
J Sched (2016) 19:759–767
DOI 10.1007/s10951-015-0462-9

On scheduling with non-increasing time slot cost to minimize total
weighted completion time

Yingchao Zhao1 · Xiangtong Qi2 · Minming Li3

Published online: 26 November 2015
© Springer Science+Business Media New York 2015

Abstract This paper addresses a recent open scheduling
problem which aims to minimize the summation of total
weighted completion time and the total machine time slot
cost. Focusing on the case of non-increasing time slot cost
with non-preemptive jobs, we show that the problem can be
solved in polynomial-time when the time slot cost decreases
with certain patterns, including linearly decreasing, decreas-
ing concave, and decreasing convex cases. Different method-
ologies are used for three cases. For the linearly decreasing
case, we can classify all the jobs into three categories and
schedule the job sets one by one. For the decreasing concave
case, we calculate each job’s worst starting time and try to
make them far away from their worst starting times. For the
decreasing concave case, we calculate each job’s best start-
ing time and let them start close to their best starting times.
Finally, we show that the problem is NP-hard in the strong
sense when the time slot cost decreases in an arbitrary way.

Keywords Operations research · Scheduling · Time slot
cost · Total weighted completion time

B Minming Li
minming.li@cityu.edu.hk

Yingchao Zhao
zhaoyingchao@gmail.com

Xiangtong Qi
ieemqi@ust.hk

1 Caritas Institute of Higher Education, Tseung Kwan O,
Hong Kong

2 Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

3 City University of Hong Kong, Kowloon, Hong Kong

1 Introduction

Job scheduling is an optimization problem mainly studied in
operations research and computer science in which the jobs
are assigned to resources at particular times Pinedo (2012).
The objective of the job scheduling problem may take dif-
ferent forms, such as minimizing the makespan, minimizing
the total completion time, and minimizing the total waiting
time. If we want to use minimum cost to get the jobs done,
then the job length is one of the important factors to be con-
sidered. Besides the length of the processing time, the cost
may also be related to the time period during which the job
is processed. For example, the electricity price is varying for
different time slots because the electricity company needs to
give extra effort to satisfy the requirements from the public
in rush hours. If we insist on finishing the job earlier in those
rush hours, then the electricity price may be higher than post-
poning the jobs to non-rush hours. Another example comes
from the delivering company where the delivery costs are
higher during the Thanksgiving day or Christmas because
there are too many orders. If we want the package delivered
earlier during those holidays, then we probably have to pay
extra money so that the package could have a higher priority
to be delivered. Notice that if the time slot costs are increas-
ing, then the earlier the jobs are done, the less cost we need
to pay. Hence we do not need to care about the time slot costs
if they are increasing. Therefore, in this paper, we consider
the case when the time slot costs are non-increasing.

Recently Wan and Qi (2010) proposed a new schedul-
ing model with variable time slot costs. In such problems,
a schedule is measured not only by the standard scheduling
objective but also the incurred machine costs. The standard
scheduling objectives that are considered in Wan and Qi
(2010) include minimizing the total completion time, mini-
mizing themaximum lateness/tardiness,minimizing the total

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0462-9&domain=pdf

760 J Sched (2016) 19:759–767

weighted number of tardy jobs, and minimizing the total tar-
diness. Specifically, the planning horizon is partitioned into
multiple time slots with a unit length, where each time slot
may have a different cost to use. Themachine cost of a sched-
ule depends on which time slots of the machine are occupied
by the jobs. Such problems have applications when the rev-
enue of a schedule needs to be considered Aydinliyim and
Vairaktarakis (2010).

One common way to simultaneously consider both the
time slot cost and the traditional scheduling criteria is to
minimize the weighted summation of the total time slot cost
and one traditional scheduling criterion. In Zhong and Liu
(2012), Zhong and Liu consider to minimize the makespan
plus the total time slot costs. They prove that the general
problem is strongly NP-hard and analyze a special case
with non-increasing time slot costs. In Wan and Qi (2010),
they discussed the case that the time slot costs were non-
decreasing with respect to time. In such a case, no one would
like to postpone the jobs, hence theirmodels could be reduced
to the corresponding classical scheduling models. For the
case that the time slot costs varied arbitrarily with respect to
time, all their models became NP-hard in the strong sense.
When the time slot costs were non-increasing with respect
to time, they showed that the optimal schedules were differ-
ent from the optimal schedules for the counterparts without
the time slot costs. They found that some structured proper-
ties of classical scheduling models, like shortest processing
time first and earliest due data first, still held in the modified
forms. While most such basic problems have been shown
to be either NP-hard or polynomially solvable, there is one
important open case: the problem with non-increasing time
slot costs and the traditional scheduling criterion being the
total weighted completion time.

The same model was rediscovered in 2012 by Kulkarni
andMunagala (2012) in the computer science settingwith the
data centers as the motivation. They study online algorithms
tominimize the total weighted completion time plus time slot
costs by providing a (1+ ε)-speed O(poly(1

ε
))-competitive

algorithm. Most recently Chen et al. (2015) investigated the
preemptive scheduling of jobs to minimize certain schedul-
ing objective plus the time slot costs. When the scheduling
objective ismakespan, for unrelatedmachines, they designed
a polynomial-time algorithm. When the scheduling objec-
tive is total weighted completion time, they can calculate
the optimal schedule in polynomial time if the job execution
sequence is given. They also gave a PTAS for the general
weighted jobs.

Before presenting our results, we formally define the prob-
lem as follows.

Suppose that there are n non-preemptive jobs to be
processed on a single machine where each job j has an
integer processing time p j and a weight w j . Denote p̄ j =
p1+· · ·+ p j for j = 1, . . . , n, and P = p̄n . Assume that the

planning horizon is divided into K time slotswith unit length,
where all the jobs have to be completed by time K . Note that,
under the definition of the time slot, the kth time slot starts
at time k − 1 and ends at time k. To ensure feasibility, we
assume that P ≤ K .

Each time slot k has a cost πk . We further define π̄a,b =
πa+1 + · · · + πb for 0 ≤ a < b ≤ K . In this paper, we
concentrate on the case of non-increasing cost, i.e., π1 ≥
π2 ≥ · · · ≥ πK . Under this case, there is an incentive to
delay processing the jobs in order to reduce the time slot
cost.

In a feasible schedule without preemption, if a job is
started at time S j , then it is completed at time C j = S j + p j ,
and incurs total time slot cost π̄S j ,C j = πS j+1 + · · · + πC j .
The objective of the scheduling problem is to minimize the
total time slot cost plus the total weighted completion time,
i.e.,

min
n∑

j=1

(
π̄S j ,C j + w jC j

)
.

From a practitioner’s point of view, it is more reasonable
to define the objective function as a weighted sum of the
two terms, i.e., min

∑n
j=1

(
π̄S j ,C j + αw jC j

)
with α ≥ 0

being a controllable coefficient. The methods we used in this
paper can also be extended and applied to this general case
by changing all w j to αw j .

We address the open problem by the following results.

– First, we consider the case of time slot costs decreasing
linearly at a constant rate, where we show the optimality
of weighted shortest processing time first (WSPT) order
(possibly with idle times in the actual schedule) and find
that there is an optimal schedule having only one pos-
sible interval of idle time. As a result, the problem can
be solved by sorting jobs according to their weighted
processing times, and then identifying the optimal posi-
tion of the single idle time period.

– Second, we consider the case with decreasing concave
time slot costs, where we find again that there is only
one possible interval of idle time in an optimal schedule.
The situation is a bit complicated because of the lack
of the global WSPT property. A dynamic programming
algorithm is developed to cope with this case.

– Third, we consider the case with decreasing convex
time slot costs, where there are possibly many idle
time intervals in an optimal schedule. We propose a
polynomial-time repetitive merge algorithm to solve the
problem.

– Finally, we prove that the problem is NP-hard in the
strong sense when the time slot costs follow an arbitrary
non-increasing function.

123

J Sched (2016) 19:759–767 761

The remainder of the paper is organized as follows. We
discuss the case of linearly decreasing time slot cost inSect. 2.
In Sects. 3 and 4, decreasing concave and decreasing convex
time slot costs are considered. In Sect. 5, we prove the com-
plexity of the general decreasing case. Finally we conclude
the paper in Sect. 6.

2 Linearly decreasing time slot cost

We start with the case where the time slot cost decreases as a
linear function of the time index k. Specifically, we assume
πk − πk+1 = ε, ε > 0, for k = 1, . . . , K − 1. Clearly, we
have πi − πk = (k − i)ε for any two time slots i and k.

We first show the optimality of WSPT order and then give
the algorithm on how to schedule all the jobs in the linearly
decreasing time slot cost case.

Lemma 1 For a job j , if
w j
p j

> ε, then it is optimal to process

this job as early as possible.

Proof Suppose that the job starts at time k, where the total
cost c incurred by this job is

c = w j (k + p j) + π̄k,k+p j .

If the job starts x time slots earlier, then the new cost c′ is

c′ = w j (k + p j − x) + π̄k−x,k−x+p j .

Comparing c and c′, we can see that

c − c′ = w j · x − ε · p j · x =
(

w j

p j
− ε

)
p j · x > 0.

Hence the earlier the job is processed, the less cost it will
have. ��

Similarly,wehave the following lemmas,where the proofs
are omitted.

Lemma 2 For a job j , if
w j
p j

< ε, then it is optimal to process

the job as late as possible.

Lemma 3 For a job j , if
w j
p j

= ε, then the job has the same

cost no matter when it is processed.

Basedon the above three lemmas,we canprove the follow-
ing theorem which describes the order of jobs in an optimal
schedule.

Theorem 1 If the time slot cost decreases linearly with
respect to time k, then for each optimal schedule to the prob-
lem, the jobs are scheduled in WSPT order.

Proof Suppose that in an optimal schedule there exist two
successive jobs where job i precedes job j with wi

pi
<

w j
p j
.

Comparing wi
pi
,

w j
p j

with ε, there are five cases to be discussed.

Case 1 wi
pi

<
w j
p j

= ε By Lemmas 2 and 3, we can switch
job i and job j to reduce the total cost.

Case 2 wi
pi

< ε <
w j
p j

By Lemmas 2 and 1, switching job
i and job j can reduce the total cost.

Case 3 wi
pi

= ε <
w j
p j

By Lemmas 3 and 1, switching job
i and job j can reduce the total cost.

Case 4 wi
pi

<
w j
p j

< ε In this case, job i and job j both
prefer being processed as late as possible byLemma2.There-
fore, there will be no idle time slots between these two jobs.
Suppose that job i starts at x , then the cost for processing i
and j is

c = wi (x + pi) + w j (x + pi + p j) + π̄x,x+pi+p j

If we switch job i and job j and let job j start at x , then the
new cost

c′ = w j (x + p j) + wi (x + pi + p j) + π̄x,x+pi+p j

Comparing c with c′, we can see that

c − c′ = w j pi − wi p j = pi p j

(
w j

p j
− wi

pi

)
> 0

which means that switching job i and job j could further
decrease the total cost.

Case 5 ε <
wi
pi

<
w j
p j

This case is very similar to Case 4
where there is no idle time between these two jobs. The cost
calculation is the same of Case 4. Hence we can get the same
conclusion that switching job i and job j is better.

All the five cases show that switching job i and job j can
decrease the total cost and do not affect other jobs, which
contradicts our assumption of optimality. Hence for every
optimal solution, the jobs are processed in WSPT order. ��

Based on the above lemmas and Theorem 1, we see that in
an optimal schedule jobs can be partitioned into three subsets
J1, J2, and J3, where J1 consists of jobs with w j/p j > ε

that are sequenced in WSPT order without any idle time and
started at time zero, J3 consists of jobs with w j/p j < ε that
are sequenced inWSPT order without any idle time and com-
pleted at time K , and J2 consists of jobs withw j/p j = ε that
are scheduled anywhere between J1 and J3. The algorithm
can be summarized as in Algorithm 1.

3 Decreasing concave time slot cost

In this case, the cost differences between successive time
slots become larger with respect to the time index k, i.e.,

123

762 J Sched (2016) 19:759–767

Algorithm 1 Optimal scheduling for linearly decreasing
1. Sort and re-index the jobs such that w1

p1
≥ w2

p2
≥ . . . ≥ wn

pn
.

2. Divide these jobs into three sets: J1 = { j : w j
p j

> ε}, J2 = { j :
w j
p j

= ε}, and J3 = { j : w j
p j

< ε}.
3. Process Jobs 1, 2, . . . , |J1 ∪ J2| continuously from time zero.
4. Process Jobs |J1 ∪ J2| + 1, . . . , n continuously from time K −∑

j∈J3 p j .

πk − πk+1 > πk−1 − πk for 1 < k < K . This also implies
πk − πk+p j > πk−1 − πk+p j−1 for any j . An interesting
property for this case is that there is only one possible interval
of idle times in an optimal schedule, similar to the case of
linearly decreasing cost.

Lemma 4 When πk −πk+1 > πk−1 −πk holds for 1 < k <

K, there is no job processed between two idle time intervals
in an optimal schedule.

Proof We prove it by contradiction. Assume that there is a
set of t jobs Ja1, Ja2, . . . , Jat processed between two idle
time slots in the optimal schedule. If the first job Ja1 starts at
time k and the last job Jat ends at time k + pa , then the cost
for this set of t jobs is

c0a =
t∑

i=1

waiCai + π̄k,k+pa

wherewai is the weight for job Jai andCai is the completion
time of job Jai .

Since these t jobs are between two idle time slots, we can
process them one time slot earlier or later with cost cLa and
cRa , respectively.

cLa =
t∑

i=1

wai (Cai − 1) + π̄k−1,k−1+pa

cRa =
t∑

i=1

wai (Cai + 1) + π̄k+1,k+1+pa .

Because of the optimality assumption, we have c0a ≤ cLa
and c0a ≤ cRa , which implies that

t∑

i=1

wai ≤ π̄k−1,k−1+pa − π̄k,k+pa , (1)

t∑

i=1

wai ≥ π̄k,k+pa − π̄k+1,k+1+pa . (2)

However, it violates the property of decreasing concave
time slot cost. Therefore, inequalities (1) and (2) cannot hold
at the same time, which contradicts our assumption. ��

Since for each job j and each k holds that πk − πk+p j <

πk+1 −πk+p j+1, we can find a proper k′
j such that πk′

j+1 −
πk′

j+p j+1 ≥ w j ≥ πk′
j − πk′

j+p j . Let c
0
j denote the cost

when job j starts at time k′
j . Let cLj and cRj denote the cost

when job j starts at time k′
j − 1 and k′

j + 1, respectively.
We have c0j − cLj ≥ 0 and c0j − cRj ≥ 0 (the details are shown
in the proof of Lemma 5), which means that the cost will be
reduced if we can change the schedule of this job, no matter
earlier or later.We call such k′

j as job j’sworst starting time.

Lemma 5 In the optimal schedule, if job j starts before its
worst starting time k j ′, then there is no idle time before it; if
job j starts after its worst starting time k j ′, then there is no
idle time after it; if job j starts at its worst starting time k ′

j ,
then there is no idle time before and after it.

Proof By Lemma 4, we can see that no job can be adjacent
to two idle time slots at both ends. As shown in the proof
of Lemma 4 we have c0j − cLj = w j − (πk − πk+p j) and

c0j − cRj = (πk+1 − πk+p j+1) − w j for a job j starting at
time k.

We now focus on the cost caused by each job when this
job’s starting time is before or after its worst starting time.
There are three cases where we redefine our notation as fol-
lows.

– If job j starts at k′
j , then we denote the cost of job j as

c0j .
– If job j starts x time slots earlier than k′

j , then we denote
this cost as cLj (x).

– If job j starts y time slots later than k′
j , then we denote

this cost as cRj (y).

Comparing c0j with c
L
j (x), we can find that

c0j − cLj (x)

= w j · x −
x∑

i=1

πk′
j−x+i +

x∑

i=1

πk′
j+p j−x+i

= w j · x −
x∑

i=1

(
πk′

j−x+i − πk′
j+p j−x+i

)
.

Because w j ≥ πk′
j − πk′

j+p j > πk′
j−1 − πk′

j+p j−1 >

· · · > πk′
j−x+1−πk′

j+p j−x+1, we can see that c0j −cLj (x) is

always nonnegative and the value of c0j −cLj (x) is increasing
with respect to the index x , which means that, if job j is
started before its worst starting time, then it is optimal to
start it as early as possible.

Similarly, comparing c0j and cRj (y), we can see that

c0j − cRj (y)

123

J Sched (2016) 19:759–767 763

= −w j · y +
y∑

i=1

πk′
j+i −

y∑

i=1

πk′
j+p j+i

= −w j · y +
y∑

i=1

(
πk′

j+i − πk′
j+p j+i

)
.

Because w j ≤ πk′
j+1 −πk′

j+p j+1 < πk′
j+2 −πk′

j+p j+2

< · · · < πk′
j+y − πk′

j+p j+y , we can see that c0j − cRj (y) is
also nonnegative and increases with respect to the index y,
which means that, if job j is started after its worst starting
time, then it is optimal to start it as late as possible. Hence
if a job j starts after its worst starting time in an optimal
schedule, then it is impossible to have idle time directly after
job j .

If job j is started at its worst starting time in the optimal
schedule, then we can see that there should be no idle time
slots before and after it. Otherwise, we can start job j either
earlier or later to decrease the total cost. ��

According to the above properties, we can see that, in an
optimal schedule, the jobs are partitioned into two groups.
The first group starts from time zero, the second group ends at
time K , and idle time only exists between these two groups.
In addition, the jobs belonging to the same group must be
processed in WSPT order. Such an observation leads to the
following dynamic programming algorithm, where the jobs
are sorted in nonincreasing order of w/p, i.e., w1

p1
≥ w2

p2
≥

· · · ≥ wn
pn
.

Consider a subproblem with jobs 1 to m under the condi-
tion that the first group ends at time x and the second group
ends at time K0. Let f (x,m, K0) be the minimum total cost
corresponding to the above subproblem. Then the second
group should start at time K0 − (p̄m − x). Due to the WSPT
property, job m is the last job of either the first or second
group. Hence, we have the following recursion, f (x,m, K0)

= min

{
f (x − pm,m − 1, K0) + wm · x + π̄x−pm ,x ,

f (x,m − 1, K0 − pm) + wm · K0 + π̄K0−pm ,K0

with boundary conditions

f (x,m, K0) = +∞, i f

⎧
⎪⎪⎨

⎪⎪⎩

x < 0
x > min{K0, p̄m}
K0 > K
p̄m > K0

The initial conditions are

f (x, 1, K0)=
⎧
⎨

⎩

w1 · K0 + π̄K0−p1,K0 if x = 0 and K0 ≤ K
w1 · p1 + π̄0,p1 if x = p1 ≤ K0

∞ otherwise

The total cost of the optimal schedule corresponds to the
minimum value of f (x, n, K), i.e., minx { f (x, n, K)| x =

0, 1, . . . , P}. In the dynamic programming, the range of m
is in O(n) and the ranges of x and K0 are in O(P) and O(K),
respectively. Each f (x,m, K0) is evaluated in constant time.
Therefore, the time complexity is O(nPK).

We summarize the result in this case as the following the-
orem.

Theorem 2 If the time slot cost function is decreasing con-
cave with respect to time k, then in an optimal schedule the
jobs are partitioned into two groups. The first part starts from
time zero, the second part ends at time K , and idle time only
exists between these two groups. In addition, the jobs belong-
ing to the same part must be processed in WSPT order. The
optimal schedule can be computed by dynamic programming
in O(nPK) time.

If the time slot costs are represented as a series of K dis-
crete values, then the input size of the time slot cost is in
O(K), which means that the algorithm with O(nPK) run-
ning time is a polynomial-time algorithm because the total
processing time P is no larger than K . If the time slot costs
are represented as a function of time t , then the above algo-
rithm is pseudo-polynomial. It is not known whether there is
an algorithm that can find the optimal schedule in polynomial
time if the input does not specify the time slot cost for each
time slot individually. We leave it as an open question.

4 Decreasing convex time slot cost

In this case, the cost differences between successive time
slots become smaller with respect to the time index k, i.e.,
πk − πk+1 < πk−1 − πk for 1 < k < K , which implies
that πk − πk+p j < πk−1 − πk+p j−1 for any j . This case is
different from the previous cases in that an optimal solution
may have multiple intervals of idle times.

Suppose that a job j starts at time k. Then its cost is

c0j = w j (k + p j) + (πk+1 + · · · + πk+p j).

If we process this job one time slot earlier or later, the new
costs are cLj and cRj , respectively, where

cLj = w j (k + p j − 1) + (πk + · · · + πk+p j−1),

cRj = w j (k + p j + 1) + (πk+2 + · · · + πk+p j+1).

Notice that c0j − cLj = w j − (πk − πk+p j) and c
0
j − cRj =

(πk+1 − πk+p j+1) − w j . Because πk − πk+p j > πk+1 −
πk+p j+1, we can find a proper k∗

j such that πk∗
j
− πk∗

j+p j ≥
w j > πk∗

j+1 − πk∗
j+p j+1. If job j starts at time k∗

j , then we

have c0j − cLj ≤ 0 and c0j − cRj < 0. Hence, we call such
k∗
j as job j’s preferred starting time and the time interval

[k∗
j , k

∗
j + p j] as job j’s preferred processing interval.

123

764 J Sched (2016) 19:759–767

Finding out all jobs’ preferred starting times and preferred
processing intervals could help us get properties of the opti-
mal schedule. Similarly, we explore a job’s cost when its
starting time is before or after its corresponding preferred
starting time. For job j with preferred starting time k∗

j , we
consider the following three costs.

– If job j starts at k∗
j , then we denote the cost of job j as

c0j .
– If job j starts x time slots earlier than k∗

j , then we denote

this cost as cLj (x).
– If job j starts y time slots later than k∗

j , then we denote

this cost as cRj (y).

Comparing c0j with c
L
j (x), we can find that

c0j − cLj (x)

= w j · x −
x∑

i=1

πk∗
j−x+i +

x∑

i=1

πk∗
j+p j−x+i

= w j · x −
x∑

i=1

(
πk∗

j−x+i − πk∗
j+p j−x+i

)
.

Because w j ≤ πk∗
j
− πk∗

j+p j < πk∗
j−1 − πk∗

j+p j−1 <

· · · < πk∗
j−x+1 − πk∗

j+p j−x+1, we can see that c
0
j − cLj (x) is

always non-positive and the value of c0−cL(x) is decreasing
with respect to the index x , which means that the earlier job
j is processed, the more cost this job will have, as long as its
starting time is before its preferred starting time.

Similarly, we can compare c0j and cRj (y) and get

c0j − cRj (y)

= −w j · y +
y∑

i=1

πk∗
j+i −

y∑

i=1

πk∗
j+p j+i

= −w j · y +
y∑

i=1

(
πk∗

j+i − πk∗
j+p j+i

)
.

Becausew j > πk∗
j+1−πk∗

j+p j+1 > πk∗
j+2−πk∗

j+p j+2 >

· · · > πk∗
j+y−πk∗

j+p j+y , we can see that c
0
j−cRj (y) is always

non-positive and the value of c0j − cRj (y) is decreasing with
respect to the index y, which means that the later job j is
processed, the more cost this job will have as long as its
starting time is after its preferred starting time. Hence we
have the following lemma.

Lemma 6 If job j starts before its preferred starting time
k∗
j , then the earlier it is processed, the more cost it will have;

if job j starts after its preferred starting time k∗
j , then the

later it is processed, the more cost it will have; if job j starts

at its preferred starting time k∗
j , then it will have the least

possible cost.

If every job can feasibly start at its preferred time without
any overlap, then such a schedule will be optimal. In most
problems, this is not the case. Hence an algorithm is needed
to resolve the overlaps.

Lemma 7 If two jobs’ preferred processing intervals do not
completely contain each other, then the job with earlier pre-
ferred starting time has a greater ratio of w

p than the other
job.

Proof Without loss of generality, assume that two jobs, J1
and J2, have preferred starting times k∗

1 < k∗
2 , and their

preferred processing intervals do not completely contain each
other, i.e., k∗

1+p1 < k∗
2+p2.Wewant to prove that w1

p1
> w2

p2
.

By the definition of preferred starting time, we have the
following two inequalities.

πk∗
1+1 − πk∗

1+p1+1 < w1 ≤ πk∗
1
− πk∗

1+p1 (3)

πk∗
2+1 − πk∗

2+p2+1 < w2 ≤ πk∗
2
− πk∗

2+p2 (4)

There are two cases to be considered. The first case is
p1 ≤ p2. The second case is p1 > p2.

Case 1 p1 ≤ p2. We get the following deductions.

w1

p1
>

πk∗
1+1 − πk∗

1+p1+1

p1
(5)

≥ πk∗
2
− πk∗

2+p1

p1
(6)

>
πk∗

2
− πk∗

2+p2

p2
(7)

≥ w2

p2
(8)

which implies that w1
p1

> w2
p2
.

Inequality (5) comes from Inequality (3). Inequality (6)
holds because k∗

1 < k∗
2 and the decreasing convex time slot

cost. Inequality (7) holds because p1 ≤ p2 and the decreas-
ing convexity time slot cost. Inequality (8) is derived from
Inequality (4) directly.

Case 2 p1 > p2. we get the following inequalities.

w1

p1
>

πk∗
1+1 − πk∗

1+p1+1

p1
(9)

>
πk∗

1+p1+1−p2 − πk∗
1+p1+1

p2
(10)

≥ πk∗
2
− πk∗

2+p2

p2
(11)

≥ w2

p2
(12)

which also implies that w1
p1

> w2
p2
.

123

J Sched (2016) 19:759–767 765

Inequality (9) comes from Inequality (3), and Inequal-
ity (12) is derived from Inequality (4) directly. Now we
discuss how the other inequalities can be derived.

Notice that the interval [k∗
1 + 1, k∗

1 + p1 + 1] completely
contains the interval [k∗

1 + p1 + 1 − p2, k∗
1 + p1 + 1] since

they have the same end point and p1 > p2. Combining with
decreasing convex time slot cost, we can get Inequality (10).
Because the two jobs’ preferred processing intervals do not
completely contain each other, i.e., k∗

1 + p1 < k∗
2 + p2, we

have k∗
1 + p1 + 1− p2 < k∗

2 + p2 + 1− p2 = k∗
2 + 1, which

implies k∗
1 + p1+1− p2 ≤ k∗

2 . With decreasing convex time
slot cost, we can see that Inequality (11) holds. ��

The above lemma gives the relationship between the
ratio w

p and the preferred starting time. Although in general
decreasing convex cases, not all the jobs can start at their
preferred starting times, this relationship can still help us get
some useful properties as shown in the following lemma.

Lemma 8 The jobs are scheduled inWSPT order in the opti-
mal solution.

Proof In the optimal solution, the jobs must be processed in
several intervals.

First, we consider the jobs processed in the same interval.
Because of the optimality, these jobs must be processed by
WSPT order in each interval.

Next, we consider jobs in different intervals. Choose any
two successive intervals A and B such that A is before B
and there are only some idle time slots between A and B.
Suppose that job i is processed at the end of interval A and
job j is processed at the beginning of interval B. Because
of the optimality, job i will not gain benefit if it is processed
later, and job j will not gain benefit if it is processed earlier.
Hence we can see that job i starts no earlier than its preferred
starting time and job j starts no later than its preferred starting
time. Since there are time slots between job i and job j , they
must have no overlap even if they both start at their preferred
starting times. Applying Lemma 7, we can see that job i has
larger value of w

p , which means that wi
pi

>
w j
p j
.

From the above analysis, we can see that job i has the
smallest value of w

p among all the jobs in interval A and job
j has the largest value of w

p among the jobs in interval B.
Hence jobs in different intervals are also processed inWSPT
order. ��

Lemma8 shows the processing order of jobs in the optimal
solution. The only remaining task is to decidewhere idle time
slots are. The following lemma will give some properties
about the positions of idle time slots.

Lemma 9 If two jobs are successive in WSPT order and
their preferred processing intervals have overlap, then there
exist no idle time slots between these two job in the optimal
solution.

Proof Consider job i and job j which are successive in
WSPT order and whose preferred processing intervals have
overlap.Without loss of generality, we assume that wi

pi
≥ w j

p j
.

Because their preferred processing intervals have overlap, the
width between their preferred starting times is shorter than
the processing time of job i . From Lemma 8, we can see that
these two jobs must be successive in the optimal solution.

Then we prove this lemma by contradiction. Suppose that
there are idle time slots between job i and job j in the opti-
mal solution. Because of the optimality, the preferred starting
time of job i is no later than the current starting time of job
i , otherwise job i could gain benefit by moving several time
slots later. By the same reason, the preferred starting time
of job j is no earlier than the current starting time of job j .
Hence thewidth between these two preferred starting times is
longer than the processing timeof job i ,which contradicts our
assumption that these two jobs’ preferred processing inter-
vals have overlap.

Therefore, once two successive jobs’ preferred processing
intervals have overlap, there exist no idle time slots between
these two jobs in the optimal solution. ��

By Lemmas 8 and 9, we can use Algorithm 2 to find the
optimal schedule for the case with the decreasing convex
cost.

Algorithm 2 Optimal Scheduling for decreasing convex
Case
1. Sort all the jobs by the ratio w

p .

/* Suppose that w1
p1

≥ w2
p2

≥ . . . ≥ wn
pn

*/
2. Calculate the preferred processing interval for each job.
3. Make a stack S to save the processed jobs. Initialize S = ∅.
for i = 1 to n do
while the preferred processing intervals of the job j on top of S and
job i have overlap do
a. Pop the stack.
b. Generate a job i ′ with processing time pi + p j and weight
wi + w j , and calculate its preferred processing interval.
c. Replace job i by the new job i ′.

end while
d. Push job i ′ into stack S.

end for
4. Return stack S and processing interval of each job in S.
5. Assign the original n jobs in these processing intervals by WSPT
order.

Because of Lemma 9, we can see that once two successive
jobs in WSPT order have overlap on their preferred process-
ing intervals, theywill be processed one after anotherwithout
idle time slots between them. Hence we can consider such
two jobs as a new composite job whose weight is the sum of
the two jobs’ weights, and the processing time is the sum of
the two jobs’ processing times. Such composite job also has
a preferred starting time and a preferred processing interval.
Notice that the new composite job’s ratio w

p is just between

123

766 J Sched (2016) 19:759–767

the two ratios of the original two jobs. Hence replacing such
two jobs with the new composite job will not change the ratio
order in stack S. Since step c in each while loop will decrease
the number of jobs, there will be at most n jobs in stack S.
Hence step b and step c will be run for at most O(n) times,
and the running time for step a and step d are also O(n).

If the cost for each time slot is given as a function of time,
then we can compute the preferred processing interval for
each job in constant time. The first step needs O(n log n)

time to sort these n jobs, and the remaining steps take up
to O(n) time to deal with the stack. Hence the overall time
complexity is O(n log n), which is polynomial in the input
size.

If the cost for each time slot is given as a discrete num-
ber, then computing preferred processing interval for each
job requires O(log n) time by binary search. Step 2 takes
O(n log K) time to find all the preferred processing intervals,
while remaining steps takes up to O(n log n) time. Hence the
overall time complexity is O(n log K), which is also poly-
nomial in the input size because we have at least K costs in
the input.

Hence we have the following theorem.

Theorem 3 If the time slot cost function is decreasing convex
with respect to time k, then Algorithm 4 can compute the
optimal schedule in O(n log n) if the cost for each time slot
is given as a function of time and in O(n log K) if the cost is
given individually for each time slot.

5 The general case

When the time slot cost is arbitrarily non-increasing with
respect to the time index k, it is strongly NP-hard to find an
optimal schedule. The strong NP-hardness can be proved by
a reduction from 3-PARTITION, a well known NP-complete
problem in the strong sense.

3-PARTITION problem: Given positive integers a1, . . . ,
a3q and b with b

4 < a j < b
2 , j = 1, . . . , 3q and

∑3q
j=1 a j =

q · b, do there exist q pairwise disjoint three element subsets
Si ⊂ {1, . . . , 3q} such that

∑
j∈Si a j = b for i = 1, . . . , q?

Theorem 4 The problemwith arbitrary non-increasing time
slot cost is NP-hard in the strong sense.

Proof Given an instance of 3-PARTITION, we construct
a corresponding instance of the decision version of our
scheduling problem.

Let there be n = 3q jobs. The j-th job has processing
time a j and weight w j = ε · a j for j = 1, . . . , n. Here ε is a
positive number. Let the planning horizon be K = q ·(b+1).
The cost of the k-th time slot is defined as follows, as shown
in Fig. 1,

Fig. 1 Demonstration for the proof of Theorem 4

πk =
{

(q · (b + 1) + 2 − k)ε, k= t · (b + 1), t = 1, . . . , q
(q · (b + 1) + 1 − k)ε, otherwise

where we refer to slots b + 1, 2(b + 1), . . . , q · (b + 1) as
“special” time slots. Note that the above construction can
be done in O(nb) time. Since 3-Partition is strongly NP-
hard, even all of its numerical parameters are bounded by
a polynomial in the length of the input (Garey and Johnson
1978). We can assume that b is bounded by a polynomial in
the length of the input, hence our instance construction can
be done in polynomial-time.

Let z = ∑n
j=1(

∑a j
i=1 πi + w j · a j). Because w j = εp j ,

we have
w j
p j

= ε which is just the cost difference between
any two adjacent time slots in the intervals that exclude the
“special” time slots. By Lemma 2, we can see that each job
j will have the same cost as long as its processing interval
excludes those “special” time slots. Therefore we can calcu-
late the cost for job j as

∑a j
i=1 πi +w j ·a j , which is the cost

when job j is processed from the first time slot. The value
of z corresponds to the total cost when all the jobs’ process-
ing intervals exclude those “special” time slots. The question
asks whether there exists a schedule such that the total cost
is no more than the threshold value z.

We have the following important observation. The time
slot cost is almost linearly decreasing with time, except for
those special time slots. Because w j/p j = ε for any job j ,
by Lemma 2, we know that a job will have the same cost as
long as its processing interval does not include any special
time slot. Since each job has processing time no more than b

2
and the interval between two successive special time slots is
b, the processing interval of each job could include at most
one special time slot. If some job is processed during some
special time slot, then its cost will be ε more than the case
that the job’s processing interval excludes the special time
slot.

We claim that the 3-PARTITION instance has a YES solu-
tion if and only if the scheduling instance has a solution with

total cost no more than
∑n

j=1

(∑p j
i=1 πi + w j · p j

)
.

First, assume that the 3-PARTITION instance has a YES
solution. Then we can schedule each group of three jobs

123

J Sched (2016) 19:759–767 767

in one of the q intervals [(t − 1)(b + 1), t · (b + 1) − 1],
t = 1, . . . , q, leaving all the q special time slots idle. Since
no job is processed during the special time slot, their costs
can be expressed as

∑p j
i=1 πi + w j · p j for j = 1, . . . , n,

which is just the cost when the job starts at the first time slot.
Calculating the total cost of this schedule, we can see that it

is just
∑n

j=1

(∑p j
i=1 πi + w j · p j

)
= z.

Then assume that the scheduling instance has a solution
such that the total cost is no more than z. According to the
analysis above, we can see that all the idle time slots must
be the q special time slots. Since K = q · (b + 1) and the
total processing time is qb, all the jobs are processed in the q
intervals [(t − 1)(b+ 1), t · (b+ 1) − 1], t = 1, . . . , q. Note
that all the intervals [(t−1)(b+1), t ·(b+1)−1] have length
b. Because each job has its processing time between b

4 and
b
2 , and no preemption is allowed, there must exist three jobs
in each interval. This means that 3-PARTITION problem has
a YES solution.

When all the parameters of our scheduling instance are
bounded by a polynomial in the length of the input, the reduc-
tion still holds, which proves the NP-hardness in the strong
sense. ��

6 Conclusion

This paper focuses on the problem of minimizing the total
weighted completion time on a single machine with variable
time slot costs. The results answer an open question in the

literature. Scheduling with variable time slot costs is a new
and practically relevant schedulingmodel that deserves more
in-depth study. So far only the very basic problems have been
addressed. More research on extended models, such as with
release times, is worth investigating in the future.

Acknowledgements This work was fully supported by grants from
the Research Grants Council of the Hong Kong Special Administrative
Region, China [Project No. CityU 117913 and Project No. 16208214].

References

Aydinliyim, T., & Vairaktarakis, G. L. (2010). Coordination of out-
sourced operations to minimize weighted flow time and capacity
booking costs. Manufacturing and Service Operations Manage-
ment, 12(2), 236–255.

Chen, L., Megow, N., Rischke, R., Stougie, L., & Verschae, J. (2015).
Optimal algorithms and a PTAS for cost-aware scheduling.MFCS
2015.

Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-completeness
results: Motivation, examples, and implications. Journal of ACM,
25, 499–508.

Kulkarni, J. &Munagala, K. (2012).Algorithms for cost aware schedul-
ing: Proceedings of 10th International Workshop on Approxima-
tion and Online Algorithms (WAOA 2012) (pp. 201–214).

Pinedo, M. (2012). Scheduling: theory, algorithms, and systems. Hei-
delberg: Springer.

Wan, G., & Qi, X. (2010). Scheduling with variable time slot costs.
Naval Research Logistics, 57, 159–171.

Zhong, W., & Liu, X. (2012). A single machine scheduling problem
with time slot costs. Recent advances in computer science and
information engineering. Heidelberg: Springer.

123

	On scheduling with non-increasing time slot cost to minimize total weighted completion time
	Abstract
	1 Introduction
	2 Linearly decreasing time slot cost
	3 Decreasing concave time slot cost
	4 Decreasing convex time slot cost
	5 The general case
	6 Conclusion
	Acknowledgements
	References

