
[
1, 102

]
Best 9409 9421 9402 9396 9408 9404 9388 9408 9398 9406

UB 9409 9421 9402 9396 9408 9404 9388 9408 9398 9406[
1, 103

]
Best 94,087 94,190 94,012 93,957 94,091 94,041 93,926 94,081 93,993 94,061

UB 94,087 94,190 94,012 93,957 94,091 94,041 93,926 94,081 93,993 94,061[
1, 104

]
Best 940,881 941,899 940,139 939,562 940,924 940,407 939,260 940,806 939,921 940,600

UB 940,881 941,899 940,139 939,562 940,924 940,407 939,260 940,806 939,921 940,600

25
[
1, 102

]
Best 3766 3758 3762 3766 3759 3766 3764 3759 3760 3762

UB 3766 3758 3762 3766 3759 3766 3764 3759 3760 3762[
1, 103

]
Best 37,655 37,585 37,631 37,660 37,595 37,658 37,645 37,598 37,603 37,622

UB 37,655 37,585 37,631 37,660 37,595 37,658 37,645 37,598 37,603 37,622[
1, 104

]
Best 376,546 375,852 376,315 376,605 375,956 376,584 376,449 375,988 376,037 376,224

UB 376,546 375,852 376,315 376,605 375,956 376,584 376,449 375,988 376,037 376,224

instance, we record the best found objective function value
(labeled as “Best”) as well as the best found upper bound
value (labeled as “UB”). Bold entries indicate optimal val-
ues.

References

Ahuja, R. K., & Orlin, J. B. (2001). Inverse optimization. Operations
Research, 49, 771–783.

Alvim, A. C. F., Ribeiro, C. C., Glover, F., & Aloise, D. J. (2004). A
hybrid improvement heuristic for the one-dimensional bin packing
problem. Journal of Heuristics, 10, 205–229.

Azar, Y., & Epstein, L. (1998). On-line machine covering. Journal of
Scheduling, 1, 67–77.

Brucker, P., & Shakhlevich, N. V. (2009). Inverse scheduling with max-
imum lateness objective. Journal of Scheduling, 12, 475–488.

Brucker, P., & Shakhlevich, N. V. (2011). Inverse scheduling: Two-
machine flow-shop problem. Journal of Scheduling, 14, 239–256.

Cai, S.-Y. (2007). Semi-online machine covering. Asia-Pacific Journal
of Operational Research, 24, 373–382.

123

164 J Sched (2017) 20:147–164

Csirik, J., Kellerer, H., & Woeginger, G. (1992). The exact LPT-
bound for maximizing the minimum completion time. Operations
Research Letters, 11, 281–287.

Dell’Amico, M., & Martello, S. (1995). Optimal scheduling of tasks
on identical parallel processors. ORSA Journal on Computing, 7,
191–200.

Deuermeyer, B. L., Friesen, D. K., & Langston, M. A. (1982).
Scheduling to maximize the minimum processor finish time in a
multiprocessor system. SIAM Journal on Algebraic and Discrete
Methods, 3, 190–196.

Ebenlendr, T., Noga, J., Sgall, J., & Woeginger, G. (2006). A note
on semi-online machine covering. In T. Erlebach & G. Persiano
(Eds.), Approximation and online algorithms. Lecture Notes in
Computer Science (Vol. 3879, pp. 110–118). Berlin: Springer.

Epstein, L., Levin, A., & van Stee, R. (2011). Max-min online allo-
cations with a reordering buffer. SIAM Journal on Discrete
Mathematics, 25, 1230–1250.

França, P. M., Gendreau, M., Laporte, G., & Müller, F. M. (1994). A
composite heuristic for the identical parallel machine scheduling
problem with minimum makespan objective. Computers & Oper-
ations Research, 21, 205–210.

Frangioni, A., Necciari, E., & Scutellà,M. G. (2004). Amulti-exchange
neighborhood for minimum makespan parallel machine schedul-
ing problems. Journal of Combinatorial Optimization, 8, 195–220.

Friesen, D. K., & Deuermeyer, B. L. (1981). Analysis of greedy solu-
tions for a replacement part sequencing problem. Mathematics of
Operations Research, 6, 74–87.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17, 416–429.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G.
(1979). Optimization and approximation in deterministic sequenc-
ing and scheduling: A survey. Annals of Discrete Mathematics, 5,
287–326.

Haouari, M., & Jemmali, M. (2008). Maximizing the minimum com-
pletion time on parallel machines. 4OR: A Quarterly Journal of
Operations Research, 6, 375–392.

He, Y., & Tan, Z. Y. (2002). Ordinal on-line scheduling for maximizing
the minimummachine completion time. Journal of Combinatorial
Optimization, 6, 199–206.

Heuberger, C. (2004). Inverse combinatorial optimization: A survey on
problems, methods, and results. Journal of Combinatorial Opti-
mization, 8, 329–361.

Koulamas, C. (2005). Inverse scheduling with controllable job parame-
ters. International Journal of Services and Operations Manage-
ment, 1, 35–43.

Labbé, M., Laporte, G., & Martello, S. (1995). An exact algorithm for
the dual bin packing problem. Operations Research Letters, 17,
9–18.

Luo, R.-Z., & Sun, S.-J. (2005). Semi on-line scheduling problem for
maximizing theminimummachine completion time onm identical
machines. Journal of Shanghai University, 9, 99–102.

Peeters,M.,&Degraeve, Z. (2006).Branch-and-price algorithms for the
dual bin packing and maximum cardinality bin packing problem.
European Journal of Operational Research, 170, 416–439.

Tan, Z., & Wu, Y. (2007). Optimal semi-online algorithms for machine
covering. Theoretical Computer Science, 372, 69–80.

Walter, R. (2013). Comparing the minimum completion times of two
longest-first scheduling-heuristics. Central European Journal of
Operations Research, 21, 125–139.

Walter, R.,&Lawrinenko,A. (2014). Effective solution space limitation
for the identical parallel machine scheduling problem. Working
Paper. http://s.fhg.de/WrkngPprRW.

Woeginger, G. J. (1997). A polynomial-time approximation scheme for
maximizing the minimum machine completion time. Operations
Research Letters, 20, 149–154.

123

http://s.fhg.de/WrkngPprRW

	Improved approaches to the exact solution of the machine covering problem
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Solution representation and illustration
	2.2 Potential optimality

	3 Dominance criteria based on potential optimality
	3.1 The basic criterion
	3.2 Further improvements

	4 A branch-and-bound algorithm
	4.1 Upper bounds
	4.1.1 A trivial bound and its worst-case ratio
	4.1.2 Improvements derived from P||Cmax
	4.1.3 Lifting procedure and further enhancement
	4.1.4 Improvements derived from bin covering
	4.1.5 Bounds derived from the solution structure

	4.2 Lower bounds
	4.3 Application of the bounds
	4.4 The branching scheme
	4.5 Dominance criteria

	5 Computational study
	5.1 Performance on Dell'Amico and Martello's instances
	5.2 Performance on Haouari and Jemmali's instances
	5.3 Performance on benchmark instances

	6 Conclusions
	Acknowledgements
	Appendix: Detailed results on benchmark instances
	References

