
J Sched (2015) 18:631–644
DOI 10.1007/s10951-015-0438-9

Identical coupled task scheduling: polynomial complexity
of the cyclic case

Vassilissa Lehoux-Lebacque1 · Nadia Brauner1 · Gerd Finke1

Published online: 24 June 2015
© Springer Science+Business Media New York 2015

Abstract Coupled tasks are two-operation tasks, where the
two operations are separated by a time interval of fixed dura-
tion. Coupled task scheduling problems refer then to the
scheduling of a set of coupled tasks on a single machine.
Applications of these problems, reported in the literature,
arise in connection with radar systems, robotic cells, and in
manufacturing. Most of the complexity issues for schedul-
ing coupled tasks have been settled. However, the complexity
status has been unknown for the identical coupled task prob-
lem, where multiple copies of a single coupled task are to
be processed. The purpose of the article is to solve this open
problem in the cyclic case, for which we prove the polyno-
mial complexity.

Keywords High-multiplicity · Polynomial complexity ·
Coupled task · Cyclic scheduling

Mathematics Subject Classification 90B35

1 Introduction

In coupled task scheduling problems, one wants to process
tasks on a singlemachinewith each task j being composed of
two operations of lengths a j and b j separated by exactly L j

time units. The objective is to minimize the makespan in the
non-cyclic case (given a fixed number of coupled tasks) or to
maximize the throughput in the cyclic case (infinite number
of tasks).

B Gerd Finke
Gerd.Finke@g-scop.grenoble-inp.fr

1 Univ. Grenoble Alpes, G-SCOP, CNRS, 38000 Grenoble,
France

Coupled tasks were introduced by Shapiro (1980).
Shapiro’s model comes from a radar that is tracking an air-
craft approaching a large airport.

Coupled task problems belong to the wider class of
scheduling multi-operation tasks, where consecutive oper-
ations are separated by a certain time interval. In manu-
facturing processes, the time that has to elapse between
operations (delays, time lags) is often lower bounded (see for
instance Gupta 1996). We shall here consider only coupled
tasks with fixed separation intervals as in Shapiro (1980).
There is a vast literature on this subject, treating offline
and online cases and proposing various algorithms (Duron
2002; Elshafei et al. 2003; Farina and Neri 1980; Milojevic
and Popovic 1992; Orman et al. 1998; Shahani et al. 1996;
Shapiro 1980).

Let us now consider offline coupled task problems, where
a set of tasks {a j ; L j ; b j } has to be scheduled on a single
processor with interleaving the coupled tasks but without
overlapping the operations. In particular, the case a j = a,
L j = L , b j = b for all j is called the identical coupled task
problem.

The complexity of minimizing the makespan has been
described by Orman and Potts (1997), see Table 1. Even the
unit execution time (UET) problem, a j = 1, L j , b j = 1 for
all j , isNP-hard and algorithmswithworst-case performance
ratio have been developed (Ageev and Baburin 2007; Békési
et al. 2009). However, the complexity status of the identical
coupled task problem remains open for both the non-cyclic
case (Table 1) and also for the cyclic case (see Ahr et al.
2004).

Establishing the complexity status of the identical coupled
task scheduling problem is therefore the remaining theoreti-
cal challenge. This very special case possesses nevertheless
an interesting application in the field of robotic cells (Brauner
et al. 2009).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0438-9&domain=pdf

632 J Sched (2015) 18:631–644

Table 1 Complexities for the coupled task problem from Orman and
Potts (1997)

Complexity Case

Strongly NP-hard a j ; L j ; b j

a j = L j = b j

a j = a; L j ; b j = b

a j = a; L j = L; b j

Open polynomial a j = a; L j = L; b j = b

a j = L j = p; b j

a j = b j = p; L j = L

IN MA OUT

Aj Bj

α β

Fig. 1 1-Machine robotic cell

Brauner et al. (2009) show that this problem is equiva-
lent to a no-wait one-machine robotic cell problem, with one
robot, usually studied in cyclic mode. In Fig. 1, A j is the
transportation time of part j from the input station to the
machine MA, α is the empty return time and similarly, from
MA to the output station (Bj and β). For details on the equiv-
alence, see Brauner et al. (2009). In particular, producing a
large number of parts of a single type corresponds exactly to
the cyclic identical coupled task scheduling problem.

In this paper, we concentrate on the identical coupled task
problem. Note that the input of this problem is composed
of four integers (three in the cyclic case): n, the number of
tasks; a, the duration of the first operation of a task; b, the
duration of the second operation; and L , the distance between
both operations. Hence, it is a high-multiplicity scheduling
problem (Brauner et al. 2005, 2007), for which even proving
that it belongs to NP might be difficult. Indeed, a description
of a schedule (giving for instance the starting time of each
of the n tasks) is not polynomial in the input size (which is,
in our case, log2 n + log2 a + log2 b + log2 L). Ahr et al.
(2004) propose an algorithm linear in n but exponential in
L . In Baptiste (2010), it has been shown that for fixed a, b,
and L , the optimal solution can be found in O(log n), which
improves the O(n) running time in Ahr et al. (2004). The
constant is again highly exponential in L and does not yield
any practical computation. This algorithm has been adjusted
to the cyclic case in Ahr et al. (2004) showing that the cyclic
problem corresponds to finding the minimum mean cycle in
a certain weighted graph, where the mean cycle refers to the
length of the cycle divided by the number of edges in the
cycle (see also Brauner et al. 2009; Lebacque 2007). This
problem is polynomial in the size of the underlying graph
(Karp 1978) which, however in our case, has an exponential
number of vertices. The computational experience inBrauner
et al. (2009) shows, even with a significant reduction of the

number of vertices, that for a = 5, b = 3 and L = 41, we
have almost 9 000 vertices in the graph and the solution takes
almost an hour computation time on a Pentium 4, 2.53 GHz
(RAM: 1 Go) PC. Increasing L to 43 results in more than
14 000 vertices and we were not able to solve this instance
with such an approach due to memory space limitations.

We also want to mention that extensions of the identical
coupled task problem turn out to be NP-hard. In Blazewicz
et al. (2010) it is shown that the addition of strict prece-
dences of identical coupled tasks {a = 1; L; b = 1}, i.e.,
ordered pairs of tasks are given that are not allowed to inter-
leave, makes the problem NP-hard. Similarly, the problem
{a; L; b} becomes NP-hard if one adds a task-compatibility
graph, where two coupled tasks are compatible if they may
interleave (Simonin et al. 2011). The identical coupled task
problem is indeed very intriguing. It appears simple: a single
type of oriented geometric object (the coupled task) is to be
packed linearly on the real line in an optimal manner. The
reason why the complexity status is still open after so many
years seems to be that one does not know enough about the
structural properties of the optimal solution patterns.

We shall provide a new solution approach to the problem.
First, we describe in Sect. 2 a class of solutions for the cyclic
identical coupled task problem, for which we determine the
best solution in polynomial time. Then, in Sect. 3, we show
that this solution is in fact optimal for our general problem.
The cyclic identical coupled task problem is therefore solv-
able in polynomial time.

2 A class of solutions

Cyclic scheduling is well known in the literature, see for
instance the survey (Levner et al. 2010). Depending on the
environment, one wants to find a feasible processing order of
the tasks on the different machines, together with their start-
ing times, that can be repeated identically (infinitely many
times), i.e., there is a constant time interval of length T , the
period or cycle C, and each operation of some task, assigned
to a certain machine during one period at time t will be
assigned exactly to the same machine at time T + t in the
next period.

Depending on the application, different criteria may be
optimized. One may minimize the cycle time T (C) or the
number of tasks N (C) of C (Work-in-Process). Another mea-
sure is to maximize the throughput N (C)

T (C)
or, equivalently,

minimize the mean cycle time λ(C) = T (C)
N (C)

.
In our case, we use the last criterion λ(C).We have a single

machine and a single part type (the coupled task). Therefore,
the cycle will be a feasible pattern of a’s and b’s. But since
the tasks consist of two parts, a cycle does not necessarily
contain both parts of the same coupled tasks. Let us give the
detailed definition of the problem.

123

J Sched (2015) 18:631–644 633

Definition 1 (Cyclic identical coupled task scheduling prob-
lem) Let three positive integers a, L , and b be given. One has
multiple copies of a single coupled task (a; L; b), consist-
ing of two operations (or elements), the first having length
a and the second length b, and both operations are exactly
separated by L time units. A cycle C is a finite sequence of
a’s, b’s, and idle times that can be appended repeatedly to
each other, to form a feasible placement of the coupled tasks
(i.e., without overlapping of operations). Cycle C contains
necessarily the same number of a’s and b’s. Let N (C) be the
number of coupled tasks in C in the cyclic sense (i.e., the
number of elements in C divided by 2) and let T (C) be the
length of C.

Then the cyclic identical coupled task scheduling problem
is to find a cycle C with minimum mean cycle time λ(C) =
T (C)
N (C)

.

We call two cycles C1 and C2 equivalent if they have the
same mean cycle times, λ(C1) = λ(C2). Cycle C1 domi-
nates cycle C2 if their mean cycle times verify the inequality
λ(C1) ≤ λ(C2). The dominance is strict if λ(C1) < λ(C2).
A cycle C is optimal and minimizes λ(C) if and only if it
dominates all other cycles.

It is easy to construct feasible solutions for the cyclic iden-
tical coupled task problem with given integers a, L , and b.
Take for instance a = 5, b = 3, and L = 43, a problem that
could not be solved by the graph method. One can always
pack, as long as possible, coupled tasks in succession with-
out inserting unnecessary idle times. This would give the
pattern aaa . . . abbb . . . b, which can then be repeated. For
the example, there would be 9 a’s, an idle time of 3 units,
followed by 9 b’s (which are separated by a − b = 2 units).
We have hence placed 9 coupled tasks on the length 91 (the
mean cycle time is then λ = 91

9).
The previous solution is working in both modes (cyclic

and non-cyclic). In Fig. 2, we give another solution that is
rather surprising and very simple. It will turn out later that
this is in fact an optimal cycle. According to the definition,
one is looking for a feasible pattern of a’s, b’s, and idle times,
which can be attached identically and repeatedly to the left
and the right to a copy of the given pattern. Thus in the cyclic
mode, there is no particular starting and finishing phase of the
solution. The cycle in Fig. 2 is somewhat unexpected since
the placement is partially at fractional starting times for the
coupled tasks. It is interesting to note that such fractional
placements cannot be detected by the graph methods in Ahr
et al. (2004), Baptiste (2010), Brauner et al. (2009), Lebacque
(2007). Here, we have formed a cycle composed of ‘a’, an
idle time of 0.5 units, and ‘b’ (we marked ‘a’ and ‘b’ of the
same coupled task by an identical number). Therefore, we
have placed two elements, i.e., one coupled task in the cyclic
sense, on 8.5 units (mean cycle time of 8.5). Therefore, this
cycle is strictly dominating the previous one.

1 2 3

4 5 6 1 2
25.5 30 35 40 45 50 55 60

0 5 10 15 20 25.5

. . .

. . .

Fig. 2 A feasible cyclic solution for a = 5, b = 3, and L = 43

In this section, we construct a class of cycles, for which
we determine the best cycle in polynomial time for given
positive integers a, L , and b.

Now, consider a cycle C. Without loss of generality, we
assume that a > b (the problem is trivial for a = b and if
b > a, we can reverse the optimal cycle).

We will also assume that L ≥ a + b since otherwise
the problem is trivial. Using subscripts to indicate the a-part
and b-part of the same coupled task, the optimal solution for
L < a is simply the sequence

a1(idle = L)b1, a2(idle = L)b2, . . .

and for a + b > L ≥ a, we get the following optimal
sequence:

a1a2(idle = L − a)b1(idle = a − b)b2,

a3a4(idle = L − a)b3(idle = a − b)b4, . . .

We can make the following fundamental observation:

Remark 1 If two a’s are placed consecutively without any
idle time, then the corresponding b’s are separated by an idle
time of a − b units.

Consider now a particular coupled task (aS, bS) in a cycle
C. We are interested in the sequence S of a’s and b’s that is
placed on the L-section separating aS and bS . The window
WS = [aS, L , bS] of the coupled task (aS, bS) in the cycle C
is defined as the sequence aSSbS . The length of each window
is equal to a + L + b. Remark 1 gives us an indication of the
space utilization of S: whenever we have two consecutive b’s
in S, at least the space b + (idle = a − b) + b = a + b is
occupied on the L-section. To indicate this fact, we convert
each sequence bb of S to āb, where ā = (b, idle = a − b)
is of length a and where (a − b) is called the intrinsic idle
time.

Definition 2 Let C be a cycle and WS = [aS, L , bS] =
aSSbS a window of C. Obtain S̄ by converting in S all subse-
quences bb to āb. Should S terminate with b, then also this
b becomes ā since it is followed by bS . Count the number β

of terms (ba) occurring in S̄, and then count the number α of
remaining a’s and ā’s. We call (α, β) the profile of window
WS .

123

634 J Sched (2015) 18:631–644

In this way, we get with each profile (α, β) of a window
in C, a solution of the constraint set:

αa + β(b + a) ≤ L with integers α, β ≥ 0. (1)

As usual we may convert the inequality to an equation by
introducing the integer slack variable:

γ = L − αa − β(b + a) ≥ 0. (2)

We also refer to (α, β, γ) as the profile in extended form,
whenever it is useful (for instance, if conditions on γ are to
be specified).

Example 1 As illustration, consider the window WS =
[aS, L , bS] = aSSbS , where S = aabbbabaaabbbbab.
Then

S̄ = aaāābabaaaāāābaā = aaāā(ba)(ba)aaāāā(ba)ā.

Hence, the profile is (α = 10, β = 3).

In a general cycle, different windows will usually have
different profiles. It is somewhat remarkable that, for any
feasible solution (α, β)of (1), one can construct cycles so that
everywindowW of these solutions possesses the sameprofile
(α, β). We shall now describe in detail this construction.

2.1 Construction of the feasible cycles C(α, β)

For a given profile (α, β), consider the first coupled task
(a1, b1) and normalize the order of elements in the initial
window W1 = [a1, L , b1] as follows:

W1 = a1 a
α(ba)β b1 (3)

or in short

W1 = aα+1(ba)β b.

Then, we extend this sequence to the following letter-
pattern Z :

Z = aα+1(ba)βbα+1(ab)β . (4)

Here, the term aα+1 is belonging to bα+1 and the a’s of
(ba)β are combinedwith the b’s of (ab)β to form the coupled
tasks. This means that the letter-pattern Z contains exactly
(1 + α + 2β) coupled tasks, in the cyclic sense.

Having marked the position of a single coupled task, here
(a1, b1), all other coupled tasks can be identified, since cor-
responding a’s and b’s must follow in the same order. Note
also the duality in the structure of Z . Replacing a’s with b’s

and conversely, the first part of Z , aα+1(ba)β , transforms
to the second part bα+1(ab)β . Let us now analyze the let-
ter sequence Z , Z , . . . and present an example, where we
indicate the coupled tasks with subscripts.

Example 2 Let us use the profile (α = 2, β = 2). Consider
the corresponding sequence Z , Z :

a1a2a3b−2a4b−1a5b1b2b3a6b4a7b5,

a8a9a10b6a11b7a12b8b9b10a13b11a14b12.

We shall select some typical windows in this sequence:
W1=a1a2a3b−2a4b−1a5b1 or a1aa(ba)(ba)b1; profile (2, 2)

W3=a3b−2a4b−1a5b1b2b3 or a3(ba)(ba)āāb3; profile (2, 2)

W5=a5b1b2b3a6b4a7b5 or a5āā(ba)(ba)b5; profile (2, 2)

W7=a7b5a8a9a10b6a11b7 or a7(ba)aa(ba)b7; profile (2, 2)

As suggested by Example 2, we get the following general
result:

Proposition 1 Let the sequence Z , Z , Z , . . . be associated
with the profile (α, β). Then this profile is in fact an invariant
for each window in the sequence.

Proof Consider the sequence Z , Z :

aα+1(ba)βbα+1(ab)β,

aα+1(ba)βbα+1(ab)β .

There are three different types of location for a coupled
task (at , bt) in this sequence: two are within Z , and one is
in the transition. The statement of Proposition 1 is obviously
true if α = 0 or β = 0. Now let α > 0 and β > 0 and set
α = u + v and β = 1 + x + y.

1. Z= auatav(ba)βbubtbv(ab)β : then the window

[at , L , bt] = ata
v(ba)βaubt

has, according to Definition 2, the profile (α = u+v, β).
2. aα+1(ba)x (bat)(ba)ybα+1(ab)x (abt)(ab)y . We get

[at , L , bt] = at (ba)yaα(ba)x+1bt

with profile (α, β = 1 + x + y).
3. Consider the sequence

aα+1(ba)βbα+1(ab)x (atb)(ab)
y,

aα+1(ba)x (bta)(ba)ybα+1(ab)β

Here, we have [at , L , bt] = (atb)(ab)yaα+1(ba)xbt =
at (ba)y+1aα(ba)xbt . Again the profile is (α, β = 1 +
x + y). ��

123

J Sched (2015) 18:631–644 635

For a given profile (α, β), consider the letter-pattern Z . Let
W1 = [a1, L , b1] be its first window and W2 = [a2, L , b2]
its last window. Note that a2 is the last ‘a’ preceding ‘b1.’
We know that each window has length a+ L + b. The letter-
pattern Z has the form

a1 . . . a2(idle = ε)b1 . . . b2. (5)

Here, the intersection W1 ∩ W2 = a2(ε)b1 so that the length
of Z is given by

2L + a + b − ε. (6)

This is independent of the position of the other elements in
the twowindows. On Z , we have exactly (1+α+2β) a’s and
(1+α+2β)b’s,whichmeans (1+α+2β) coupled tasks in the
cyclic sense. But in order to obtain from the letter sequence
Z , Z , . . . a feasible cyclic schedule, we have to insert all
idle times. A complete cycle must then repeat identically,
including also all idle times. The cycle to be constructed will
be denoted by C(α, β, γ) or in short C(α, β), remembering
that γ can be calculated from α and β, using (2).

We know that all idle times in a window, excluding the
intrinsic idle times, add up to γ = L − αa − β(b + a).
Starting from an initial window W1 = a1aα(ba)βb1, we
adopt the left-shifted placement strategy: we place a new
‘a’, following a ‘b’ or another ‘a’, without inserting any idle
time. It remains to define for W1 the non-intrinsic idle times
ε1, . . . εβ , satisfying εi ≥ 0 for all i and

∑
εi ≤ γ , in front

of each of the β terms (ba) and additionally the idle time
ε = γ − ∑

εi in front of b1. Then as required we have

∑
εi + ε = γ (7)

Example 3 (Example 2 continued) Let us assume the exten-
ded profile (α = 2, β = 2, γ) with some not specified value
γ = L − αa − β(b + a). In the first window, we start with
idle times ε1, ε2 and ε, satisfying (7). We want to follow the
idle time pattern in the sequence Z , Z , where we omit all
intrinsic idle times. When advancing in this sequence, one
obtains the next idle time to be inserted by looking at the
neighboring windows. We get for the first letter-pattern Z :

a1a2a3(ε1)b−2a4(ε2)b−1a5(ε)b1b2b3a6(ε1)b4a7(ε2)b5

For instance, having the idle times of W1 = a1a2a3(ε1)
b−2a4(ε2)b−1a5(ε)b1, the window W4 = a4(ε2)b−1a5(ε)
b1b2b3a6(ε1)b4 requires only one additional (non-intrinsic)
idle time in front of b4, which is necessary equal to ε1 since
(7) has to be fulfilled. The idle times are as follows for the
next copy of Z :

a8a9a10(ε)b6a11(ε1)b7a12(ε2)b8b9b10a13(ε)b11a14(ε1)b12

The idle time vector of Z has changed from R1 =
[ε1 ε2 ε ε1 ε2] to R2 = [ε ε1 ε2 ε ε1]. From this transition,
we can deduce the idle times for the subsequent Z : R3 =
[ε2 ε ε1 ε2 ε], then R4 = R1 = [ε1 ε2 ε ε1 ε2]. We have
reached our goal. The idle time pattern repeats identically
after three copies of Z and we have obtained a feasible cycle
with the sequence of a’s and b’s, given by Z Z Z , and corre-
sponding (non-intrinsic) idle time pattern R1R2R3. In order
to fix completely the cycle, we have to choose feasible values
for ε1, ε2 and ε according to (7). One possible choice is for
instance ε1 = 0, ε2 = 0 and ε = γ .

In general, the vector of idle times in the first window W1

for profile (α, β, γ) is of the form

[ε1, ε2, . . . , εβ, ε = γ −
∑

εi] (8)

for non-negative values εi and ε.
Remember that after W1, all coupled tasks are systemat-

ically placed as early as possible. Therefore, all placements
and idle times in the sequence Z , Z , . . . are uniquely deter-
mined.

Now consider an arbitrary window W in the sequence Z ,
Z , . . . associated with the profile (α, β). The positions of all
non-intrinsic idle times of W can be described as follows
(compare with Example 3):

Rule 1 (idle time pattern) In a given window W =
[aS, L , bS], the terms (ba) and bS may be preceded by a cer-
tain number of ā’s. There are β + 1 non-intrinsic idle times
ϕ1, ϕ2 . . . ϕβ+1, which are in fact equal to the idle times in the
starting window ε1, . . . εβ and ε in some order. These idle
times ϕi are in positions a (ϕi) ā ā . . . ā(ba); i = 1, . . . , β

for the β terms (ba); and a(ϕβ+1) ā ā . . . ābS for the term
bS .

We want to construct a feasible cycle, denoted by
C(α, β, γ) or in short C(α, β).

Using Rule 1, one can, as in Example 3, obtain all idle
time vectors Ri for the sequence Z , Z ,... as follows:

R1 = [ε1 ε2 ε3 . . . εβ ε ε1 . . . εβ−2 εβ−1 εβ]
R2 = [ε ε1 ε2 . . . εβ−1 εβ ε . . . εβ−3 εβ−2 εβ−1]
R3 = [εβ ε ε1 . . . εβ−2 εβ−1 εβ . . . εβ−4 εβ−3 εβ−2]
...

Rβ+1 = [ε2 ε3 ε4 . . . ε ε1 ε2 . . . εβ−1 εβ ε]
Rβ+2 = R1

(9)

We obtain the cycle C(α, β) with a sequence of exactly
(β + 1) letters Z and the corresponding idle time pattern
R1, R2 . . . Rβ+1. Using (5) and (6), the cycle time of C(α, β)

is

123

636 J Sched (2015) 18:631–644

(β + 1)(2L + a + b) − (ε + εβ + · · · + ε1)

= (β + 1)(2L + a + b) − γ

on which we have placed (β +1)(1+α +2β) coupled tasks.
We therefore obtain the following.

Proposition 2 The mean cycle time λ(C(α, β)) of C(α, β) is
given by the formula

λ(C(α, β)) = (β + 1)(2L + a + b) − γ

(β + 1)(1 + α + 2β)
(10)

independent of the choice of εi .

Hence, according to Proposition 2, for each letter-pattern
Z , with non-intrinsic idle times such as described above, the
mean cycle time of Z , Z , . . . depends only on the profile
(α, β) associated with Z . Therefore, the cycles C(α, β) are
equivalent for all feasible εi (i.e., εi ≥ 0 for all i and

∑
εi ≤

γ). In the following, we shall give some particular choices
of feasible εi ’s.

Setting εi = ε = γ
β+1 for all i , we get Ri = R1 for

all i . With this equilibrated setting of idle times, we obtain
the cycle C(α, β) in compact form, based on a single letter-
pattern Z , which requires however a rational placement of
the coupled tasks. For other choices of εi , we can use the
equivalent cycle C(α, β) above with (β + 1) repetitions of Z
and R1, . . . , Rβ+1 as idle time pattern. Rather than preset-
ting εi and ε, satisfying (7) in the initial windowW1 and then
applying the left-shifted placement strategy, one may also
apply the left-shifted placement strategy in W1. This yields
ε = γ, ε1 = · · · = εβ = 0 and gives an integer placement
of all coupled tasks, but at the expense of very long cycles.

As shown in Baptiste (2010), using a linear programming
formulation with a totally unimodular coefficient matrix, one
can always find the best solution for a given sequence of
coupled tasks with integer placements. For our example (a =
5; L = 43; b = 3), the profile (0, 5) and ε = γ = 3, εi = 0
(i = 1, 2, . . . , 5), we get integer placements for all tasks, but
the cycle time increases already to (β+1)(2L+a+b)−γ =
561. These rapidly increasing cycle times are certainly one
of the reasons why their detection is so difficult if the graph
approach is used (Ahr et al. 2004; Baptiste 2010; Brauner
et al. 2009; Lebacque 2007).

The particular cycle C(0, β) possesses additional symme-
tries. Its letter pattern is simply a succession of ‘ab’. Starting
againwithwindowW1 and their idle times [ε1, ε2, . . . , εβ, ε],
it is easy to see that the idle times inW1 are identically repeat-
ing themselves in the following (non-overlapping) adjacent
window. We get, therefore, additional equivalent cycles of
the length of a single window, a + b + L , where we have
placed (β + 1) coupled tasks in the cyclic sense. Hence, we
can express the mean cycle time, equivalently to (10), in the
form

λ(C(0, β)) = a + b + L

β + 1
. (11)

Taking finally εi = γ
β+1 for all i , we have ε = γ −∑

εi =
γ

β+1 and one gets the compact form of the cycle C(0, β),

which is simply the pattern (a,
γ

β+1 , b) as in Fig. 2.
We want to consider the set of all cycles C(α, β) such as

described above, i.e.,

L = {C(α, β) : (α, β) is a profile}. (12)

Definition 3 Let S be a set of cycles. Then, the best cycle in
S is one that has the smallest mean cycle time of all cycles
in S.

2.2 Finding the best solution in L

Comparing the mean cycle times for different profiles, one
obtains the dominance rules given by the following lemmas.

Lemma 1 A cycle C(α, β, γ) is strictly dominated by the
following cycles:

[i] C(α + 1, β, γ − a) if γ ≥ a
[ii] C(α − 1, β + 1, γ − b) if α ≥ 1 and a > γ ≥ b.

It is easy to show [i] by comparing the mean cycle times
of cycles C(α, β) and C(α + 1, β). Likewise, [ii] is obtained
by comparing the mean cycle times of C(α, β) and C(α −
1, β + 1).

Lemma 2 A cycle C(α, β, γ) is dominated by

[iii] C(α + 2, β − 1, γ − (a − b)) if β ≥ 1 and γ ≥ (β +
1)(a − b)

[iv] C(α − 2, β + 1, γ + (a − b)) if α ≥ 2 and γ ≤ (β +
1)(a − b).

This dominance is strict if γ > (β + 1)(a − b) in [iii] and
γ < (β + 1)(a − b) in [iv].

Proof Setting α′ = α + 2 and β ′ = β − 1, we get γ ′ =
L − α′a − β ′(a + b) = γ − (a − b) in [iii] and α′ = α − 2,
β ′ = β + 1 and γ ′ = γ + (a − b) in [iv]. We have for both
cases α′ + 2β ′ = α + 2β. A glance at the mean cycle times
(Eq. (10)) shows thatC(α, β, γ) is dominated byC(α′, β ′, γ ′)
whenever

γ ′

β ′ + 1
≥ γ

β + 1
.

123

J Sched (2015) 18:631–644 637

This inequality is easily verified. For instance, for [iii]we
have

γ ′(β + 1) − γ (β ′ + 1) = (γ − (a − b))(β + 1) − γβ

= γ − (β + 1)(a − b)

≥ 0.

��
The dominance rules imply that all cycles C(α, β) with

α ≥ 2 and β ≥ 1 are dominated. In fact, each such
cycle can be improved by reducing β according to [iii] if
γ ≥ (β + 1)(a − b) or by increasing β according to [iv]
whenever γ ≤ (β + 1)(a − b). We necessarily end with a
non-reducible cycle, called CN , which is the best for class L
in Eq. (12) and can be found among the ones of the form
C(0, β), C(1, β), and C(α, 0). To decide which case occurs
one simply may check whether the cycle C(0, β) or C(1, β)

is dominated, using [iii]. Since we know how to construct
the cycles C(α, β), it is sufficient to determine the profile
(αN , βN , γ N) of CN , which we call the best profile of class
L.

Let us denote by �u	 and
u� the integer part of u rounded
up and down, respectively.We get immediately the following
characterization.

Algorithm 1 Best profile of class L
1: Input: Integers a, b, L (a > b, L ≥ a + b)
2: Output: Best profile (αN , βN , γ N) and mean cycle time λ

3:
4: Let βN =
L/(a + b)� and R = L − βN (a + b)
5: if R < a then
6: αN = 0 and γ N = R
7: else
8: αN = 1 and γ N = R − a
9: end if
10:
11: if γ N < (βN + 1)(a − b) then
12: Return (αN , βN , γ N)

13: else
14: αN =
L/a�, βN = 0 and γ N = L − αNa

{here γ N satisfies b > γ N > a − b}
15: Return (αN , βN , γ N)

16: end if
17:
18: λ = (βN+1)(2L+a+b)−γ N

(βN+1)(1+αN+2βN)

19: Return λ

Remark 2 If γ N �= (βN +1)(a−b) till line 9 ofAlgorithm1,
then the best profile is unique. Otherwise, there are multiple
solutions which have the profiles (
L/a� − 2i, i) with i =
0, 1, . . . ,
L/(a + b)�.
Remark 3 The triplet (αN , βN , γ N) is of size O(log L)

since αN , βN , γ N < L . Computing the euclidean division

of L by a or a + b demands O(log L) operations on bits,
and hence the overall complexity for obtaining the triplet
(αN , βN , γ N) is O((log L)2), since one has to compare γ N

and (βN + 1)(a − b). The mean cycle time λ is obtained
in O((log L)2), and hence the complexity of Algorithm 1 is
O((log L)2).

Example 4 We give an example for all forms of profiles that
can occur for CN .

(a) Previous example: a = 5, b = 3, L = 43: CN =
C(0, 5, 3) , λ = 8.5

(b) a = 5, b = 3, L = 31: CN = C(1, 3, 2) , λ = 8.69
(c) a = 10, b = 9, L = 112: CN = C(11, 0, 2), λ = 20.08
(d) a = 10, b = 9, L = 111. Here γ N = (βN + 1)(a −

b) and we get multiple solutions: CN = C(11, 0, 1),
C(9, 1, 2), C(7, 2, 3), C(5, 3, 4), C(3, 4, 5), C(1, 5, 6), λ

= 20.0

Since Algorithm 1, giving the best cycle for class L, is
polynomial in the input size with complexity O((log L)2),
we obtain directly the following result.

Theorem 1 CN is the best cycle in L and can be determined
in polynomial time.

So far we have imposed certain restrictions on W1 =
[a, L , b] (3) and the element sequence Z (4) for the construc-
tion of our cycles C(α, β). One may start the cycle anywhere
in the form (5), where the profile (α, β) is just satisfying the
inequality (1) as given inDefinition 2. For our cycles C(α, β),
we have taken first all a’s and then all (ba)’s. We could have
chosen as well to begin with all (ba)-terms and then the a’s,
or any other order of β terms (ba) and α terms a and also a.
Let us denoteW ′

1 and Z ′ such more general sequences, asso-
ciated with the profile (α, β). Compare also with Example 2,
where different windows in C(α, β), followingW1, also take
this more general form. We may now relax the conditions,
imposed on the cycle C(α, β), as follows:

(Relax 1) Start with any window W ′
1 and sequence Z ′ with

the profile (α, β). Observe that one can always find
a window W ′

1 in the generic form (5). Simply start
with any ‘a’ that is preceded by a ‘b’.

(Relax 2) Construct a cycle C′(α, β) from the sequence
Z ′, Z ′ . . . by inserting suitable idle times, not
necessarily applying the left-shifted placement
strategy.

We want to make sure that the cycle C(α, β) cannot be
improved, i.e., its mean cycle time cannot be reduced by
considering these more general cycles C′(α, β). We define
the larger class L′ = {C′(α, β) : (α, β) is a profile}.
Proposition 3 CN is also the best cycle in the class L′ ⊇ L.

123

638 J Sched (2015) 18:631–644

Proof (Relax 1)We define idle times εi in the initial window
W ′

1 according to Rule 1. Then we obtain a feasible cycle
C′(α, β), using the left-shifted placement strategy.All results,
in particular the mean cycle time, will be the same, since
Rule 1 is independent of the order of the terms (ba), a, and
a. We know now that our cycles C(α, β) are equivalent to
such cycles C′(α, β).

(Relax 2) Let us take the cycle C′(α, β) with the specific
idle times εi = 0 for i = 1, 2 . . . β and ε = γ in windowW ′

1.
Then any other feasible cycle C′, not necessarily using the
left-shifted placement strategy, is based by definition on the
same sequence Z ′, Z ′, . . . However, in C′(α, β), all corre-
sponding a’s are placed at least as early as in C′. This means
that this particular cycle C′(α, β) is at least as good as C′. ��

If we want to specify completely the cycles C(α, β), we
also have to define the idle times εi in the starting window.
Of particular interest are the two placements introduced in
Sect. 2.1. In the left-shifted placement version, ε = γ, ε1 =
· · · = εβ = 0 and we have an integer placement of the tasks.
The corresponding cycles are denoted by Cs(α, β). In the bal-
anced or equilibrated version, with cycles called Ce(α, β),
idle times are such that εi = ε = γ

β+1 for all i .
So far, we have only considered cycles that are charac-

terized by a single profile (classes L and L′). There, CN is
the best cycle (Theorem 1, Proposition 3). However, general
cycles will have varying profiles in different windows. See
the following illustrative example.

Example 5 Set a = 2, b = 1, L = 6 and consider the cycle
C (in brackets {}, all idle times are indicated):

{ababab(2)b(2)baaaab(1)b(1)b(1)ba(1)a(1)}
{ababab(2)b . . .}.

The windows of C have in succession the following profiles:

(0, 2); (1, 1); (2, 0); (3, 0); (3, 0); (3, 0); (3, 0); (2, 0); (1, 1).

One has CN = C(0, 2) with λ(CN) = 3.0 and λ(C) = 36
9 =

4.0.Hence,CN is dominating this particular 4-profile cycleC.
It will be shown in Sect. 3 that the mono-profile cycle CN

is also outperforming all possible multi-profile cycles.

3 Optimal solution of the identical coupled task
scheduling problem

We continue to assume that a > b and L ≥ a + b. We
know already that CN is the best mono-profile cycle. Before
turning to general multi-profile cycles, we first summarize
the key facts of the cycles C(α, β) and in particular of CN

and their corresponding letter patterns Z . The final goal of

this section is to show that the cycle CN of Algorithm 1 is in
fact an optimal cycle for the identical coupled task problem.

3.1 Tight mono-profile cycles

From the dominance rules of Lemmas 1 and 2 and their
proofs, we can see that the profile (αN , βN) is in fact an
optimal solution of the integer program:

max M = α + 2β
s.t. L = αa + β(a + b) + γ

α, β, γ ≥ 0 integer
(13)

This is true since for every optimal solution (α, β) of (13),
the cycleC(α, β)withβ ≥ 1 andα ≥ 2 can be transformed to
CN without ever decreasing the number of elements α + 2β
(i.e., using uniquely the dominance rules [iii] and [iv] in
Lemma 2).

Denote by M∗ the optimal value of the integer program
(13). Then each window W = [a, L , b] of CN with profile
(αN , βN) contains the maximum possible number of ele-
ments M∗ + 2 = 2 + αN + 2βN . We call such windows
tightly packed and say that a cycle is tight if all its windows
are tightly packed.

For instance, the coupled task, marked 1 in Fig. 2, forms
a tightly packed window.

We also call a profile tight if it is an optimal solution of
(13). Our cycles C(α, β), whose profile (α, β) is tight, are
tight cycles, and the cycle CN is the best tight cycle in this
set.

One may verify that a profile (α, β) is tight if, and only if,
it satisfies

α = M∗ − 2β; max

{

0,

⌈
M∗a − L

a − b

⌉}

≤ β ≤
⌊
M∗

2

⌋

.

(14)

In particular, the profile (ψ,
M∗/2�) is tight, where ψ =
0 if M∗ is even and ψ = 1 if M∗ is odd. The profile of the
form (α, 0) may be tight or not.

Example 6 List of tight profiles

(a) a = 10, b = 9, L = 80:
(α, β, γ) = (0, 4, 4), (2, 3, 3), (4, 2, 2), (6, 1, 1), (8, 0, 0)
CN = C(0, 4, 4), optimal value of (13) is M∗ = α+2β = 8.
(b) a = 5, b = 3, L = 100:

(α, β, γ) = (0, 12, 4), (2, 11, 2), (4, 10, 0), CN = C(0,
12, 4), optimal value of (13) is M∗ = α + 2β = 24.

The number of tight profilesmay be quite large and has the
upper bound (
M∗/2� + 1). This bound is actually reached
for the instance (a) of Example 6.

123

J Sched (2015) 18:631–644 639

One can expect that tight cycleswill play an important role
in the construction of the optimal cycle for the cyclic identical
coupled task problem, simply because all itswindows contain
the maximum number of elements.

3.2 Block decomposition of a general cycle

Let us now consider an arbitrary cycle C. There might be
the possibility to obtain very good (even optimal) cycles,
for which only pieces of different tight cycles are somehow
patched efficiently together. To analyze such irregular, i.e.,
multi-profile cycles and finally to discard them, we shall gen-
eralize the concept of the letter patterns Z that generate the
cycles C(α, β). We know that Z contains exactly 2(M∗ + 1)
elements if the profile is tight.

Definition 4 Let C be an arbitrary cycle.We define a block B
ofC as a sequence of exactly 2(M∗+1) consecutive elements.
The length |B| is given by the sum of a’s and b’s and all
the idle times contained in B, starting with its first element
and including the idle time that follows its last element. The
blocks following exactly the sequence of a’s, b’s, and idle
times of a tight cycle, are called tight; all others are non-tight.
A block B is short if its length satisfies |B| ≤ 2L + a + b
and long if |B| > 2L +a+b. The gain of block B is defined
as Δ(B) = (2L + a + b) − |B|. We say that a block B ′
dominates block B if their gains satisfy Δ(B ′) ≥ Δ(B).

We want to write a cycle C as a sequence of blocks. We
assume an integer number of complete blocks since one can
always, if necessary, take a suitable multiple of the cycle C.
Example 5 (continued) The cycle C of Example 5 contains
18 elements. The cycle CN = C(0, 2) defines the number of
elements of a block: 2(M∗ + 1) = 2(1 + αN + 2βN) = 10.
Thus one can take five copies of C to obtain an equivalent
cycle that consists of exactly 9 complete blocks. It is easy to
see that all 9 blocks are long.

As a first result, we show that one cannot switch directly,
without passing through non-tight blocks, from one tight
block to another tight blockwith a different profile. Two tight
blockswith different tight profiles just do not fit together. The
exact statement is as follows.

Lemma 3 All neighboring tightly packed windows of a fea-
sible cycle have necessarily the same profile. Therefore, also
neighboring tight blocks must have the same profile.

Proof Consider two neighboring tightly packed windows.
Thenwehave twoconsecutivea-terms that are only separated
by a certain number x of b’s, see as an illustration Fig. 2
(the boxes marked 1 and 2 are neighboring tightly packed
windows and x = 1). Observe that the cases x > M∗ + 1
and x = M∗ cannot occur.

Let x = M∗ + 1. The two coupled tasks are non-
overlapping, and the secondmust contain exactlyM∗ = x−1
a’s on its L-section. Both windows have the same profile.

If x = 0, then we know (from the proof of Proposition 3)
that the two a-terms are following each other without any
idle time.Otherwise for left-shifted tasks, the secondwindow
would contain more than M∗ elements, which is impossible.
Again, both windows have the same profile.

Let 1 ≤ x < M∗. Then we have two overlapping coupled
tasks. The two windows are tightly packed. Hence, we must
also have exactly x elements between the ending b-terms of
these windows. By construction, these x elements can only
be a’s. Then both windows have necessarily the same profile:
exactly one ba-term from the first window disappears in the
second window, but exactly one new ba-term is created. ��

With the generality of Definition 4, we have to distinguish
three forms of tight blocks. A block may start with an ‘a’
(a1) preceded by a ‘b’ or a certain number of a’s or it may
start with a certain number of leading b’s (b . ba1). Let b1 be
the b-part of a1. Let a2 be the last a preceding b1, and let b2
denote its corresponding b-part. The elements belonging to
the block are denoted between brackets. For a tight profile
(α, β, γ), we have in general (β +1) non-intrinsic idle times
(compare with Rule 1). We indicate below in brackets the
only idle time (denoted ϕ) that influences the block length.

(a) Standard form:

b{a1 . . . a2(ϕ)b1 . . . b2}a
block length 2L + a + b − ϕ

(15)

(b) Shifted form Type I:

ba . a{a1 . . . a2(ϕ)b . bb1 . . . b2a . a}a
block length 2L + a + b − ϕ

(16)

The sequence of b’s b . b and the two sequences of a’s
a . a have the same number of elements.

(c) Shifted form Type II:

ab .{b . ba1 . . . ba . a . a2(ϕ)b1 . . . ab .}b . b2a

block length 2L + a + b − ϕ
(17)

Again, sequences b . b . b, a . a . a2, and b . b . b2 have the
same number of elements.

Remark 4 Let us consider separately the tight profile of the
form (α, 0). In the case of scheme (b), a1 may be equal to
a2 and in case (c), the sequence might be a{b . ba1 . a(ϕ)}b1
where a1 . a and b . b are both of length M∗ + 1 (again a1 =
a2). The block length is again the same.

123

640 J Sched (2015) 18:631–644

All three forms of tight blocks have the same lengths, and
these blocks are short. For the tight blocks above, one has the
positive gain Δ(B) = ϕ. We know that ϕ varies from 0 to γ

for the tight profile (α, β, γ), depending on the position of
the block within the cycle and the values of the idle times in
the initial window. Suppose we have a tight cycle C(α, β, γ).
Then any sequence of (β + 1) blocks (a complete cycle),
where the first block has the idle time pattern R1 in (9), gives
in succession Δ = ϕ = ε, εβ, εβ−1 . . . ε1. In particular, the
left-shifted version in the first block gives Δ = ϕ = γ and
then β times ϕ = 0. Another choice is Δ = ϕ = γ

β+1 for
every block.

We shall use the cycle CN
e in the remainder of this section.

Then each block of CN
e , given in standard form, is a complete

cycle with gain Δ = γ N

βN+1
for every block. Now consider a

general cycle C and one of its possible block decompositions.
We want to compare the block lengths of CN

e with those of
cycle C. Here, it is understood that C contains a sequence of
complete blocks and we take thematchingmultiple of blocks
CN
e for the comparison. If we are lucky, all blocks of C are

long. Then CN
e dominates C since the domination is given

block by block. This is the case in Example 5. However, the
general situation is much more complicated. Some blocks
of C may be shorter than the corresponding ones in CN

e , and
others may be longer. A more careful analysis is required to
complete the dominance proof ofCN

e , andwewill also have to
consider certain subsequences of blocks for the comparison
of their lengths.

3.3 Essential non-tight blocks

Let us now turn to non-tight blocks. We want to determine
their status (short or long). According to the general defini-
tion, the element sequence could still be that of a tight block,
but the idle time pattern is different. For instance, one may
have extra idle times at the end between the a’s in blocks of
Type I. Note that in a general cycle C, one might have such
blocks, since they may eventually be useful in the transition
to another tight block. The resulting blocks are either short
or long.

However, we shall only be interested in lower bounds for
the block lengths in C. For that purpose, it is sufficient to
consider a more restricted class of non-tight blocks.

Definition 5 A non-tight block is called essential, if its
sequence of a’s and b’s does not follow that of a tight block.

In the analysis of essential non-tight blocks of some cycle
C, the tight profiles of the form (α = 0, β, γ) will play a
special role. In this case, γ < a and may exceed b. All other
tight profiles (α > 0, β, γ) satisfy γ < b. The tight blocks
connected with (0, β) reduce to two forms:

(d) Standard form:

b{a1b . . . ba2(ϕ)b1a . . . ab2}a
block length 2L + a + b − ϕ

(18)

(e) Shifted form:

{ba1b . . . ba2(ϕ)b1a . . . a}b2ab
block length 2L + a + b − ϕ

(19)

It is possible to construct from the shifted form (e) essen-
tial non-tight blocks that are short.

Example 7 Set a = 5, b = 3, and L = 20 and use
the tight profile (0, 2, 4). Consider the following feasi-
ble sequences: ba1baba2(ϕ1 = 4)b1(ϕ2 = 5)bab2 and
ba1(ϕ1 = 3)aba2(ϕ2 = 4)b1abab2, which form essential
non-tight blocks.

Both are short blocks, consisting as defined of 2(M∗ +
1) = 10 elements a and b and satisfyingΔ = 4−b = 1.Note
that the corresponding sequence, but derived from (d), yields
a long essential non-tight block: a1baba2(ϕ1 = 4)b1(ϕ2 =
5)bab2a with Δ = 4 − a = −1.

Consider now an essential non-tight block B in a general
cycle C. We denote again its first window W1 = [a1, L , b1]
and last window W2 = [a2, L , b2], where a2 is the last ’a’
preceding b1 (similar to (a), …, (e)) and b2 may lie inside or
outside B.

In general, we have the following result.

Lemma 4 All essential non-tight blocks, not containing
tightly packed windows with profile (0, β), are long.

The proof is tedious and technical and will be given in the
Appendix.

Lemma 4 shows that the type of essential non-tight blocks
in Example 7 is the only ones which are short.

3.4 Final block decomposition of a multi-profile cycle C

We know already that CN
e is the best mono-profile cycle. Let

now a general multi-profile cycle C be given, i.e., a cycle for
which at least two windows have a different profile.

We take multiple copies of C to obtain a convenient
sequence of elements for the comparison with CN

e .
First, we scan C from left to right, starting the search with

any window, to detect the windows with tight profile of the
form (0, β). Each such window with elements left-shifted
is itself a complete cycle. Then, we cut out, one at a time,
any such window encountered in the remaining of the cycle
and append it at the end of this first window with profile of
the form (0, β). We continue this process until all windows

123

J Sched (2015) 18:631–644 641

with profile (0, β) are following one another in the contracted
sequence.

We make sure, by taking multiple copies of C, that the
number of these windows is a multiple of β + 1 blocks and
the remaining elements consists of an integer number of com-
plete blocks. The cycle C can be started anywhere. Therefore,
we can assume that the last block is an essential non-tight
block.

We apply to the sequence of all windows with profile
(0, β) the left-shifted placement strategy to obtain replicas
of the feasible tight cycle Cs(0, β). We know that cycle CN

e
dominates this cycle so that this part of the sequence can be
dropped. It remains a sequence of complete blocks denoted
by C′.

If we can show that CN
e is also dominating the block

sequence C′, then CN
e would in fact dominate C.

The sequence C′ cannot consist of only tight blocks since
C is a multi-profile cycle. Any transition from a tight block to
another tight block with a different profile must go through
some essential non-tight blocks (Lemma 3).

There is the following simple case:

Proposition 4 If there are only essential non-tight blocks in
C′, then CN

e is dominating C.
Proof In this case, all blocks in C′ are long (Lemma 4).
Hence, CN is dominating C′ and hence C. ��

For all other cycles, there is at least one block in C′ fol-
lowing the sequence of a tight profile and a block following
a different sequence. Let us contract C′ even further to con-
struct a sequence of blocks C as follows:

(i) The sequence C′ can start with essential non-tight blocks.
If there are any, scan C′ from left to right until arriving at
a block that follows the element sequence of some tight
profile. As explained earlier, such a blockmay be tight or
not. We continue with the sequence of blocks, until we
get for the first time to a block with a different profile.
This subsequence is considered in isolation, independent
of the actual cycle structure, andwe apply the left-shifted
placement strategy to all its elements. These shortened
blocks follownowexactly the pattern of some tight cycle,
followed by a single essential non-tight block.

(ii) Continue with the following essential non-tight blocks
in C′, until one gets to the next block that follows again
the element sequence of some tight profile. Go to (i) and
start another subsequence in exactly the same fashion.
Continue until the sequence of blocks is exhausted.

Now suppose that a subsequence, constructed above in
(i), exists in the modified block sequence C of C. It is of
the form B1, . . . , Bu; D, where all blocks Bi are tight and
belong to the same tight profile (α, β, γ) (Lemma 3) and D

is an essential non-tight block. By construction, Δ(B1) =
γ , then Δ(Bi) = 0 for 2 ≤ i ≤ β + 1 if there are that
many blocks, and the total gain on the complete cycle is
Δ(B1, . . . , Bβ+1) = Δ(B1) + · · · + Δ(Bβ+1) = γ . All
these complete tight cycles are dominated by CN

e and can be
eliminated from C.

It remains a new sequence C that contains no window
with the tight profile (0, β) and no complete tight subcycle.
Hence, the block sequence C consists of a certain number
of subsequences B1, . . . , Bu; D of length u ≤ β. There, all
tight blocks Bi have the same profile (α �= 0, β, γ) and
the subsequences are separated by further essential non-tight
blocks. These essential non-tight blocks are all long and can
be dropped (Lemma 4).

The last remaining block sequence C is called the final
block decomposition of C. If we can show that CN

e is also
dominating C, then CN

e would in fact dominate C.
Now let us consider such a subsequence B1, . . . , Bu; D

with u < β + 1, which we call a partial subsequence in
C. Note that the blocks of CN

e are usually not dominating
individually the blocks Bi since already Δ(B1) = γ , which

may exceed the gain γ N

βN+1
of each of the blocks in CN

e .

Lemma 5 Consider a partial subsequence B1, . . . , Bu; D
in the final block decomposition C. Then:

Δ(B1, . . . , Bu; D) ≤ 0 for u < β

and

Δ(B1, . . . , Bu; D) ≤ γ for u = β.

Proof. See Appendix.

3.5 The main result

Let C be a general mono-profile or multi-profile cycle.

Theorem 2 The cycle CN
e dominates all other cycles.

Proof We know already that CN
e is dominating all mono-

profile cycles and all cycles of the special form in Proposition
4. It remains the case where the final block sequence C con-
tains a certain number of partial subsequences.

Let us apply Lemma 5 to each of the partial subsequences
B1, . . . , Bu; D. We get Δ(B1, . . . , Bu; D) ≤ 0 for u < β,
and CN

e is dominating this sequence since its gain is positive
on each block. If u = β, we know that CN

e dominates the
complete tight cycle B1, . . . , Bβ+1 which in turn dominates
B1, . . . , Bβ; D since Δ(Bβ+1) ≥ 0 and Δ(D) < 0 (Lemma
4). Hence, CN

e is performing better than C, which means that
CN
e is dominating C.
This completes the proof of Theorem 2. ��

123

642 J Sched (2015) 18:631–644

Let us now return to a general cyclic identical coupled
task problem, based on arbitrary a, L , and b. In Sect. 2, we
have shown that the cases a = b or L < a + b can be
solved in constant time O(1). According to Algorithm 1 and
Theorem 2, the case a > b and L ≥ a + b is solved by CN

e
in O((log L)2). For a < b, we get the same complexity by
reversing the order. Altogether, we get the main result.

Theorem 3 The cyclic identical coupled task problem,
based on parameters a, L, and b is polynomially solvable
with complexity O((log L)2).

As a further result, we also have determined the shortest
optimal cycles. For the optimal profile (α, β, γ), it is the cycle
CN
e if α �= 0, consisting of a single block, and for α = 0 the

shortest optimal cycle is the triplet (a,
γ

β+1 , b).

4 Conclusion

In Ahr et al. (2004), Table 2, the minimum cycle times have
been computed for small values (a ≤ 10, b ≤ 5, L ≤ 30),
using the graph method. The correctness of their results can
now be verified.

They also present in their conclusion a conjecture for the
mean cycle times in the very special case b = 1, which is as
follows:

a+1+2L
2 L+1
a+1

if L ≡ −1 mod (a + 1)
a+1+L

 L
a+1 �+1

otherwise

Also this formula is correct using (10). Settingβ =
 L
a+1�,

the optimal profile is (α, β, γ) = (1, β, 0)whenever L ≡ −1
mod (a + 1), otherwise the profile (0, β, γ < a) is optimal.

Having established the polynomial complexity for the
cyclic case, it remains the finite problem, where n identi-
cal coupled tasks have to be placed optimally. If n is very
large, the optimal schedule will have to follow in the “mid-
dle section” the optimal cyclic configuration. However, the
starting and the finishing part of the schedule will in general
depend on n.

Appendix

Proof of Lemma 4 Let us start with some block in a cycle
C. We shorten this block even more by cutting it out of C
and shifting the sequence as much as possible to the left.
However, we leave all b’s in the first window in their place.
The resulting block B may be tight or is essential non-tight.
Let B be non-tight and consider the three forms similar to
(a), (b), and (c) in (15), (16), and (17).

Analog to (a), let B be of standard form

a1 . . . a2(ϕ)b1 . . . b2U, (20)

where U is a string of a’s and b’s of length |U |, necessary
to get a sequence of the required 2(M∗ + 1) elements. The
length of B is |B| = 2L+a+b−ϕ+|U | orΔ(B) = ϕ−|U |.

Let (t + 1)a > ϕ ≥ ta for some integer t ≥ 1. Con-
straint (1) implies that both windows W1 and W2 cannot
contain more than (2+ M∗ − t) elements. Hence, the string
(a1 . . . b2) consists of at most 2(1+ M∗ − t) elements. This
means thatU has at least 2t elements. Observe that the begin-
ning of U of length (t + 1)a can only contain a’s, implying
that |U | ≥ (t + 1)a + (t − 1)b.

Consider also the feasible block B ′ (in brackets {}):

at {a1 . . . a2(ϕ − ta)btb1 . . . b2U
′}. (21)

Then B ′ is dominating B, i.e.,Δ(B ′) ≥ Δ(B). The reason
is that placing any ’b’ between a2 and b1 reduces ϕ by a but
since one gets an additional element in both windowsW1 and
W2,U will be shortened by two elements. The block B is long
since Δ(B) ≤ ϕ −|U | < (t +1)a− ((t +1)a+ (t −1)b) ≤
−(t − 1)b ≤ 0.

One can, therefore, find the shortest blocks of form (20)
if ϕ < a, since all others are dominated (21). In this case,
if none of the windows W1 and W2 is tightly packed, U
contains at least two elements. The block is long, since
Δ(B) = ϕ−|U | < a−(a+b) = −b. The shortest essential
non-tight blocks are obtained, not surprisingly, if exactly one
of the windows W1 and W2 is tightly packed and the other
window contains one fewer element than the maximum, i.e.,
1 + M∗ elements. Then U consists of a single element. For
the particular form (20), one gets |U | = a, independent of
what element, a or b, follows b2. Hence, all blocks B are
long for this case, even if the tight profile (0, β) is present.

Analog to (b), the essential non-tight block B may have
the shifted form (in brackets { })

B : as{a1 . . . a2(ϕ)bsb1 . . . b2U } (22)

or B is of the form (c) with leading b’s

B : bsa1 . . . a2(ϕ)b1 . . . b2 . . . (23)

where B consists of the first 2(M∗ + 1) elements of this
sequence.

Both sequences contain a block B ′ of type (a), shifting
sequence (22) by as to the left and shifting (23) by bs to the
right. Therefore, the shortest block B is obtained whenever
the block B ′ is shortest. Hence, we get the shortest block B,
if ϕ < a, and if one of the windows W1 and W2 is tightly
packed (2 + M∗ elements) and the other window contains

123

J Sched (2015) 18:631–644 643

(1+ M∗) elements, then the block is to be completed with a
single additional element.

By assumption, there is no tight profile (0, β). Thus ϕ ≤
γ < b. The extra element is at least of length b. Hence, these
blocks B are long since Δ(B) ≤ ϕ − b ≤ γ − b < 0.

This completes the proof of Lemma 4. ��
According to this proof, all shortest essential non-tight

blocks can be obtained from a tight block, in standard or
shifted form, as follows: Keep the windowW1 tightly packed
and drop one of the a’s in window W2. The other possibility
is to drop one of the a’s inW1. Then the corresponding b-part
in W2 is also eliminated, and an ‘a’ is to be inserted instead
to obtain a tightly packed window W2. Then the block is
completed by adding the next element.

Proof of Lemma 5 Let a partial subsequence B1, . . . , Bu; D,
u ≤ β, be given. It is sufficient to establish the lemma for
the shortest essential non-tight block D. We also consider the
sequence B1, . . . Bu, Bu+1 where Bu+1 is obtained by con-
tinuing feasibly the sequence of blocks B1, . . . Bu by another
block Bu+1 with the same tight profile. Let us compare Bu+1

with D to get a bound for Δ(D). Note that all b’s in front of
b1 of Bu+1 are fixed in the same fashion as for D. Therefore,
it is possible to construct D from Bu+1. Let us consider the
middle section of Bu+1, which takes the form

. . . ba . . . aa2(ϕ = 0)b1 . . . or

. . . ba . . . aa2(ϕ = 0)b . . . bb1 . . . (24)

The shortest block D has in its corresponding string (a . . .

aa2) in (24) either the same number of a’s as Bu+1 or one
fewer ‘a’ and some idle time ϕ′. In any case, we have

Δ(D) ≤ ϕ′ − b. (25)

1. As long as ϕ′ = ϕ = 0, one has Δ(B1, . . . Bu; D) ≤
γ − b < 0 since γ < b for all tight profiles (α �= 0, β, γ).
If D contains all a’s of the sequence (a . . . aa2), then the
corresponding idle time ϕ′ satisfies of course ϕ′ = ϕ = 0.
This is in particular true if the window W1 remains tightly
packed in D or if the string (a . . . aa2) contains only a2.

2. Now let one ‘a’ be dropped from (a . . . aa2). Then the
corresponding idle time ϕ′ may take positive values. Let the
sequence of Bu+1 in (24) be of the form

. . . baa . . . aa2(ϕ = 0)b . . . a(idle′)bb . . . bb2, (26)

where the sequence (aa . . . a) contains at least one ‘a’ and
idle′ indicates the idle time in the given position.. The block
D may be obtained from (26) by dropping the first ‘a’ in
(aa . . . aa2). Then the corresponding b-part is also elimi-
nated and a new ’a’ is started to obtain the sequence

. . . b(idle=a)a . . . aa2(ϕ=0)b . . . a(idle′, new a)b . . . bb2.

(27)

We get for D the left-shifted sequence

. . . ba . . . aa2(ϕ
′ = idle′)b . . . aab . . . bb2. (28)

The profile of all Bi , i = 1, . . . , u + 1, is in this case nec-
essarily (α ≥ 1, β, γ < b). By construction, there is only
one non-zero (non-intrinsic) idle time in each Bi of value
idle′ = γ . A glance at (9) and Rule 1 shows that one can only
have the idle time γ in position (26) at the end of the cycle,
i.e., u + 1 = β + 1. Since Δ(D) < 0 (Lemma 4), we get in
this case Δ(B1, . . . , Bβ; D) ≤ Δ(B1, . . . , Bβ, Bβ+1) = γ .
Hence, Lemma 5 holds.

The other possibility is to drop an ‘a’ in (aa . . . aa2),
different from the first ‘a’. Then we get for D the shifted
sequence

. . . ba . . . aa2(ϕ
′ = a − b)b . . . ab . . . a . . . b2. (29)

Observe that the tight profile of W2 in Bu+1 (α ≥
2, β, γ < b) has changed in D to the tight profile (α −
2, β + 1, γ + (a − b)). A sequence bbb or aab has become
bab, increasing β by 1. Since by assumption α − 2 �= 0 or
α ≥ 3, one has γ + (a − b) < b and Δ(B1, . . . , Bu; D) ≤
γ + (a − b) − b < 0 and the lemma holds.

This completes the proof of Lemma 5. ��

References

Ageev, A. A., & Baburin, A. E. (2007). Approximation algorithms for
UET scheduling problems with exact delays.Operations Research
Letters, 35(4), 533–540.

Ahr, D., Békési, J., Galambos, G., Oswald, M., & Reinelt, G. (2004).
An exact algorithm for scheduling identical coupled tasks. Math-
ematical Methods of Operations Research (ZOR), 59, 193–203.

Baptiste, Ph. (2010). A note on scheduling identical coupled tasks in
logarithmic time.DiscreteAppliedMathematics, 158(5), 583–587.

Békési, J., Galambos, G., Oswalda, M., & Reinelt, G. (2009). Improved
analysis of an algorithm for the coupled task problem with UET
jobs. Operations Research Letters, 37(2), 93–96.

Blazewicz, J., Ecker, K., Kis, T., Potts, C. N., Tanas̀, M., & Whitehead,
J. (2010). Scheduling of coupled tasks with unit processing times.
Journal of Scheduling, 13(5), 453–461.

Brauner, N., Crama, Y., Grigoriev, A., & van de Klundert, J. (2005).
A framework for the complexity of high-multiplicity scheduling
problems. Journal of Combinatorial Optimization, 9, 313–323.

Brauner, N., Crama, Y., Grigoriev, A., & van de Klundert, J. (2007).
Multiplicity and complexity issues in contemporary production
scheduling. Statistica Neerlandica, 61(1), 75–91.

Brauner, N., Finke, G., Lehoux-Lebacque, V., Potts, C. N., & White-
head, J. (2009). Scheduling of coupled tasks and one-machine
no-wait robotic cells.Computers and Operations Research, 36(2),
301–307.

Duron, C. (2002). Ordonnancement en temps-réel des activités des
radars. PhD thesis, Université de Metz.

123

644 J Sched (2015) 18:631–644

Elshafei, M., Sherali, H. D., & Smith, J. C. (2003). Radar pulse inter-
leaving for multi-target tracking. Naval Research Logistics, 51,
72–94.

Farina, A., & Neri, P. (1980). Multitarget interleaved tracking for the
phased radar array. IEE Proceedings F, 27, 312–318.

Gupta, J. N. D. (1996). Comparative evaluation of heuristic algorithms
for the singlemachine scheduling problemwith two operations per
job and time-lags. Journal of Global Optimization, 9, 239–250.

Karp, M. (1978). A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 23(3), 309–311.

Lebacque, V. (2007). Théories et applications en ordonnancement: con-
traintes de ressources et tâches agrégées en catégories. PhD thesis,
Université Joseph Fourier.

Levner, E., Kats, V., de Pablo, D. A. L., & Cheng, T. C. E. (2010).
Complexity of cyclic scheduling problems: A state-of-the-art sur-
vey. Computers & Industrial Engineering, 59, 352–361.

Milojevic, D. J., & Popovic, B. M. (1992). Improved algorithm for the
interleaving of radar pulses. IEE Proceedings F, 139, 98–104.

Orman, A. J., & Potts, C. N. (1997). On the complexity of coupled-task
scheduling. Discrete Applied Mathematics, 72, 141–154.

Orman, A. J., Shahani, A. K., & Moore, A. R. (1998). Modelling for
the control of radar system. Computers and OR, 25, 239–249.

Shahani, A. K., Orman, A. J., Potts, C. N., & Moore, A. R. (1996).
Scheduling for a multifunction phased array radar system. Euro-
pean Journal of Operational Research, 90, 13–25.

Shapiro, R.D. (1980). Scheduling coupled tasks.Naval Research Logis-
tics Quarterly, 27(2), 489–497.

Simonin, G., Darties, B., Giroudeau, R., & König, J.-C. (2011).
Isomorphic coupled-task scheduling problem with compatibility
constraints on a single processor. Journal of Scheduling, 14(5),
501–509.

123

	Identical coupled task scheduling: polynomial complexity of the cyclic case
	Abstract
	1 Introduction
	2 A class of solutions
	2.1 Construction of the feasible cycles mathcalC(α, β)
	2.2 Finding the best solution in mathcalL

	3 Optimal solution of the identical coupled task scheduling problem
	3.1 Tight mono-profile cycles
	3.2 Block decomposition of a general cycle
	3.3 Essential non-tight blocks
	3.4 Final block decomposition of a multi-profile cycle mathcalC
	3.5 The main result

	4 Conclusion
	Appendix
	References

