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Abstract The application of the Late Acceptance Hill-
Climbing (LAHC) to solve the High School Timetabling
Problem is the subject of this manuscript. The original algo-
rithm and two variants proposed here are tested jointly with
other state-of-art methods to solve the instances proposed in
the Third International Timetabling Competition. Following
the same rules of the competition, the LAHC-based algo-
rithms noticeably outperformed the winning methods. These
results, and reports from the literature, suggest that theLAHC
is a reliablemethod that can competewith themost employed
local search algorithms.

Keywords Late Acceptance Hill-Climbing · Third
International Timetabling Competition · High School
Timetabling · Local search

1 Introduction

The High School Timetabling problem (HSTP) is faced by
many educational institutions around the world. A solution
for this problem consists of an assignment of timeslots and
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resources to the events, respecting several constraints. Gen-
erally, this assignment is repeated weekly, until the end of
the semester. Beyond its practical importance, this problem
is NP-Hard (Garey and Jonhson 1979), which justifies the
intense efforts dedicated by the Operations Research and
Computational Intelligence communities in proposing meth-
ods for solving it (Dorneles et al. 2014;Moura and Scaraficci
2010; Pillay 2013).

The problem relevance and complexity motivated the
organization of three International Timetabling Competi-
tions (ITC), in which researchers could test their approaches
in the same computational environment. The first competi-
tion (ITC2003) (IDSIA 2012) was won by Kostuch (2005),
with a 3-phase local search-based algorithm. The second one
(ITC2007) (McCollum 2012) was won by Muller (2009),
with a variation of the Simulated Annealing algorithm (SA).
The last one (ITC2011) (McCollum 2012) was won by
Fonseca et al. (2014), who proposed a hybrid approach com-
bining SA and Iterated Local Search (namely SA-ILS).

The competition results indicate that local searchmethods
are currently leading to the best results of the HSTP. Among
these methods, it is possible to highlight the SA algorithm
(Kirkpatrick et al. 1983), which was used by the three com-
petition winners. Approaches based on integer programming
were also proposed (Kristiansen et al. 2014; Santos et al.
2012), but they are restricted to small instances due to their
computational complexity.

Anew technique, applied to theHSTPmodel introduced in
ITC2011, is proposed in this paper. This technique is based on
a local search method called Late Acceptance Hill-Climbing
(LAHC), proposed by Burke and Bykov (2012). This algo-
rithm was modified, generating two new variants that intend
to overcome some limitations of the original method. The
new algorithms obtained remarkable results, outperforming
the best marks from the ITC2011 winner. Moreover, the
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implementation of the algorithm is quite easy, and, accord-
ing to the author, it can be extended to other combinatorial
optimization problems without major adaptations.

The outline of this paper is structured as follows. Sec-
tion 2 presents the model of the HSTP adopted in ITC2011.
The proposed solution approaches are presented in Sect. 3.
Results for computational experiments are given in Sect. 4.
Finally, concluding remarks are drawn in Sect. 5.

2 High school timetabling problem model

The Third International Timetabling Competition moti-
vated the development of methods for solving high school
timetabling problems. It also encouraged the alignment of
research and practice, making real-world instances available.
The organizers also provided a benchmark to adjust process-
ing times and a solution validator.

The instances were specified in the XHSTT format,
which is an XML (extensible markup language)-based for-
mat adapted to describe timetabling problems. Post et al.
(2014) also highlighted that this format can specify instances
of other timetabling problems, beyond the scholar context.

The considered model of HSTP came up with the goal
of providing a generic model capable of addressing various
features of the HSTP in real-world situations (de Haan et al.
2007; Kingston 2005; Nurmi and Kyngas 2007; Post et al.
2014; Santos et al. 2012; Valourix and Housos 2003; Wright
1996). The model is split into four main entities, which are
described in the following subsections.

2.1 Times

The times entity consists of a single Time (timeslot) or a set
of times, called a Time Group. The timeslots are commonly
grouped by Day (e.g., timeslots for Monday).

2.2 Resources

The resources entity consists of a single Resource, a set of
resources (Resource Group), or a Resource Type. Each
single resource belongs to a specific resource type. In the
context of school timetabling, the most common resource
types are (Post et al. 2014):

class a group of students who attend the same events.
Important constraints to the classes are controlling
idle times and the number of lessons per day;

teacher a teacher can be preassigned to attend an event. In
some cases, pre-assignment is not possible, and the
teacher should be assigned according to qualifica-
tions and workload limits; and

room most events take place in a room. One room has a
certain capacity and a set of features.

2.3 Events

An Event usually represents a set of lessons about a subject.
It demands a set of times and resources to occur. This assign-
ment is the main goal of any timetabling solver. Events may
be grouped into an Event Group. A timeslot assigned to an
event is called a Meet, and a resource assigned to an event
is called a Task. Every XHSTT solver is also responsible
for breaking an event into sub-events to be spread over the
days whenever it is necessary. Other kinds of events, such
as meetings, are allowed by the model (Post et al. 2014). An
event has the following attributes:

– duration, which represents the number of times that
should be assigned to an event;

– workload, which will be added to the total workload of
resources assigned to the event (optional);

– preassigned resources to attend the event (optional); and
– preassigned timeslots to attend the event (optional).

2.4 Constraints

Post et al. (2014) groups the Constraints into three cate-
gories: basic scheduling constraints, event constraints, and
resource constraints. The objective function f (.) is cal-
culated in terms of violations of the constraints. These
violations are penalized according to the weight of each
constraint, defining a minimization problem. They are also
divided into hard constraints, whose attendance is manda-
tory, and soft constraints,whose attendance is desirable. Each
instance can define whether a constraint is hard or soft and its
weight. For more details, please refer to Post et al. (2014). A
mathematical programming formulation of all XHSTT con-
straints is given by Kristiansen et al. (2014).

2.4.1 Basic scheduling constraints

– Assign Time assigns the required number of timeslots
to each event;

– Assign Resource assigns the required resources to
each event;

– Prefer Times indicates that some events have prefer-
ence for particular timeslots; and

– Prefer Resources indicates that some events have
preference for particular resources.

2.4.2 Event constraints

– Link EventsSchedules a set of events to the same times-
lots;

– Spread Events Specifies that the number of occur-
rences of an event in a timeslot group should lie between
a minimum and a maximum value. This constraint can

123



J Sched (2016) 19:453–465 455

be used, for example, to define a daily limit of lessons of
a given subject;

– Avoid Split AssignmentsAssigns the same resources
to all occurrences of the same event. With this constraint,
for example, one can enforce the assignment of all occur-
rences of an event to the same room;

– Distribute Split Events Places limits on the number
of sub-events of a particular duration that may be derived
from an event. This constraint may be important in some
institutions, since a large number of consecutive lessons
of the same subject can affect the performance of the
students; and

– Split Events Limits the number of non-consecutive
meets that an event can be scheduled and its duration.
One example of this constraint is to ensure that an event
of duration four is split into two sub-events of duration
two.

2.4.3 Resource constraints

– Avoid Clashes Assigns the resources without clashes
(i.e., without assigning the same resource in more than
one event at a given time);

– Avoid Unavailable TimesStates that some resources
are unavailable to attend any event at certain times. For
instance, this constraint can be used to avoid assigning a
teacher to a timeslot that they cannot attend;

– Limit Workload Restricts the workload of the
resources between minimum and maximum bounds;

– Limit Idle Times Sets the number of idle times in each
time group to lie between a minimum and a maximum
bound for each resource. Typically, a time group consists
of all timeslots of a given day of the week. This constraint
is used to avoid inactive timeslots between active ones in
the schedule of a given resource;

– Limit Busy Times The number of busy times in each
day should lie between minimum and maximum bounds
for each resource. A high number of allocations in the
same day can affect student and teacher performances;
and

– Cluster Busy Times The number of time groups with
a timeslot assigned to a resource should lie betweenmini-
mumandmaximum limits. This can be used, for example,
to concentrate teacher’s activities into a minimum num-
ber of days.

3 Solution approach

The proposed approach is composed of twomain steps: (i) an
initial solution is generated using the Kingston High School
TimetablingEngine (KHE) constructive algorithm (Kingston
2012a); (ii) this solution is used as a starting point for the

LAHC metaheuristic, or one of our proposed variants, in
order to find improved solutions using multi-neighborhood
local search. These elements are explained in the next sub-
sections.

3.1 Build method

TheKHE is a platform for handling instances of the addressed
problem. It also provides a solver, which is used to generate
initial solutions because it can find solutions of reasonable
quality in a short time (Kingston2012b).Avery brief descrip-
tion of theKHEwill be given in the next paragraphs. Formore
details, please refer to Kingston (2014, 2012b).

The KHE generates a solution through a three-step
approach. The first one is the structural phase. It constructs
an initial solution with no time or resource assignments and
it creates structures for the next phases. The structural phase
splits events into sub-events whose durations depend on con-
straints related to how events should be split (namely, split
events, distribute split events, and spread events), and groups
the sub-events (the so-called meets) into sets called nodes.
Sub-events derived from the same event go into the same
node. Sub-events whose original events are connected by
spread events or avoid a split-assignments constraint also lie
in the samenode.Events connected by link-events constraints
have their meets connected in such a way that whenever
a time is assigned to one of these meets, this assignment
is also extended to the other connected meets. Each meet
also contains a set of times called domain. Only times from
this set may be assigned to the meet. Domains are chosen
based on preferred time constraints. Ameet contains one task
for each demanded resource in the event that it was derived
from. Each task also contains a set of resources of the proper
type called a domain. When the resource is preassigned, the
domain contains only the preassigned resource; otherwise,
this domain is based on preferred resource constraints. This
step also assigns preassigned times and resources.

Next, the time assignment phase assigns a time to each
meet. For each resource to which a hard avoid-clashes con-
straint applies, it builds a layer—the set of nodes containing
meets preassigned to that resource. After merging layers
wherever one node is a subset of another, and sorting them
in such a way that the most difficult layers (with fewer avail-
able choices for assignment) come first, it assigns times to
the meets of each layer. This assignment is made through a
minimum-cost matching between meets of the given layer
and times. Each edge of such a graph has a cost according to
the objective function cost of this assignment.

Finally, comes the resource assignment phase. For each
resource type, an iteration of the following procedure is per-
formed. If the resource assignment for this resource type
is constrained by an avoid split assignments constraint, a
resource packing algorithm is invoked. Otherwise, a sim-

123



456 J Sched (2016) 19:453–465

Fig. 1 Example of event swap
(Fonseca et al. 2014)

Fig. 2 Example of event move
(Fonseca et al. 2014)

ple heuristic is used. A packing of a resource consists in
finding assignments of tasks to the resource that makes the
solution cost as small as possible, using the resource as
much as possible under its workload limits. The resources
are placed in a priority queue in which the most demanded
are prioritized. At each iteration, a resource is dequeued and
processed. The packing procedure consists of a simple binary
tree search over the elective tasks of a given resource. For
each task, from the most constrained to the least, the sim-
ple heuristic consists in assigning the resource that provides
more improvement on the objective function. It is possible
to estimate the amount of tasks whose resource assignment
is impossible (ideally 0). This is performed through a maxi-
mummatching in an unweighed bipartite graph, where tasks
are demand nodes and resources are supply nodes. This esti-
mate is called resource assignment invariant and it is kept
minimal through the whole resource assignment process.

3.2 Neighborhood structure

The neighborhood structure N (s) considered in the proposed
methods is composed of six types of moves.1 This neighbor-
hood structure is very similar to the one proposed by the
winner of ITC2011 (Fonseca et al. 2012, 2014), except that
the move Permute Resources was removed. This move is
computationally expensive and it was not contributing sig-
nificantly to achieve good solutions. The considered moves
are presented in the following subsections.

3.2.1 Event swap (es)

Two events e1 and e2 are selected and have their timeslots t1
and t2 swapped. Figure 1 presents an example of this move.

1 We denote by Nk(s) the subset of Nk(s) involving only moves of type
k.

3.2.2 Event move (em)

An event e1 is moved from its original timeslot t1 to a new
timeslot t2. Figure 2 presents an example of this move.

3.2.3 Event block swap (ebs)

Similarly to esmove, the Event Block Swap swaps the times-
lots of two events e1 and e2, but, when the events have
different durations, e1 is moved to the last timeslot occu-
pied by e2. This move allows timeslot swaps without losing
the allocation contiguity. Figure 3 presents an example of this
move.

3.2.4 Resource swap (rs)

Two events e1 and e2 have their assigned resources r1 and r2
swapped. Such an operation is only allowed if the resources
r1 and r2 are of the same type (e.g., both have to be teachers).
Figure 4 presents an example of this move.

3.2.5 Resource move (rm)

The resource r1 assigned to an event e1 is replaced by a new
resource r2, randomly selected from the available resources
that can be used to attend e1. Figure 5 presents an example
of this move.

3.2.6 Kempe move (km)

Two timeslots t1 and t2 are selected. The events assigned to
t1 and t2 are listed and represented as nodes in a graph. If two
nodes (events) n1 and n2 in this graph share resources, they
are connected with an edge. Edges are created only between
nodes assigned in distinct timeslots; thus, the generated graph
is a bipartite graph known as conflict graph. Every edge in the
conflict graph also has aweight, formed by the cost difference
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Fig. 3 Example of event block
swap (Fonseca et al. 2014)

Fig. 4 Example of resource
swap (Fonseca et al. 2014)

Fig. 5 Example of resource
move (Fonseca et al. 2014)

in the objective function assuming the exchange of timeslots
between the events in the pair (n1, n2). Afterward, themethod
looks for the path with the lowest cost in the conflict graph
and it makes the exchange of timeslots in the chain. This
procedure is similar to that proposed by Tuga et al. (2007).
Figure 6 presents an example of this move.

3.2.7 Move selection

The move k in N (s) is randomly selected in order to
generate a neighbor. If the instance requires the assign-
ment of resources (i.e., has at least one Assign Resource

constraint), the moves are chosen based on the following
probabilities: es = 0.20, em = 0.38, ebs = 0.10, rs =
0.20, rm = 0.10, and km = 0.02. Otherwise, the moves rs
and rm are not used and the probabilities become es = 0.40,
em = 0.38, ebs = 0.20, and km = 0.02. These values were
adjusted based on empirical observation.

3.3 Late acceptance hill-climbing

The LAHCmetaheuristic was proposed by Burke and Bykov
(2008). This algorithm is an adaptation of the classical Hill-
Climbing method. It relies on comparing a new candidate
solution with the last lth solution considered in the past, in
order to accept or to reject it. Note that the candidate solution
may be accepted even if it is worse than the current solution,
since it is compared to the solution of l iterations before.

This metaheuristic was created with three goals in mind:
to be a one-point search procedure that does not employ an
artificial cooling schedule, such as SA; to effectively use
the information collected during previous iterations of the
search; and to employ a simple acceptance mechanism (i.e.,
almost as simple as Hill-Climbing) (Burke and Bykov 2012).

In this method, a vector p = p0, . . . pl−1 with costs of
previous solutions is stored. Initially, this list is filled with the
cost of the initial solution s: pk ← f (s) ∀k ∈ {0, ..., l − 1}.
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Fig. 6 Example of kempe
move (Fonseca et al. 2014)

At each iteration i , a candidate solution s′ is generated. The
candidate solution is accepted if its cost is less than or equal
to the cost stored on the i mod l position of p. Moreover, if
this solution is better than the best solution s∗ found so far,
a new incumbent solution is stored. Afterward, the position
v = i mod l of p is updated: pv ← f (s

′
). This process

repeats until a stopping condition is met.
The implementation of the LAHC is illustrated in Algo-

rithm 1. Note that timeout was adopted as the stopping
condition for the algorithm. This decision is discussed in
Sect. 4. Some successful examples of application of LAHC
can be found in Abuhamdah (2010), Özcan et al. (2009),
Verstichel and Vanden Berghe (2009).

Algorithm 1: Developed implementation of LAHC
Input: Initial solution s and parameter l.
Output: Best solution s∗ found.
pk ← f (s) ∀k ∈ {0, ..., l - 1};1
s∗ ← s;2
i ← 0;3
while elapsedT ime < timeout do4

Generate a random neighbor s
′ ∈ N (s);5

v ← i mod l;6

if f (s
′
) ≤ pv then7

s ← s
′
;8

if f (s) < f (s∗) then9
s∗ ← s;10

pv ← f (s);11
i ← i + 1;12

return s∗;13

Since it is relatively recent, variations of the LAHCmeta-
heuristic were not extensively explored yet. Therefore, the
combination of LAHC with other methods and strategies is
an open field for experimentation (Burke and Bykov 2012).
In this paper we propose and evaluate computationally two
LAHC variants, one of which is a hybrid version including
SA.

3.3.1 Stagnation-free LAHC

In late stages of the LAHC execution, it is often very hard
to improve the current solution. The algorithm can lead to a
list with all l positions occupied with the same cost value,
even for large values of l. This behavior can make the LAHC
incapable of escaping from local minima, since worse solu-
tions are never accepted. A new variation of the LAHC, the
so-called Stagnation-Free LAHC or simply sf-LAHC, is pro-
posed in this paper in order to handle such situations.

In the sf-LAHC method, the algorithm reheats the sys-
tem when it reaches a stagnation condition. In the proposed
implementation, the reheat consists of retrieving the vec-
tor of costs from the last time in which one improvement
occurred, denoted by p′. This means that various worsen-
ing moves may become acceptable after this list update. The
algorithm is considered on stagnation when it performs n
iterations without improvement. The authors suggest to set n
as a function of l, in order to simplify the parameter tuning
process. The Stagnation-Free variant of LAHC is presented
in Algorithm 2. In the experiments, we considered always
n = 1000 × l.
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Algorithm 2: sf-LAHC
Input: Initial solution s and parameters l and mult .
Output: Best solution s∗ found.
n ← l × mult ;1

pk ← p
′
k ← f (s) ∀k ∈ {0, ..., l - 1};2

s∗ ← s;3
i ← 0;4
while elapsedT ime < timeout do5

Generate a random neighbor s
′ ∈ N (s);6

v ← i mod l;7

if f (s
′
) ≤ pv then8

s ← s
′
;9

if f (s) < f (s∗) then10
s∗ ← s;11
p′ ← p;12
i ← 0;13

pv ← f (s);14
i ← i + 1;15
if i = n then16

p ← p′;17
i ← 0;18

return s∗;19

3.3.2 Simulated annealing—LAHC

Proposed by Kirkpatrick et al. (1983), the metaheuristic SA
is a probabilistic method based on an analogy to thermo-
dynamics, simulating the cooling of a set of heated atoms.
This technique starts its search from any initial solution. The
main procedure consists of a loop that randomly generates,
at each iteration, one neighbor s′ of the current solution s.
Movements are probabilistically selected considering a tem-
perature T and the cost variation obtained with the move,
�.

This algorithm was part of the solvers in all ITC winners
(Fonseca et al. 2012; Kostuch 2005; Muller 2009). It also
achieved good results in this model of the problem, espe-
cially for larger instances. Therefore, it was evaluated in a
hybrid approach with the LAHC algorithm. Since SA per-
formance is not strongly affected by the fitness of the initial
solution, it has been considered a mixed algorithm, with the
SA algorithm being executed in the initial solution, gener-
ating a s∗ solution, and the LAHC method being executed
further, to polish this solution, generating a final solution
s∗∗. A combination of SA and sf-LAHC variant of LAHC
was also tested. A mixed approach with as-LAHC was not
presented because it achieved poor results.

The implementation of SA which is used in this work
is described in Algorithm 3. Parameters were set as α =
0.97, T0 = 1, and SAmax = 10,000. The method
selectMovement () chooses a move according to the neigh-
borhood probabilities previously defined.

Algorithm 3: Developed implementation of SA
Input: f (.), N (.), α, SAmax, T0, s, timeout
Output: Best solution s∗ found.
s∗ ← s; I terT ← 0; T ← T0; reheats ← 0;1
while elapsedT ime < timeout do2

while I terT < SAmax do3
I terT ← I terT + 1;4
k ← selectMovement ();5

Generate a random neighbor s
′ ∈ Nk(s);6

Δ = f (s
′
) − f (s));7

if Δ < 0 then8

s ← s
′
;9

if f (s
′
) < f (s∗) then s∗ ← s

′
;10

else11
Take x ∈ [0, 1];12

if x < e−�/T then s ← s
′
;13

T ← α × T ;14
I terT ← 0;15

return s∗;16

4 Computational experiments

All experiments were executed on an Intel ® i5 2.4 GHz
computer, 4 GB of RAM, under an Ubuntu 11.10 operating
system. The software was coded in C++ and compiled with
GCC 4.6.1. The obtained results were validated by a HSE-
val validator.2 The stopping criterion was 1,500 s timeout,
adjusted according to the ITC2011 provided benchmark.

The results are expressed by the pair x/y, where x stands
for the feasibility measure and y for the quality measure.
The proposed solver, along with solutions and reports, can
be found at GOAL-UFOP website.3 The interested reader is
invited to validate the results.

4.1 Dataset characterization

The set of instances available from ITC2011 (Post et al. 2014)
is composed of problems frommany countries, ranging from
small to large and challenging instances. The main features
of the considered instances are presented in Table 1.

4.2 Parameter setting

One of the key advantages of LAHC is the small number
of parameters to be set. Actually, the algorithm has only one
parameter, which is the length l of p vector. As mentioned by
Burke and Bykov (2008), higher values of l make the search
not only more suitable to find better results but also imply
a higher processing time. On the other hand, low values of

2 http://sydney.edu.au/engineering/it/~jeff/hseval.cgi.
3 Code, solutions and reports are available at http://www.goal.ufop.br/
softwares/hstt.
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Table 1 Features of considered
instances from ITC2011

Instance Timeslots Teachers Rooms Classes Lessons

BrazilInstance2 25 14 6 150

BrazilInstance3 25 16 8 200

BrazilInstance4 25 23 12 300

BrazilInstance6 25 30 14 350

FinlandElementarySchool 35 22 21 291 445

FinlandSecondarySchool2 40 22 21 469 566

Aigio1stHighSchool10-11 35 37 208 532

Italy_Instance4 36 61 38 1101

KosovaInstance1 62 101 63 1912

Kottenpark2003 38 75 41 18 1203

Kottenpark2005A 37 78 42 26 1272

Kottenpark2008 40 81 11 34 1118

Kottenpark2009 38 93 53 48 1301

Woodlands2009 42 40 1353

Spanishschool 35 66 4 21 439

WesternGreeceUniversity3 35 19 6 210

WesternGreeceUniversity4 35 19 12 262

WesternGreeceUniversity5 35 18 6 184

l make the search faster but it can lead to poor results. For
instance, if one considers l = 1, themethod performs exactly
like the classical Hill-Climbing method.

In this sense, experiments considering many values of l:
l = {1, 10, 100, 500, 1000, 5000, 10,000, 20,000, 50,000}
have been executed. The instances BrazilInstance2, ItalyIn-
tance4, SpainSchool, KosovaInstance, and NetherlandsKot-
tenpark2009 have been chosen to determinate which value
has the better average performance. These instances were
chosen since they have different sizes and features. Tables 2
and 3 present the results obtained under the considered con-
figurations.

The poor performance observed for l = 1 was expected,
since the algorithms become identical to the original Hill-
Climbing method. In general, it is possible to detect two
different behaviors:

– for small instances, higher l values imply better perfor-
mance, since the algorithm capacity of escaping from
local optima increases. This can be seen for instance
BrazilInstance2 in Table 3.

– for large instances, the performance of the method
increases with l, but after some point it starts to decrease
because the algorithm does not reach convergence before
timeout in these cases. The instance KosovaInstance1,
whose convergence curves are shown in Fig. 7, is an
example of such a case. From this figure, it is possible to
note that both, excessively high or excessively low values
of l lead to bad results.

Based on the overall performances of the methods, we
fixed l = 500 to perform the remaining experiments. This
size has been chosen because it has shown to be a good com-
promise between small and large instances.

4.3 Obtained results

Table 4 presents the results obtained with the LAHCmethod
and its variants. The results obtained with the KHE engine
(initial solution), the ITC2011 winner approach (SA-ILS),
and the stand alone SA are also presented for comparison.
The results presented are average values of five runs, with
random seeds. The value of “Average ranking” was calcu-
lated following the ITC2011 rules: each solutionmethodwas
ranked between 1 and 5 on each instance (1 being the best
and 5 being the worst), and the average of these ranks was
taken. The best results are highlighted in bold.

The Algorithm SA-sf-LAHC has been compared with the
other results from ITC2011, since it was the algorithm with
better performance among the proposed methods. Such a
comparison is shown in Table 5, where bold values highlight
the best result found for each instance. Decimal values were
rounded to the nearest integer. Again, the “Average ranking”
is calculated following the ITC2011 rule. In a brief descrip-
tion of ITC2011 finalists, GOAL team (Fonseca et al. 2012)
developed a SA-ILS hybrid local search approach; HySTT
team (Kheiri et al. 2012) developed amethodbasedonHyper-
heuristics; Lectio team (Srensen et al. 2012) used anAdaptive
Large Neighborhood Search; and HTF team (Romrs and
Homberger 2012) used an Evolutionary Algorithm.
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Table 2 Experiments
considering several values of
parameter l on the original
LAHC

Brazil Italy Kosova Netherlands Spain
Size of l Instance2 Instance4 Instance1 Kottenpark09 School1

l = 1 1/67 0/391 1/114 27/5740 0/981

l = 10 1/67 0/388 0/98 28/7735 0/561

l = 100 1/46 0/587 0/40 28/4745 0/601

l = 500 0/74 0/82 0/66 28/4745 0/681

l = 1000 0/149 0/154 0/54 23/9050 0/1001

l = 5000 0/61 0/63 0/1430 26/13,955 0/460

l = 10,000 0/78 0/85 162/12,365 22/7165 0/686

l = 20,000 0/58 0/109 429/22,335 25/10,375 0/487

l = 50,000 0/75 0/133 811/27,396 24/52,570 0/557

Table 3 Experiments
considering several values of
parameter l on sf-LAHC

Brazil Italy Kosova Netherlands Spain
Size of l Instance2 Instance4 Instance1 Kottenpark09 School1

l = 1 1/67 0/699 1/113 34/5750 0/991

l = 10 0/55 0/598 0/99 29/7610 0/601

l = 100 0/55 1/792 0/40 29/10,865 0/601

l = 500 0/40 0/71 0/66 31/4995 0/1027

l = 1000 0/61 0/53 0/54 23/12,110 0/1002

l = 5000 0/61 0/69 0/1285 24/8940 0/4168

l = 10,000 0/56 0/99 161/12,420 22/7495 0/4176

l = 20,000 0/41 0/128 427/21,517 28/86,875 0/4163

l = 50,000 0/16 0/9396 814/29,172 22/395,120 0/4163

Fig. 7 Behavior of LAHC
regarding the l parameter to
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4.4 Discussion of results

In some instances, even the production of feasible solutions is
complicated, specially when most constraints are set as hard
ones. The LAHCmethod and its variants were able to find 12
feasible solutions out of the 18 instances in the considered
dataset, one more than the ITC2011 winner. In Table 4, it

is possible to see that the LAHC algorithm and its variants
outperformed the SA-ILS solver.

When compared to the other methods, the stand-alone
SA worked better in large instances than in small ones. Sur-
prisingly, the SA algorithm had better performance than the
hybrid SA-ILS approach. When it is compared to the origi-
nal LAHC, it is possible to note that the LAHC was slightly
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better than the SA. This is an interesting result, since LAHC
is a new metaheuristic and it is still open for improvements.
In addition, the SA is known as a good algorithm for dealing
with scheduling problems, which makes the observed result
a good achievement.

The Stagnation-Free version of LAHC obtained good
results, outperforming its original version in several instances.
This could be noted specially in small instances, in which
sf-LAHC can keep some improvement until the timeout is
reached instead of the original LAHC, which probably got
stuck at a local optima. Finally, it is important to highlight
the remarkable performance observed for the combination of
LAHC and SA proposed in this work (SA-sf-LAHC). This
heuristic obtained the best results and, compared to the final-
ist results (see Table 5), it is possible to conclude that it would
win the competition by a large margin: it reached the best
result in 14 out of 18 instances, leading to an overall rank-
ing of 1.42. A two-tail Welchs T-test, comparing GOAL and
SA-sf-LAHC rankings, reinforced the assumption of SA-sf-
LAHC superiority: it has obtained a p-value of 8.0254e−06,
which widely supports the rejection of the null hypothesis
(equivalent algorithms) under the confidence level of 95 %.

5 Concluding remarks

This work presented an application of the Late Acceptance
Hill-Climbing algorithm to the HSTP model proposed in the
ITC2011. In addition, some variants of the LAHC method
were proposed and evaluated computationally.

The LAHC algorithm obtained good results. It was able
to outperform the stand-alone SA approach and the ITC2011
winner approach, a SA-ILS method. The LAHC variants
proposed in this paper also reached promising results. The
Stagnation-Free LAHC (sf-LAHC) was able to outperform
its original version. The combinations of LAHC and sf-
LAHC with SA were tested, and the mixed SA-sf-LAHC
algorithm achieved the best results to this problem up to now.
One great feature of LAHC is its simplicity: it is very easy to
implement and it relies only on one parameter to be tuned.

Some possible future extensions of this work are (i) to
develop and to evaluate other variations of LAHC as sug-
gested by Burke and Bykov (2008); (ii) to implement and
to evaluate other neighborhood moves; and (iii) to develop
a graphical user interface to allow the use of the solver by
schools and universities.
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