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Abstract It is well known that in the twentieth century,
mathematical programming (MP) modeling and particularly
linear programming (LP) modeling, even though strongly
applied to combinatorial optimization, were not too success-
ful when directed to scheduling problems. The purpose of
this paper is to show that the field of successful applica-
tions of LP/MP modeling is still growing and includes also
scheduling topics. We first focus on single machine schedul-
ing.We consider a single machine scheduling model where a
quadratic programming (QP) formulation handled by means
of a QP solver is shown to be competitive with the state of the
art approaches. Also, we discuss a single machine bicriterion
scheduling problem and show that a standard LP formulation
based on positional completion times performs reasonably
well when handled by means of a LP solver. Then, we show
how LP can be used to tighten bounds for approximation
results in sequencing problems. Finally, we show how to
enhance the complexity bounds of branch-and-reduce exact
exponential algorithms by means of the so-called measure-
and-conquer paradigm requiring always the solution of a
specific MP model.

Keywords Modeling · Machine scheduling · Approxima-
tion · Exact exponential algorithms

1 Introduction

A combinatorial optimization problem can be typically for-
mulated as a mathematical programming (MP) model by
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first translating each elementary decision into a variable and
by then specifying the objective function and the related
constraints. To obtain a linear programming (LP) model,
the objective is also required to be a linear function of
the variables, and the constraints are required to be linear
(in)equalities involving the variables. We refer to integer lin-
ear programming (ILP) if the variable is also supposed to
be an integer. While modeling can sometimes be consid-
ered to be an art, which cannot be reduced to a standard
set of procedures, there exist, however, references [see for
instance Plastria (2002) and Williams (1990)] that discuss
some sort of systematic approach in the LP modeling of
combinatorial optimization problems. The purpose of this
work is actually to indicate that LP/MP modeling is still a
strong tool in combinatorial optimization and is more and
more applicable to topics not yet considered in the twen-
tieth century. To this extent, we first show in Sect. 2 that
pure sequencing problems can be solved by means of an
MP or LP solver with effective performances whenever a
proper formulation holds. Also, we show in Sect. 3 that
approximation results can be derived by means of the iter-
ated solution of several LP models. Finally, we deal in Sect.
4 with exact exponential branch-and-reduce algorithms for
combinatorial problems and show that the so-calledmeasure-
and-conquer paradigm requires the solution of a MP model
to improve the worst-case complexity bound of the exact
algorithm.

2 Single machine scheduling by MP/LP modeling

LP and MP modeling for machine scheduling were already
discussed (Blazewicz et al. 1991) where various formula-
tions were provided for several well known problems, but
at that time, the performances of the LP and MP solvers
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did not allow to reach competitive results by implementing
those formulations. Several years later, LP-based formula-
tions in single machine scheduling were already successful
when dealing with the static single machine problem with
the objective of minimizing the weighted sum of tardy jobs
(1|| ∑w jU j ). InMHallah andBulfin (2003), by indexing the
jobs in earliest due date (EDD) order d1 ≤ d2 ≤ · · · ≤ dn ,
the following mathematical model using 0/1 variables x j for
each job j (x j = 1 if j is early, else x j = 0) was proposed:

max
n∑

j=1

w j x[ j] (1)

j∑

i=1

pi xi ≤ d j ∀ j = 1, . . . , n (2)

x j ∈ {0, 1}, ∀ j = 1, . . . , n. (3)

The objective summed up the weights of all early jobs.
The constraints used the fact that if any sequence has all jobs
on time, the EDD sequence does. Indeed, the left-hand side
of constraint j is the completion time of job j if it is on time,
since all on-time jobs with smaller due dates will be sched-
uled before it. Hence, if job j is to be on time, its completion
time must be no greater than its due date. In Baptiste et al.
(2010), a dedicated exact algorithm generalizing to the case
with deadlines (1|d j | ∑ w jU j ), the above ILP formulation
was able to solve problems with up to 30, 000 jobs in size.
However, the above problems were rather assignment prob-
lems, as the only decision required was to define for each job
j whether j was early or tardy, the sequence being univo-
cally determined once the assignment was defined. In Baker
and Keller (2010) various LP formulations were compared
on the well-known single machine total tardiness problem
where also sequencing decisions must be taken into account.
The formulation based on positional completion times [see
also Lasserre and Queyranne (1992)] reached best results
and was able to solve to optimality problems with up to 50
jobs. In Della Croce et al. (2014), the 1|r j | ∑C j problem
was considered. For that problem, a formulation based on
positional completion times turned out to be the best one
with respect to other classical formulations. The application
of CPLEX 12.3 to that formulation enhanced by valid cuts
based on the findings ofDella Croce andT’kindt (2003)man-
aged to reach good results solving to optimality in limited
time instances with up to 100 jobs in size. Further, the same
formulation embedded into a matheuristic approach showed
to be superior to state-of-the-art heuristic approaches. Here,
we consider two single machine scheduling problems and
provide a QP model and an LP model, respectively. Both
models showed up very good performances when handled
by means of the QP and LP libraries of CPLEX 12.5 solver.

2.1 Minimizing the total weighted completion time with
rejection on a single machine

In this first single machine problem, a set of n jobs must
be processed sequentially and non-preemptively on a single
machine, which is always available. Each job j can be either
processed or rejected, but in the latter case, a rejection cost
re j incurs. The objective is to minimize the summation of
the rejection penalties of the removed jobs added to the total
weighted completion time of the scheduled jobs. The prob-
lem can be denoted as 1|RE J |∑ w jC j + ∑

re j . Engels
et al. (2003) showed that the 1|RE J |∑ w jC j + ∑

re j
problem is ordinaryNP-hard and proposed two exact pseudo-
polynomial dynamic programming (DP) algorithms running
in O(n

∑n
i=1 pi ) time and in O(n

∑n
i=1 wi ) time, respec-

tively. In Moghaddam et al. (2012), the bicriterion problem
1|rej | ∑w jC j ,

∑
re j was considered. There, both the total

weighted completion time of the selected jobs and the total
rejection cost must be minimized, and the objective is to
search for the Paretian solutions. Several MP/LP models
were introduced, but only an LP formulation was tested that
required already a significant amount of CPU time on prob-
lems with just 15 jobs.

2.1.1 Problem formulation

We recall that when no jobs are rejected, that is, for problem
1|| ∑w jC j , the optimal sequence is the weighted shortest
processing time (WSPT) sequence in which the jobs are
sequenced in non-decreasing order of their p j/w j values.
Correspondingly, for the 1|RE J |∑ w jC j + ∑

re j prob-
lem, all selected jobs will be sequenced according to the
WSPT order. Assume that the jobs are indexed according
to the WSPT order with ties broken according to SPT. Let
denote by C j the completion time of job j and by x j a 0/1
variable where x j = 1 if j is selected, else x j = 0. Then,

for each selected job j , we have C j = ∑ j
i=1 pi xi . Thus, if

a job is selected, its contribution to the objective function is
given by w jC j x j = ∑ j

i=1 piwi xi x j . In addition, if a job is
rejected, its contribution to the objective function is given by
re j (1 − x j ). Correspondingly, as indicated in Moghaddam
et al. (2012), the following MP formulations holds:

min
n∑

j=1

j∑

i=1

piwi xi x j +
n∑

j=1

re j
(
1 − x j

)
(4)

x j ∈ {0, 1} ∀ j = 1, . . . , n. (5)

2.1.2 Computational experiments

The proposed MP formulation (4)–(5) was provided, but,
strangely enough, not tested in Moghaddam et al. (2012)
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Table 1 ComparingCPLEX12.5 solving the proposedMP formulation
to the DP approach of Engels et al. (2003) on instances with up to 2000
jobs

n REJ
distrib.

CPLEX
12.5—CPU
time

CPLEX
12.5—#
nodes

DP—CPU
time

100 D1 0.07 0 0.11

200 D1 0.08 0.5 0.44

500 D1 0.20 0 2.72

1000 D1 1.21 0 11.11

2000 D1 8.21 0.4 44.16

100 D2 0.19 72.7 0.11

200 D2 0.27 73.7 0.45

500 D2 1.20 122.6 2.83

1000 D2 11.20 672.8 11.20

2000 D2 56.07 581.3 44.82

100 D3 0.06 0 0.21

200 D3 0.08 0.2 0.89

500 D3 0.23 0.6 5.30

1000 D3 1.22 0.5 21.53

2000 D3 7.99 2.4 85.81

100 D4 0.17 99.6 0.23

200 D4 0.51 120.9 0.88

500 D4 1.59 317.6 5.48

1000 D4 8.57 355.6 21.57

2000 D4 54.64 609.1 86.70

where a standard linearization was considered requiring
already important computation times with 15 jobs. Here,
the proposed MP formulation was solved by means of the
quadratic programming library of CPLEX 12.5 on an Intel
Dual Core with 1.7 GHz CPU and 4 GB RAM. We gener-
ated the instances following the distribution plan proposed
in Moghaddam et al. (2012). Processing times were ran-
domly generated using the discrete uniform distribution in
the range [10, 80] and weights were generated from the dis-
crete uniform distribution in the range [1, 30]. Rejection
costs were obtained as follows: for each job j , we have
re j = exp(5 + √

α + β), where α is randomly generated
using the discrete uniform distribution in the range [1, 80]
and β is a random number within [0, 1]. Since with the
considered distribution of the rejection costs (indicated as
D1 in Table 1) in all cases CPLEX generated nearly no
search tree nodes, we searched for harder instances and
determined another distribution (indicated as D2). In distri-
bution D2, for each job j , processing times and weights are
as in distribution D1, while for the rejection costs we have

re j = w j

∑n
i=1 pi
3 (1+γ ), where γ is a randomnumberwithin

[−0.05, 0.05].

Since the weights are generally inferior to the processing
times, we implemented also the dynamic programming (indi-
cated as DP in Table 1) of Engels et al. (2003) running with
complexity O(n

∑n
i=1 wi ) time, which is obviously faster

than the one with complexity O(n
∑n

i=1 pi ) time. Since the
DP algorithm of Engels et al. (2003) is a pseudo-polynomial,
we also considered two other distributions (indicated as D3
and D4, respectively). D3 uses the same range of processing
times and rejection costs of D1while weights were generated
from the discrete uniform distribution in the range [1, 60] in
order to verify the CPU time increase as theweights increase.
Similarly, D4 uses the same range of processing times and
rejection costs of D2 while weights were generated from the
discrete uniform distribution in the range [1, 60]. The values
100, 200, 500, 1000, and2000 were considered for the job
size n, and for each n, 10 instances were generated. In total,
then 200 instances were generated and solved.

In Table 1, we report the related computational results
comparing the average CPU times required by CPLEX 12.5
(the average number of nodes is also reported) applied to the
above MP formulation to the average ones obtained by our
implementation of the DP algorithm of Engels et al. (2003).

The results indicate that the MP-based approach is able
to solve instances with up 2000 jobs in less than 60 sec-
onds on the average and is globally superior to the DP
algorithm even for limited size of the weights. Also, com-
paring distributions D1–D3 and D2–D4, we notice that
the performances of the MP-based approach are substan-
tially unaffected by the weights distributions, while the DP
approach computing time increases linearly with the weight
distribution increase.

2.2 Minimizing maximum earliness and number of
tardy jobs on a single machine

In this second singlemachine problem, a set N of n jobsmust
be processed on a single machine, which is always avail-
able. Each job j has a processing time p j and a due date d j

and is available at time zero. The machine can process one
job at a time. The objective is to minimize both the maxi-
mum earliness and the number of tardy jobs. All the data are
integers. In the problem, preemption is not permitted, and
the goal is to find all the efficient solutions. The problem
is denoted 1||Emax, nT in the extended three-field classifi-
cation of Tkindt and Billaut (2002). As far as the literature
related to the 1||Emax, nT problem is concerned, in Azizoglu
et al. (2003), polynomial time algorithms for the maximum
earliness problem subject to no tardy jobs and the maximum
earliness problem for a given set of tardy jobs were proposed.
Also, the authors discussed the use of the latter algorithm
in generating all efficient schedules. Notice that the single
machine problem with as primary criterion the number of
tardy jobs and secondary criterion the maximum earliness
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was shown to be strongly N P-hard in Lee and Vairaktarakis
(1993). Correspondingly, the 1||Emax, nT is also strongly
NP-hard. In Molaee et al. (2010) the 1|nmit |Emax, nT prob-
lem was considered, that is, the same problem tackled here,
but with the additional constraint that no machine idle time
was allowed. For that problem, an exact procedure based on
a branch-and-bound approach was proposed and tested on
instances with up to 35 jobs. The proposed approach man-
aged to solve to optimality within a CPU time limit of 4000
seconds on a PIV PC with 3.4 GHz CPU and 1 GB RAM
all instances with up to 25 jobs but already exceeded the
CPU time limit on a couple of instances with 30 jobs. To the
author’s knowledge, for the 1||Emax, nT no exact approach
has been fully computationally tested.

2.2.1 Problem formulation

Let γ be the solution value of the 1||nT problem, that is,
the single machine problem with the objective of minimiz-
ing the number of tardy jobs. Then, any feasible solution of
problem 1||Emax, nT has at most n − γ early jobs. In order
to derive efficient solutions of problem 1||Emax, nT , a stan-
dard approach consists in applying the classical ε-constraint
approach. This corresponds here to consider simply the
minimization of the maximum earliness subject to a pre-
defined given number k of early jobs for any value of
k = 1, . . . , n − γ , and then delete dominated solutions
whenever for consecutive values of k the maximum earli-
ness does not change. Let us denote this latter problem as
1|nT = n − k|Emax. Notice that for this problem, all late
jobs are simply discarded (as idle time is allowed), and there
is at least one optimal solution where the last early job com-
pletes at its due date (or else it would be possible to postpone
it to its due date without increasing the cost function value).
Correspondingly, we are interested in the completion times
of the first k jobs only, as all the other completion times
relate to the discarded jobs. For that reason, we consider the
following ILP formulation based on positional completion
times variables.

Let C[ j] be the completion time of the j th job processed.
Let E[ j] be the earliness of the j th job processed. Let xi j
be a 0/1 variable, where i ∈ {1, . . . , n}, j ∈ {1, . . . , k}. A
variable xi j is equal to 1 if job i is early in position j and
0 otherwise. Let ui be a 0/1 variable, where i ∈ {1, . . . , n}.
A variable ui is equal to 1 if job i is tardy and 0 otherwise.
Finally, let Emax be the maximum earliness to be minimized.
The ILP model is as follows:

min Emax (6)
n∑

i=1

ui = n − k (7)

n∑

i=1

xi j = 1 ∀ j = 1, . . . , k (8)

k∑

j=1

xi j + ui = 1 ∀i = 1, . . . , n (9)

C[1] ≥
n∑

i=1

pi xi1 (10)

C[ j] ≥ C[ j−1] +
n∑

i=1

pi xi j ∀ j = 2, . . . , k (11)

C[k] =
n∑

i=1

di xik (12)

C[ j] ≤
n∑

i=1

di xi j ∀ j = 1, . . . , k − 1 (13)

E[ j] ≥
n∑

i=1

di xi j − C[ j] ∀ j = 1, . . . , k (14)

Emax ≥ E[ j] ∀ j = 1, . . . , k (15)

xi j ∈ {0, 1}, xi j ∈ {0, 1}, C[ j] ≥ 0, (16)

where constraints (7) state that there are exactly k early jobs;
constraints (8) state that a job is chosen for each early posi-
tion; constraints (9) state that each job either occupies an
early position or is tardy; constraint (10) sets the comple-
tion time of the first job to be non inferior to its processing
time; constraints (11) forbid for each job to start before the
job in the previous position completes; constraints (12)–(13)
impose that the first k jobsmust be early and that the kthmust
complete at its due date; constraints (14) link the earliness
of the j th job to its completion time; finally, constraints (15)
indicate that Emax is the maximum earliness among the ear-
linesses of the early jobs.

2.2.2 Computational experiments

In order to test the effectiveness of the proposed LP formu-
lation (6)–(16), we solved it by means of CPLEX 12.5 on an
Intel Dual Core with 1.7 GHz CPU and 4 GBRAM.We gen-
erated the instances according to the same distribution plan
proposed inMolaee et al. (2010). Processing times were ran-
domly generated using the discrete uniform distribution in
the range [1, 10] and due dates were generated from the dis-
crete uniform distribution in the range [0, ρ ∑n

i=1 pi ]. Four
values of ρ were considered, namely ρ = {0.4, 0.6, 0.8, 1}.

The values 10, 20, 30, and35 were considered for the job
size n, and for each combination of ρ and n, 20 instances
were generated. In total, then 320 instances were generated
and solved. For each instance, k = n − γ ILP models were
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Table 2 Performances of the ILP based approach on instances with up
to 35 jobs

n ρ N. found opt. Avg. CPU time Max. CPU time

10 0.4 20 0.60 0.84

10 0.6 20 0.68 1.06

10 0.8 20 1.02 1.53

10 1 20 1.12 1.87

20 0.4 20 2.32 3.63

20 0.6 20 3.65 7.27

20 0.8 20 5.85 9.19

20 1 20 6.01 13.84

30 0.4 20 7.32 16.83

30 0.6 20 16.50 84.41

30 0.8 20 69.72 325.65

30 1 20 178.22 876.36

35 0.4 20 18.29 67.95

35 0.6 20 69.15 151.30

35 0.8 19 329.04 1800

35 1 16 801.29 1800

solved by means of CPLEX 12.5 and a CPU time limit of
900 s for each ILP and 1800 for the generation of all the
non-dominated solutions.

In Table 2, we report the related computational results
providing for each combination of ρ and n the number of
instances solved to optimality within the time limit and aver-
age and maximum CPU time required.

The results indicate that the approach is viable for
medium-size problems as all instances, but 5 were solved
to optimality within the time limit. Admittedly, since this
is the first exact approach (to the author’s knowledge) for
the 1||Emax, nT problem, no conclusive statement can be
expressed on the effectiveness of the approach. However,
keeping in mind that also for the close 1|nmit |Emax, nT
problem the approach of Molaee et al. (2010) could handle
instances with nomore than 35 jobs, we can at least conclude
that an exact approach based on positional completion times
ILP formulations is often a viable option (when applicable)
for single machine scheduling. Notice also that a matheuris-
tic approach on the lines of the one presented in Della Croce
et al. (2014) can be immediately devised and is expected to
reach high quality results on medium/large-size instances.

3 Computing bounds for approximation results in
scheduling

A wide area of research relates to the search for approxima-
tion algorithms for N P-hard scheduling problems. Then,
whenever polynomial time approximation schemes are not

reachable, it is common to search for polynomial time algo-
rithms capable of reaching constant approximation ratios. If
a minimization problem is considered where f (OPT ) is the
optimal solution value, then we look for a polynomial algo-
rithm A capable of reaching a heuristic solution H such that
the ratio ρ = f (H)

f (OPT )
is not superior to some given con-

stant k. To prove this, we need to show that, for any instance,
algorithm A reaches a solution such that ρ > k can never
occur. Then we say that such ratio is tight if we are able to
find an instance of the problem such that algorithm A per-
forms with ratio ρ = k, or it is asymptotically tight if we are
able to find a family of instances of the problem such that
algorithm A performs with ratio ρ that tends asymptotically
to k. Or else, we search for an instance that is close enough
to the upper bound k previously computed. The search for
such an instance is indeed doable by means of LP model-
ing techniques. In this section, we show, as an example, that
LP modeling can be successfully applied to find a lower
bound to the approximation ratio in a two-machine flowshop
scheduling problem under the re-optimization paradigm.

3.1 Approximating the 2-machine total completion time
flowshop problem in the re-optimization setting
under job insertion

Consider the solution of machine scheduling problems in the
re-optimization setting, which can be described as follows:
considering an instance I of a given problem � for which an
optimal solution OPT is provided, and an instance I ′, which
results from a local perturbation of I , can the information
provided by OPT be used to solve I ′ in a more efficient way
(i.e., with a lower complexity and/or with a better approxi-
mation ratio) than if this information was not available? This
is also related to the so-called reactive scheduling [see Smith
(1994)], that is, what refers to the schedulemodifications that
may have to be made during project execution starting from
a baseline schedule. In some cases, the reactive scheduling
effort may rely on very simple techniques aimed at a quick
schedule consistency restoration. For this purpose, by con-
sidering an optimal schedule as baseline schedule and some
jobs additions or deletions as schedule disruptions, we can
see that scheduling re-optimization may be considered to be
strictly linked to reactive scheduling, particularly with sim-
ple re-optimization strategies so that the baseline schedule is
only mildly modified.

Here, we study as a simple example the 2-machine total
completion time flowshop problem [F2 || ∑

C j according
to the three-field notation of Lawler et al. (1993)] that can
be stated as follows. A set of n jobs is available at time 0 to
be processed on 2 machines where each job is processed on
machine M1 first, and then on machine M2. We denote by
pk, j the processing time of job j onmachine k ( j = 1, . . . , n,
k = 1, 2). Also, we denote by Ck, j the completion time of
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job j on machine Mk . Preemption on either machine is not
allowed. The objective is the minimization of the sum of
completion times on the second machine. It is well known
for this problem that there exists at least one optimal solu-
tion which is a permutation schedule, that is the jobs share
the same sequence on all machines. This problem is known to
be N P-hard in the strong sense. We denote by F2 || ∑

C j+
the re-optimization of version of F2 || ∑

C j where a sin-
gle job x with processing times p1x and p2x is added to an
instance already solved to optimality.We analyze the approx-
imation ratios of simple re-optimization strategies that keep
unchanged the baseline schedule, namely that merely insert
the new job into the initial optimum. We denote by Ai, j
(1 ≤ i ≤ j ≤ n + 1) the re-optimization strategy that con-
sists of computing j − i +1 candidate solutions, by inserting
the new job in the initial optimum in the kth position for
all possible ks between i and j , while leaving the rest of
the scheduling unchanged. We provide here the findings of
Boria and Della (2014) on this problem.Without loss of gen-
erality, the initial optimum is given by schedule [1, . . . , n]
and has value f (OPT ) = ∑n

j=1 C2 j . On the other hand,
the unknown optimal sequence on the modified instance is
denoted by OPT ′ and its value is denoted by f (OPT ′).

The following propositions [proposed in Boria and Della
(2014)] hold.

Proposition 1 F2 || ∑
C j+ is approximable within ratio

3
2 by algorithm An,n+1, and this bound is tight.

Proposition 2 The algorithm A1,n+1 cannot ensure approx-
imation ratio better than 7

5 for the F2 || ∑
C j+ problem.

In order to show that the tightness of the ratio 3
2 for algo-

rithm An,n+1 in Proposition 1 and to prove Proposition 2,
we need to derive the related instances. In Boria and Della
(2014), the related instances were simply provided, here we
show how this issue is tackled by means of LP modeling.
The rationale of the approach is as follows. Let us denote by
S1h for h = 1, . . . , k! all permutations of k jobs and let
assume without loss of generality that S11 = [1, . . . , k] is
optimal, that is, f (S11) = OPT . On the other hand, let us
denote by S2h for h = 1, . . . , (k + 1)! all permutations of
k + 1 jobs (the first k jobs of the original sequence plus job
x).

The proposed approach uses as constraints the require-
ment that the initial optimal schedule is S11 [namely
f (S1h) ≥ f (S11) for h = 2, . . . , k] and the requirement that
all schedules reachable by algorithmsAn,n+1 (for the instance
of Proposition 1) or A1,n+1 (for the instance of Proposition
2) cannot have a solution value inferior to some given prede-
fined value τ . Finally, the goal is to find a sequence S2h for
h = 1, . . . , (k + 1)! such that f (S2h) is minimum. The
variables are then the jobs processing times [correspond-
ing to 2(k + 1) variables] and the jobs completion times

induced by each sequence [corresponding to 2k · k! variables
for sequences S1h and to 2(k + 1) · (k + 1)! variables for
sequences S2h]. For any given sequence S2γ , this is accom-
plished by solving a related ILP model.

Let p(i, j) be the processing time of job j on machine i .
Let p(h, i, [ j]) be the processing time of the j − th job on
machine i according to sequence h. Let C(h, i, [ j]) be the
completion time of the j − th job on machine i according to
sequence h. Let f (S2γ ) denote the sum of completion times
on the secondmachine of sequence S2γ . All these are integer
variables. The LP model is as follows:

min f (S2γ ) =
k+1∑

j=1

C
(
S2γ , 2, [ j]) (17)

k∑

j=1

C(S1h, 2, [ j]) ≥
k∑

j=1

C
(
S11, 2, [ j]

) ∀h = 2 . . . k!

(18)
k∑

j=1

C
(
S2h, 2, [ j]

) ≥ τ ∀h ∈ Q (19)

C
(
S1h, 1, [1]

) = p
(
S1h, 1, [1]

) ∀h = 1 . . . k! (20)

C
(
S1h, 1, [ j]

) = C
(
S1h, 1, [ j − 1]) (21)

+ p
(
S1h, 1, [ j]

) ∀h = 1 . . . k! ∀ j = 2 . . . k

C
(
S1h, 2, [1]

) = C
(
S1h, 1, [1]

)
(22)

+p
(
S1h, 2, [1]

) ∀h = 1 . . . k!
C

(
S1h, 2, [ j]

) = max
{
C

(
S1h, 1, [ j]

)
, (23)

C
(
S1h, 2, [ j − 1])

}
+ p

(
S1h, 1, [ j]

)

∀h = 1 . . . k! ∀ j = 2 . . . k (24)

C
(
S2h, 1, [1]

) = p
(
S2h, 1, [1]

) ∀h = 1 . . . k + 1! (25)

C
(
S2h, 1, [ j]

) = C
(
S2h, 1, [ j − 1]) (26)

+ p
(
S2h, 1, [ j]

) ∀h = 1 . . . k + 1! ∀ j = 2 . . . k

C
(
S2h, 2, [1]

) = C
(
S2h, 1, [1]

)
(27)

+ p
(
S2h, 2, [1]

) ∀h = 1 . . . k + 1!
C

(
S2h, 2, [ j]

) = max
{
C

(
S2h, 1, [ j]

)
, (28)

C
(
S2h, 2, [ j − 1])

}
+ p

(
S1h, 1, [ j]

)

∀h = 1 . . . k + 1! ∀ j = 2 . . . k (29)

matching constraints bindingp(h, i, [ j])
′swith p(i, j)′s ∀h,∀i,∀ j. (30)

Here, constraints (18) indicate that S11 is the optimal
sequence for the original problem. Also, in (19), Q is the
subset of schedules whose cost function value must be ≥ τ

as indicated in Propositions 1 and 2. Then, (20–29) are the
standard sequencing constraints between adjacent jobs on
any given machine or between adjacent operations of the
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same job. Notice that here for conciseness we kept in con-
straints (23, 24) and (28, 29) a nonlinear max notation that
can be easily transformed into linear constraints by means
of big-M coefficients and the introduction of 0/1 variables.
Finally, constraints (30) link together the p(h, i, [ j]) vari-
ables with the p(i, j) ones (for instance, if in S11 job 2 is in
first position, then p(S11, i, [1]) = p(i, 2) ∀i = 1, 2).

Then, by iterating the solution of the LP model on all
γ = 1, . . . , (k + 1)! and taking the minimum value, we get
the best possible instance (with k + 1 jobs where job k + 1
corresponds to job x). Notice, however, that the size k must
be strongly limited.

By means of the above approach, it was possible to derive
for Proposition 1 the following original instance with k = 2.
Here, we have job 1 that has p1,1 = 0 and p2,1 = 1, and
job 2 that has p1,2 = 1 and p2,2 = 0. For this instance, the
optimal scheduling is [1, 2] and has value 2. Then, the new
job x added has p1,x = 0 and p2,x = 0. In this case, it is easy
to see that the optimal sequence for the new instance with job
x is [x −1−2]with value 2, while algorithm An,n+1 reaches
in the best case value 3.

On the other hand, it was possible to derive for Proposition
2 the following original instance still with k = 2. Here, we
have job 1 that has p1,1 = 0 and p2,1 = 2, and job 2 that has
p1,2 = 1 and p2,2 = δ. Again, for this instance, the optimal
scheduling is [1, 2] and has value 4+ δ. Then, the new job x
added has p1,x = 0 and p2,x = 1. In this case, it is easy to
see that the optimal sequence for the new instance with job
x is [x − 2 − 1] with value 5 + 2δ, while algorithm A1,n+1

reaches in the best case value 7 + δ.
This approach can be generalized to other sequencing

problems whenever the sequences reached by the proposed
algorithm can be easily detected. Consider for instance the
Traveling Salesman problem (TSP) (Lawler et al. 1985).
It is well known that when the triangular inequality holds
(the so-called Metric TSP), a tight 3

2 approximation ratio is
reached by means of the algorithm proposed in Christofides
(1976). Restricting the edges to have distances (1, 2), we
have the so-called TSP1,2. For TSP1,2, it is well known that
a 7

6 approximation ratio is reached by means of the algo-
rithm proposed in Papadimitriou and Yannakakis (1993). On
the other hand, among the various heuristics proposed for
this problem, the so-called dynasearch approach presented
in Potts and Velde (1995) was shown to be a neighborhood
search approach capable of finding in polynomial time the
best solution of an exponential size neighborhood. It is then
of interest to see whether for any given starting solution,
the approximation ratio of dynasearch may or not reach an
approximation ratio inferior to 3

2 for Metric TSP and inferior
to 7

6 for TSP1,2. It is possible to apply the above men-
tioned approach both to metric TSP and TSP1,2 by defining
in this case as variables the edges lengths. An initial cycle

C1 = [1−2−· · ·−n] can be assigned without loss of gener-
ality with some predefined value k = f (C1). Let Ndyn(C1)

be the dynasearch neighborhood of C1. Then, by constrain-
ing cycle C1 to be a local minimum for Ndyn(C1), that is,
by imposing f (C1) ≤ f (C j ) ∀C j ∈ Ndyn(C1), it is possi-
ble to determine the approximation ratio of dynasearch by
iteratively minimizing f (Ck) ∀Ck /∈ Ndyn(C1). When n is
small enough, this can be easily accomplished. Indeed, two
simple examples with six cities depicted in Table 3 for met-
ric TSP and in Table 4 for TSP1,2 were derived with this
approach for a dynasearch neighborhood based on the combi-
nation of insertion, swap, and twist neighborhoods [seeErgun
and Orlin (2006) for a specific description of the related
operators]. Correspondingly, a 3

2 approximation ratio was
obtained for the metric TSP and a 7

6 approximation ratio was
obtained for TSP1,2. For the metric TSP, the local minimum
isC1 = [1−2−3−4−5−6]with value f (C1) = 6 and the
optimal solution is C j = [1− 4− 5− 3− 2− 6] with value
f (C j ) = 4 where C j /∈ Ndyn(C1). Similarly, for TSP1,2, the
local minimum is always C1 = [1 − 2 − 3 − 4 − 5 − 6]
with value f (C1) = 7, while the optimal solution is Ck =
[1 − 2 − 4 − 6 − 5 − 3] with value f (Ck) = 6, where
Ck /∈ Ndyn(C1). Hence, the following proposition holds stat-
ing that is unlikely to improve the available polynomial time
approximation ratios for metric TSP and TSP1,2 by means of
dynasearch.

Proposition 3 The approximation ratio of the dynasearch
neighborhood is not inferior to 3

2 for the Metric TSP and not
inferior to 7

6 for TSP1,2.

Table 3 A 6-town TSP distance where dynasearch has approximation
ratio 3

2 for Metric TSP

1 2 3 4 5 6

1 – 1 2 1 2 1

2 1 – 1 2 1 0

3 2 1 – 1 0 1

4 1 2 1 – 1 2

5 2 1 0 1 – 1

6 1 0 1 2 1 –

Table 4 A 6-town TSP distance where dynasearch has approximation
ratio 7

6 for TSP1,2

1 2 3 4 5 6

1 – 1 1 2 2 2

2 1 – 1 1 2 2

3 1 1 – 1 1 2

4 2 1 1 – 1 1

5 2 2 1 1 – 1

6 2 2 2 1 1 –
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4 Mathematical programming modeling for the
measure-and-conquer paradigm in exact
branch-and-reduce algorithms

The design of exact methods for NP-hard combinatorial
optimization problems has always been a challenging issue.
Among the existing exact methods, search tree algorithms
have been widely applied. Here, we study their application in
the context of worst-case analysis of exact algorithms where
classical search tree algorithms are more commonly defined
as branch-and-reduce algorithms as typically a branch in the
search tree induces the generation of two or more subprob-
lems each with a reduced number of variables with respect
to the original problem. Consider now a combinatorial opti-
mization problem that can be represented by means of n
binary variables. Let T (·) be a super-polynomial and p(·)
be a polynomial, both on integers. In what follows, using
notations in Woeginger (2003), for an integer n, we express
running-time bounds of the form p(n) · T (n) as O∗(T (n)),
the asterisk meaning that we ignore polynomial factors. We
denote by T (n) the worst-case time required to exactly
solve the considered combinatorial optimization problem
with n binary variables.We recall [see, for instance, Eppstein
(2001)] that if it is possible to bound above T (n) by a recur-
rence expression of the type T (n) ≤ ∑

T (n−ri )+O(p(n)),
we have T (n) = O∗(α(r1, r2, . . .)n), where α(r1, r2, . . .) is
the unique positive real root (zero) of the function f (x) =
1 − ∑

x−ri where all ri > 0. As an example, consider
an ILP model with only binary variables and suppose that
a branching scheme can be constructed such that at each
branch at least either 1 or 3 variables can be fixed. Then,
we have T (n) ≤ ∑

T (n − 1) + T (n − 3) + O(p(n))

and we get T (n) = O∗(αn) with α = largest real root of
1 − 1

α
− 1

α3 = 0, that is α3 = α2 + 1, namely α ≈ 1.4656,
and hence T (n) = O∗(1.4656n). This value can actually
be expressed by the following mathematical programming
model

min α (31)

α3 − α2 ≥ 1 (32)

α ≥ 0 (33)

In the context of branch-and-reduce algorithms, the
measure-and-conquer paradigm has been proposed in Fomin
et al. (2009), which is based upon a more elaborated design
of a non-straightforward measure of the subproblems sizes.
Suchmeasure is used to lower bound theprogressmadeby the
algorithm at each branching step and may exploit behaviors
of the algorithm that a standard measure might not be able to
get leading typically to an improvedworst-case time analysis.
Here, we analyze a standard branch-and-reduce algorithm
for the maximum independent set (MIS) problem and how

it can be strongly improved by means of the measure-and-
conquer paradigm that embeds to this extent the solution of
a nonlinear mathematical programming model. In the MIS
problem, given a graph G(V, E), we search for a maximum
cardinality subset I ⊂ V of vertices that does not induce any
edges. It is well known that theMIS problem is polynomially
solvable if all vertices have degree ≤ 2 (∀i ∈ V di ≤ 2).
Alternatively, G contains a vertex j of degree d j ≥ 3. Con-
sider a standard branch-and-reduce exact algorithm where a
classical binary branching scheme on some vertex j where
j is either selected or discarded. The only peculiarity is that
we repeat branching on the largest degree vertex j , that is
d j = dmax until d j ≤ 2, ∀ j (once d j ≤ 2, ∀ j , the remaining
problem is solved to optimality in polynomial time). Then at
each branch, we have

1. j /∈ I ;
2. j ∈ I −→ I cannot contain any neighbor of v.

In the first case, one vertex is fixed, while in the second
case, d j + 1 vertices are fixed ( j plus all neighbors of j).
As d j ≥ 3, the worst case occurs for d j = 3. Hence, the
induced recursion is T (n) ≤ T (n−1)+T (n−4)+O(p(n)).
Correspondingly, by solving the related mathematical pro-
gramming model

min α (34)

α4 − α3 ≥ 1 (35)

α ≥ 0, (36)

we get T (n) = O∗(1, 3803n).
In the above branch-and-reduce algorithm, for each level

of the search tree, we define as fixed those vertices that have
already been selected or discarded, while we define as free
the other vertices.

Now, consider using the measure-and-conquer paradigm.
We do not count in the measure the fixed vertices, and we
count with weight wh = w[dh ] the free vertices h where
the vertex j to be selected for branching is the one with
largest degree that is with largest weight. We take also into
account the following known reduction rule: if we encounter
a subproblem with a vertex h having degree 1, then h can be
included without loss of optimality in I , and its neighbor can
be discarded. Then, we impose

0 = w[1] ≤ w[2] ≤ w[3] ≤ · · · ≤ w[6] = w[n] = 1 (37)

that is, the weights of the free vertices are strictly increasing
in their degrees and that all free vertices with degree ≥ 6
have weight = 1 (while w[1] = 0 as vertices with just one
neighbor can be immediately fixed. We also get recurrences
on the time T (p) required to solve instances of size p, where
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the size of an instance is the sumof theweights of the vertices.
Since initially p ≤ n, the overall running time is expressed
as a function of n. This is valid since when p = 0, all vertices
have been fixed. Now consider the branching. If we discard j ,
vertex j is fixed and d j vertices (the neighbors of j) decrease
their degree and correspondingly their weight by one unit. On
the other hand, if we select j , d j other vertices (the neighbors
of j) are discarded, that is d j + 1 vertices are fixed. Hence,
the recurrence becomes

T (p) ≤ T

⎛

⎝p − w[dmax] −
∑

h∈N ( j)

(
w[dh ] − w[dh−1]

)
⎞

⎠

+ T

⎛

⎝p − w[dmax] −
∑

h∈N ( j)

w[dh ]

⎞

⎠ + p(n). (38)

To compute theworst-case complexity under themeasure-
and-conquer paradigm, we have to compute the best value
of the weights w[2], . . . , w[n] such that recurrence (38) is
respected for any possible value of dmax with 3 ≤ dmax ≤ n
as the value of dmax may change in the various branches of
the search tree.

To avoid a combinatorial explosion of the different sub-
cases of (38) with respect to the possible degrees of the
neighbors of the vertex j selected for branching, we impose
that

w[ j] − w[ j−1] ≤ w[ j−1] − w[ j−2], j = 3, . . . , n. (39)

where we recall from (37) that w[1] = 0 and w[6] = . . . =
w[n] = 1. Also, we slightly modify the recurrence. Indeed,
from (37) we have that

∑

h∈N ( j)

w[dh ] ≥
∑

h∈N ( j)

w[2] (40)

always holds as the smallest weight greater than zero is w2.
Finally, from (37), (39), and (40), we have that the following
recurrence always holds

T (p) ≤ T
(
p − w[dmax] − dmax

(
w[dmax] − w[dmax−1]

))

+ T

⎛

⎝p − w[dmax] −
∑

h∈N ( j)

w[2]

⎞

⎠ (41)

where there is noneed to consider the recurrence fordmax ≥ 8
as w[k] − w[k−1] = 0 for k ≥ 7. All together, we need
to guarantee that recurrences (41) for 7 ≥ dmax ≥ 3, and
constraints (37) and (39) are satisfied simultaneously.

This corresponds to a nonlinear programming model of
the form:

min α (42)

αw[ j]+ j∗w[2] − α( j∗w[2]− j∗(w[ j]−w[ j−1])) ≥ 1, j = 3, . . . , 7
(43)

w[ j] ≤ w[ j+1], j = 2, . . . , 5 (44)

w[6] = w[7] = 1, (45)

w[ j] − w[ j−1] ≤ w[ j−1] − w[ j−2], j = 3, . . . , 6 (46)

α ≥ 0, (47)

where constraints (43) correspond to recurrences (41), con-
straints (44) and (45) correspond to constraints (37), and
constraints (46) correspond to constraints (39), respectively.
The corresponding optimal solution is α = 1.3496. Thus, we
have T (n) = O∗(1.3496n). Notice that if the recurrence (38)
is kept for dmax = 3, 4 with all possible related (4 for dmax =
3 and 15 for dmax = 4) subcases, while recurrence (41) is
used for dmax ≥ 5, then we obtain T (n) = O∗(1.3186n).
Notice also that the currently best available exact algorithm
(that uses the measure-and-conquer paradigm) for the max-
imum independent set problem [see Bourgeois et al. (2012)
reaches T (n) = O∗(1.2114n)].

5 Conclusions

We have considered in this work the application of MP/LP
modeling in various fields related to combinatorial optimiza-
tion with emphasis on scheduling problems. We have seen
that a tailored MP model is very efficient in minimizing the
total weighted completion time with rejection on a single
machine. Similarly, we have seen that the bicriterion sin-
gle machine problem of searching for the non-dominated
solution when minimizing both the maximum earliness and
the number of tardy jobs can be satisfactorily solved by
means of a positional completion times LP model. Also, we
have discussed the application of LPmodeling for tightening
bounds in approximation results. Notice that such approach
applied here to a scheduling problem under a re-optimization
framework and to the Traveling Salesman problem can
be easily generalized to sequencing problems where the
sequences reached by the proposed algorithm can be easily
detected. Finally, an example of MP modeling has been pro-
vided within the so-called measure-and-conquer paradigm
for exact exponential branch-and-reduce paradigm.

We believe that MP/LP modeling remains a fantastic tool
for combinatorial optimizers. Nonetheless, several steps are
still to come, for instance, the generation of an efficient
MP/LP model for the well known minimum makespan job-
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shop problem (J ||Cmax) remains a formidable challenge for
the OR community!
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