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Abstract We study the following energy-efficient schedul-
ing problem. We are given a set of n jobs which have to be
scheduled by a single processor whose speed can be varied
dynamically. Each job J j is characterized by a processing
requirement (work) p j , a release date r j , and a deadline d j .
We are also given a budget of energy E which must not be
exceeded and our objective is to maximize the throughput
(i.e., the number of jobs which are completed on time). We
show that the problem can be solved optimally via dynamic
programming in O(n4 log n log P) time when all jobs have
the same release date, where P is the sum of the process-
ing requirements of the jobs. For the more general case
with agreeable deadlines where the jobs can be ordered so
that, for every i < j , it holds that ri ≤ r j and di ≤ d j ,
we propose an optimal dynamic programming algorithm
which runs in O(n6 log n log P) time. In addition, we con-
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sider the weighted case where every job J j is also associated
with a weight w j and we are interested in maximizing the
weighted throughput (i.e., the total weight of the jobs which
are completed on time). For this case, we show that the prob-
lem becomes NP-hard in the ordinary sense even when all
jobs have the same release date and we propose a pseudo-
polynomial time algorithm for agreeable instances.

Keywords Throughput · Speed scaling · Scheduling

1 Introduction

The problem of scheduling n jobs with release dates and
deadlines on a single processor that can vary its speed
dynamicallywith the objective ofminimizing the energy con-
sumption has been first studied in the seminal paper by Yao
et al. (1995). In this paper, we consider the problem of max-
imizing the throughput without exceeding a given budget of
energy.

Formally, we are given a set of n jobs J = {J1, J2, . . . ,
Jn}, where each job J j is characterized by a processing
requirement (work) p j , a release date r j , and a deadline d j .
W.l.o.g. we suppose that the earliest released job is released
at t = 0. We assume that the jobs have to be executed by a
single speed-scalable processor, i.e., a processor which can
vary its speed over time (at a given time, the processor’s speed
can be any non-negative value). The processor can execute
at most one job at each time. We measure the processor’s
speed in units of executed work per unit of time. If s(t) is
the speed of the processor at time t , then the total amount
of work executed by the processor during an interval of time

[t, t ′) is equal to ∫ t ′
t s(u)du. Moreover, we assume that the

processor’s power consumption is a convex function of its
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speed. Specifically, at any time t , the power consumption of
the processor is P(t) = s(t)α , where α > 1 is a constant.
Since the power is defined as the rate of change of the energy
consumption, the total energy consumption of the proces-

sor during an interval [t, t ′) is ∫ t ′
t s(u)αdu. Note that if the

processor runs at a constant speed s during an interval of
time [t, t ′), then it executes (t ′ − t) · s units of work and
it consumes (t ′ − t) · sα units of energy. Each job J j can
start being executed at its release date r j or after. Moreover,
we allow preemptions of jobs, i.e., a job may be executed,
suspended, and resumed later from the point of suspension.
Given a budget of energy E which must not be exceeded,
our objective is to find a schedule of maximum throughput,
where the throughput of a schedule is defined as the num-
ber of jobs which are completed on time, i.e., before their
deadline. Observe that a job J j is completed on time if it is
entirely executed during the interval [r j , d j ). By extending
the well-known 3-field notation by Graham et al. (1979), this
problem can be denoted as 1|pmtn, r j | ∑Uj (E).

We also consider the weighted version of the problem
where every job J j is also associated with a weight w j and
the objective is no more the maximization of the cardinal-
ity of the set of jobs that are completed on time, but the
maximization of the sum of their weights. We denote this
problem as 1|pmtn, r j | ∑w jU j (E). In what follows, we
consider instances of the problem in which all jobs have the
same release date and another important and more general
family of instances, the agreeable instances, inwhich the jobs
can be ordered so that, for every i < j , it holds that ri ≤ r j
and di ≤ d j .

1.1 Related work and contributions

In classical scheduling, throughput maximization has been
studied extensively. In particular, in the problem 1|pmtn,

r j | ∑Uj , we are given a set of jobs J = {J1, J2, . . . , Jn}
that have to be executed by a single processor. Each job
J j is associated with a processing time p j , a release date
r j , and a deadline d j . The objective is to find a sched-
ule of maximum throughput. This problem is polynomially
time solvable and the fastest known algorithm for general
instances is in O(n4) (Baptiste 1999). When all the release
dates are equal, i.e., the problem 1||∑Uj , it can be solved
in O(n log n) time with Moore’s algorithm Moore (1968).
Finally, if the jobs have agreeable deadlines, i.e., the prob-
lem 1|pmtn, r j , agreeable|∑Uj , then Lawler’s algorithm
Lawler (1994) solves the problem optimally in O(n log n)

time. The problem 1|pmtn, r j | ∑w jU j , where each job is
also associated with a weight and the objective is to maxi-
mize the weighted throughput, is NP-hard and there exists
a pseudo-polynomial time algorithm due to Lawler (1990).

The current state of the art in speed scaling includes some
works on variants of the speed scaling problem with the
objective of maximizing the throughput mainly in the online
setting. The first work that considered online throughput
maximization in speed scaling was by Chan et al. (2007).
They considered the online problem of scheduling a set of
jobs with release dates and deadlines on a single processor
with an upper bound on its speed and their objectivewasmax-
imizing the throughput while minimizing the energy among
all schedules of maximum throughput. For this problem,
they presented an algorithm which is O(1)-competitive with
respect to both objectives. Bansal et al. (2008) improved the
results in Chan et al. (2007) and Lam et al. (2007) extended
them for multiprocessor environments.

Chan et al. (2007) defined the energy efficiency of a sched-
ule to be the total amount of work completed on time divided
by the total energy usage. Given an energy efficiency thresh-
old, they considered the problem of finding a schedule of
maximum throughput. They showed that no deterministic

algorithm can have competitive ratio better than O
(
pmax
pmin

)
,

i.e., the maximum over the minimum job processing require-
ment. However, they obtained a constant-factor competitive
algorithm with energy efficiency augmentation.

Furthermore, Chan et al. (2010) studied the problem
of minimizing the energy plus rejection penalties. For a
given job, the rejection penalty is the cost incurred if the
job is not completed on time. The authors proposed an
O(1)-competitive algorithm for the case where the speed is
unbounded and they showed that no O(1)-competitive algo-
rithm exists for the case where the speed is bounded.

Finally, there exists also a work on speed scaling with the
throughput objective in the offline setting. Li (2011) consid-
ered the maximum throughput when there is an upper bound
on the processor’s speed and he proposed a 3-approximation
greedy algorithm for the throughput and a constant approxi-
mation ratio for the energy consumption.

It has to be noticed that, after the conference version of
this paper, Angel et al. (2014) proposed an optimal pseudo-
polynomial time algorithm solving the general version of the
problem 1|pmtn, r j | ∑w jU j (E). Other important metrics
for the quality of a schedule under energy considerations have
been studied in the literature (e.g., the study of flow time in
the speed scaling setting was initiated by Pruhs et al. 2008).

This paper is organized as follows. Initially, we present an
optimal algorithm for the case where all jobs have the same
release date r j = 0, i.e., for the problem1||∑Uj (E).1 Then,
we present an optimal algorithm for the more general case
with agreeable instances, i.e., 1|r j , agreeable|∑Uj (E)1.
The reason for presenting both algorithms is that the for-
mer algorithm is slightly better than the latter one in terms

1 There is always an optimal non-preemptive schedule for this problem
even if preemptions are allowed (see Property 1).
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of worst-case running time. The first algorithm runs in
O(n4 log n log P) time while the running time of the second
one is O(n6 log n log P). Finally, we consider the even more
general case in which the jobs are associated with weights
and we are interested in maximizing the weighted through-
put. We show that the problem 1||∑w jU j (E) is NP-hard
in the ordinary sense and we propose a pseudo-polynomial
time algorithm for 1|r j , agreeable|∑ w jU j (E).

2 Initial remarks

Given that the processor’s speed can be varied, a reasonable
distinction of the scheduling problems that can be considered
is the following:

– FS (fixed speed): The processor has a fixed speed which
implies directly a processing time for each job. In this
case, the scheduler has to decide which job must be exe-
cuted at each time. This is the classical scheduling setting.

– CS (constant speed): The processor’s speed is not known
in advance but it can only run at a single speed during the
whole time horizon. In this context, the scheduler has to
define a single value of speed at which the processor will
run and the job executed at each time.

– 2S (scalable speed): The processor’s speed can be var-
ied over the time and, at each time, the scheduler has to
determine not only which job to run, but the processor’s
speed as well.

At this point, let us make a remark. Assume that we are
provided an optimal algorithm for a FS scheduling problem,
i.e., for a classical scheduling problem. Then, we can use
this algorithm as a black box and binary search in order to
solve the corresponding CS problem. This observation is a
key ingredient for designing our algorithms.

3 Properties of optimal schedules

Among the schedules of maximum throughput, we try to find
the one of minimum energy consumption. Therefore, if we
knew by an oracle the set of jobs J ∗, J ∗ ⊆ J , which are
completed on time in an optimal solution, we would sim-
ply have to apply an optimal algorithm for 1|pmtn, r j , d j |E
for the jobs in J ∗ in order to determine a minimum energy
schedule of maximum throughput for our problem. Based on
this observation, we can use in our analysis some properties
of an optimal schedule for 1|pmtn, r j , d j |E .

Let t1, t2, . . . , tk be the time points which correspond to
all the possible release dates and deadlines of the jobs. We
number the ti values in increasing order, i.e., t1 < t2 < · · · <

tk . The following theorem can be found in Yao et al. (1995).

Theorem 1 A feasible schedule for1|pmtn, r j , d j |E is opti-
mal if and only if all the following hold:

1. Each job J j is executed at a constant speed s j .
2. The processor is not idle at any time t such that t ∈

[r j , d j ), for all J j ∈ J .
3. The processor runs at a constant speed during any inter-

val [ti , ti+1), for 1 ≤ i ≤ k − 1.
4. A job J j is executed during the interval [ti , ti+1), for any

1 ≤ i ≤ k − 1, if it has been assigned the maximum
speed among the speeds of the jobs J j ′ with [ti , ti+1) ⊆
[r j ′, d j ′).

Theorem 1 is also satisfied by the optimal schedule of
1|pmtn, r j | ∑Uj (E) for the jobs in J ∗. Specifically, if we
know somehow the subset of jobs executed in an optimal
schedule for 1|pmtn, r j | ∑Uj (E), then we may construct
the actual optimal schedule by using an optimal algorithm
for 1|pmtn, r j , d j |E .

4 Optimal algorithms

For the problem 1|r j , agreeable|∑Uj (E) where the dead-
lines of the jobs are agreeable, we propose an optimal
algorithm based on dynamic programming. As mentioned
before, among the schedules of maximum throughput, our
algorithm constructs a schedule of minimum energy con-
sumption. Next, we describe our dynamic program and we
elaborate on the complexity of our algorithm.

Let FS be the problemofmaximizing the throughputwhen
each job has a fixed processing time, as described in the
subsection with the related work. Next, we consider another
problem which we denote as CS. In this problem, we are
given a set of jobs J = {J1, J2, . . . , Jn}, where each job J j
has a processing requirement q j , a release date r j , and a dead-
line d j , that have to be executed by a single speed-scalable
processor. Moreover, we are given a value of throughput u.
The objective is to find the minimum energy schedule which
completes at least u jobs on time and all jobs run with equal
speed. For notational convenience, we denote the problem
1|pmtn, r j | ∑Uj (E) as 2S.

The inspiration for our dynamic programming for the spe-
cial case of the 2S where the deadlines are agreeable was the
fact that the problem CS can be solved in polynomial time
by repeatedly solving instances of the problem FS. In fact,
if we are given a candidate speed s for the CS problem, we
can find a schedule of maximum throughput w.r.t. to s sim-
ply by setting the processing time of each job J j equal to

p j
s

and applying an optimal algorithm for the FS problem. So,
in order to get an optimal algorithm of the CS problem, it
suffices to establish a lower and upper bound on the speed
of the optimal schedule. A naive choice is smin = 0 and
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speed

time

0 dj dk

{J1, J2, . . . , Jj}

{Jj+1, Jj+2, . . . , Jk}
jobs

u− jobs

E(k, u)

E( ) B(dj , dk , u− )

Fig. 1 Illustration of an optimal solution when jobs have common
release date

smax = ∑n
j=1 p j/(dmax − rmin). Note that, rmin and rmax

are the minimum and maximum release date among all jobs,
respectively, Similarly, let dmin and dmax be theminimumand
the maximum deadline. Then, it suffices to binary search in
[smin, smax] and find the minimum speed s∗ in which k jobs
are completed on time.

The next property comes from the fact that the algo-
rithm in Yao et al. (1995) is optimal for 1|pmtn, r j , d j |E
and it is a key ingredient for decomposing our problem
1|r j , agreeable|∑Uj (E).

Property 1 There is always an optimal schedule for 1|pmtn,

r j , d j |E in which the jobs are executed according to the edf
(Earliest Deadline First) policy. In the case where the jobs
have agreeable deadlines, the jobs are executed without pre-
emptions.

Inwhat follows,we assume that the jobs J1, J2, . . . , Jn are
sorted according to the edf order, i.e., d1 ≤ d2 ≤ . . . ≤ dn .

4.1 Equal release dates

Now, we present our dynamic algorithm for the problem
1|| ∑ w jU j (E) in which all jobs have the same release date
at t = 0.

Before giving the formal definition of our algorithm, we
give an intuitive explanation onhow itworks. Sincewewant a
minimum energy schedule among all schedules of maximum
throughput, our algorithm does not execute any of the jobs
which are not completed on time. Let J ∗ ⊆ J be the set of
jobs which are completed on time by the algorithm. Then, the
optimal schedule for 1||∑w jU j (E) is a minimum energy
schedule for the jobs in J ∗.

It has to be noticed that a schedule of a processor whose
speed is varied canbe represented as a 2-dimensional diagram
where the horizontal axis corresponds to the time horizon and
the vertical axis corresponds to the speed. Then, by Theorem
1, a minimum energy schedule for the jobs in J ∗ is a down-
ward staircase as depicted in Fig. 1.

In Fig. 1 which gives an “image” of an optimal solution
for our problem, we assume that u jobs are executed in total
and that job Jk is the last job which is completed on time. The

energy consumption of this schedule is denoted as E(k, u). It
is possible that all jobs are executed with the same speed but
this case can be treated easily. So, we assume for the moment
that there is at least a couple of jobs which are executed with
different speeds.

By Theorem 1, the optimal schedule is a downward stair-
case and every step starts and ends in one of the points
t1, t2, . . . , tk . Another important consequence of Theorem
1 is that, for any step between d j and dk , only jobs in the
set {J j+1, J j+2, . . . , Jk} are allowed to be executed during
[d j , dk). Moreover, none of these jobs is executed before d j

or after dk . Therefore, if we knew somehow that [d j , dk) is
the last step of the optimal schedule and that exactly u−� jobs
are executed during this step, then we could decompose the
problem into the sub-problems E( j, �) and B(d j , dk, u−�),
where B(d j , dk, u − �) is the minimum energy consumption
for scheduling exactlyu−� jobs among {J j+1, J j+2, . . . , Jk}
with the same speed during the time interval [d j , dk). This
latter problem is a CS problem which we know how to solve
in polynomial time. Our dynamic programming algorithm is
based on this decomposition scheme.

We, now, describe formally our algorithm. For a subset of
jobs S ⊆ J , a schedule which involves only the jobs in S
will be called a S-schedule.

Definition 1 Let J (k) = {J j | j ≤ k} be the set of the first
k jobs according to the edf order. For 1 ≤ u ≤ |J (k)|, we
define E(k, u) as the minimum energy consumption of an S-
schedule such that |S| = u and S ⊆ J (k). If such a schedule
does not exist, i.e., when u > |J (k)|, then E(k, u) := +∞.

Definition 2 We define B(t ′, t, �) as the minimum energy
consumption of an S-schedule such that |S| = �, S ⊆
{J j | t ′ < d j ≤ t} and such that all these jobs are sched-
uled only within the interval [t ′, t], and with a constant
common speed. If such a schedule does not exist, then
B(t ′, t, �) := +∞.

Given an energy budget E , the maximum number of jobs
that can be scheduled without exceeding this budget is given
by max{u | E(n, u) ≤ E}.
Proposition 1 B(d j , dk, �) can be computed in O(n log n
log P) time, for any j, k, �, with P = ∑

i pi .

Proof In order to compute B(d j , dk, �), we consider the set
of jobs {Ji |d j < di ≤ dk}. For each job in this set,wemodify
its release date tod j . Sincewewant theminimumenergy con-
sumption and there is only one speed,we search theminimum
speed such that there are exactly � jobs scheduled. Moreover,
we schedule an integer volume of jobs, then the speed is nec-
essarily h/(dk − d j ) for some h = 0, . . . , P . This minimum
speed can be found by performing a binary search on the
value of h in the interval [0, P]. Once the value of h is cho-
sen, the processing time of a job Ji is ti = pi × (dk −d j )/h,
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and we compute the maximum number m of jobs which can
be scheduled using Moore’s algorithm (Moore 1968) in time
O(n log n). If m < � (resp. m > �) the value h must be
increased (resp. decreased). �	
Proposition 2 It holds that

E(k, u) = min
0≤ j≤k
0≤�≤u

{E( j, �) + B(d j , dk, u − �)}.

Proof Let S be an optimal schedule associated with E(k, u).
We can assume that this schedule satisfies the properties
of Theorem 1 and Property 1. Clearly, by Definition 1,
E(0, 0) = 0 which corresponds to the empty schedule and
E(0, u) = +∞, for every u > 0, because it is not possible
to schedule u > 0 number of jobs when there are no jobs
available.

If Jk /∈ S, then E(k, u) = E(k−1, u). If Jk ∈ S, then there
are two cases to consider. The first case is when all the jobs
in S are scheduled at the same speed. This case is equivalent
to the CS problem, and one has E(k, u) := B(0, dk, u).

The second case is when the schedule S has at least two
different speeds. Let C j be the completion time of job J j
in the schedule S. Let t = min j {C j | all the jobs sched-
uled after J j (at least one job) are executed with the same
speed} = C j∗ . Necessarily, job J j∗ is executed with a dif-
ferent speed. This means that at time C j∗ the processor is
changing its speed, and using Property 3 of Theorem 1 we
can deduce that C j∗ = d j∗ . Now we consider the subsched-
ule S1 obtained from S by considering only the tasks executed
during the interval [0, d j∗). Let us assume that there are
�∗ tasks in this subschedule. Then, necessarily the energy
consumption of S1 is equal to E( j∗, �∗), otherwise by replac-
ing S1 with a better subschedule with energy consumption
E( j∗, �∗) we could obtain a better schedule than S. Now we
consider the subschedule S2 obtained from S by considering
only the tasks executed from time d j∗ until the end of the
schedule. In a similar way, the energy consumption of S2 is
equal to B(d j∗ , dk, u−�∗). Notice that since the jobs involved
in E( j, �)have adeadline smaller thanor equal tod j ,whereas
the jobs involved in B(d j , dk, u − l) have a deadline greater
than d j , those sets of jobs are always distinct, and therefore
the schedule associated with E( j, �) + B(d j , dk, u − �) is
always feasible. �	
Theorem 2 The problem 1||∑Uj (E) can be solved in
O(n4 log n log P) time.

Proof We use a dynamic program based on Proposition 2,
with E(0, u) = +∞,∀u > 0. The maximum throughput
is equal to max{u | E(n, u) ≤ E}. The number of val-
ues B(d j , dk, �) is O(n3). They can be precomputed with
a total running time O(n4 log n log P), using Proposition 1.
The number of values E(k, u) is O(n2), and the complexity

to calculate each E(k, u) value is O(n2) (we have to look
for O(n2) values for j, � and we assume that the previous
E(., .) values have already been computed). Thus the overall
complexity is O(n4 log n log P). �	

4.2 Agreeable instances

Definition 3 We define Ek(t, u) as the minimum energy
consumption of an S-schedule, such that |S| = u, S ⊆
J (k, t) = {J j | j ≤ k, r j < t} and such that all these jobs
are executed within the interval [rmin, t]. If such a schedule
does not exist, then Ek(t, u) = +∞.

Definition 4 We define A(t ′, t, �, j, k) as the minimum
energy consumption of a S-schedule such that |S| = �, S ⊆
{J j , . . . , Jk}, and such that all these jobs are scheduledwithin
the interval [t ′, t], and with a constant common speed.

Proposition 3 A(t ′, t, �, j, k) can be computed in O(n log
n log P) time, for any t ′, t, �, j, k.

Proof In order to compute A(t ′, t, �, j, k), we change the
release date of job Ji to t ′ if ri < t ′, and the deadline of
job Ji to t if di > t . The set {J j , . . . , Jk} still has agreeable
deadlines. Then we proceed as in the proof of Proposition 1
using a binary search over the interval [0, smax], with smax =
P/(t − t ′). Note that in this case, we use Lawler’s algorithm
in Lawler (1994). �	
Proposition 4 It holds that

Ek(t, u) = min
0≤�≤u

rmin≤t ′≤t
0≤ j<k

{

E j (t
′, �) + A(t ′, t, u − �, j + 1, k)

}

.

Proof Let S be an optimal schedule associatedwith Ek(t, u).
We can assume that this schedule satisfies the properties of
Theorem 1 and Property 1. Let E ′ be the right-hand side of
the equation.

If Jk /∈ S, then Ek(t, u) = Ek−1(t, u). In that case, t ′ =
t, j = k − 1 and � = u in the above expression. If Jk ∈ S,
then there are two cases to consider. The first case is when the
optimal schedule S has one speed. In that case t ′ = rmin, � =
0, j = 0 in the above expression. This case is equivalent
to the CS problem. We now consider the second case when
the optimal schedule S has at least two speeds. We split the
schedule S into two subschedules S1 and S2 (see Fig. 2).

There exists t ′ with rmin < t ′ < t , such that all the jobs
scheduled after t ′ are scheduled with a common speed, and
this is the subschedule S2. Let j + 1 be the job which is
scheduled after date t in S. We can suppose that each job in
S whose release date is before the release date of job j + 1
is entirely scheduled before t ′. If it is not the case, then there
is a job i < j + 1 which is scheduled after j + 1 and we
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speed

time

0 t t

{J1, J2, . . . , Jj}

{Jj+1, Jj+2, . . . , Jk}
jobs

u− jobs

Ek(t, u)

Ej(t ) A(t , t, u− + 1, k)

Fig. 2 Illustration of the decomposition in Proposition 4

have a contradiction since we only consider edf schedules.
Otherwise there is a job i < j + 1 which is not entirely
executed before t ′ and we have a preemption of the job i
which contradicts Property 1. Thus we have S1 ⊆ {1, . . . , j}
and S2 ⊆ { j + 1, . . . , k}.

The restriction S1 of S to [0, t ′) is a schedule that meets
all constraints related to E j (t ′, �). Hence its cost is greater
than E j (t ′, �). Similarly, the restriction S2 of S to [t ′, t) is a
schedule thatmeets all constraints related to A(t ′, t, u−�, j+
1, k). Hence its cost is greater than A(t ′, t, u − �, j + 1, k).
Thus, Ek(t, u) ≥ E j (t ′, �) + A(t ′, t, u − �, j + 1, k). �	
Theorem 3 The problem 1|r j , agreeable|∑Uj (E) can be
solved in O(n6 log n log P) time.

Proof We use a dynamic program based on Proposition 4.
Notice that the important dates are included in the set T =
{r j | 1 ≤ j ≤ n} ∪ {d j | 1 ≤ j ≤ n}. This comes from
Property 1 and Theorem 1, i.e., the changes of speed of the
processor occur only at some release date or some deadline.
Therefore we can always assume that t ′, t ∈ T . Notice also
that |T | = O(n).

We define E0(t, 0) = 0∀t ∈ T , and E0(t, u) = +∞
∀u > 0, t ∈ T . The maximum throughput is equal to
max{u | En(dmax, u) ≤ E}.

The number of values A(t ′, t, �, j, k) is O(n5). They can
be precomputed with a total processing time O(n6 log n
log P), using Proposition 3. The number of values Ek(t, u)

is O(n3). To compute each value, we have to look for the
O(n3) cases (for each value of t ′, j, �). In each case, we pick
up two values which are already computed. Thus the Ek(t, u)

values are computed in O(n6) time. The overall complexity
is O(n6 log n log P). �	

4.3 Weighted throughput

Next we consider the weighted version of our problem, i.e.,
1|pmtn, r j | ∑ j w jU j (E). In this version a job J j is defined
by its release date r j , its deadline d j , its amount of work p j ,
and its weight w j . We want to maximize the total weight
of the jobs scheduled subject to E . We first show that the
problem is NP-hard even in the case where all the jobs are

released at the same time and have equal deadlines. Then,
we present a pseudo-polynomial-time algorithm for the case
where the deadlines are agreeable.

Theorem 4 The problem 1||∑ j w jU j (E) is NP-hard.

Proof In order to establish the NP-hardness of 1||∑ j w j

U j (E), we present a reduction from the Knapsack prob-
lem which is known to be NP-hard. In an instance of the
Knapsack problem we are given a set I of n items. Each
item i ∈ I has a value vi and a capacity ci . Moreover, we are
given a capacity C , which is the capacity of the knapsack,
and a value V . In the decision version of the problem we ask
whether there exists a subset I ′ ⊆ I of the items of total value
not less than V , i.e.,

∑
i∈I ′ vi ≥ V , whose capacity does not

exceed the capacity of a knapsack, i.e.,
∑

i∈I ′ ci ≤ C .
Given an instance of theKnapsack problem,we construct

an instance of 1||∑ j w jU j (E) as follows. For each item
i, 1 ≤ i ≤ n, we introduce a job Ji with ri = 0, di =
1, wi = vi , and pi = ci . Moreover, we set the budget of
energy equal to E = Cα .

We claim that the instance of the Knapsack problem is
feasible iff there is a feasible schedule for 1||∑ j w jU j (E)

of total weighted throughput not less than V .
Assume that the instance of the Knapsack is feasi-

ble. Therefore, there exists a subset of items I ′ such that∑
i∈I ′ vi ≥ V and

∑
i∈I ′ ci ≤ C . Then we can schedule the

jobs in I ′ with constant speed
∑

i∈I ′ ci during [0, 1]. The
total energy consumption of this schedule is no more thatCα

since the instance of the Knapsack is feasible. Moreover,
their total weight is no less than V .

For the opposite direction of our claim, assume there is
a feasible schedule for 1||∑ j w jU j (E) of total weighted
throughput not less than V . Let J ′ be the jobs which are com-
pleted on time in this schedule. Clearly, due to the convexity
of the speed-to-power function, the schedule that executes
the jobs in J ′ with constant speed during the whole interval
[0, 1] is also feasible. Since the latter schedule is feasible,
we have that

∑
j∈J ′ p j ≤ C . Moreover,

∑
j∈J ′ w j ≥ V .

Therefore, the items which correspond to the jobs in J ′ form
a feasible solution for the Knapsack. �	

In this part, we propose a pseudo-polynomial time algo-
rithm based on a dynamic programming algorithm for the
Knapsack problem.

Definition 5 We redefine Ek(t, w) to be the minimum
energy consumption of a S-schedule, with S ⊆ J (k, t) =
{J j | j ≤ k, r j < t}, such that all the jobs in S are scheduled
within the interval [rmin, t] and such that the sum of their
weight is at least w. If such a schedule does not exist, then
Ek(t, w) = +∞.

We redefine A(t ′, t, w, j, k) to be the minimum energy
consumption of a S-schedule such that S ⊆ {J j , . . . , Jk},
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w(S) ≥ w and such that these jobs are scheduled within the
interval [t ′, t], and with a constant common speed.

Proposition 5 A(t ′, t, w, j, k) can be computed in
O(nW log P) time, where W is the sum of weights of the
jobs.

Proof The proof is similar to Proposition 3. In this case, we
use Lawler’s algorithm in Lawler (1990). �	
Proposition 6 It holds that

Ek(t, w) = min
0≤�≤w

rmin≤t ′≤t
0≤ j<k

{

E j (t
′, �) + A(t ′, t, w − �, j + 1, k)

}

.

Proof The proof is similar to Proposition 4. �	
Theorem 5 The problem 1|r j , agreeable|∑ j w jU j (E) can

be solved in O(n5W 2 log P) time.

Proof We use a dynamic program based on Proposition 5,
with E0(t, 0) = 0 ∀t ∈ T and E0(t, w) = +∞∀w >

0, t ∈ T . The maximum weighted throughput is obtained
with max{w | En(dmax, w) ≤ E}. The number of values
A(t ′, t, �, j, k) is O(n4W ). They can be precomputed and
finally it takes O(n5W 2 log P) time. The number of values
Ek(t, u) is O(n2W ). To compute each value, we have to look
for the O(n2W ) cases (for each value of t ′, j, �). In each case,
we pick up two values which are already computed. Thus the
Ek(t, u) values are computed in O(n4W 2) time. Thus the
overall complexity is O(n5W 2 log P). �	

5 Future work

While the throughputmaximization problem is polynomially
time solvable for agreeable deadlines its complexity remains
open for general instances. This is a challenging open ques-
tion for future research.
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