
J Sched (2016) 19:43–60
DOI 10.1007/s10951-015-0457-6

A genetic algorithm for the robust resource leveling problem

Hongbo Li1,2,3 · Erik Demeulemeester2

Published online: 16 October 2015
© Springer Science+Business Media New York 2015

Abstract The resource leveling problem (RLP) involves
the determination of a project baseline schedule that speci-
fies the planned activity starting times while satisfying both
the precedence constraints and the project deadline con-
straint under the objective of minimizing the variation in
the resource utilization. However, uncertainty is inevitable
during project execution. The baseline schedule generated
by the deterministic RLP model tends to fail to achieve the
desired objective when durations are uncertain. We study the
robust resource leveling problem in which the activity dura-
tions are stochastic and the objective is to obtain a robust
baseline schedule that minimizes the expected positive devi-
ation of both resource utilizations and activity starting times.
We present a genetic algorithm for the robust RLP. In order
to demonstrate the effectiveness of our genetic algorithm,
we conduct extensive computational experiments on a large
number of randomly generated test instances and investi-
gate the impact of different factors (the marginal cost of
resource usage deviations, the marginal cost of activity start-
ing time deviations, the activity duration variability, the due
date, the order strength, the resource factor and the resource
constrainedness).

B Erik Demeulemeester
Erik.Demeulemeester@kuleuven.be

Hongbo Li
ishongboli@gmail.com

1 School of Management, Shanghai University, Shanghai,
China

2 Research Center for Operations Management, Faculty of
Business and Economics, KU Leuven, Hogenheuvelcollege,
Naamsestraat 69, 3000 Leuven, Belgium

3 School of Economics and Management, Beihang University,
Beijing, China

Keywords Project scheduling · Robust resource leveling ·
Stochastic activity durations · Genetic algorithm

1 Introduction

In many project management situations, reducing the fluctu-
ations in the pattern of expensive renewable resource usage
over time is of crucial importance. This results in the resource
leveling problem (RLP) which involves the determination
of a project baseline schedule that specifies the planned
activity starting times while satisfying both the precedence
constraints and the project deadline constraint under the
objective of minimizing the variation in the resource utiliza-
tions.

Many exact and heuristic procedures have been devised
to solve the deterministic RLP. Exact approaches are mainly
based on dynamic programming (Bandelloni et al. 1994),
integer programming (Easa 1989; Hariga and El-Sayegh
2011), or branch-and-bound procedures (Ahuja 1976). Most
of the existingheuristics rely on shifting activitieswithin their
time slacks or priority-rule methods (Burgess and Killebrew
1962; Wiest and Levy 1977; Harris 1990). In addition, Chan
et al. (1996), Leu et al. (2000), and El-Rayes and Jun (2009)
adopt a genetic algorithm to deal with the RLP. However,
these authors do not present a computational performance
analysis and only use small examples to test their algo-
rithms. For studieswith computational performance analysis,
exact approaches based on a branch-and-bound procedure
(Neumann and Zimmermann 2000; Gather et al. 2011) and
mixed-integer programming (Rieck et al. 2012; Kreter et al.
2014) have been proposed. Rieck et al. (2012) solve instances
with up to 50 activities to optimality for the first time. For
heuristics, Neumann and Zimmermann (1999, 2000) devise
polynomial heuristics and priority-rule-based heuristics for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0457-6&domain=pdf


44 J Sched (2016) 19:43–60

the RLP. Metaheuristics based on tabu search (Neumann and
Zimmermann 2000), genetic algorithm (Ponz-Tienda et al.
2013), an iterated greedy method (Ballestín et al. 2007), and
path-relinking (Ranjbar 2013) are also studied. The path-
relinking developed by Ranjbar (2013) outperforms the best
available metaheuristic algorithms so far.

Most of the existing literature concentrates on the deter-
ministic RLP. However, uncertainty is inevitable during
project execution.Activity durationsmaybe shorter or longer
than planned, resources may break down, and due dates
may change, etc. As a result, the baseline schedule gener-
ated by the deterministic RLP model tends to fail to achieve
the desired objective. Very little work has been done to
study the RLP under activity duration uncertainties. As early
researchers, both Leu et al. (1999) and Leu and Hung (2002)
minimize the sum of the absolute differences between the
actual resource usage and the average resource usage under
activity duration uncertainty. The difference of the twopapers
is that Leu et al. (1999) model uncertain activity durations
as fuzzy numbers, while Leu and Hung (2002) treat uncer-
tain activity durations as stochastic variables. Masmoudi and
Haït (2013) investigate the fuzzy RLP with fuzzy activity
durations and workload. The above-mentioned research all
uses genetic algorithms (GAs) to solve their problems. These
GAs adopt the same encoding type, in which a chromosome
is represented as an activity starting time vector (the activity
starting time is coded as a gene value). This type of encoding
is not widely adopted in the project scheduling literature as
it suffers from solution space explosion as the project dura-
tion increases. Resource leveling has also been studied as
one objective in some multi-objective optimization litera-
ture. Zahraie andTavakolan (2009) andAshuri andTavakolan
(2012) study the multi-objective time-cost-resource opti-
mization (TCRO) problem under fuzzy environments where
they optimize project time, cost, and resource usage simul-
taneously. They also use the fuzzy set theory to model
uncertainty parameters, such as time, cost, etc. To obtain
a baseline schedule, a nondominated sorting genetic algo-
rithm (NSGA-II) and a hybrid genetic algorithm–particle
swarm procedure are used, respectively. These studies, how-
ever, do not provide any computational performance analysis,
and only small example instances are considered. Li et al.
(2015) present heuristics for producing scheduling policies
for the resource leveling problem with stochastic activity
durations. They conduct a computational performance analy-
sis for projects with up to 90 activities.

In addition, a related research topic to the RLP is the
resource loading problem. However, the resource loading
problem focuses on the manufacturing environments and
it concerns planning more than scheduling. Wullink et al.
(2004) study the flexible resource loading problem under
uncertainty in which one tries to minimize the expected
total costs consisting of a non-regular resource cost and

a tardiness penalty cost by assigning jobs to a number of
resource groups in manufacturing environments. They con-
sider uncertainties such as work content, resource capacity
levels, resource requirements and the occurrence of an activ-
ity. Wullink (2005) addresses the robust resource loading
problem under work content uncertainty with the objective
of obtaining a robust feasible resource loading schedule and
minimizing the non-regular resource cost.

The above-mentioned resource loading problem and our
paper all tackle resource leveling and robustness. How-
ever, the robustness in Wullink et al. (2004) belongs to
the quality robustness type (Herroelen and Leus 2004a;
Demeulemeester andHerroelen 2011),where theymake their
model meet the customer order due dates as much as possi-
ble. On the other hand, the robustness achieved in Wullink
(2005) is by means of splitting and shifting activities within
predefined time windows in order to cope with a work con-
tent increase and such a kind of robustness is more related to
flexibility (Herroelen and Leus 2004a). However, the robust-
ness in our problem refers to the solution robustness type
(Herroelen and Leus 2004a; Demeulemeester and Herroelen
2011) where we try to obtain stable activity start times in the
baseline schedule that areminimally disrupted during project
execution. Clearly, a baseline schedule with stable activity
start times will reduce the schedule risks, offer degrees of
freedom for rescheduling, improve the feasibility of execut-
ing the given activities, to name a few (Lambrechts et al.
2008). Besides, our model also protects the project due date
by assigning the dummy end activity a rather high start time
deviation cost which means that our model will also have a
certain quality robustness.

The fundamental approaches for project scheduling in
an uncertain environment mainly include stochastic project
scheduling, fuzzy project scheduling, and robust project
scheduling (Herroelen and Leus 2004a, 2005). Particularly,
robust project scheduling (Demeulemeester and Herroelen
2011), as a recent research direction, aims at obtaining a sta-
ble baseline schedule that can absorb anticipated disruptions
as much as possible during project execution. If the schedule
would still be disrupted by unexpected events during project
execution, reactive scheduling or reschedulingwill be needed
(Lambrechts et al. 2008; Tang et al. 2014; Van de Vonder
et al. 2007a, b). It is worth noting that the vast majority of the
research efforts devoted hitherto to robust project schedul-
ing have been almost exclusively focused on the stability in
the activity starting times. However, ensuring stable activ-
ity starting times is often not the only issue. In many cases
where the pattern of resource usage is also our concern, it
is desirable that the actually realized resource usage during
project execution deviates a little from the planned resource
usage level. In this paper, we consider reducing the positive
deviation of the resource usage. In many cases, we want to
keep the excessive usage of resources as low as possible in

123



J Sched (2016) 19:43–60 45

order to avoid some unexpected situations such as overtime
work and hiring inexperienced or expensive external man-
power. At the same time, when uncertainties come into play,
the stable predictive activity start times will make it easier
to achieve the resource leveling objective for the resulting
schedule.

To the best of our knowledge, there has been no research
that considers both resource leveling and activity start time
stability under activity duration uncertainty. The objective of
this paper is to develop and validate a GA procedure for the
robust RLP with the objective of obtaining robust baseline
schedules that minimize the expected positive deviation of
both resource utilizations and activity starting times under
activity duration uncertainty.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the robust resource leveling problem
under activity duration uncertainty. To solve this problem,
we propose a dedicated GA in Sect. 3. In Sect. 4, we provide
a description of our experimental set-up. In Sect. 5, the effec-
tiveness of our genetic algorithm is demonstrated on a large
number of randomly generated test instances and the impact
of different factors is investigated. In the final section, we
present our conclusions.

2 Problem statement

2.1 Robust resource leveling problem

The robust resource leveling problem can be described as
follows. A project network G = (N , A) is represented in the
activity-on-node format, where the set of nodes N denotes
the activities N = {1, . . . , n}, and the set of directed arcs
A represents the finish–start, zero-lag precedence relations
A ⊆ N ×N . The nodes are topologically numbered from the
single start node 1 to the single terminal node n, n = |N |,
where nodes 1 and n represent two dummy activities. The
activities are executed without preemption. The duration of
each non-dummy activity i is stochastic and is denoted as the
random variable di . We assume that di follows a known dis-
tribution (the computational results presented in Sect. 5 will
be based on a Beta distribution). Every non-dummy activity i
requires rik renewable resources for resource type k per time
period during execution (k = 1, 2, . . . , K ). The resource
usage for resource type k during time period t is denoted as
ukt : ukt = ∑

i∈At
rik , where At is the set of activities that

are in progress during time period t . Because ukt is depen-
dent on the start times of the activities and because the activity
durations are stochastic variables, ukt also becomes stochas-
tic. Every resource type k has a weight ck that denotes the
penalty cost per unit of resource type k in the situation where
the actual resource usage ukt during execution exceeds the
given resource usage ūk . Every non-dummy activity i has a

weightwi that denotes the marginal cost of the positive devi-
ation between the actual starting time si during execution
and the planned starting time si in the baseline schedule. In
both robust project scheduling problems and resource lev-
eling problems, the project duration is usually predefined.
Therefore, we also consider penalizing the project tardiness
by introducing the weight of the dummy end activity wn

which denotes the cost of delaying the project completion
beyond a predefined deterministic project due date δn . This
also means that the planned starting time sn in the baseline
schedule is not allowed to exceed δn . In addition, wn is usu-
ally set at a higher value compared to all other wi in order to
address the importance of a timely project completion.

Our objective is to obtain a project baseline schedule
(s1, s2, . . . , sn) that minimizes the expected positive devia-
tions of both resource utilizations and activity starting times
subject to the precedence constraints and the project due date
constraint. Our problem can be formulated as follows:

minimize
K∑

k=1

sn∑

t=1

ck E
[
(ukt−ūk)

+]+
n∑

i=1

wi E
[
(si −si )

+]

(1)

subject to

s j ≥ si + di ∀ (i, j) ∈ A (2)

s j = max
(
s j ,maxi∈Pre j (si + di )

) ∀ j ∈ N
(3)

ukt =
∑

i∈At
rik k=1, . . . , K , t=1, . . . , δn

(4)

sn ≤ δn, (5)

where E (·) denotes the expectation operator and si are the
decision variables.Wecall objective function (1) the expected
total schedule execution cost (ETSEC). We call the first part
of objective function (1) (

∑K
k=1

∑sn
t=1 ck E

[
(ukt − ūk)+

]
)

the resource excessive usage cost (REUC) and the second
part (

∑n
i=1 wi E

[
(si − si )+

]
) the schedule instability cost

(SIC).
Constraints (2) enforce the precedence constraints. Since

constraints (2) are stochastic constraints that do not define
a deterministic feasible set, in stochastic programming
such constraints are usually modeled as chance constraints:
Pr

(
si + di ≤ s j

) ≥ α,∀ (i, j) ∈ A, where Pr is the prob-
ability measure and α ∈ (0, 1) (Lamas and Demeulemeester
2015; Liu 2009). This means that the probability that all the
precedence constraints hold is larger than or equal to the
confidence level α (α is usually chosen as 0.9, 0.95 or 0.99).
However, even if we have a high confidence level, during
project execution it is still possible that some precedence
constraints are not respected subject to uncertainty (i.e., the
realized schedule (s1, s2, . . . , sn) is not exactly the same as

123



46 J Sched (2016) 19:43–60

the planned baseline schedule (s1, s2, . . . , sn)). In this case,
the railway scheduling reactive policy that is specified by
constraints (3) is applied to repair the disrupted schedule. In
constraints (3), Pre j denotes the set of activity j‘s direct
predecessors. Constraints (3) ensure that each activity will
not start earlier than its planned starting time specified by the
baseline schedule. Constraints (4) are used to calculate the
realized resource usage. Constraint (5) is the project due date
restriction.

Although we do not explicitly consider resource con-
straints, our objective function will achieve a similar effect
to that of the resource constraints. Because in objective func-
tion (1) REUC tries to reduce the exceeded resource usages
as much as possible, in addition to resulting in a smooth
resource usage, this part of the objective function can also
result in a relatively small resource usage (if the weight ck is
set fairly high).

In the literature on the resource leveling problem, themost
often used objective function is the total weighted sum of the
squared resource usage which means that both positive and
negative deviations of the resource utilizations areminimized
(Demeulemeester and Herroelen 2002). However, in the first
part of our objective function (i.e., REUC), we consider
only penalties for the excessive use of resources. A simi-
lar objective function has been discussed by Neumann and
Zimmermann (1999, 2000).Besides, in projectmanagement,
contractors usually reserve a certain amount of resources for
the regular execution of a project. Excessive changes in the
requirements of resources are very undesirable because this
may result in frequently hiring and firing employees on a
short-term basis, working overtime, and financial difficulties
(Bandelloni et al. 1994). Note that other resource leveling
objectives can be easily adapted and used in the first part of
objective function (1).

According to the classification scheme of Herroelen et al.
(2000), the robust resource leveling problem can be classi-
fied as m, 1 |cpm, di , δn| ET STC . The first field indicates
that the number of renewable resource types is arbitrary. The
second field specifies the existence of finish–start zero-lag
precedence relationships, stochastic activity durations, and a
deterministic project deadline. The last field gives the objec-
tive function, here the expected total schedule execution cost.

The deterministic resource leveling problem is NP-hard
(Neumann et al. 2003). In our robust project scheduling
problem, incorporating stochastic durations further compli-
cates the problem. Therefore, the analytic evaluation of our
objective function is very cumbersome. In this paper, we use
simulation to evaluate the objective function.

2.2 Example

We provide an example to illustrate the problem under con-
sideration. Figure 1 shows a project network. The activity

i
di

ri
2

2

2

5
4

4

3
7

3

4
3

4

7
6

2

8
4

3

6
8

3

9
2

4

1 10

Fig. 1 Project network

number is shown inside the node. Activities 1 and 10 are two
dummy activities. For each non-dummy activity, the duration
is shown above the node and the single renewable resource
requirement is shown below the node. In Fig. 1, the dura-
tion of each activity i is deterministic and di is therefore not
written in bold face. The project due date is 18.

Figure 2 gives two baseline schedules for the example
project network. Figure 2a is a leveled schedule (Demeule-
meester and Herroelen 2002) obtained by the Burgess and
Killebrew leveling procedure (B&K procedure) (Burgess
and Killebrew 1962) with the objective of minimizing∑

k
∑

t ck (ukt − ūk)+, where we set ūk at 6 in this example.
Ever since the B&K procedure was proposed, many subse-
quent heuristics for the RLP are based on this procedure. The
basic idea of the B&K procedure is to readjust the start time
of each activity until the variability of the resource usage has
been reduced to a near optimum. The order in which an activ-
ity is adjusted is indicated by a priority list. Therefore, given
more than one priority list, the B&K procedure will iterate
until every priority list is applied.

The only difference between Fig. 2a, b is that the start
time of activity 6 in (b) is delayed by one time unit. In Fig. 2,
the X-axis denotes time and the Y-axis represents resource
utilization. The desired resource utilization is 6 which has
been indicated by the dashed line in both figures. The bold
line shows the resource utilization for each time period. The
amount that the resource usage is exceeding 6 is indicated in
dark color.

For the deterministic RLP with the objective of mini-
mizing

∑
k
∑

t ck (ukt − ūk)+, it is obvious that baseline
schedule 1 (with an objective function value equal to 6) is
better than baseline schedule 2 (with an objective function
value equal to 8).

Next, we will show that the leveled schedule for the deter-
ministicRLPmaynot be good enough under activity duration
uncertainty. Now, we assume that during execution the dura-
tion of activity 5 may be prolonged by 2 time units with a
probability of 60%, which means that the duration of activ-
ity 5 is a stochastic variable with a discrete distribution
P (d5 = 6) = 0.6 and P (d5 = 4) = 0.4. In this case, we
need to consider not only resource leveling but also activ-

123



J Sched (2016) 19:43–60 47

(a) (b)

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2

____5
6

4
3

8

7

9
5

Resource usage

Time

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

____5
6

9
8

4
3

72

5

Resource usage

Time

Fig. 2 Two baseline schedules. a Baseline schedule 1. b Baseline schedule 2

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

____5

9
8

4
3

72

6
5

Resource usage

Time

Fig. 3 The realized schedule (d5 = 6)

Table 1 Calculation of the expected total schedule execution cost

Interruption Probability Objective
function

Objective function value

Schedule 1 Schedule 2

No 0.4 REUC 6 8

(d5 = 4) SIC 0 0

Yes 0.6 REUC 11 11

(d5 = 6) SIC 3 × 1 0

Expected total schedule execution cost 10.8 9.8

ity start time stability. Therefore, we use objective function
(1) (the expected total schedule execution cost, see previous
section) to compare the two schedules.

When activity 5 is subject to duration uncertainty, the
expected total schedule execution cost for baseline schedules
1 and 2 are calculated as shown in Table 1. In this example,
we assume c1 = 1 and w5 = 3. When d5 = 4, the realized
schedules for both baseline schedules are identical to the
corresponding baseline schedules (Fig. 2). When d5 = 6,
the realized schedule for both baseline schedules becomes
exactly the samewhich is shown inFig. 3. The result indicates
(see Table 1) that baseline schedule 2 has a lower expected
total schedule execution cost (9.8) than baseline schedule 1
(10.8).

This example shows that for the robust RLP the leveled
solution for the deterministic RLP may not be suitable any-
more under activity duration uncertainty. Therefore, it is

reasonable to develop effective solution procedures to obtain
robust schedules with as low an expected total schedule exe-
cution cost as possible.

3 A genetic algorithm for the robust RLP

Genetic algorithm is a metaheuristic that is inspired by the
idea of survival of the fittest in biological evolution. For an
overview on the GAs, we refer to Goldberg et al. (1989).
The reasons that we choose GA as the basis for our solu-
tion approach are as follows: (a) As an NP-hard problem,
even the deterministic RLP has only been solved to optimal-
ity on instances with no more than 50 activities by Rieck
et al. (2012) which seems to be the most powerful exact
procedure thus far. Since tackling the RLP under uncertainty
becomesmuchmoredifficult, this justifies developingheuris-
tics to obtain near-optimal schedules for larger instances.
As mentioned in the introduction, GA has already been
adopted to solve the uncertain RLP by some authors. (b)
Our model presented in Eqs. (1–5) is not a standard lin-
ear programmingmodel or a stochastic programmingmodel.
Combining GA with simulation renders us the ability to effi-
ciently deal with complex constraints and stochastic activity
durations. (c) GA has been applied with success for solv-
ing both deterministic (Hartmann 2002; Valls et al. 2008;
Debels and Vanhoucke 2007) and uncertain (Ke and Liu
2005; Ballestín 2007) project scheduling problems. Partic-
ularly, the decomposition-based GA presented by Debels
and Vanhoucke (2007) obtained the currently best known
results for the resource-constrained project scheduling prob-
lem (RCPSP).

In order to exploit the knowledge of the robust RLP, we
introduce several changes in the GA. Our considerations
behind these changes are as follows.

The robust RLP can be tackled in a two-stage way (as
demonstrated by the example in Sect. 2.2) within a GA
framework. (a) In the first stage, we concentrate on resource
leveling and generate some schedules with varied resource
leveling performance. This task is mainly done by the decod-

123



48 J Sched (2016) 19:43–60

ing procedure.We also want to make the decoding procedure
fast because this procedure is frequently called by the GA.
Therefore, we design a special decoding procedure without
relying on simulation to obtain a leveled schedule in as short
a time as possible. (b) In the second stage, we choose and/or
produce new schedules that aim formore stable starting times
and/or for more leveled resource usage. This task is primar-
ily accomplished by the crossover and mutation operators.
The crossover operator we use is a hybrid one that com-
bines a resource-based crossover and a two-point crossover.
In doing so, we hope to generate new chromosomes with
robust starting times and/or leveled resource usages.

In addition, the fitness value for each chromosome is com-
puted by simulation. Also the railway scheduling reactive
policy is embedded in the simulation process. Note that this
is the only place that uses the time-consuming simulation in
our GA. In this way, we hope to achieve a good trade-off
between computation speed and quality.

With the above changes, we hope to obtain a satisfactory
baseline schedule for the robust RLP effectively and effi-
ciently.

3.1 Schedule representation and the GA framework

For the robust RLP, a solution is a schedule S = (s1, s2,
. . . , sn) that specifies the planned start times for each activity.
Like most GAs for project scheduling problems, we do not
operate directly on the schedule. Instead, we use the random
key encoding in our GA (Debels and Vanhoucke 2007).

In our random key representation, a schedule is encoded
as a chromosome that is given by a vector X ∈ R

n . Every
element of X is called a gene. Each gene in the chromo-
some is a random value xi which denotes the priority value
of activity i , where 0 ≤ xi ≤ M,M � n. Unlike the
classic random key representation, we do not consider prece-
dence constraints in our random key representation and the
precedence constraints will be considered in the decoding
procedure. This mechanism ensures that any chromosome
applied by initialization/crossover/mutation procedures will
always correspond to a feasible solution. This characteristic
is not possessed by the activity starting time-based encoding
scheme that has been used in some resource leveling litera-
ture (Leu et al. 1999; Leu and Hung 2002; Masmoudi and
Haït 2013).

Our GA framework is summarized as shown in Algorithm
1 (more details on our GA are given in the following sub-
sections). Our GA starts with the generation of an initial
population (see Sect. 3.3) whose size (i.e., the number of
chromosomes in the population) is POP. The GA then trans-
forms the initial chromosomes into schedules by means of
the procedureDecoding() (see Sect. 3.2) and the correspond-
ing fitness values are computed by means of the procedure
Evaluate() (see Sect. 3.3). After that, theGA iterates until the

maximum number of generations GEN is reached. In each
iteration, parent chromosomes are first selected from the pop-
ulation by the procedure Select_Parents() (see Sect. 3.4).
Then the crossover operator is applied to the resulting parent
chromosomes in order to generate children chromosomes by
the procedure Crossover() (see Sect. 3.5). Subsequently, the
GA applies the procedure Mutation() (see Sect. 3.6) to the
children chromosomes with the purpose of avoiding to fall
into a local optimum.At the end of every iteration, we call the
procedure Select_Offspring() (see Sect. 3.7) to replace the
current population by selectingPOPbest individuals from the
union set of parent and children chromosomes. After all of
the iterations finish, the GA returns the best schedule found.

It is worth noting that when solving the robust RLP, we do
not considerSICandREUCseparately. Instead, inmanyparts
of our GA (such as Decoding() and Evaluate() procedures),
we deal with resource leveling and activity start time stability
simultaneously.

3.2 The decoding procedure

In order to transform a chromosome into a schedule, a decod-
ing procedure is needed. In the project scheduling literature,
there are mainly two kinds of decoding procedures: the
serial schedule generation scheme (SGS) and the parallel
SGS. Both of the SGSs aim at generating a schedule with a
makespan that is as short as possible. However, in our robust
RLP, our objective is to obtain a leveled resource usage and
stable activity starting times instead of a short makespan.
Therefore, the serial or parallel SGS is no longer suitable for
our problem and we design a specific decoding procedure for
the robust RLP.

The basic idea of our decoding procedure is inspired
by Neumann and Zimmermann (1999) and Ballestín et al.

123



J Sched (2016) 19:43–60 49

(2007). The main differences between their procedure and
ours are as follows. First of all, our procedure only focuses
on the finish–start, zero-lag precedence relations, while their
procedure considers more general relations (i.e., minimum
and maximum time lags). Secondly, the tentative start time
for a given activity is selected between its possible earliest
start time and latest start time instead of relying on the so-
called decision set as used by Neumann and Zimmermann
(1999) and Ballestín et al. (2007). Finally, on the one hand,
since our baseline schedule will be executed in an uncer-
tain environment, it is desired that the decoding procedure
could handle activity duration uncertainty to some extent.
On the other hand, since the decoding procedure will be fre-
quently invoked in the GA iterations, it is important for the
decoding procedure to have a polynomial time complexity.
Therefore, we use the mean duration for each activity as a
predictive duration in our decoding procedure. In doing so,
we avoid using simulation to handle the complex chance con-
straintsmentioned in Sect. 2.1. This kind of treatment is quite
common in practice when dealing with stochastic project
scheduling problems (Ballestín 2007; Li et al. 2015) and
also makes the decoding procedure much less time consum-
ing. The pseudo-code of our decoding procedure is shown in
Algorithm 2.

In Algorithm 2, N ′ denotes the set of scheduled activ-
ities and ukt

(
N ′) denotes the resource usage for resource

type k during time period t given the scheduled activities
in N ′. di is the mean duration of activity i . Note that deci-
sion makers can also let di take value that are on some other
representative estimators in terms of the project environment
(e.g., 80% percentile, 50% percentile, and so on). At the
beginning of the decoding procedure, the start time of each
activity i is set at zero and its earliest start time esi and lat-
est start time lsi is calculated according to the critical path
method (CPM) (Kelley and Walker 1959; Demeulemeester
and Herroelen 2002, Chapter 4.1.1). Then the algorithm
repeats until all activities are scheduled. In each iteration,
we select an eligible (precedence feasible) activity i with
minimum random key value and choose the start time of
activity i si between esi and lsi , such that the performance
measure PM is minimized when activity i is scheduled to
start at si . The performance measure PM is used to evalu-
ate whether a resource profile is level or not and is defined
as the total weighted sum of the squared resource usage:
PM = ∑K

k=1
∑si+di−1

t=si ck
(
rik + ukt

(
N ′))2. We do not

use our objective function (1) as the performance measure,
because at the early stages of the iteration, the number of
scheduled activities is so limited that the objective func-
tion (1) will always equal zero. However, the total weighted
sum of the squared resource usage can avoid such a prob-
lem. Note that there may exist more than one si that leads
to the same minimum PM value. In this case, we always

choose the smallest si and this principle has been proven to
be better than choosing the largest si based on preliminary
experiments results. CB equals the current best performance
measure value. After the start time of activity i is allocated,
we need to update the current resource profile ukt

(
N ′) based

on the scheduled activities in N ′.
Afterwe determine a new start time si for activity i , the es j

and ls j for the unscheduled activities j need to be updated
according to the scheduled activities and are calculated as
follows:

es j = max
(
es j ,maxi∈{N ′∩Pred j}

(
si + lpdi j

))
(2)

ls j = min
(
ls j ,mini∈{N ′∩Succ j}

(
si + lpdi j

))
. (3)

Here, Pred j denotes the set of activities that are direct and
indirect predecessors to activity j , and Succ j denotes the set
of activities that are direct and indirect successors to activity

123



50 J Sched (2016) 19:43–60

j . lpdi j is the longest path distance between activities i and
j . By doing so, the precedence constraints are satisfied.

3.3 Initial population and fitness

The number of elements in the initial population is POP.
We generate the initial population randomly. To compute the
fitness value of a chromosome, the chromosome is first trans-
formed into a schedule; then the fitness value is returned by
the procedure Evaluate() which is based on simulation and
the railway scheduling policy which means that the simu-
lated activity start times are never sooner than the planned
start times indicated by the baseline schedule (Herroelen and
Leus 2004b; Van de Vonder et al. 2005; Demeulemeester and
Herroelen 2011).

Algorithm 3 gives the pseudo-code of the Evaluate()
procedure. REP denotes the number of replications of the
simulation. Activity durations are sampled from specified
probability distributions. Then we get simulated activity
start times by applying a railway scheduling policy. After
every activity is allocated a simulated start time, we get a
simulated schedule. Based on the simulated schedule, we
can calculate ukt and then the fitness value that equals our
objective function value (

∑K
k=1

∑sn
t=1 ck E

[
(ukt − ūk)+

] +
∑n

i=1 wi E
[
(si − si )+

]
). The final fitness value is obtained

by averaging the fitness values returned by each simulation
run.

3.4 Parent selection

The Select_Parents() procedure selects POP/2 pairs of par-
ent chromosomes for the crossover operator. The top POP/2
best chromosomes are selected as the father chromosomes.
The mother chromosomes are selected in the following way:
two chromosomes are randomly selected from all of the chro-
mosomes (except the father) and the one with a better fitness
value is chosen as the mother chromosome. This process is
repeated until POP/2 mother chromosomes are selected.

3.5 Crossover

POP/2 children chromosomes are generated by the
Crossover() procedure. We hope to generate new chro-
mosomes with such characteristics: some chromosomes
have good resource leveling performance, some have robust
starting times, and some have both. This would lead to
a wide search of the solution space and result in some
promising solutions. Therefore, the crossover operator we
designed combines a resource-based crossover and a two-
point crossover. POP/2 father chromosomes are divided into
two sets on a fifty-fifty basis: set 1 (the top POP/4 father chro-
mosomes) and set 2 (the remaining father chromosomes).

The resource-based crossover operator is applied on set 1
and the two-point crossover operator is applied on set 2.

Our resource-based crossover is inspired by Debels and
Vanhoucke (2007) andValls et al. (2008). For the father chro-
mosome and its corresponding schedule, we first select a
sub-schedule length l which is randomly chosen between
1/4 ×δ and 3/4 ×δ. Then we determine the crossover point
t , such that

∑
k
∑t+l

t={1,2,...,δ−l} ck |ukt − ūk |+ is minimized.
For activities with start times between t and t + l, the cor-
responding random key is added by a big enough number
BIGN (equals 5000 in our GA) and the resulting random key
is given to the child chromosome. The other gene positions
of the child chromosome are derived from the corresponding
positions of the mother chromosome.

In the two-point crossover, for the father chromosome,
we randomly select two crossover points t1 and t2: the genes
between t1 and t2 are given to the child chromosome. The
other gene positions of the child chromosome are derived
from the corresponding positions of themother chromosome.

3.6 Mutation

For each newly generated child chromosome, each gene in
the chromosome is changed to a new random priority value
with a probability of p_mutation. TheMutation() procedure
works as follows. Scan the chromosome from the first gene to

123



J Sched (2016) 19:43–60 51

the last one. For each scanned gene, draw a random number
from the interval [0, 1]. If this number is less than p_mutation,
the corresponding gene value will be replaced by a newly
generated random priority value.

3.7 Offspring selection

We call the procedure Select_Offspring() to select the POP
best chromosomes from the union set of the parent and chil-
dren chromosomes. The selected chromosomes will replace
the current population and enter into the next iteration.

4 Experimental set-up

In our experiment, we primarily investigate the impact of
different factors on the total schedule execution cost. Our GA
has been coded in Visual C++ 2012. The GA has been tested
on a large number of randomly generated problem instances.
The computational experiment has been conducted on an
Intel Core i5 2.40 GHz portable computer under Windows 7
64-bit version.

There has been no standard test set for the RLP under
uncertainty. Therefore, we used RanGen (Demeulemeester
et al. 2003) to construct 810 test instances using the para-
meter settings in Table 2. The order strength (OS) describes
the network density and is computed as the number of prece-
dence relations divided by the theoretical maximum number
of precedence relations in the network. The larger the OS
value, the higher is the network density. Herroelen and De
Reyck (1999) demonstrated that OS is better than other com-
monly used measures [for example, network complexity,
which is adopted in PSPLIB (Kolisch and Sprecher 1997)]
when describing the network topology. The resource factor
(RF) reflects the average number of resource types used by
an activity. The resource constrainedness (RC) defines the
average portion of the resource availability that is used by an
activity. For each instance, the number of resource types is
fixed at 4.

Specifying 3 settings for the number of activities, 3 set-
tings for OS, 3 settings for RF, and 3 settings for RC, we
generated 10 problem instances for each of the 3× 3× 3× 3
parameter combinations, resulting in 810 instances in total.

Table 2 Parameter settings for the dataset

Parameter Value

Number of activities (n) 30; 60; 90

Order strength (OS) 0.3; 0.5; 0.7

Resource factor (RF) 0.5; 0.75; 1

Resource constrainedness (RC) 0.3; 0.5; 0.7

Number of resource types 4

Table 3 Average results for different numbers of simulation
replications

Number of
replications

CPU time
(in seconds)

Total schedule
execution cost

REUC SIC

50 0.74 4479.13 1183.98 3295.15

100 1.46 4482.18 1178.33 3303.85

1000 14.04 4492.64 1181.31 3311.33

We have fine-tuned the parameters of our GA and decided
to choose the following settings for our GA based on the
results of our preliminary experiments. The maximum num-
ber of schedules is set equal to 1000 (with GEN = 100, POP
= 10). The mutation probability p_mutation is set equal to
0.05.

We have carried out the following preliminary experiment
to determine the value of REP which is the number of repli-
cations of the simulation used by the procedure Evaluate()
when evaluating the objective function. We have run our GA
(GEN = 100, POP = 10 and p_mutation = 0.05) with REP
being 50, 100, and 1000. In this preliminary experiment, we
only used 10%of the problem instances selected fromdataset
n = 30 and these problem instances are selected based on
the following order: 1, 11, 21 …

Table 3 shows the average values for the CPU time, the
total schedule execution cost, REUC, and SIC. As shown in
this table, when REP = 50, it already provides a reasonable
trade-off between the computational time and the estimation
of the expected objective value. Therefore, we set REP = 50
in our GA.

The factors investigated in the computational experiments
include: the marginal cost of the resource usage deviation
(ck), the marginal cost of the activity start time deviation
(wi ), the activity duration variability (DUR_VAR), the due
date (DUEDATE), the number of activities (n), the order
strength (OS), the resource factor (RF), and the resource con-
strainedness (RC). The levels of these factors are summarized
in Table 4.

Table 4 Factor levels for the experiment

Factor Level

ck L (Low); N (Normal)

wi L (Low); M (Medium); H (High)

DUR_VAR L (Low); M (Medium); H (High)

DUEDATE L (Low); H (High)

n 30; 60; 90

OS 0.3; 0.5; 0.7

RF 0.5; 0.75; 1

RC 0.3; 0.5; 0.7

123



52 J Sched (2016) 19:43–60

For ck , its low level is drawn from a uniform distribution
U[1, 5] (with average value 3) and its normal level is drawn
from a uniform distribution U[1, 11] (with average value 6).
For wi , its low level is drawn from a discrete distribution
with P(wi = 2 × q) = (44 − 8q)%, q ∈ {1, 2, . . . , 5},
its medium level is drawn from P(wi = 2 × q) =
(21 − 2q)%, q ∈ {1, 2, . . . , 10}, and its high level is drawn
from P(wi = 2 × q) = (84 − 8q)%, q ∈ {6, 7, . . . , 10}.
The average values (wavg) for these distributions are 4.2,
7.7, and 14.4. These distributions result in a lower probabil-
ity for high weights. The weight of the dummy end activity
is set at wn = 
10× wavg� and represents the marginal cost
of not finishing the project within the due date.

The realized activity durations di are drawn from a right-
skewed beta distribution with parameters 2 and 5 with mean
duration E (di ) = di (di is the deterministic duration given
in the dataset). We distinguish the activity duration vari-
ability by restricting the range of di . For the low duration
variability, the minimum duration dmin = 0.75 × E (di )
and the maximum duration dmax = 1.625 × E (di ). For
the medium duration variability, the minimum duration
dmin = 0.5 × E (di ) and the maximum duration dmax =
2.225 × E (di ). For the high duration variability, the min-
imum duration dmin = 0.25 × E (di ) and the maximum
duration dmax = 2.875 × E (di ). These parameter settings
have been widely used in the robust project scheduling lit-
erature (Van de Vonder et al. 2007a, b; Vonder et al. 2008;
Deblaere et al. 2011).

For the due date, the low level means that the due date
equals 1.2 times the critical path length. The high levelmeans
that the due date equals 1.4 times the critical path length.

We use a factorial experiment to investigate the impact of
the above-mentioned factors on the total schedule execution
cost. In this experiment, we focus on the main effects of the
factors by examining two factors every time. For each inves-
tigated factor combination, 10 instances are solved using our
GA.This results in a total of 2×3×3×2×3×3×3×3×10 =
29160 executions of the GA.

5 Experimental results

Before we present our main results in Sect. 5.2, we first
show in Sect. 5.1 comparison results between other often
used resource leveling heuristics and our GA.

5.1 Comparison with other heuristics

5.1.1 Comparison with an existing GA

As mentioned in Sect. 1, many authors use GA to solve the
resource leveling problem under uncertainty (Leu et al. 1999;
Leu and Hung 2002; Masmoudi and Haït 2013; Zahraie and

Table 5 Unit averaged resource leveling indices with project due date
= 11

LHGA 1.17

Our GA 1.45

Tavakolan 2009; Ashuri and Tavakolan 2012). Among these
papers, Leu and Hung (2002) is the only one that models the
uncertain activity durations as stochastic variables. There-
fore, in this subsection we compare our GA with the GA
(LHGA) that was developed byLeu andHung (2002). Unlike
ourGA that considers both resource leveling and activity start
time stability, LHGA is specifically devised for resource lev-
eling. In Leu and Hung (2002), they try to obtain a baseline
schedule byminimizing the averaged resource leveling index
(RLI) under stochastic activity duration. A project network
with seven real activities is used to validate LHGA. In this
project, each activity needs two types of resources (K = 2)
with the same weight (c1 = c2 = 1). The duration of each
activity is assumed to follow a triangular distribution. The
project due date δn = 11.

We run our GA on the same project data and use the same
stop criterion (POP = 50, GEN= 100) as LHGA. The number
of simulation replications is also the same (REP = 50). In
order to obtain a relatively fair comparison, we omit the SIC
part of our objective function (1) by setting wi = 0 in the
Evaluate() procedure. This means that we put all emphasis
on resource leveling. After our GA terminates, we further
calculate the value of the resource leveling index for the final
output solution using simulation.

Table 5 presents the results of the comparison in terms of
the unit averaged resource leveling index ( RL I

δn ·K ). The results
indicate that even though our GA is not solely designed
for resource leveling, it is already effective enough com-
pared with a special purpose GA. Our GA is slightly less
competitive than LHGA. This would be explained as fol-
lows. Although we set the SIC part to be 0, we use the
railway scheduling policy in the simulation when evaluating
the objective function. Our GA may miss some promising
solutions when the railway scheduling policy prohibits some
activities from starting earlier.

5.1.2 Comparison with the B&K procedure

In this subsection, we compare our GA with a typical heuris-
tic procedure (the B&K procedure in this experiment) on the
basis of minimizing the expected total schedule execution
cost. The purpose is to show that our GA is better when solv-
ing the robust RLP comparedwith the B&Kprocedurewhich
is originally devised for solving the deterministic RLP.

We first use the B&K procedure to solve the robust RLP
in the following way. In order to have a fair comparison with

123



J Sched (2016) 19:43–60 53

Table 6 Comparison results between the B&K procedure and the GA
for the robust RLP

Dataset Total schedule execution cost Improvement
(%)

B&K procedure GA

n = 30 5649.87 5018.54 11.17

n = 60 11,049.62 9375.34 15.15

n = 90 16,666.95 13,569.32 18.59

All instances 11,122.14 9321.07 16.19

GA, the stopping criterion for the B&K procedure we used
is that 1000 schedules (which is the same as in our GA) have
been generated. Specifically, we first generate a random pri-
ority list and the B&K procedure will iterate until a local
optimum is reached. If the number of evaluated schedules is
less than 1000, a new priority list will be generated randomly.
This process will repeat until 1000 schedules have been gen-
erated. We solve the deterministic RLP with the objective of
minimizing the total weighted sum of the squared resource
usage (min

∑
k
∑

t u
2
kt ). For each instance, we can find a

best schedule which is then evaluated by calling the proce-
dure Evaluate() under all levels for ck , wi , DUR_VAR, and
DUEDATE.

Our GA is then used to solve the same dataset. The com-
parison results are presented in Table 6. The column labeled
with ‘Total schedule execution cost’ shows the expected total
schedule execution cost of the best schedules obtained by the
B&K procedure and GA, respectively. The column labeled
with ‘Improvement’ indicates the percentage that the GA
outperforms the B&K procedure in terms of expected total
schedule execution cost. This is not surprising as our GA is
specially designed for the robust RLP: ourGAobviously out-
performs the B&K procedure when solving the robust RLP.

Since we do not find an objective function that is similar
to ours in the literature, we cannot provide a fair compar-
ison with existing algorithms. Therefore, we have decided
to focus on analyzing the impacts of different factors on the
performance of our GA (see next section), hoping that these
results can be used as a benchmark for future similar studies.

5.2 Main results

In this section, the impact of each factor on the total schedule
execution cost is illustrated graphically for dataset n = 30
(Fig. 4). We will not give the similar figures for dataset n =
60 and 90 in order to avoid repetition. Instead, the results for
dataset n = 60 and 90 will be shown in matrices (see below).
For any examined two factors, each sub-figure in Fig. 4 plots
the total schedule execution cost against one factor for all
levels of the other factor.

In the following, we first take Fig. 4a as an example to
explain how our results are presented. Afterwards, the pat-
terns of the impacts for different dataset (n = 30, 60 and 90)
will be summarized in matrices (see Sects. 5.2.1 and 5.2.2).

Figure 4a shows the total schedule execution cost, the
REUC and the SIC against the marginal cost of the resource
usage deviation ck for all levels of the marginal cost of the
activity start time deviation wi . Figure 4a indicates that for a
given wi , a higher ck results in a higher total schedule exe-
cution cost. This is also the case for the REUC, while the
impact of ck on the SIC is weak. Similarly, for a given ck ,
a higher wi also leads to a higher total schedule execution
cost. The same pattern appears on the SIC, while the impact
of wi on the REUC is weak (the three lines are close to each
other).

Overall, Fig. 4 reveals that ck has the largest impact on the
total schedule execution cost compared with other factors.
Both RF and RC have the weakest impact on the SIC. The
same conclusions could be drawn regarding the datasets n =
60 and n = 90.

5.2.1 The results for dataset n = 30

We summarize ourmain results for dataset n = 30 in amatrix
as shown in Fig. 5. Each cell in the matrix represents the
impact of a column element given a row element. Each cell
consist of threemarks: themark in the top left corner indicates
the impact on the total schedule execution cost, the mark in
the top right corner indicates the impact on the REUC, and
the mark in the lower right corner indicates the impact on the
SIC. We take the cell in row 4 and column 3 for example.
The mark ‘−’ means that for a given level of the activity
duration variability (DUR_VAR), the due date (DUEDATE)
has a weak impact on the total schedule execution cost. The
mark ‘↑’ means that for a given level of the activity duration
variability, the due date has a positive impact on the REUC.
The mark ‘↓’ means that for a given level of the activity
duration variability, the due date has a negative impact on
the SIC.

In addition, for the cell in row 1 and column 3, the mark in
the top left corner is ‘− ↑.’ This means that the due date has
a weak impact on the total schedule execution cost when ck
is low and this impact becomes a positive one as ck increases.

Based on Fig. 5, we can easily find that there mainly exist
five patterns of impact which have been highlighted in dif-
ferent colors.

For factors ck , RF, and RC, they have consistent patterns
of impact. A higher ck always means a higher REUC. And
higher RF and RC mean that more resources are involved
in the resource leveling process. Therefore, given any other
factor, a higher ck , RF, or RC results in a higher total schedule
execution cost andREUC.However, the impacts of the above
three factors on SIC are weak. For ck , this is because ck is

123



54 J Sched (2016) 19:43–60

(a) (b)

(c) (d)

(e) (f)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

L N

O
bj

ec
tiv

e 
va

lu
e

c

w=H

w=M

w=L

w=H(REUC)

w=M(REUC)

w=L(REUC)

w=H(SIC)

w=M(SIC)

w=L(SIC)
0

1000

2000

3000

4000

5000

6000

7000

8000

L N

O
bj

ec
tiv

e 
va

lu
e

c

DUEDATE=H

DUEDATE=L

DUEDATE=H(REUC)

DUEDATE=L(REUC)

DUEDATE=H(SIC)

DUEDATE=L(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

L N

O
bj

ec
tiv

e 
va

lu
e

c

DUR_VAR=H

DUR_VAR=M

DUR_VAR=L

DUR_VAR=H(REUC)

DUR_VAR=M(REUC)

DUR_VAR=L(REUC)

DUR_VAR=H(SIC)

DUR_VAR=M(SIC)

DUR_VAR=L(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

L N

O
bj

ec
tiv

e 
va

lu
e

c

OS=0.7

OS=0.5

OS=0.3

OS=0.7(REUC)

OS=0.5(REUC)

OS=0.3(REUC)

OS=0.7(SIC)

OS=0.5(SIC)

OS=0.3(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

L N

O
bj

ec
tiv

e 
va

lu
e

c

RF=1

RF=0.75

RF=0.5

RF=1(REUC)

RF=0.75(REUC)

RF=0.5(REUC)

RF=1(SIC)

RF=0.75(SIC)

RF=0.5(SIC)
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

L N

O
bj

ec
tiv

e 
va

lu
e

c

RC=0.7

RC=0.5

RC=0.3

RC=0.7(REUC)

RC=0.5(REUC)

RC=0.3(REUC)

RC=0.7(SIC)

RC=0.3(SIC)

RC=0.5(SIC)

Fig. 4 Impacts of the factors (n = 30)

not included in the SIC part of the objective function. For RF
and RC, our robust RLP does not explicitly consider resource
constraints and this leads to a weak impact on the SIC.

Note that for the low level of ck , the impact pattern of RF is
slightly different (seeFig. 4e).WhenRFchanges from0.75 to
1, the corresponding changes in the value of the total schedule
execution cost, REUC, and SIC are small. This means that
for the circumstance that ck is low and RF is high, the impact
of RF is weak.

For wi , it has a positive impact on the total schedule exe-
cution cost and SIC. And its impact on REUC is weak. This

is obvious becausewi is the marginal cost of the activity start
time deviation andmainly affects activity start time deviation
related costs.

For factors DUR_VAR and OS, higher level of both fac-
tors result in a higher total schedule execution cost, REUC,
and SIC. We may conclude that the larger the activity dura-
tion variability and the more activity precedence relations,
the more costs will be incurred when we execute a project
schedule.

Last, for the factor DUEDATE, it has two kinds of impact
patterns that are caused by the differences in extent and direc-

123



J Sched (2016) 19:43–60 55

(g) (h)

(i) (j)

(k) (l)

0

1000

2000

3000

4000

5000

6000

7000

L M H

O
bj

ec
tiv

e 
va

lu
e

w

DUEDATE=H

DUEDATE=L

DUEDATE=H(REUC)

DUEDATE=L(REUC)

DUEDATE=H(SIC)

DUEDATE=L(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

L M H

O
bj

ec
tiv

e 
va

lu
e

w

DUR_VAR=H

DUR_VAR=M

DUR_VAR=L

DUR_VAR=H(REUC)

DUR_VAR=M(REUC)

DUR_VAR=L(REUC)

DUR_VAR=H(SIC)

DUR_VAR=M(SIC)

DUR_VAR=L(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

L M H

O
bj

ec
tiv

e 
va

lu
e

w

OS=0.7

OS=0.5

OS=0.3

OS=0.7(REUC)

OS=0.5(REUC)

OS=0.3(REUC)

OS=0.7(SIC)

OS=0.5(SIC)

OS=0.3(SIC)

0

1000

2000

3000

4000

5000

6000

7000

L M H

O
bj

ec
tiv

e 
va

lu
e

w

RF=1

RF=0.75

RF=0.5

RF=1(REUC)

RF=0.75(REUC)

RF=0.5(REUC)

RF=1(SIC)

RF=0.75(SIC)

RF=0.5(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

L M H

O
bj

ec
tiv

e 
va

lu
e

w

RC=0.7

RC=0.5

RC=0.3

RC=0.7(REUC)

RC=0.5(REUC)

RC=0.3(REUC)

RC=0.7(SIC)

RC=0.5(SIC)

RC=0.3(SIC)
0

1000

2000

3000

4000

5000

6000

7000

L H

O
bj

ec
tiv

e 
va

lu
e

DUE DATE

DUR_VAR=H

DUR_VAR=M

DUR_VAR=L

DUR_VAR=H(REUC)

DUR_VAR=M(REUC)

DUR_VAR=L(REUC)

DUR_VAR=H(SIC)

DUR_VAR=M(SIC)

DUR_VAR=L(SIC)

Fig. 4 continued

tion of the impacts ofDUEDATEonREUCandSIC.Ahigher
due date leads to a higher REUC which is surprising. This
may be caused by the trade-off between the REUC and SIC
when optimizing the total schedule execution cost. On the
other hand, a higher due date results in a lower SIC because
in this case more time buffers are inserted into the schedule,
strengthening its ability to absorb more uncertainties. The
combined results are that the impact of the due date on the
total schedule execution cost becomes weak when consid-

ering DUR_VAR, OS, RF, or RC. However, when ck is high
or wi is low, the due date has a positive impact on the total
schedule execution cost. Wemay conclude that the impact of
the due date will not be weak any more under the condition
that the resource excessive usage unit cost is high enough
(i.e., the resource excessive usage unit cost is very impor-
tant) or the marginal cost of the activity start time deviation
is low enough (i.e., the marginal cost of the activity start time
deviation is not important).

123



56 J Sched (2016) 19:43–60

(m) (n)

(o) (p)

(q) (r)

0

1000

2000

3000

4000

5000

6000

7000

L H

O
bj

ec
tiv

e 
va

lu
e

DUE DATE

OS=0.7

OS=0.5

OS=0.3

OS=0.7(REUC)

OS=0.5(REUC)

OS=0.3(REUC)

OS=0.7(SIC)

OS=0.5(SIC)

OS=0.3(SIC)

0

1000

2000

3000

4000

5000

6000

L H

O
bj

ec
tiv

e 
va

lu
e

DUE DATE

RF=1

RF=0.75

RF=0.5

RF=1(REUC)

RF=0.75(REUC)

RF=0.5(REUC)

RF=1(SIC)

RF=0.75(SIC)

RF=0.5(SIC)

0

1000

2000

3000

4000

5000

6000

7000

L H

O
bj

ec
tiv

e 
va

lu
e

DUE DATE

RC=0.7

RC=0.5

RC=0.3

RC=0.7(REUC)

RC=0.5(REUC)

RC=0.3(REUC)

RC=0.7(SIC)

RC=0.5(SIC)

RC=0.3(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

L M H

O
bj

ec
tiv

e 
va

lu
e

DUR_VAR

OS=0.7

OS=0.5

OS=0.3

OS=0.7(REUC)

OS=0.5(REUC)

OS=0.3(REUC)

OS=0.7(SIC)

OS=0.5(SIC)

OS=0.3(SIC)

0

1000

2000

3000

4000

5000

6000

7000

L M H

O
bj

ec
tiv

e 
va

lu
e

DUR_VAR

RF=1

RF=0.75

RF=0.5

RF=1(REUC)

RF=0.75(REUC)

RF=0.5(REUC)

RF=1(SIC)

RF=0.75(SIC)

RF=0.5(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

L M H

O
bj

ec
tiv

e 
va

lu
e

DUR_VAR

RC=0.7

RC=0.5

RC=0.3

RC=0.7(REUC)

RC=0.5(REUC)

RC=0.3(REUC)

RC=0.7(SIC)

RC=0.5(SIC)

RC=0.3(SIC)

Fig. 4 continued

5.2.2 The results for dataset n = 60 and n = 90

Compared with dataset n = 30, it is obvious that an increas-
ing number of activities results in a higher total schedule
execution cost for datasets n = 60 and n = 90. The patterns
of impact for dataset n = 60 (Fig. 6) and n = 90 (Fig. 7) are
similar.

Compared with Fig. 5, we have marked the differences in
Figs. 6 and 7 with a symbol ‘ ’. As shown in Figs. 6 and 7,

the differences between dataset n = 30 and n = 60/90 are
small and the changes only occur in SIC. We only discuss
the changes. For a given RF or RC, the impact pattern of ck
varies between weak impact and positive impact as the levels
of RF or RC change. For a given ck , wi , OS, and RC/RF, the
impact of RF and RC on SIC has the same pattern (except the
impact of RF for a given OS on dataset n = 90, which is the
only difference between dataset n = 60 and dataset n = 90
and the corresponding symbol ‘ ’ has been put in a different

123



J Sched (2016) 19:43–60 57

(s) (t)

(u)

0

1000

2000

3000

4000

5000

6000

7000

0.3 0.5 0.7

O
bj

ec
tiv

e 
va

lu
e

OS

RF=1

RF=0.75

RF=0.5

RF=1(REUC)

RF=0.75(REUC)

RF=0.5(REUC)

RF=1(SIC)

RF=0.75(SIC)

RF=0.5(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

0.3 0.5 0.7

O
bj

ec
tiv

e 
va

lu
e

OS

RC=0.7

RC=0.5

RC=0.3

RC=0.7(REUC)

RC=0.5(REUC)

RC=0.3(REUC)

RC=0.7(SIC)

RC=0.5(SIC)

RC=0.3(SIC)

0

1000

2000

3000

4000

5000

6000

7000

8000

0.5 0.75 1

O
bj

ec
tiv

e 
va

lu
e

RF

RC=0.7

RC=0.5

RC=0.3

RC=0.7(REUC)

RC=0.5(REUC)

RC=0.3(REUC)

RC=0.7(SIC)

RC=0.5(SIC)

RC=0.3(SIC)

Fig. 4 continued

Fig. 5 Main results illustrated
in a matrix (n = 30)

123



58 J Sched (2016) 19:43–60

Fig. 6 Main results illustrated
in a matrix (n = 60)

Fig. 7 Main results illustrated
in a matrix (n = 90)

position compared with others in order to distinguish it). For
a given due date or duration variability, both RF and RC
have a positive impact on SIC. However, the extents of the
above-mentioned positive impacts on SIC are still very small
compared with the other factors.

As mentioned before, for dataset n = 90, the impact of
RF on SIC is positive regardless of the level of OS, while for
dataset n = 60, this impact depends on the level of OS.

On the whole, we observe that the impact patterns stay
stable for most of the factors except RF and RC with the
increase of the number of activities. The impact patterns of
RF and RC are related with the scale of the project. When
the number of activities is relatively big, the impacts of RF
and RC on SIC show a positive trend. Unsurprisingly, most
factors have a positive impact. However, since we combine
leveled resource usage and stable activity starting times in the

123



J Sched (2016) 19:43–60 59

Table 7 Average CPU time (in seconds)

Dataset Avg. CPU time

n = 30 0.74

n = 60 1.17

n = 90 1.68

robust resource leveling problem, some unexpected phenom-
ena are observed: (a) the factor due date actually has a weak
impact on the total schedule execution cost in most cases, (b)
RF and RC do not show an obvious impact on SIC until the
number of activities becomes big, and (c) in the meantime,
the impact of ck also changes from weak to positive with the
increase in the scale of the project.

5.2.3 Computation times

Table 7 shows the average CPU time needed to solve a prob-
lem instance with different numbers of activities. We do not
give the detailed CPU time for other factors, because our
results reveal that the number of activities has the only sig-
nificant impact on the computation times. We find that due
to the fact that the maximum number of schedules generated
is only 1000, the average CPU time for each dataset is still
quite acceptable even though the time-consuming simulation
is embedded in the GA.

6 Conclusions and future research

In this paper, we proposed a genetic algorithm for the robust
resource leveling problemwhere one tries to obtain a baseline
schedule such that the expected total schedule execution cost
is minimized during project execution. The total schedule
execution cost consists of the cost related to the resource
usage exceeding the desired resource level as well as the
cost associated with positive deviations from the planned
activity starting times. Our GA differs from a typical GA
for extensions of the RCPSP in several aspects, such as a
special decoding procedure for obtaining leveled schedules,
a hybrid crossover operator that combines resource-based
crossovers and two-point crossovers and an evaluation based
on simulation for the objective function.

We performed extensive computational experiments on a
large number of randomly generated test instances. We sum-
marized the impact patterns of factors into five categories.
Experimental results revealed that a higher level of a fac-
tor usually means a higher expected total schedule execution
cost. Among the factors, ck has the largest impact on the total
schedule execution cost. However, both RF and RC have the

weakest impact on the schedule instability cost in our robust
resource leveling environment.

The study of proactive scheduling policies (Deblaere et al.
2011) for the stochastic RLP is a topic for future research.
At the scheduling decision point during project execution,
one has to decide which activities to execute such that the
expected deviation of the resource usage is minimized while
meeting the project due date as much as possible. The devel-
opment of reactive scheduling procedures for the robust RLP
is also an interesting research issue.

Acknowledgments The authors thank the reviewers for providing
valuable suggestions that have improved the quality of this paper. The
research of Hongbo Li is supported by the Research Center for Oper-
ations Management of the KU Leuven, the National Natural Science
Foundation of China underGrantNo. 71271019, theChina Postdoctoral
Science Foundation under Grant No. 2015M571542, the Humanities
and Social Sciences Foundation of the Ministry of Education of China
under grant 15YJCZH077 and a scholarship from theChina Scholarship
Council.

References

Ahuja, H. N. (1976). Construction performance control by networks.
New York: Wiley.

Ashuri, B., & Tavakolan, M. (2012). Fuzzy enabled hybrid genetic
algorithm-particle swarm optimization approach to solve TCRO
problems in construction project planning. Journal of Construc-
tion Engineering and Management, 138(9), 1065–1074.

Ballestín, F. (2007). When it is worthwhile to work with the stochastic
RCPSP? Journal of Scheduling, 10(3), 153–166.

Ballestín, F., Schwindt, C., & Zimmermann, J. (2007). Resource level-
ing in make-to-order production: Modeling and heuristic solution
method. International Journal of Operations Research, 4(1), 50–
62.

Bandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource lev-
eling using non-serial dyanamic programming. European Journal
of Operational Research, 78(2), 162–177.

Burgess, A. R., & Killebrew, J. B. (1962). Variation in activity level on
a cyclic arrow diagram. Journal of Industrial Engineering, 13(2),
76–83.

Chan, W. T., Chua, D. K., & Kannan, G. (1996). Construction resource
scheduling with genetic algorithms. Journal of Construction Engi-
neering and Management, 122(2), 125–132.

Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic
algorithm for the resource-constrained project-scheduling prob-
lem. Operations Research, 55(3), 457–469.

Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive
policies for the stochastic resource-constrained project scheduling
problem.European Journal ofOperational Research,214(2), 308–
316.

Demeulemeester, E. L., & Herroelen, W. (2002). Project scheduling: A
research handbook. Boston: Kluwer Academic Pub.

Demeulemeester, E. L., & Herroelen, W. (2011). Robust project
scheduling (Vol. 3, No. 3–4). Delft: Now Publishers Inc.

Demeulemeester, E., Vanhoucke,M., &Herroelen,W. (2003). RanGen:
A random network generator for activity-on-the-node networks.
Journal of Scheduling, 6(1), 17–38.

Easa, S. M. (1989). Resource leveling in construction by optimization.
Journal of Construction Engineering and Management, 115(2),
302–316.

123



60 J Sched (2016) 19:43–60

El-Rayes, K., & Jun, D. H. (2009). Optimizing resource leveling in
construction projects. Journal of Construction Engineering and
Management, 135(11), 1172–1180.

Gather, T., Zimmermann, J., & Bartels, J. H. (2011). Exact methods
for the resource levelling problem. Journal of Scheduling, 14(6),
557–569.

Goldberg, D. E., Korb, B., &Deb, K. (1989).Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, 3, 493–
530.

Hariga, M., & El-Sayegh, S. M. (2011). Cost optimization model for
the multiresource leveling problem with allowed activity splitting.
Journal of Construction Engineering and Management, 137(1),
56–64.

Harris, R. B. (1990). Packing method for resource leveling (PACK).
Journal of Construction Engineering and Management, 116(2),
331–350.

Hartmann, S. (2002). A self-adapting genetic algorithm for project
scheduling under resource constraints. Naval Research Logistics,
49(5), 433–448.

Herroelen, W., & De Reyck, B. (1999). Phase transitions in project
scheduling. Journal of the Operational Research Society, 50(2),
148–156.

Herroelen, W., De Reyck, B., & Demeulemeester, E. (2000). On the
paper “Resource-constrained project scheduling: Notation, classi-
fication, models and methods” by Brucker et al. European Journal
of Operational Research, 128(3), 221–230.

Herroelen,W., &Leus, R. (2004a). Robust and reactive project schedul-
ing: A review and classification of procedures. International
Journal of Production Research, 42(8), 1599–1620.

Herroelen, W., & Leus, R. (2004b). The construction of stable project
baseline schedules. European Journal of Operational Research,
156(3), 550–565.

Herroelen,W.,&Leus, R. (2005). Project scheduling under uncertainty:
Survey and research potentials. European Journal of Operational
Research, 165(2), 289–306.

Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic
activity duration times. Applied Mathematics and Computation,
168(1), 342–353.

Kelley, J. E., & Walker, M. R. (1959). Critical-path planning and
scheduling. In Proceedings of the Eastern Joint Computer Con-
ference (pp. 160–173).

Kolisch, R.,&Sprecher, A. (1997). PSPLIB:A project scheduling prob-
lem library. European Journal of Operational Research, 96(1),
205–216.

Kreter, S., Rieck, J., & Zimmermann, J. (2014). The total adjustment
cost problem:Applications,models, and solution algorithms. Jour-
nal of Scheduling, 17(2), 145–160.

Lamas, P., &Demeulemeester, E. (2015). A purely proactive scheduling
procedure for the resource-constrained project scheduling problem
with stochastic activity durations. Journal of Scheduling, 1–20.
doi:10.1007/s10951-015-0423-3.

Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proac-
tive and reactive strategies for resource-constrained project
scheduling with uncertain resource availabilities. Journal of
Scheduling, 11(2), 121–136.

Leu, S. S., Chen, A. T., & Yang, C. H. (1999). A fuzzy optimal model
for construction resource leveling scheduling. Canadian Journal
of Civil Engineering, 26(6), 673–684.

Leu, S. S., Yang, C. H., & Huang, J. C. (2000). Resource leveling
in construction by genetic algorithm-based optimization and its
decision support system application. Automation in Construction,
10(1), 27–41.

Leu, S. S., & Hung, T. H. (2002). An optimal construction resource
leveling scheduling simulation model. Canadian Journal of Civil
Engineering, 29(2), 267–275.

Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling policies for
the stochastic resource leveling problem. Journal of Construction
Engineering and Management, 141(2), 04014072.

Liu, B. (2009). Stochastic programming. Theory and practice of
uncertain programming (2nd ed., pp. 25–56). Berlin, Heidelberg:
Springer.

Masmoudi,M., &Haït, A. (2013). Project scheduling under uncertainty
using fuzzymodelling and solving techniques. Engineering Appli-
cations of Artificial Intelligence, 26(1), 135–149.

Neumann, K., & Zimmermann, J. (1999). Resource levelling for
projects with schedule-dependent time windows. European Jour-
nal of Operational Research, 117(3), 591–605.

Neumann, K., & Zimmermann, J. (2000). Procedures for resource lev-
eling and net present value problems in project scheduling with
general temporal and resource constraints. European Journal of
Operational Research, 127(2), 425–443.

Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project
scheduling with time windows and scarce resources. Berlin:
Springer.

Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013).
The Resource Leveling Problem with multiple resources using an
adaptive genetic algorithm. Automation in Construction, 29, 161–
172.

Ranjbar, M. (2013). A path-relinking metaheuristic for the resource
levelling problem. Journal of the Operational Research Society,
64(7), 1071–1078.

Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear
programming for resource leveling problems. European Journal
of Operational Research, 221(1), 27–37.

Tang, L., Zhao, Y., & Liu, J. (2014). An improved differential evolu-
tion algorithm for practical dynamic scheduling in steelmaking-
continuous casting production. IEEE Transactions on Evolution-
ary Computation, 18(2), 209–225.

Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algo-
rithm for the resource-constrained project scheduling problem.
European Journal of Operational Research, 185(2), 495–508.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R.
(2005). The use of buffers in project management: The trade-off
between stability and makespan. International Journal of Produc-
tion Economics, 97(2), 227–240.

Van de Vonder, S., Ballestin, F., Demeulemeester, E., & Herroelen,
W. (2007a). Heuristic procedures for reactive project scheduling.
Computers & Industrial Engineering, 52(1), 11–28.

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007b). A
classification of predictive-reactive project scheduling procedures.
Journal of Scheduling, 10(3), 195–207.

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008).
Proactive heuristic procedures for robust project scheduling: An
experimental analysis.European Journal ofOperationalResearch,
189(3), 723–733.

Wiest, J.,&Levy, F. (1977).Amanagement guide toPERT/CPM. Engle-
wood Cliffs: Prentice Hall.

Wullink, G., Gademann, A. J. R. M., Hans, E. W., & Van Harten,
A. (2004). Scenario-based approach for flexible resource loading
under uncertainty. International Journal of Production Research,
42(24), 5079–5098.

Wullink, G. (2005). Resource loading under uncertainty. PhD thesis,
University of Twente.

Zahraie, B., & Tavakolan, M. (2009). Stochastic time-cost-resource
utilization optimization using nondominated sorting genetic algo-
rithm and discrete fuzzy sets. Journal of Construction Engineering
and Management, 135(11), 1162–1171.

123

http://dx.doi.org/10.1007/s10951-015-0423-3

	A genetic algorithm for the robust resource leveling problem
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Robust resource leveling problem
	2.2 Example

	3 A genetic algorithm for the robust RLP
	3.1 Schedule representation and the GA framework
	3.2 The decoding procedure
	3.3 Initial population and fitness
	3.4 Parent selection
	3.5 Crossover
	3.6 Mutation
	3.7 Offspring selection

	4 Experimental set-up
	5 Experimental results
	5.1 Comparison with other heuristics
	5.1.1 Comparison with an existing GA
	5.1.2 Comparison with the B&K procedure

	5.2 Main results
	5.2.1 The results for dataset n = 30
	5.2.2 The results for dataset n = 60 and n = 90
	5.2.3 Computation times


	6 Conclusions and future research
	Acknowledgments
	References




