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Abstract We study a single-machine scheduling problem
that is a generalization of a number of problems for which
computational procedures have already been published. Each
job has a processing time, a release date, a due date, a dead-
line, and aweight representing the penalty per unit-timedelay
beyond the due date. The goal is to schedule all jobs such
that the total weighted tardiness penalty is minimized and
both the precedence constraints as well as the time windows
(implied by the release dates and the deadlines) are respected.
We develop a branch-and-bound algorithm that solves the
problem to optimality. Computational results show that our
approach is effective in solving medium-sized instances, and
that it compares favorably with existing methods for special
cases of the problem.

Keywords Single-machine scheduling ·Branch and bound ·
Mixed-integer programming

B Morteza Davari
morteza.davari@kuleuven.be

Erik Demeulemeester
erik.demeulemeester@kuleuven.be

Roel Leus
roel.leus@kuleuven.be

Fabrice Talla Nobibon
ftallanobibon@fedex.com

1 Research Center for Operations Management, KU Leuven,
Leuven, Belgium

2 ORSTAT, KU Leuven, Leuven, Belgium

3 FedEx Express Europe, Brussels, Belgium

1 Introduction

Scheduling problems arise in production planning (Sule
2007), in balancing processes (Shirazi et al. 1995), in
telecommunication (Nemeth et al. 1997), andmore generally
in all situations in which scarce resources are to be allocated
to jobs over time (Pinedo 2008). Depending on the appli-
cation, the corresponding scheduling problem can be such
that each job must be processed within a given time window,
where the lower bound (release date or ready time) of this
time window represents the earliest start of the execution of
the job and the upper bound (deadline) corresponds with the
latest acceptable completion time, for instance, the ultimate
delivery time agreed upon with the customer (Pan and Shi
2005; Gordon et al. 1997; Xu and Parnas 1990). For some of
these applications, only release dates or only deadlines are
considered (Jouglet et al. 2004; Tanaka and Fujikuma 2012;
Pan 2003; Posner 1985). In practice, a job often also needs
to be processed before or after other jobs, e.g., due to tool
or fixture restrictions or for other case-dependent technolog-
ical reasons, which leads to precedence constraints (Potts
1985; Lawler 1978; Tanaka and Sato 2013). Finally, the con-
tract with a client can also contain clauses that stipulate that
penalties must be paid when the execution of a job is not
completed before a reference date (due date) (Ibaraki and
Nakamura 1994; Abdul-Razaq and Potts 1988; Jouglet et al.
2004; Tanaka and Fujikuma 2012; Dyer and Wolsey 1990;
Talla Nobibon 2011).

In this article, we develop exact algorithms for a single-
machine scheduling problem with total weighted tardiness
(TWT) penalties. In the standard three-field notation intro-
duced by Graham et al. (1979), the problem that we tackle
can be denoted as 1|r j , δ j , prec| ∑ w j Tj : the execution of
each job is constrained to take place within a time window,
and we assume the corresponding deadline to be greater than
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or equal to a due date, which is the reference for computing
the tardiness of the job. The scheduling decisions are also
subject to precedence constraints. In the following lines we
briefly summarize the state of the art.

Abdul-Razaq et al. (1990) survey different branch-and-
bound (B&B) algorithms for 1||∑w j Tj . A benchmark
algorithm is the B&B procedure of Potts and van Wassen-
hove (1985); an older reference is Held and Karp (1962),
who present a dynamic programming (DP) approach. Abdul-
Razaq and Potts (1988) introduce a DP-based approach to
obtain tight lower bounds for the generalized version of the
problem where the cost function is piecewise linear. They
examine their lower bounds in a B&B algorithm and solve
small instances (with at most 25 jobs) to optimality. Ibaraki
and Nakamura (1994) extend their work and construct an
exact method, called Successive Sublimation Dynamic Pro-
gramming (SSDP), which solves medium-sized instances
(with up to 50 jobs). Tanaka et al. (2009) improve the SSDP
of Ibaraki and Nakamura (1994) and succeed in solving rea-
sonably large instances (with up to 300 jobs) of 1||∑w j Tj

within acceptable runtimes.
Single-machine scheduling for TWT with (possibly

unequal) release dates (1|r j | ∑w j Tj ) has also been stud-
ied by several authors. Akturk andOzdemir (2000, 2001) and
Jouglet et al. (2004) developB&Balgorithms that solve small
instances. van denAkker et al. (2010) propose a time-indexed
formulation and a method based on column generation to
solve this problem with identical processing times. Tanaka
and Fujikuma (2012) present an SSDP algorithm that can
solve instances of 1|r j | ∑ w j Tj with up to 100 jobs.

There are only few papers dealing with single-machine
scheduling with deadlines and/or precedence constraints.
Among these, we cite Posner (1985) and Pan (2003), who
propose B&B algorithms for 1|δ j | ∑w jC j , Pan and Shi
(2005), who develop a B&B algorithm to solve 1|r j , δ j |∑

w jC j , Lawler (1978) and Potts (1985), who present
B&B algorithms to solve 1|prec|∑w jC j , and Tang et al.
(2007),whopropose ahybrid backward and forwarddynamic
programming-basedLagrangian relaxation to compute upper
and lower bounds for 1|prec|∑w j Tj . Tanaka and Sato
(2013) also propose an SSDP algorithm to solve a generaliza-
tion of 1|prec|∑w j Tj (piecewise linear cost function). To
the best of our knowledge, scheduling problems with release
dates, deadlines, and precedence constraints have not yet
been studied in the literature. The goal of this paper is to
fill this gap and to propose efficient B&B algorithms that
solve all the foregoing subproblems within limited compu-
tation times.

The remainder of this paper is structured as follows. In
Sect. 2 we provide some definitions and a formal problem
statement, while Sect. 3 proposes two different integer pro-
gramming formulations. In Sect. 4 we explain the branching
strategies for our B&B algorithms, while the lower bounds,

the dominance rules and the initial upper bound are discussed
in Sects. 5, 6 and 7, respectively. Computational results are
reported and discussed in Sect. 8.We provide a summary and
conclusions in Sect. 9.

2 Problem description

The jobs to be scheduled are gathered in set N = {1, 2, . . . ,
n}. Job i is characterized by a processing time pi , a release
date ri , a due date di , a deadline δi , and a weight wi which
represents the cost per unit time of delay beyond di . Jobs
can neither be processed before their release dates nor after
their deadlines (0 ≤ ri ≤ δi ). Precedence constraints are
represented by a graph G = (N ′, A), where N ′ = N ∪
{0, n+1}, with 0 a dummy start job and n+1 a dummy end.
Each arc (i, j) ∈ A implies that job i must be executed before
job j (job i is a predecessor of job j). We will assume that
G(N ′, A) is its own transitive reduction, that is, no transitive
arcs are included in A. LetPi be the set of all predecessors of
job i in A (Pi = {k|(k, i) ∈ A}) andQ j the set of successors
of job i (Qi = {k|(i, k) ∈ A}). We also define an associated
graph Ĝ = (N ′, Â) as the transitive closure ofG. We assume
that P0 = Qn+1 = ∅, and that all jobs are successor of 0 and
predecessor of n + 1 in Ĝ (apart from the jobs themselves).

Throughout this paper, we use the term ‘sequencing’
to refer to ordering the jobs (establishing a permutation),
whereas ‘scheduling’ means that start (or end) times are
determined. We denote by π an arbitrary sequence of jobs,
where πk represents the job at the kth position in that
sequence. Let π−1(i) be the position of job i in π ; we
only consider sequences for which π−1(i) < π−1( j) for
all (i, j) ∈ A. Value Ci is the completion time of job i . Each
sequence π implies a schedule, as follows:

Cπi =
{
max{rπi ,Cπi−1} + pπi if i > 1

rπi + pπi if i = 1.

Equivalently, the end of job i according to sequence π can
also bewritten asCi (π).Wedenote byD the set of all feasible
permutations, where a permutation π is feasible (π ∈ D) if
and only if it generates a feasible schedule, which means that

rπi + pπi ≤ Cπi ≤ δπi ∀i ∈ N .

Note that the set D may be empty.
The weighted tardiness associated with the job at the

i th position in the sequence π is given by W (πi ) =
wπi

(
Cπi − dπi

)+, where x+ = max {0, x}. A conceptual
formulation of the problem P studied in this paper is the fol-
lowing:
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Table 1 Job characteristics Job i pi ri di δi wi

Job 1 2 3 10 14 1

Job 2 3 4 11 13 2

Job 3 4 3 8 15 3

Job 4 2 2 6 9 1

0 1 2 3

4

5

Fig. 1 Precedence graph G(N ′, A)

P : min
π∈D

TWT(π) =
n∑

i=1

W (πi ). (1)

This problem is at least as hard as 1||∑ wi Ti , which is
known to be strongly NP-hard (Lawler 1977; Lenstra et al.
1977; Pinedo 2008). A stronger result is that the mere veri-
fication of the existence of a feasible schedule that respects
a set of ready times and deadlines is already NP-complete
(problem SS1, p. 236, Garey and Johnson 1979); we do not,
however, incorporate the feasibility check as a formal part of
the problem statement.

Example 1 Consider the following instance of P with n = 4
jobs. The processing times, release dates, due dates, dead-
lines, and weights of the jobs are given in Table 1. The graph
representing the precedence constraints is depicted in Fig. 1,
with arc set A = {(0, 1), (0, 4), (1, 2), (2, 3), (3, 5), (4, 5)}.

An optimal solution to this instance is π = (4, 1, 2, 3),
which leads to the schedule C1 = 6,C2 = 9,C3 = 13, and
C4 = 4. The objective value is w4 × 0+ w1 × 0+ w2 × 0+
w3 × (13 − 8) = 3 × 5 = 15.

3 Mathematical formulations

The conceptual formulation for P presented in the previous
section is not linear; therefore, it cannot be used by a stan-
dard (linear) mixed-integer programming (MIP) solver. In
this section, we propose an assignment formulation (ASF)
and a time-indexed formulation (TIF) for the problem. These
formulations are adaptations of those presented in Keha et al.
(2009) and Talla Nobibon (2011).

3.1 Assignment formulation

We use binary decision variables xis ∈ {0, 1}(i ∈ N , s ∈
{1, 2, . . . , n}), which identify the position of jobs in the
sequence so that xis is equal to 1 if job i is the sth job

processed and equal to 0 otherwise. In other words, xis = 1
if and only if πs = i . We also use additional continuous vari-
ables Ti ≥ 0 representing the tardiness of job i ∈ N and
continuous variables τs ≥ 0 representing the machine idle
time immediately before the execution of the sth job. The
MIP formulation is given by

ASF : min
n∑

i=1

wi Ti (2)

subject to
n∑

s=1

xis = 1 ∀i ∈ N (3)

n∑

i=1

xis = 1 ∀s ∈ {1, 2, . . . , n} (4)

n∑

s=1

xiss ≤
n∑

t=1

x jt t − 1 ∀(i, j) ∈ A (5)

τs ≥
n∑

i=1

xisri −
s−1∑

t=1

(
n∑

i=1

(xit pi ) + τt

)

∀s ∈ N (6)

s∑

t=1

τt +
s−1∑

t=1

n∑

i=1

pi xit +
n∑

i=1

((pi − δi )xis) ≤ 0

∀s ∈ N (7)

Ti ≥
s∑

t=1

τt +
s−1∑

t=1

n∑

j=1

p j x jt + pi − di − (1 − xis)Mi

∀i ∈ N , s ∈ N (8)

xis ∈ {0, 1}, τs, Ti ≥ 0 ∀i ∈ N , s ∈ {1, 2, . . . , n} (9)

The objective function (2) is a reformulation of (1). The set of
constraints (3) ensures that all jobs are executed. Constraints
(4) check that each position in the sequence is occupied by
exactly one job. The set of constraints (5) enforces the prece-
dence restrictions. The set of equations (6) computes the idle
time of the machine between the jobs in positions s−1 and s,
and ensures that each job is not started before its release date.
In this set of constraints,

∑s−1
t=1

(∑n
i=1 (xit pi ) + τt

)
equals

the completion time of the (s − 1)th job. Constraints (7)
ensure that each job is not completed after its deadline, where
∑s

t=1 τt + ∑s−1
t=1

∑n
i=1 pi xit is the start time of the sth job.

Constraints (8) compute the correct value of the tardiness of
job i , with Mi = δi − di the maximum tardiness of job i .

A variant of ASF is obtained by replacing the set of con-
straints (5) by the following:
n∑

s=v

xis +
v∑

s=1

x js ≤ 1 ∀(i, j) ∈ A,∀v ∈ {1, . . . , n}. (10)

We refer to this alternative formulation as ASF′. We have the
following result:
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Lemma 1 ASF′ is stronger than ASF.

All proofs are included in the Appendix. The number of
constraints in (10) is much higher than in (5). As a result,
the additional computational effort needed to process this
higher number of constraints might offset the improvement
of a stronger bound, and we will empirically compare the
performance of the two variants in Sect. 8.4.

3.2 Time-indexed formulation

Let TS (respectively TE ) be a lower (respectively upper)
bound on the time the execution of any job can be completed;
we compute these values as TS = min{ri + pi |i ∈ N } and
TE = max{δi |i ∈ N }.

The time-indexed formulation uses binary decision vari-
ables xit ∈ {0, 1}, for i ∈ N and TS ≤ t ≤ TE , where xit = 1
if job i is completed (exactly) at time t and xit = 0 otherwise.
We also introduce the set of parameters Tit = (t −di )+, rep-
resenting the tardiness of job i when it finishes at time t . The
time-indexed formulation is given by

TIF : min
n∑

i=1

δi∑

t=ri+pi

wi Tit xit (11)

subject to

n∑

i=1

min{δi ,t+pi−1}∑

s=max{t,ri+pi }
xis ≤ 1 ∀t, TS ≤ t ≤ TE (12)

δi∑

t=ri+pi

xit = 1 ∀i ∈ N (13)

δi∑

s=ri+pi

xiss ≤
δ j∑

t=r j+p j

x j t t − p j ∀(i, j) ∈ A (14)

xit ∈ {0, 1} i ∈ N , ri + pi ≤ t ≤ δi (15)

The set of constraints (12) eliminates the parts of the solu-
tion space where the jobs overlap. The constraint set (13)
ensures that all jobs are scheduled exactly once. We enforce
precedence constraints in the formulation using the set of
constraints (14).

Similarly as for the assignment formulation, we introduce
an alternative formulation TIF′ by replacing the set of con-
straints (14) by the following:

δi∑

s=t

xis +
t−pi∑

s=r j+p j

x js ≤ 1

∀(i, j) ∈ A; ∀t : max{ri , r j + p j } + pi

≤ t ≤ min{δi , δ j + pi } (16)

σB U = EB ∪ EE ∪ EN σE

Fig. 2 The structure of a partial schedule

Lemma 2 (From Christofides et al. (1987), Artigues et al.
(2007)) TIF′ is stronger than TIF.

As explained for the assignment formulation, the perfor-
manceof the new formulation is not necessarily better. In fact,
it can be much worse than TIF, since in a time-indexed for-
mulation the number of additional constraints is quite large
(pseudo-polynomial).

4 Branching strategies

In this section we discuss two different branching strategies
for our B&B algorithm. The structure of the B&B search
trees is as follows: each tree consists of a finite number of
nodes and branches, and at each level of the tree we make a
sequencing decision for one job. Each node thus corresponds
with a selection SP ⊆ N containing the already scheduled
jobs and a set of unscheduled jobs U = N\SP . Each node
also has two feasible partial sequences σB and σE of the
scheduled jobs (each i ∈ SP appears in exactly one of these
two): σB (respectively σE ) denotes the partial sequence of
jobs scheduled from the beginning (respectively end) of the
scheduling horizon; see Fig. 2 for an illustration. All jobs
that are not scheduled, belong to the set of unscheduled jobs
U = EB ∪ EE ∪ EN . EB is subset of unscheduled jobs that
are eligible to be scheduled immediately after the last job
in σB, EE is the subset of unscheduled jobs that are eligible
to be scheduled immediately before the first job in σE , and
EN is the subset of unscheduled jobs that are not in EB ∪
EE .

The root node represents an empty schedule (SP = σB =
σE = ∅). Each node branches into a number of child nodes,
which each correspond with the scheduling of one particular
job, called the decision job, as early as possible after the last
job in σB or as late as possible before the first job in σE . A
branch is called a forward branch if it schedules a job after the
last job in σB , and is called a backward branch if it schedules
a job before the first job in σE . In our branching strategies,
there will be either only forward branches or only backward
branches emanating from each given node. We will say that
a node is of type FB (respectively BB) if all its branches are
forward (respectively backward) branches.

Although scheduling jobs backward (from the end of the
time horizon) often improves the tightness of lower bounds
when release dates are equal (Potts and van Wassenhove
1985), it probablydecreases thequality of the lower bounds in
the presence of non-equal release dates; see Sect. 4.2 and 5.3
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for a description of backward branching and of the lower
bounds, respectively, and Sect. 8.4 for the empirical results
and a discussion. Also, the efficiency of some dominance
rules may decrease when we switch from forward schedul-
ing to backward scheduling; see Sect. 6.4 for more details.
We propose two B&B algorithms, each applying one of the
branching strategies: BB1 corresponds with branching strat-
egy 1 where only FB nodes are used and BB2 corresponds
with branching strategy 2 where both FB and BB are created.
The bounding and the dominance properties discussed in the
following sections are the same in both B&B algorithms.

Let Cmax(σ ) be the completion time of the last job in
the sequence σ . Throughout the branching procedure, we
maintain two vectors of updated release dates, namely r̂ =
(r̂1, . . . , r̂n) and r̄ = (r̄1, . . . , r̄n), defined as follows:

r̂ j = max{r j ,Cmax(σB)}
r̄ j = max

{

r̂ j , max
k∈P j

{r̄k + pk}
}

.

Let st (π) denote the start time of the first job according to
sequence π . In line with the two vectors of updated release
dates, we also introduce two vectors of updated deadlines,
namely δ̂ = (δ̂1, . . . , δ̂n) and δ̄ = (δ̄1, . . . , δ̄n), which are
recursively computed as follows:

δ̂ j = min{δ j , st (σE )}
δ̄ j = min

{

δ̂ j , min
k∈Q j

{
δ̄k − pk

}
}

.

We use these updated release dates and deadlines in com-
puting lower bounds and dominance rules. δ̄ and r̄ are more
restrictive than δ̂ and r̂ in each node of the search tree (r̄ j ≥ r̂ j
and δ̄ j ≤ δ̂ j ). Although being restrictive often is positive, r̂ j
and δ̂ j are occasionally preferred over r̄ j and δ̄ j , specifically
in parts of computations related to the dominance rules dis-
cussed in Sect. 6. Further explanations of these occasions
are given in Sect. 6. There are many cases in which r̄ j = r̂ j
(respectively δ̄ j = δ̂ j ) and either of the updated release dates
(respectively deadlines) can be used. In these cases, we use
r̂ j (respectively δ̂ j ) because less computations are needed.

4.1 Branching strategy 1

Branching strategy 1 only uses FB nodes. The search tree is
explored depth-first such that among children of a node, those
with larger out-degrees (number of transitive successors) of
their decision jobs in Ĝ are visitedfirst.As a tie-breaking rule,
among childrenwith equal out-degrees of their decision jobs,
the node with lower index is visited first.

Figure 3 illustrates branching strategy 1 applied to Exam-
ple 1; an asterisk ‘*’ indicates that the position has not
been decided yet. Among the children of the root node,
the node (1, ∗, ∗, ∗) corresponds with the decision job (job

root: (∗, ∗, ∗, ∗)

(1, ∗, ∗, ∗)

(1, 2, ∗, ∗)

(1, 2, 3, ∗)

(1, 2, 3, 4)

infeasible schedule

(1, 2, 4, ∗)

infeasible schedule

(1, 4, ∗, ∗)

(1, 4, 2, ∗)

(1, 4, 2, 3)

(4, ∗, ∗, ∗)

(4, 1, ∗, ∗)

(4, 1, 2, ∗)

(4, 1, 2, 3)

optimal schedule

Fig. 3 Branching strategy 1 for Example 1 without dominance rules
and without lower bounds

1) with the largest out-degree (namely 3). As a result, the
node (1, ∗, ∗, ∗) is visited first. The nodes (2, ∗, ∗, ∗) and
(3, ∗, ∗, ∗) are not in the tree because they violate prece-
dence constraints. Among the children of (1, ∗, ∗, ∗), the
node (1, 2, ∗, ∗) is visited first because it has the decision
job 2 with the largest out-degree. Among the children of
(1, 2, ∗, ∗), the node (1, 2, 3, ∗) is visited first because its
decision job has the largest out-degree and the smallest index.
In Fig. 3, green nodes are FB nodes; no BB nodes are present.
Red nodes are considered infeasible because the completion
of a job (namely job 4) occurs after its deadline. The node
(1, 4, 2, 3) corresponds with a feasible schedule, but it is
not optimal: its objective value is greater than 15, which is
attained by the optimal sequence (4, 1, 2, 3).

4.2 Branching strategy 2

In branching strategy 2, we try to exploit the advantages
of backward scheduling whenever possible, so the search
tree consists of both FB and BB nodes. If the inequality
Cmax(σB) < rmax(U ) = max j∈U {r j } holds, then the start
times of the jobs in σE will depend on the order in which
unscheduled jobs are processed. Therefore, if the inequality
Cmax(σB) < rmax(U ) holds, the corresponding node is of
type FB. Otherwise, the completion time of the last job in
σE can be computed regardless of the sequencing decisions
for the jobs in U , and we have a BB node. The branching is
depth-first for both FB and BB nodes. Among the children
of an FB (respectively BB) node, those with higher (respec-
tively lower) out-degrees of their decision jobs are visited
first. As a tie-breaking rule, among children with equal out-
degrees, the node with lower (respectively higher) index is
visited first.

Figure 4 illustrates branching strategy 2 for Example 1;
green nodes are of type FB and blue nodes are of type
BB. The root node is FB because Cmax(∅) = 0 <

4 = rmax({1, 2, 3, 4}). At the node labeled (1, ∗, ∗, ∗),
the completion time Cmax(1, ∗, ∗, ∗) = 5 of the decision
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root: (∗, ∗, ∗, ∗)

(1, ∗, ∗, ∗)

TE = 14

(1, ∗, ∗, 4)

infeasible schedule

(1, ∗, ∗, 3)

(1, ∗, 4, 3)

infeasible schedule

(1, ∗, 2, 3)

(1, 4, 2, 3)

(4, ∗, ∗, ∗)

(4, ∗, ∗, 3)

(4, ∗, 2, 3)

(4, 1, 2, 3)

optimal schedule

Fig. 4 Branching strategy 2 for Example 1 without dominance rules
and without lower bounds

job surpasses rmax({1, 2, 3, 4}) = 4; therefore, the end of
scheduling horizon is computed (TE = 5+ 3+ 4+ 2 = 14)
and the node is BB. The red nodes are infeasible because the
completion time of job 4 falls after its deadline.

5 Lower bounding

In this section we describe the lower bounds that are imple-
mented in our B&B algorithm. Section 5.1 first introduces a
conceptual formulation for our problem, Sect. 5.2 describes
a very fast lower bounding procedure, and in Sect. 5.3 we
describe several lower bounds based on Lagrangian relax-
ation.

5.1 Another conceptual formulation

Let variableC j ≥ 0 denote the completion time of job j ∈ N
and let variable Tj ≥ 0 represent the tardiness of job j . An
alternative formulation of our problem is given by

P : min
n∑

j=1

w j Tj (17)

subject to

Tj ≥ C j − d j ∀ j ∈ N (18)

C j ≥ r j + p j ∀ j ∈ N (19)

C j ≤ δ j ∀ j ∈ N (20)

C j ≥ Ci + p j ∀(i, j) ∈ A (21)

C j ≥ Ci + p j or Ci ≥ C j + pi ∀i, j ∈ N ; i < j (22)

Tj ≥ 0 ∀ j ∈ N (23)

C j ≥ 0 ∀ j ∈ N (24)

In the above formulation, constraints (18) and (23) reflect the
definition of job tardiness. Constraints (19) and (20) enforce
timewindows. Constraints (21) ensure that each job is sched-
uled after all its predecessors. Constraints (22) guarantee that

jobs do not overlap. We will use this formulation in Sect. 5.3
for producing lower bounds.

To the best of our knowledge, a lower bound procedure
specifically for P has to date not been developed in the litera-
ture. Lower bounds proposed for 1||∑w j Tj , 1|prec| ∑w j

C j and 1|r j | ∑ w jC j , however, can also function as a lower
bound for P; this is shown in the following theorems. These
theorems are extensions of those presented in Akturk and
Ozdemir (2000).

Let I be an instance of 1|β|∑ w j Tj . We construct an
instance I ′ of 1||∑ w j Tj by removing all constraints implied
by β and an instance I ′′ of 1|β| ∑ w jC j by replacing all due
dateswith zeros. Let TWT∗(I ) be the optimal objective value
of I . Given any valid lower bound lbI ′ on the optimal value
of I ′, we have

Theorem 1 lbI ′ ≤ TWT∗(I ).

A job is called early if it finishes at or before its due date
and is said to be tardy if it finishes after its due date. Let
C j (S) be the completion time of job j in feasible solution
S. For an optimal solution S∗ to I , we partition N into two
subsets: the set E of early jobs and the set T of tardy jobs. Let
lbE be a lower bound on the value

∑
j∈E w j (d j − C j (S∗)).

Given any valid lower bound ¯lbI ′′ on the optimal value of I ′′,
we have

Theorem 2 ¯lbI ′′ − ∑
j w j d j + lbE ≤ TWT∗(I ).

In the following, we remove several combinations of con-
straints in P to construct subproblems for which there exist
polynomial-time-bounded algorithms for computing lower
bounds. These bounds then directly lead to valid lower
bounds for P via Theorem 1 and Theorem 2.

5.2 A very fast trivial lower bound

Let PT be the trivial subproblem of P in which constraints
(18), (19), (20), and (21) are removed, which is then equiv-
alent to 1||∑w jC j . An optimal solution S∗ to PT (with
the optimal value OPT(S∗)) follows sequence σT , which
sequences jobs according to the shortest weighted process-
ing time (SWPT) rule (Pinedo 2008). By Theorems 1 and 2,
LBT = OPT(S∗) − ∑

j w j d j + lbE is a valid lower bound

for P.We compute lbE as the summation of the earliness val-
ues when each job is scheduled at its latest possible starting
time. Note that if r j = d j = 0 for all jobs j and σT does
not violate any deadline nor precedence constraint, then σT
is optimal to P and OPT = LBT. In B&B algorithms, this sit-
uation frequently occurs when some jobs have already been
scheduled.
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5.3 Lagrangian relaxation-based bounds

In this section, we use Lagrangian relaxation for computing
various lower bounds. Let P0 be the subproblemof P inwhich
constraints (19), (20), and (21) are removed. This problem is
studied by Potts and van Wassenhove (1985) and is consid-
ered as our base problem. Let λ be a vector of Lagrangian
multipliers. Potts and vanWassenhove (1985) obtain the fol-
lowing Lagrangian problem associated with P0:

LRP0 : L0(λ) = min
n∑

j=1

(w j − λ j )Tj +
n∑

j=1

λ j (C j − d j )

subject to constraints (22) − (24).

Parameter λ j is the Lagrangian multiplier associated with
job j (0 ≤ λ j ≤ w j ). Potts and Van Wassenhove propose a
polynomial-time algorithm to set the multipliers. Their algo-
rithmyields a very good lower bound for P0; they compute the
optimal values of the multipliers in O(n log n) time, and for
a given set of multipliers, the bound itself can be computed
in linear time. Let λPV be the best Lagrangian multipliers
computed by Potts and van Wassenhove (1985); we refer to
this lower bound as LB0 = L0(λPV). By Theorem 1, LB0 is
also a valid bound for P. Quite a number of aspects of the
definition of P are completely ignored in LB0; however, in
the following sections, we will examine a number of ways to
strengthen LB0.

5.3.1 Retrieving precedence constraints

When A �= ∅ then incorporating some or all of precedence
constraints into the lower bound will improve its quality. We
partition arc set A as A = A′ ∪ A′′, where G ′ = (N , A′)
is a two-terminal vertex serial–parallel (VSP) graph and
G ′′ = (N , A′′). Figure 5 depicts an example of this graph
decomposition. For the precise definition of VSP graphs, we
refer to Valdes et al. (1982). It should be noted that there exist
two types of serial–parallel graphs: VSP graphs and edge
serial–parallel (ESP) graphs. Valdes et al. (1982) describe
the link between these two types: a graph is VSP if and only
if its so-called ‘line-digraph inverse’ is ESP.

We split the set of constraints (21) into two subsets, as
follows:

C j ≥ Ci + p j ∀(i, j) ∈ A′ (25)

C j ≥ Ci + p j ∀(i, j) ∈ A′′ (26)

We introduce P1,which is a generalization of P0 where prece-
dence constraints are retrieved by imposing constraints (25)
and (26). We create the following associated Lagrangian
problem:
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Fig. 5 This figure shows (a) an example graph G, (b) an associated
VSP subgraph G ′ and (c) G ′′

LRP1 : L1(λ, μ) = min
∑

j∈N
(w j − λ j )Tj

+
∑

j∈N
λ j (C j − d j ) +

∑

j∈N

∑

k∈Q j

μ jk(C j + pk − Ck)

subject to constraints (22) − (25).

Here λ j ≥ 0 is again the multiplier associated with job j and
μ jk ≥ 0 denotes the Lagrangian multiplier associated with
the arc ( j, k) ∈ A. We deliberately keep constraints (25) in
the Lagrangian problem LRP1 . The objective function can be
rewritten as

∑

j∈N
(w j − λ j )Tj +

∑

j∈N
w′

jC j + c

where

w′
j = λ j +

∑

k∈Q j

μ jk −
∑

k∈P j

μk j
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and

c =
∑

j∈N

∑

k∈Q j

μ jk pk −
∑

j∈N
λ j d j ,

so it can be seen that LRP1 is a total weighted-completion-
times problem with serial–parallel precedence constraints,
because all Tj will be set to zero and

∑
j∈N (w j − λ j )Tj

can be removed from the formulation. Lawler (1978) pro-
poses an algorithm that solves this problem in O(n log n)

time provided that a decomposition tree is also given for the
VSP graph G ′. Valdes et al. (1982) propose an O(n + m)-
time algorithm to construct a decomposition tree of a VSP
graph, where m is the number of arcs in the graph. Cali-
nescu et al. (2012) show that any VSP graph (directed or
undirected), including G ′, has at most 2n − 3 arcs. There-
fore, for any given λ and μ, the problem LRP1 is solvable in
O(n log n) time. From the theory of Lagrangian relaxation
(see Fisher (1981)), for any choice of non-negative multipli-
ers, L1(λ, μ) provides a lower bound for P1. By Theorem 1,
this lower bound is also valid for P. In Sect. 5.3.2, we explain
how to choose appropriate values for λ and μ and Sect. 5.3.3
describes how to select a suitable VSP graph G ′ and how to
construct a decomposition tree for G ′.

5.3.2 Multiplier adjustment

We present a two-phase adjustment (TPA) procedure for the
multipliers in L1(λ, μ). Let λTPA and μTPA be Lagrangian
multipliers adjusted by TPA; these lead to a new lower bound
LB1 = L1(λTPA, μTPA). The TPA procedure is heuristic, in
the sense that it may not minimize L1 in λ and μ.

In the first stage of TPA, we simply ignore precedence
constraints altogether. For a feasible solution S, consider the
function g(λ, μ, S) defined as follows:

g(λ, μ, S) =
∑

j∈N
(w j − λ j )Tj +

∑

j∈N
λ j (C j − d j )

+
∑

j∈N

∑

k∈Q j

μ jk(C j + pk − Ck).

We start with the Lagrangian problem L̂RP1 where
L̂1(λ, μ) = min g(λ, μ, S) subject to constraints (22)–(24),
which is a relaxation of LRP1 . We simply set all μ jk to zero
(μ = μ0 = (0, . . . , 0)); with this choice, L̂1(λ, μ) = L0(λ)

and we set λTPA = λPV.
In the second stage of TPA, the multipliers μ jk are

adjusted assuming that λ = λTPA is predefined and con-
stant. This adjustment is an iterative heuristic; we adopt the
quick ascent direction (QAD) algorithm proposed by van de
Velde (1995). One iteration of TPA runs in O(m + n log n)

Table 2 The average percentage deviation betweenLB1 andLB0 tested
on InsL

kmax n

20 30 40

0 11.576 8.505 6.85

5 14.579 17.454 13.493

10 15.026 18.147 14.065

20 15.207 18.419 14.344

50 15.296 18.503 14.466

100 15.310 18.508 14.495

∞ 15.314 18.512 14.506

Fig. 6 The forbidden subgraph
for VSP graphs

time, where m = |A|. We have run a number of experi-
ments to evaluate the improvement of the lower bound as
a function of the number of iterations kmax. For a repre-
sentative dataset, Table 2 shows that the average percentage
deviation of LB1 from LB0 significantly increases in the first
iterations, whereas after about five iterations the incremen-
tal improvement becomes rather limited; more information
on the choices for kmax follows in Sects. 5.3.3 and 8.2. The
instance generation scheme is explained in Sect. 8.1.

Theorem 3 LB0 ≤ LB1.

5.3.3 Finding a VSP graph

LB1 requires a decomposition of graphG into two subgraphs
G ′ = (N , A′) andG ′′ = (N , A′′), such that A′∪A′′ = A and
G ′ is a VSP graph. The more arcs we can include in A′, the
tighter the lower bound. In the following, we discuss proce-
dures to find a VSP subgraph G ′ with maximum number of
arcs; we refer to this problem as themaximum VSP subgraph
(MVSP) problem.

Valdes et al. (1982) state the following result:

Lemma 3 (From Valdes et al. (1982)) A graph G is VSP if
and only if its transitive closure does not contain the graph
of Fig. 6 as a subgraph.

Valdes et al. refer to the pattern in Fig. 6 as the forbid-
den subgraph. Polynomial-time exact procedures exist for
finding an ESP subgraph with maximum number of nodes
(see Bein et al. (1992), for instance), but to the best of our
knowledge, no exact approach for MVSP has been proposed
yet in the literature. McMahon and Lim (1993) suggest a
heuristic traversal procedure to find and eliminate all for-
bidden subgraphs and, at the same time, construct a binary
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Fig. 7 Modified traversal algorithm applied to the input graph in (a)

decomposition tree for the resulting VSP graph. Their pro-
cedure runs in O(n +m) time. The number of arcs in a VSP
graph is bounded by 2n − 3 for an arbitrary non-VSP graph,
but the maximum number of arcs for an arbitrary input graph
is O(n2). We implement a slightly modified variant of the
algorithm in McMahon and Lim (1993) to compute G ′; we
select arcs for removal so that the lower bound remains rea-
sonably tight. Simultaneously, it constructs a decomposition
tree for the obtained VSP graph. The time complexity of
O(n + m) is maintained.

The structure of our heuristic decomposition and arc-
elimination procedure is described in the following lines.
The procedure constructs a decomposition tree by exploiting
parallel and serial node reduction (Lawler 1978). Paral-
lel reduction merges a job pair into one single job if both
jobs have the same predecessor and successor sets. In the
decomposition tree, such jobs are linked by a P node, which
means they can be processed in parallel (see Fig. 7b). Ser-
ial reduction merges a job pair {i, j} into one single job if
arc (i, j) ∈ A, job i has only one successor and job j has
only one predecessor. In the decomposition tree, such two
jobs are linked by an S node, which means they cannot be
processed in parallel (see Fig. 7d). Whenever a forbidden
subgraph is recognized, the procedure removes arcs such that
the forbidden subgraph is resolved (removed) and the total

number of removed arcs (including transitive and merged
arcs) is approximately minimized (see Fig. 7b, c). Notice
that some arcs may actually represent multiple merged arcs,
so removing one arc in one iteration might imply the removal
of multiple arcs simultaneously in the original network G.

The proposed algorithm is run only once, in the root node
of the search tree. In each other node of the search tree, graphs
G ′ andG ′′ are constructed by removing from the correspond-
ing graphs in the parent node the arcs associated with the
scheduled jobs; the resulting graphs are then the input for
computing LB1. Notice that for each child node, both graphs
G ′ and G ′′ as well as the associated decomposition tree can
be constructed in O(n) time.

To evaluate the impact of our arc-elimination procedure
on the quality of the bounds, we examine two variations of
LB1, namely LB1(VSP) = L1(λTPA, μTPA), where all for-
bidden graphs in G are resolved using the arc-elimination
procedure, and LB1(NO) = L̂1(λTPA, μTPA), in which we
simply remove all arcs (A′ = ∅ and A′′ = A). Let kmax be
the maximum number of iterations for TPA, as explained in
Sect. 5.3.2. Table 3 demonstrates the success of our proposed
algorithm in tightening the bound. The distance between the
bounds is decreasing with increasing kmax, but in a B&B
algorithm, a large value for kmax becomes computationally
prohibitive.
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Table 3 The average
percentage deviation between
LB1(VSP) and LB1(NO) tested
on InsL with 40 jobs.

kmax LB1(VSP) LB1(NO)

0 6.850 0

1 10.515 9.057

2 12.171 11.497

3 12.896 12.538

5 13.493 13.385

10 14.344 14.020

100 14.466 14.458

Theorem 4 LB1(NO) ≤ LB1(VSP) for the same value of
kmax.

5.3.4 Retrieving release dates and deadlines

BoundLB1 turns out not be to bevery tightwhen release dates
are rather heterogeneous. Below, we examine two means to
produce a stronger bound, namely block decomposition and
job splitting.

Block decomposition We follow references Pan and Shi
(2005), Hariri and Potts (1983), Potts and van Wassenhove
(1983) in setting up a decomposition of the job set into sep-
arate blocks: a block is a subset of jobs for which it is a
dominant decision to schedule them together. We sort and
renumber all jobs in non-decreasing order of their modified
release dates r̄ j ; as a tie-breaking criterion, we consider non-
increasing order ofw j/p j . The resulting non-delay sequence
of jobs is given by σ r = (1, . . . , n), where a sequence is said
to be ‘non-delay’ if the machine is never kept idle while
some jobs are waiting to be processed (Pinedo 2008). Let
Bi = (ui , . . . , vi ) be one block (in which jobs are sorted
according to their new indices). The set B = {B1, . . . , Bκ }
is a valid decomposition of the job set into κ blocks if the
following conditions are satisfied:

1. u1 = 1;
2. for each i, j with 1 < i ≤ κ and 1 ≤ j ≤ n, if ui = j

then vi−1 = j − 1 and vice versa;
3. for each i, j with 1 ≤ i ≤ κ and ui ≤ j ≤ vi , we have

r̄ui + ∑ j−1
s=ui ps ≥ r̄ j .

Although the sequencing of the jobs within one block is actu-
ally still open, the sequencingof the blocks is pre-determined.
Given a valid set of blocks B, we compute LB1 for each block
Bi ∈ B separately. The value LB2 is then the sum of the
bounds per block; analogously to Pan and Shi (2005), Hariri
and Potts (1983), Potts and vanWassenhove (1983), LB2 can
be shown to be a lower bound for P.

We define LB∗
1 = L1(λ

∗, μ∗), where λ∗ and μ∗ are opti-
mal choices for the Lagrangianmultipliers for LB1, and LB∗

2,

which is computed by adding the contribution L1(λ
∗
Bi

, μ∗
Bi

)

for each block Bi , where λ∗
Bi
andμ∗

Bi
are the optimal choices

for the multipliers for block Bi .

Theorem 5 LB∗
1 ≤ LB∗

2.

Although TPA might not find λ∗
Bi

and μ∗
Bi

and thus the
same result as Theorem 5 might not hold for LB1 and LB2,
empirical results show that LB2 is on average far tighter than
LB1 (these results are shown in Table 8).

Job splitting It sometimes happens that the decomposition
procedure fails to improve the bound (only one block is cre-
ated and LB2 = LB1). Another approach is to explicitly
re-introduce the release date constraints (which have been
removed previously). We define problem P2, which is a gen-
eralization of P1 in which the release date constraints (19)
are included. The associated Lagrangian problem is

LRP2 : L2(λ, μ) = min
∑

j∈N
w′

jC j + c

subject to constraints (19), (22) − (24).

Contrary to LRP1 , we now remove the serial–parallel
precedence constraints because they render the Lagrangian
problem too difficult. Problem LRP2 is a total weighted-
completion-times problem with release dates. This problem
is known to be NP-hard (Lenstra et al. 1977), but a number
of efficient polynomial algorithms, which are based on job
splitting, have been proposed to compute tight lower bounds
(Hariri and Potts 1983; Nessah and Kacem 2012; Belouadah
et al. 1992). One of these algorithms is the SS procedure pro-
posed by Belouadah et al. (1992), which runs in O(n log n)

time and which we adopt here. Essentially, we again decom-
pose the job set into a set of blocks B and compute L2(λ, μ)

for each block Bi ∈ B. The lower bound LBSSr
2 is again the

sum of the contributions of the individual blocks. Experi-
ments show that LBSSr

2 is typically tighter than LB2 when
the release dates are unequal. With equal release dates, on
the other hand, normally LB2 ≥ LBSSr

2 because LB2 incor-
porates a part of the precedence graph. TPA is applied also
here for multiplier updates.

We introduce P′
2, which is a generalization of P1 where

deadline constraints are retrieved by inclusion of the con-
straint set (20). The associated Lagrangian problem is

LRP′
2

: L ′
2(λ, μ) = min

∑

j∈N
w′

jC j + c

subject to constraints (20), (22) − (24).

LRP′
2
is a total weighted-completion-times problem with

deadlines. This problem is known to be NP-hard (Lenstra
et al. 1977). Posner (1985) proposes a job-splitting lower
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bounding scheme for LRP′
2
that uses O(n log n) time; the

lower bound LBSSδ

2 results from block decomposition and
computation of L ′

2(λ, μ) for each block. We again apply
TPA for setting the multiplies.

5.3.5 Improvement by slack variables

Relaxed inequality constraints can be considered to be
‘nasty’ constraints because they decrease the quality of lower
bounds. We follow Hoogeveen and van de Velde (1995) in
exploiting the advantages of slack variables to lessen the
effect of such nasty constraints to improve the quality of
the lower bounds.

We introduce two non-negative vectors of slack variables:
vector y = (y1, . . . , yn) and vector z = (z11, . . . , z1n,
. . . , zn1, . . . , znn). Consider the following sets of constraints:

Tj = C j − d j + y j ∀ j ∈ N (27)

C j = Ci + p j + zi j ∀(i, j) ∈ A (28)

y j , zi j ≥ 0 ∀i, j ∈ N (29)

Let problem P3 be the variant of problem P1 in which the sets
of constraints (18) and (21) are replaced by the constraints
(27)–(29). The Lagrangian problem associated with P3 is

LRP3 : L3(λ, μ) = min
n∑

j=1

(w j − λ j )Tj +
n∑

j=1

λ j y j+

n∑

j=1

∑

k∈Q j

μ jk z jk +
∑

j∈N
w′

jC j + c

subject to constraints (22) − (25) and (29).

The values of the variables Tj , y j and z jk are zero in any
optimal solution to LRP3 because for i, j ∈ N the following
inequalities hold: 0 ≤ λ j ≤ w j and μ jk ≥ 0. In an optimal
solution to P3, however, these values might not be zero. In
fact, according to the set of constraints (27), unless C j =
d j , either Tj or y j is non-zero. Also, from constraints (28),
z jk may not be zero when job j has at least two successors
or job k has at least two predecessors in G. We introduce
three problems that each carry a part of the objective function
of LRP3 , one of which is LRP1 and the other two are the
following two slack-variable (SV) problems, where Y is the
set of all y-vectors corresponding to feasible solutions to P3
and Z similarly contains all z-vectors.

PSV1 : SV1(λ) = min
n∑

j=1

(w j − λ j )Tj +
n∑

j=1

λ j y j

subject to constraints (22), (23), (25) and y ∈ Y ;

PSV2 : SV2(μ) = min
n∑

j=1

∑

k∈Q j

μ jk z jk

subject to constraint z ∈ Z .

Note that the term
∑n

j=1 (w j − λ j )Tj appears in two of the
problems, but it will be set to zero anyway in LRP1 .

Hoogeveen and van de Velde (1995) propose O(n log n)-
time procedures to compute valid lower bounds for PSV1 and
PSV2. Let LBSV1 ≥ 0 and LBSV2 ≥ 0 be lower bounds for
PSV1 and PSV2, respectively. By adding LBSV1 and LBSV2 to
LB2, a better lower bound LB3 for P is obtained (Hoogeveen
and van de Velde 1995). The same SV problems can also be
constructed for LBSSr

2 and LBSSδ

2 to lead to bounds LBSSr
3 =

LBSSr
2 + LBSV1 + LBSV2 and LBSSδ

3 = LBSSδ

2 + LBSV1 +
LBSV2. We have the following result:

Observation 1 LB2 ≤ LB3,LB
SSr
2 ≤ LBSSr

3 and LBSSδ

2 ≤
LBSSδ

3 .

5.3.6 Other Lagrangian bounds

All the lower bounds introduced in this section are based
on the formulation (17)–(24). Other Lagrangian relaxation-
based lower bounds have also been proposed for special cases
of this problem.These other bounds aremostly basedonother
(conceptual) formulations. For example, to achieve a lower
bound, Lagrangian penalties could be added to the objec-
tive function while allowing jobs to be processed repeatedly.
Many variants of such a lower bound exist (Tanaka et al.
2009;Tanaka andFujikuma2012;Tanaka andSato 2013), but
most of these variants are either tooweakor too slow.Another
lower bound based on Lagrangian relaxation is obtained by
relaxing the capacity constraints, such that jobs are allowed
to be processed in parallel in exchange for Lagrangian penal-
ties (Tang et al. 2007).

6 Dominance properties

Our search procedure also incorporates a number of dom-
inance rules, which will be described in this section. We
will use the following additional notation. Given two par-
tial sequences π = (π1, . . . , πk) and π ′ = (π ′

1, . . . , π
′
k′),

we define a merge operator as follows: π |π ′ = (π1, . . . , πk,

π ′
1, . . . , π

′
k′). If π ′ contains only one job j then we can also

write π | j = (π1, . . . , πk, j), and similarly if π = ( j) then
j |π ′ = ( j, π ′

1, . . . , π
′
k′).

6.1 General dominance rules

We use the lower bounds proposed in Sect. 5 to prune the
search tree. Let LB(U ) represent any of the lower bounds

123



320 J Sched (2016) 19:309–334

described in Sect. 5, applied to the setU of unscheduled jobs,
and let Sbest be the currently best known feasible solution.
Notice that TWT(Sbest) is an upper bound for TWT(S∗). The
following dominance rule is then immediate:

Dominance rule 1 (DR1) Consider a node associated with
selection SP . If

TWT(SP ) + LB(U ) ≥ TWT(Sbest),

then the node associated with SP can be fathomed.

Aswe already introduced in Sect. 4, a partial schedule can
be denoted by either SP or (σB, σE ). Multiple lower bounds
can be used to fathom a node. The selection of lower bounds
and the order in which they are computed obviously influ-
ences the performance of the B&B algorithm. These issues
are examined in Sect. 8.2.

The subset of active schedules is dominant for total
weighted tardiness problems (Conway et al. 1967; Pinedo
2008). A feasible schedule is called active if it is not possible
to construct another schedule by changing the sequence of
jobs such that at least one job is finishing earlier and no other
job finishes later. The dominance of active schedules holds
even when deadlines and precedence constraints are given.

Dominance rule 2 (DR2) Consider a node associated with
(σB,∅) that is selected for forward branching, and let j be
a job belonging to EB. If r̄ j ≥ mink∈EB {r̄k + pk}, then the
child node associated with the schedule (σB | j,∅) can be
fathomed.

We also prune a branch whenever an obvious violation
of the deadline constraints is detected. A partial schedule
associated with a particular node is not always extended to a
feasible schedule. Scheduling a job in one particular position
may force other jobs to violate their deadline constraints,
even though it does not violate its own constraints. LetA be
an arbitrary subset ofU and let ΠA be the set of all possible
permutations of jobs inA. The following theoremstateswhen
a job is scheduled in a ‘wrong position’, meaning that it will
lead to a violation of deadline constraints.

Theorem 6 Consider a partial schedule (σB, σE ). If there
exists any non-empty subset A ⊂ U such that the inequal-
ity minπ∈ΠA{Cmax(σB |π)} > max j∈A {δ̄ j } holds, then the
schedule (σB, σE ) is not feasible.

The problem minπ∈ΠA{Cmax(σB |π)}, which equates with
1|r j , δ j , prec|Cmax, is NP-hard because the mere verifi-
cation of the existence of a feasible schedule is already
NP-complete. We remove deadlines and create a new prob-
lem whose optimal solution is computed in O(n2) time
(Lawler 1973). For computational efficiency, we use a linear-
time lower bound for this new problem. This lower bound is
computed as follows: min j∈A∩EB {r̄ j } + ∑

j∈A p j .

Dominance rule 3 (DR3) The node associated with
(σB, σE ) can be eliminated if at least one of the following
conditions is satisfied:

1. if σE = ∅ and the condition of Theorem 6 is satisfied for
the partial schedule (σB,∅);

2. if σE �= ∅ and max j∈U {δ̄ j } < st (σE ).

While additional precedence constraints could be added
to the problem considering time windows and using con-
straint propagation techniques, the solution representation
for our B&B algorithms and the above dominance rules (DR2

and DR3) are devised in such a way that any violation of
these additional precedence constraints is dominated. Con-
sider two jobs i and j with pi = p j = 10, ri = 0, r j =
5, δi = 20, and δ j = 30. Using constraint propagation tech-
niques, it could be possible to include an extra constraint
that allows the processing of job j to occur only after the
completion of job i . Such an additional constraint is not nec-
essary, however, because in the above-described situation all
sequences inwhich job j precedes job i will be automatically
fathomed byDR2 andDR3.Moreover, increasing the density
of the precedence graph in this way would also decrease the
tightness of the lower bounds, which is undesirable.

6.2 Dominance rule based on two-job interchange

We describe a dominance rule based on job interchange. This
dominance rule consists of two parts. The first part deals with
the interchange of jobs in an FB node, whereas the second
part deals with the interchange of jobs in a BB node.

6.2.1 Interchanging jobs in an FB node

In an FB node, consider jobs j, k ∈ EB that are not iden-
tical (they differ in at least one of their parameters). We
will always assume that r̂k < r̂ j + p j and r̂ j < r̂k + pk ,
because otherwise Dominance rule 2 enforces the schedul-
ing of the job with smaller r̂ before the job with larger r̂ ;
note here that r̂ j = r̄ j and r̂k = r̄k because all predecessors
of jobs j and k have already been scheduled and therefore
the branching decisions cover the propagation of precedence
constraints. We also assume that any successor of job k is
also a successor of job j (Qk ⊂ Q j ). Consider a node of the
search tree in which job k is scheduled at or after the com-
pletion of sequence σB . Suppose that the partial schedule
associated to the current node can be extended to a feasible
schedule S1 in which job j is scheduled somewhere after job
k. We define a set B = U\{ j, k} of jobs. We also construct a
schedule S′

1 by interchanging jobs j and k, while the order of
jobs belonging to B remains unchanged. Figure 8 illustrates
schedules S1 and S′

1.
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S1 σB k B j B

S1 σB j B k B

Fig. 8 Schedules S1 and S′
1

To prove that interchanging jobs j and k does not increase
the total weighted tardiness, we argue that the gain of inter-
changing jobs j and k, which is computed as TWT(S1) −
TWT(S′

1), is greater than or equal to zero, no matter when
job j is scheduled. Let st j (S) denote the start time of job j
in schedule S. Remember that st (π) denotes the start time of
a sequence π . Let τ1 be the difference between the start time
of job j in S1 and the start time of k in S′

1. If stk(S
′
1) is less

than st j (S1) then τ1 is negative, otherwise it is non-negative.
By interchanging jobs j and k each job that belongs to set B
may be shifted either to the right or to the left. Let τ2 ≥ 0
be the maximum shift to the right of the jobs belonging to
set B. Notice that if all jobs in B are shifted to the left, then
τ2 = 0. For each t as the start time of job j in S1, Jouglet
et al. (2004) define a function Γ jk(t, τ1, τ2) as follows:

Γ jk(t, τ1, τ2) = w j max{0, t + p j − d j }
− wk max{0, t + τ1 + pk − dk}
+ wk max{0, r̂k + pk − dk}
− w j max{0, r̂ j + p j − d j } − τ2

∑

i∈B
wi .

For the subproblem of P where precedence and dead-
line constraints are removed, Jouglet et al. (2004) show that
Γ jk(t, τ1, τ2) is a lower bound for the gain of interchanging
jobs j and k when t = st j (S1). This result can be improved
by adding the gain of shifting the jobs which are tardy in both
schedules S1 and S′

1. We introduce the set B′ of jobs where
each job i ∈ B′ is certainly a tardy job in S′

1. Let P̂i be the
set of transitive predecessors of job i . The following set of
jobs, which is a subset of B′, is used in our implementations
because the order based on which the jobs inB are scheduled
has not yet been defined and therefore computing B′ is not
possible

⎧
⎨

⎩
i ∈ B

∣
∣
∣r̂ j + p j +

∑

l∈(B∩P̂i )

pl + pi ≥ di

⎫
⎬

⎭
.

Let τ ′
2 ≥ 0 be the minimum shift to the left of the jobs

belonging to set B. Note that at least one of the values τ ′
2 and

τ2 equals zero. We define the function Γ̂ jk(t, τ1, τ2, τ ′
2) as

follows:

Γ̂ jk(t, τ1, τ2, τ
′
2) = Γ jk(t, τ1, τ2) + τ ′

2

∑

i∈B′
wi .

Thevalues τ2 and τ ′
2 cannot be negative. Therefore,we imme-

diately infer Γ jk(t, τ1, τ2) ≤ Γ̂ jk(t, τ1, τ2, τ ′
2). We need the

following result:

Theorem 7 Γ̂ jk(t, τ1, τ2, τ ′
2) is a valid lower bound for the

gain of interchanging jobs j and k.

In a general setting (problemP), however, job interchanges
are not always feasible for every starting time t . We opt for
verifying the feasibility of an interchange by ensuring that it
does not cause any violation of deadlines and/or precedence
constraints for all possible t = st j (S1). Let Ψ be an upper
bound for the completion time of the sequence S′

1, computed
as follows:

Ψ = max

{

max{r̂ j + p j , r̂k} + pk,max
i∈B

{r̂i }
}

+
∑

i∈B
pi .

The following theorem provides the conditions under which
for every possible t = st j (S1) interchanging jobs j and k is
feasible.

Theorem 8 For each feasible schedule S1, an alternative
feasible schedule S′

1 is created by interchanging jobs j and
k, if the following conditions are satisfied:

1. δ̄ j − p j ≤ δ̄k − τ1 − pk or Ψ ≤ δ̂k;
2. τ2 = 0 or Ψ ≤ min

i∈B
{δ̂i }.

Jouglet et al. (2004) prove that if w j ≥ wk then the value
Γ jk(max{d j − p j , r̂k + pk}, τ1, τ2) is the minimum gain
obtained by interchanging jobs j and k for the setting where
deadlines and precedence constraints are removed.We derive
a more general result using the following lemma.

Lemma 4 Let f : t → αmax{0, t − a} − β max{0, t −
b} + C be a function defined on [u, v] for a, b,C ∈ R and
α, β, u, v ∈ R

+. The function f reaches a global minimum
at value t∗ computed as follows:

t∗(α, β, a, b, u, v) =
⎧
⎪⎨

⎪⎩

min{ū, v} if α ≥ β

u if α < β, b > a, α(v̄ − ū) ≥ β(v̄ − b)

v otherwise

where ū = max{u, a} and v̄ = max{v, b}.
Corollary 1 below follows from Theorems 7, 8, and

Lemma 4, if we choose α = w j , β = wk, a = d j −
p j , b = dk − τ1 − pk, u = r̂k + pk, v = δ j − p j and
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Table 4 Interchange cases
Case (r̂ j + p j − r̂k − pk) (p j − pk) (max

i∈U {r̂i } − r̂k − pk) (r̂ j − r̂k) (max
i∈U {r̂i } − r̂k − p j )

1 ≤0 <0 ≥0 – –

2 ≤0 <0 <0 ≤0 >0

3 ≤0 <0 <0 ≤0 ≤0

4 ≤0 <0 <0 >0 –

5 ≤0 ≥0 ≥0 – –

6 ≤0 ≥0 <0 – –

7 >0 <0 – – –

8 >0 ≥0 – – –

C = wk max{0, r̂k + pk − dk}−w j max{0, r̂ j + p j − d j }−
τ2

∑
i∈B wi + τ ′

2

∑
i∈B′ wi . Let st∗j be computed as follows:

st∗j = t∗(w j , wk, d j − p j , dk − τ1 − pk, r̂k + pk, δ j − p j ).

Corollary 1 Γ ∗
jk(τ1, τ2, τ

′
2) = Γ̂ jk(st∗j , τ1, τ2, τ ′

2) is the
minimum gain obtained by interchanging jobs j and k, pro-
vided that for every possible st j (S1) interchanging jobs j
and k is feasible.

To compute Γ ∗
jk(τ1, τ2, τ

′
2), the values of τ1, τ2, and τ ′

2
must be known. We establish an exhaustive list of cases for
which τ1, τ2, and τ ′

2 can be computed, which is summarized
in Table 4. Given a particular case, the values τ1, τ2, and τ ′

2
are computed as follows:

τ1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 Cases 1,5

maxi∈U {r̂i } − r̂k − pk Case 2

max{r̂ j + p j ,maxi∈B{r̂i }} − r̂k − pk Cases 3,4,6

r̂ j + p j − r̂k − pk Cases 7,8

τ2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk − p j Case 1

maxi∈U {r̂i } − r̂k − p j Case 2

0 Cases 3,5,6

max{r̂ j + p j ,maxi∈B{r̂i }} − r̂k − p j Case 4

r̂ j − r̂k Case 7

r̂ j + p j − r̂k − pk Case 8

τ ′
2 =

⎧
⎪⎨

⎪⎩

0 Cases 1,2,4,5,7,8

r̂k − r̂ j Case 3

r̂k + pk − max{r̂ j + p j ,maxi∈B{r̂i }} Case 6

Following the above results, the first part of Dominance rule
4 is derived.

Dominance rule 4 (DR4; first part) Given an FB node
associated with (σB,∅), if there exist two non-identical
jobs j, k ∈ EB with Qk ∩ Q j = Qk and the inequal-
ity Γ ∗

jk(τ1, τ2, τ
′
2) > 0 holds, then (σB | j,∅) dominates

(σB |k,∅).

S2 σB B j B k σE

S2 σB B k B j σE

Fig. 9 Schedules S2 and S′
2

6.2.2 Interchanging jobs in a BB node

Let j, k ∈ EE where jobs j and k are not identical. We also
assume that any unscheduled predecessor of job k is also a
predecessor of job j . In other words, we havePk ∩P j ∩U =
Pk ∩U . Consider a BB node of the search tree with decision
job k. The partial schedule associated with the current node
can be extended to a feasible schedule S2 in which job j
is scheduled before job k but after all jobs in the sequence
σB . The set B is the set of all remaining unscheduled jobs
where B = U\{ j, k}. Let schedule S′

2 be constructed by
interchanging jobs j and k, while keeping the order based
on which the jobs belonging to B will be scheduled. Figure
9 illustrates schedules S2 and S′

2.
For each t as the start time of job j in S2, we define a

function  jk(t) as follows:

 jk(t) = w j max{0, t + p j − d j }
− wk max{0, t + pk − dk}
+ wk max{0, st (σE ) − dk}
− w j max{0, st (σE ) − d j }
− max{0, pk − p j }

∑

i∈B
wi .

In a BB node, for each t as the start time of job j, jk(t)
is a lower bound of the gain of interchanging jobs k and j ,
if the conditions of Theorem 9 are satisfied. Theorem 9 pro-
vides the conditions on which for every possible t = st j (S1)
interchanging jobs j and k is feasible.
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Theorem 9 For each feasible schedule S2, a feasible sched-
ule S′

2 can be created by interchanging jobs j and k, if the
following conditions are satisfied:

1. st (σE ) ≤ δ̂ j ;
2. pk − p j ≤ 0 or st (σE ) − p j ≤ min

i∈B
δ̂i .

Corollary 2 follows from Theorem 9 and Lemma 4,
if we choose α = w j , β = wk, a = d j − p j , b =
dk − pk, u = Cmax(σB), v = st (σE ) − pk − p j , and
C = wk max{0, st (σE ) − dk} − w j max{0, st (σE ) − d j } −
max{0, pk − p j } ∑

i∈B wi . Let st∗j
′ be computed as follows:

st∗j
′ = t∗(w j , wk, d j − p j , dk − pk,

Cmax(σB) +
∑

i∈P j∩U
pi , st (σE ) − pk − p j ).

Corollary 2 ∗
jk =  jk(st∗j

′) is theminimumgain obtained
by interchanging jobs j and k, provided that for every pos-
sible t = st j (S1) interchanging jobs j and k is feasible.

Following the above results, the second part ofDominance
rule 4 is derived.

Dominance rule 4 (DR4; second part) Given a BB node
associatedwith (σB , σE ), if there exist two non-identical jobs
j, k ∈ EE with Pk ∩ P j ∩ U = Pk ∩ U and ∗

jk > 0, then
(σB, j |σE ) dominates (σB, k|σE ).

6.3 Dominance rule based on job insertion

We describe a dominance rule based on job insertion. This
dominance rule, similar to the dominance rule based on job
interchange, consists of two parts. The first part deals with
the insertion of a job in an FB node, whereas the second part
deals with the insertion of a job in a BB node.

6.3.1 Inserting a job in an FB node

In an FB node, let j, k ∈ EB where jobs j and k are not iden-
tical. Again we assume that r̂k < r̂ j + p j and r̂ j < r̂k + pk ,
otherwiseDominance rule 2 enforces scheduling the jobwith
smaller r̂ before the job with larger r̂ (remind that r̂ j = r̄ j
and r̂k = r̄k because all predecessors of jobs j and k have
already been scheduled and therefore the branching decisions
cover precedence constraints propagation). Consider an FB
node of the search tree in which job k is scheduled after the
jobs in sequence σB . Assume that the partial schedule asso-
ciated with the current node can be extended to the feasible
schedule S1 depicted in Fig. 8. We construct a schedule S′′

1
by inserting the job j before job k while keeping the order
of jobs belonging to B. Figure 10 illustrates the construction
of the schedule S′′

1 .

S1 σB j k B

Fig. 10 Schedule S′′
1

Let τ3 be themaximum shift to the right of the jobs belong-
ing to B, which is computed as follows:

τ3 = max

{

0, r̂ j + p j + pk − max

{

r̂k + pk,min
i∈B

{r̄i }
}}

.

For each t as the start time of job j in schedule S1, we define
a function Γ ′

jk(t, τ3) as follows:

Γ ′
jk(t, τ3) = w j max{0, t + p j − d j }

− wk max{0, r̂ j + p j + pk − dk}
+ wk max{0, r̂k + pk − dk}
− w j max{0, r̂ j + p j − d j } − τ3

∑

i∈OJ

wi .

Job insertion, similar to job interchange, is not always
feasible for every starting time t of job j .We verify feasibility
of an insertion by ensuring that it does not cause any deadline
and/or precedence-constraint violation for all possible t =
st j (S1). Let Ψ ′ be an upper bound for the completion time
of the sequence S′

1, computed as follows:

Ψ ′ = max

{

r̂ j + p j + pk,max
i∈B

{r̂i }
}

+
∑

i∈B
pi .

The following theorem provides the conditions under which
for every possible t = st j (S1) inserting job j before job k is
feasible.

Theorem 10 For each feasible schedule S1, another feasible
schedule S′′

1 can be created by inserting job j before job k if
the following conditions hold:

1. r̂ j + p j + pk ≤ δ̂k;
2. τ3 = 0 or Ψ ′ ≤ min

i∈B
{δ̂i }.

Corollary 3 below follows from Theorem 10.

Corollary 3 Γ ′∗
jk(τ3) = Γ ′

jk(r̂k + pk, τ3) = Γ jk(r̂k +
pk, r̂ j + p j − r̂k − pk, τ3) is the minimum gain obtained
by inserting job j before job k provided that for every possi-
ble t = st j (S1) inserting job j before job k is feasible.

Following the above results, the first part of Dominance
rule 5 is derived.

Dominance rule 5 (DR5; first part) Consider an FB node
associated with (σB,∅). If there exist two non-identical jobs
j, k ∈ EB for which the inequality Γ ′∗

jk(τ3) > 0 holds, then
(σB | j,∅) dominates (σB |k,∅).
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S2 σB B k j σE

Fig. 11 Schedule S′′
2

6.3.2 Inserting a job in a BB node

In a BB node, let j, k ∈ EE where jobs j and k are not
identical. Consider a node of the search tree in which job
k is scheduled before sequence σE . Assume that the partial
schedule associated with the current node can be extended to
the feasible schedule S2 depicted in Fig. 9. We also construct
a schedule S′′

2 by inserting the job j to be scheduled after job
k but before the jobs in the sequence σE and by keeping the
order of jobs belonging to B. Figure 11 illustrates schedule
S′′
2 .
For each t , which is the start time of job j in schedule S2,

we define the function ′
jk(t) as follows:

′
jk(t) =w j max{0, t + p j − d j }

− wk max{0, st (σE ) − p j − dk}
+ wk max{0, st (σE ) − dk}
− w j max{0, st (σE ) − d j }.

Similarly to the previous results, for each feasible schedule
S2, a feasible schedule S′′

2 is constructed by inserting jobs
j after job k, if st (σE ) ≤ δ̂ j . The following corollary is
obtained:

Corollary 4 ′∗
jk = ′

jk(Cmax(σB) + ∑
i∈P j∩U pi ) is the

minimumgainobtainedby inserting job j after job k provided
that st (σE ) ≤ δ̂ j .

Following the above results, the second part ofDominance
rule 5 is derived.

Dominance rule 5 (DR5; first part) Consider a BB node
associatedwith (σB , σE ). If there exist two non-identical jobs
j, k ∈ EE for which the inequality ′∗

jk > 0 holds, then
(σB, j |σE ) dominates (σB, k|σE ).

6.4 Dominance rules on scheduled jobs

The dominance theorem of dynamic programming (see
Jouglet et al. 2004) is another existing theorem that can be
used to eliminate nodes in the search tree. It compares two
partial sequences that contain identical subsets of jobs and
eliminates the one having the larger total weighted tardiness.
When total weighted tardiness values are the same, then only
one of the sequences is kept. Let us consider two feasible par-
tial sequences σ1 and σ2 (σ2 is a feasible permutation of σ1)
of k jobs, where k < n. Let C be the set of jobs in either

σ1 or σ2. We are going to decide whether it is advantageous
to replace σ2 by σ1 in all (partial) schedules in which σ2
orders the last k jobs. The set of scheduled jobs and the set of
unscheduled jobs are identical for both σ1 and σ2. Sequence
σ1 is as good as sequence σ2 if it fulfills one of the following
conditions:

1. Cmax(σ1) ≤ Cmax(σ2) and TWT(σ1) ≤ TWT(σ2);
2. Cmax(σ1) > Cmax(σ2) and the following inequality also

holds:

TWT(σ1) +
(

min
i∈U {r̄σ1

i } − min
i∈U {r̄σ2

i }
)∑

i∈U
wi ≤ TWT(σ2),

where r̄σ1
i is the updated release date associated with the

sequenceσ1 and r̄
σ2
i is the updated release date associated

with the sequence σ2.

Jouglet et al. (2004) determine the sequences that can be
replaced by a dominant permutation. They find that sequence
σ1 dominates sequence σ2 if the following two conditions
hold:

1. sequence σ1 is as good as sequence σ2;
2. sequence σ2 is not as good as σ1 or σ1 has lexicographi-

cally smaller release dates than σ2.

Note that the second condition enforces a tie-breaking rule
where a lexicographical number associated to each sequence
is computed and among those sequences that are equivalent,
the onewith lower lexicographic number is selected. To avoid
conflicts withDominance rule 2, jobs are renumbered in non-
decreasing order of their release dates r j .

Dominance rule 6 (DR6) If there exists a better feasible
permutation of σB and/or a better feasible permutation of
σE , then the node (σB, σE ) is fathomed.

If σE = ∅ and there is a better feasible permutation of σB ,
then the dominance is proven similarly to Theorem 13.6 in
Jouglet et al. (2004). If σE �= ∅, then all jobs belonging to
the setU will be scheduled betweenCmax(σB) and st (σE ) =
Cmax(σB)+∑

j∈U p j . Therefore, all permutations ofσE start
at time st (σE ) and if there exists at least one better feasible
permutation of σE , then fathoming the node associated with
(σB, σE ) does not eliminate the optimal solution.

Dominance rule 6 where only permutations of the last k
jobs are considered, is referred to as DRk

6. Computing DRn
6

amounts to enumerating all O(n!) feasible solutions, which
would yield an optimal solution but is computationally pro-
hibitive. In our B&B algorithm, we therefore choose k < n.
There is a trade-off between the computational effort needed
to compute DRk

6 and the improvement achieved by elimi-
nating dominated nodes. Based on initial experiments (see
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Table 5 AverageCPU times (in s; first number) andnumber of unsolved
instances within the time limit (between brackets, if any; out of 864)
for different choices of k in BB1 run on Ins

k n

20 30 40 50

2 0.0043 – – –

3 0.0038 0.045 – –

4 0.0039 0.039 5.157 (1) –

5 0.0042 0.039 3.499 15.895 (15)

6 0.0043 0.041 3.130 13.358 (13)

7 0.0050 0.046 4.741 (1) 14.301 (15)

8 – 0.092 7.459 (1) 22.470 (17)

Bold values indicates the smallest (selected) number for each column

Table 5; more details on the instance generation are provided
in Sect. 8.1), we observe that the algorithms perform worse
when k > 6. We also notice that it is not efficient to use DRk

6
when k > |U | because the computational effort to solve
the subproblem consisting of the remaining |U | jobs is less
than the computational effort needed to enumerate all feasible
permutations of the last k jobs. Thus, k = min{|σB |, |U |, 6}
while scheduling forward and k = min{|σE |, |U |, 6} when
scheduling backward.

We observe that in BB2 with unequal release dates, at cer-
tain moments during the search procedure, we switch from
forward to backward branching, which forces us to start with
k = |σE | = 0 and we thus lose a number of pruning oppor-
tunities.

7 Initial upper bound

Although formost of the instances the B&B algorithmfinds a
reasonably good solution (a tight upper bound) quickly, there
are instances for which feasible solutions are encountered
only after a large part of the search tree has been scanned.
Therefore, we initialize the upper bound in the root node of
theB&Balgorithmusing a stand-alone (heuristic) procedure,
which we refer to as time-window heuristic (TWH).

The key idea of our TWH is to iteratively locally improve a
given sequence of jobs within a varying time window (Algo-
rithm 1); similar ideas have already been proposed in the
literature (Debels and Vanhoucke 2007; Kinable et al. 2014).
It starts with any given sequence (note that finding a feasi-
ble sequence might be very difficult for some instances, so
we also allow infeasible sequences). Then to locally improve
the solution, the algorithm constructs a number of subprob-
lems. Each subproblem is defined by two positions: a start
position and an end position. The subproblem tries to opti-
mally resequence the jobs that are positioned between the
given start and end positions in the initial sequence such

Algorithm 1 Time-window heuristic (TWH)
Input: a sequence σ

1: for i tr = 1 to 2 do
2: IMPROVE_BY_SWAP
3: k = 0
4: while k ≤ 50 do
5: if k even then
6: start = 0
7: else
8: start = min{minsi ze,maxsi ze/2}
9: end if
10: while start + minsi ze ≤ n do
11: end = min{start + maxsi ze, n}
12: SP ← CONST_SP(σ, start, end)
13: σSP ← SOLVE_BB(SP)
14: σ ′ ← COPYSEQ(σ, σSP, start, end)
15: if TWT(σ ′) < TWT(σ ) then
16: σ ← σ ′
17: end if
18: end while
19: k = k + 1
20: end while
21: end for
Output: TWT(σ )

that the completion time of the subsequence does not exceed
the start time of the job in the position end + 1. This addi-
tional condition is fulfilled by updating the deadline of all
jobs j in the subproblem to δSPj = min{δ j , stend+1(σ )} and
updating the release date of all jobs j in the subproblem to
r SPj = max{r j ,Cstart−1(σ )}.

In TWH, the subprocedure IMPROVE_BY_SWAP is
a naive local search procedure in which each pair of
jobs is examined for swapping exactly once, in a steep-
est descent fashion. The length of the subsequence to be
reoptimized is in between minsi ze = 10 and maxsi ze =
min{max{n/2, 10}, 20}. Given a start and an end posi-
tion, CONST_SP constructs the associated subproblem
and SOLVE_BB solves the subproblem using the same
branch-and-bound algorithms explained in this paper. A new
sequence is constructed using COPYSEQ.

The input sequence for TWH is the result of a dynamic pri-
ority rule that stepwise schedules jobs (from time 0 onwards)
that are eligible according to the precedence constraints
(meaning that all predecessors were previously already
selected) and whose release date has already been reached; if
no job is eligible in this way, then the algorithm proceeds to
the earliest ready time of all jobs for which all predecessors
have already been scheduled. If multiple jobs are eligible,
then priority is given to the one with the earliest deadline and
the lowest processing time. In the computation of the eligible
set of jobs the deadline constraints are ignored. Therefore, the
resulting sequence might not be feasible to P. In such cases,
we add a large infeasibility cost to the objective function in
the hope of finding a feasible solution during TWH.
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Table 6 The performance of TWH

Instance set Total Feas TWH

Fnd Opt Gap

InsL

n = 30 432 401 397 300 0.012

n = 40 432 395 392 313 0.011

n = 50 432 397 395 302 0.025

InsPAN

n = 30 100 100 100 59 0.003

n = 40 100 100 100 72 0.001

n = 50 94a 94 89 50 0.001

InsTAN

n = 40 875 875 875 542 0.019

n = 50 875 875 875 545 0.015

a The optimal solutions are only available for 94 instances

Table 7 Average CPU times (in s) of upper bound computation for
different instance sets

InsL InsPAN InsTAN

n = 30 n = 40 n = 50 n = 40 n = 50

0.04 0.09 0.17 0.08 0.31 0.66

The upper bound that is the output of TWH improves the
runtime for those instances for which the branch-and-bound
algorithm fails to find a feasible solution fast. Furthermore,
this upper bound turns out to be optimal for most of the
instances of P and for those instances for which the opti-
mal solution is not found, the optimality gap is very low;
see Table 6 (see Sect. 8.1 for more details on the differ-
ent instance sets). To evaluate the efficiency of TWH, we
have run some computational experiments, the results of
which are reported in Tables 6 and 7. In Table 6, column
total contains the total number of instances and the values
in column feas represent the number of instances for which
at least one feasible solution exists. Column fnd reports the
number of times TWH finds a feasible solution, column opt
counts the number of optimal solutions found, and column
gap states the average optimality gap, averaged only for the
instances for which the optimal solution was not found by
TWH.The average optimality gap is computed as the average
value of ((UB − OPT)/UB), with UB the output of TWH.
Table 7 reports the average CPU times for the same subset of
instances studied in Table 6. Note that the column that reports
the average CPU times for InsPAN pertains to all instances
with n = 30, 40, and 50.

8 Computational results

All algorithms have been implemented in VC++ 2010, while
CPlex 12.3 is used to solve theMIP formulations. All compu-

tational results were obtained on a laptop Dell Latitude with
2.6 GHz Core(TM) i7-3720QM processor, 8GB of RAM,
running under Windows 7.

8.1 Instance generation

To the best of our knowledge, there are no benchmark sets of
instances of problem P available, and so we have generated
our own set of instances, which is referred to as Ins. Two sets
of benchmark instances for subproblems of P are also used in
our experiments; these are referred to as InsTAN and InsPAN

and are discussed in Sects. 8.5.1 and 8.5.2, respectively.
The set Ins consists of the two disjoint subsets (namely,

InsS and InsL ) InsS contains instances with small process-
ing times and InsL holds instances with large processing
times. The values pi (1 ≤ i ≤ n) are sampled from the
uniform distribution U [1, α], where α = 10 for InsS and
α = 100 for InsL . For each subset, we generate instances
with |N | = n = 10, 20, 30, 40, and 50 jobs. Release
dates ri are drawn from U [0, τ P], where P = ∑

i∈N pi
and τ ∈ {0.0, 0.5, 1.0}. Due dates di are generated from
U [ri + pi , ri + pi + ρP] with ρ ∈ {0.05, 0.25, 0.50} and
weights wi stem from U [1, 10]. Up to here our generation
is based on the instance generation procedure of Tanaka and
Fujikuma (2012). Ourmodifications pertain to the generation
of deadlines and precedence relations among jobs. Deadlines
are chosen fromU [di , di +φP]with φ ∈ {1.00, 1.25, 1.50}.

The addition of precedence constraints may lead to the
generation of many instances with no feasible solution. For
this reason, for each instance we first construct a feasible
solution without considering precedence constraints (using
branch-and-bound). Next, the jobs are re-indexed according
to the job order in this feasible solution. If no feasible solu-
tion exists even without precedence constraints, we use the
original indices. Subsequently, a precedence graph is created
using the RanGen software (Demeulemeester et al. 2003)
with OS ∈ {0.00, 0.25, 0.50, 0.75}, where OS is the order
strength of the graph (a measure for the density of the graph).
For any instance, if a feasible solution exists without prece-
dence constraints, then the addition of precedence constraints
will never render it infeasible because RanGen only gener-
ates arcs from lower indexed to higher indexed jobs.

In conclusion, for each combination of (α, n, τ,

ρ, φ,OS), four instances are generated; the total number
of instances is thus 2 × 5 × 3 × 3 × 3 × 4 × 4 = 4320.
In all our experiments, the time limit is set to 1200 s. If an
instance is not solved to guaranteed optimality, it is said to
be ‘unsolved’ for the procedure. Throughout this section, we
report averages computed only over the solved instances.

8.2 Lower bounds

We compare the quality of the lower bounds for the subset
of instances with large processing times and n = 30. We set
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Table 8 Average percentage
gap from optimal value LB0 LB1 LB2 LBSSr

2 LBSSδ

2 LB3 LBSSr
3 LBSSδ

3 LBBest

OS

0.00 50.505 50.505 44.369 43.313 36.857 43.142 42.086 35.630 35.372

0.25 67.776 63.465 53.444 52.702 52.300 51.955 51.013 50.568 49.834

0.50 71.461 66.108 52.378 51.890 52.021 51.216 50.727 50.767 50.352

0.75 77.055 69.836 50.769 50.520 50.565 49.430 49.182 49.041 48.863

τ

0.00 38.141 29.169 29.169 29.182 24.784 28.152 28.165 23.667 23.667

0.50 76.712 73.157 59.554 58.724 57.699 57.876 57.046 55.922 55.656

1.00 85.704 85.539 62.494 61.255 61.655 61.117 59.878 60.233 59.309

All

– 67.161 62.911 50.638 49.950 48.268 49.275 48.586 46.824 46.425

kmax = 10 for all lower bounds. The detailed results of this
comparison are reported in Table 8.

The average gap for LB1 is less than or equal to that for
LB0, especially when the precedence graph is dense; for
OS = 0, on the other hand, there are no precedence con-
straints and LB0 and LB1 are essentially the same. A similar
observation can be made for LB1 and LB2, where the gap
for LB2 is noticeably smaller than that for LB1 when release
dates are imposed, while in the case τ = 0, only one block
is created and the lower bounds LB1 and LB2 coincide. The
average gap for LB3 is indeed smaller than that for LB2, as
was to be expected according to Observation 1.

Althoughwe have no theoretical result that would indicate
a better performance of LBSSr

2 in comparison with LB2, the

average gap for LBSSr
2 is less than that for LB2 in case of non-

zero release dates. When release dates are zero, however, the
gap for LBSSr

2 is larger than or equal to that for LB2. In
fact, when release dates are zero, only one block is created
and constraints (19) can be removed from LRP2 , and thus
LRP2 is a relaxation of LRP1 . LB

SSδ

2 performs better than

LB2 and LBSSr
2 for most of the instances. Since LBSSδ

2 and

LBSSr
2 require the same computational effort, we decide not

to use LBSSr
2 in our B&B algorithms, where enumeration

of child nodes is more efficient than extra computation of a
weak bound. The gap for LBSSr

3 is less than that for LBSSr
2 and

a similar observation holds for LBSSδ

3 versus LBSSδ

2 , which

confirms the result in Observation 1. Again, since LBSSr
3 and

LBSSδ

3 are equally expensive in terms of computational effort,

we decide not to use LBSSr
3 .

In our final implementation, we will not compute all the
bounds for all the nodes because this consumes too much
effort. We start with computing LBT,LB0, and LBSV1 for
the unscheduled jobs. Let Sbest be the best feasible schedule
found. If the node is fathomed by DR1, then we back-
track; otherwise if TWT(SP ) + �LB0 + LBSV1� × 1.4 <

TWT(Sbest) then we do not compute the remaining lower

bounds and continue branching. If the latter equality does not
hold, then we anticipate that with a better bound we might
still be able to fathom the node, and we compute LB3 and/or
LBSSδ

3 . For all lower boundswe choose kmax = 0 if OS < 0.5
and kmax = 1 otherwise.

8.3 Dominance rules

In each node of the B&B algorithm, dominance rules are
tested. Based on some preliminary experiments, we find that
applying the rules in the following order performs well, and
we will therefore follow this order throughout the algorithm:

DR2,DR3,DR
2
6,DR4,DR5,DR

k
6,DR1.

In order to evaluate the effectiveness of the rules, we exam-
ine a number of scenarios with respect to the selection of the
implemented bounds; the list of scenarios is given in Table 9.
Scenario 1 includes the simplest combination of dominance
rules, namely DR2,DR3, and DR2

6. From Scenario 2 to Sce-
nario 4, extra rules are gradually added. In Scenario 5, all
dominance rules are active except DR4, and in Scenario 6,
only DR5 is inactive. Scenario 7 similarly includes all domi-
nance rules except DR6. Finally, in Scenario 8, all dominance
rules are active.

For each of these implementations, we report the average
CPU times and the average number of nodes explored in the
search tree in Table 10; the results pertain to the instances of
Inswith n = 20, 30. Scenarios 2 and 3 show the effect ofDR4

and DR5. In Scenario 2, DR4 improves the performance of
both algorithms, whereas in Scenario 3 DR5 has a beneficial
effect only for BB2. Scenario 4 reflects the impact of DR6

for k jobs.
Comparing Scenario 5 to Scenario 8, we see that inclu-

sion of DR1 has a strong beneficial effect on both algorithms;
the effect is strongest in BB2 because tighter bounds can be
computed by scheduling backward. From Table 10, we learn
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Table 9 The list of scenarios

Scenario DR2 DR3 DR2
6 DR4 DR5 DRk

6 DR1

1 � � � – – – –

2 � � � � – – –

3 � � � � � – –

4 � � � � � � –

5 � � � – � � �
6 � � � � – � �
7 � � – � � – �
8 � � � � � � �

Table 10 The effect of the dominance rules

Method Scenario n = 20 n = 30

CPU Nodes CPU Nodes

BB1 1 0.004 12,521 – –

2 0.003 4310 2.956 4,388,157

3 0.003 4279 3.547 4,382,728

4 0.004 839 0.260 48,410

5 0.008 1912 0.075 10,095

6 0.003 488 0.016 3442

7 0.772 1,044,361 – –

8 0.003 487 0.039 3451

BB2 1 0.003 11,698 – –

2 0.002 3609 1.506 2,182,869

3 0.002 3271 1.482 1,669,982

4 0.003 980 0.260 91,985

5 0.004 1658 0.135 30,474

6 0.002 490 0.055 9750

7 0.155 239,389 – –

8 0.002 427 0.047 7464

‘–’ means that the implementation fails to solve many instances within
the time limit

that apart from DR2, which is always crucial in total tar-
diness scheduling problems, the most important dominance
rule is DR6: deactivating this rule triggers a huge increase
in the average number of nodes and the average CPU times;
incorporatingDR4 also has amarked effect (compare Scenar-
ios 5 and 8). Among all dominance rules tested, DR5 is the
least important; removing DR5 slightly increases the node
count and the runtimes in BB2. In BB1, removing DR5 even
decreases the number of nodes and the runtimes; it turns out
that for n > 30, however, the effect of DR5 is also (slightly)
beneficial for BB1, and so we decide to adopt Scenario 8 as
the final setting in which the experiments in the following
sections will be run.

As a side note, we observe that for all the foregoing dom-
inance rules, after the root node, omitting the precedence
constraints implied by sets Q j and P j from the updates of

Table 11 Average CPU times (in s) and number of unsolved instances
within the time limit (out of 432) for theMIP formulations and the B&B
algorithms run on Ins with n = 10, 20 and 30

α Method n

10 20 30

10 ASF 0.81 – –

ASF′ 0.80 – –

TIF 0.43 2.02 53.47 (3)

TIF′ 0.64 2.97 88.17 (12)

BB1 0.00 0.00 0.02

BB2 0.00 0.00 0.03

100 ASF 0.92 – –

ASF′ 0.95 – –

TIF 6.54 – –

TIF′ 21.78 – –

BB1 0.00 0.00 0.06

BB2 0.00 0.00 0.06

r̄ j and δ̄ j has only little effect. We will therefore not include
these precedence constraints into the updated release dates
and deadlines and thus avoid the additional computational
overhead.

8.4 Branch-and-bound algorithms

In this section we discuss the performance of our B&B algo-
rithms. In Table 11 we compare the performance of BB1
and BB2 with the MIP formulations discussed in Sect. 3. In
this table as well as in the following, we report the average
runtime and the number of unsolved instances (if there are
any).

Based on Table 11, we conclude that the time-indexed
formulations are far better than the assignment formulations
when processing times are small. For large processing times,
the performance of ASF is slightly better than TIF. Although
ASF′ and TIF′ are tighter than their counterparts with aggre-
gate precedence constraints, the extra computational effort
needed to process the larger models increases CPU times
in both TIF′ and ASF′. The B&B algorithms BB1 and BB2
both clearly outperform the MIP formulations regardless of
the size of the processing times. Table 12 shows the per-
formance of BB1 and BB2 applied to the larger instances
of Ins (n = 40 and 50) that cannot be solved by the MIP
formulations. On average, BB1 performs better than BB2,
although this does not hold for all parameter settings (more
details follow below). BB1 solves all instances with 40 jobs
and fails to solve around 1.5 % of the instances with 50 jobs.
BB2 fails to solve one instance with 40 jobs and around 2 %
of the instances with 50 jobs. We will indicate below that all
these unsolved instances belong to a specific class; it is worth
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Table 12 Average CPU times (in s) and number of unsolved instances
within the time limit (out of 432) for BB1 and BB2 run on Ins with
n = 40 and 50

α Method n

40 50

10 BB1 1.26 16.99 (1)

BB2 1.65 35.73 (6)

100 BB1 5.00 14.00 (12)

BB2 3.38 (1) 18.28 (12)

Table 13 Average CPU times (in s) and number of unsolved instances
within the time limit (out of 126) for different choices of n and OS in
BB1 and BB2 run on Ins

Method n OS

0 0.25 0.50 0.75

BB1 30 0.08 0.04 0.02 0.01

40 11.85 0.55 0.10 0.02

50 50.81 (13) 12.63 0.68 0.06

BB2 30 0.05 0.10 0.03 0.01

40 7.37 (1) 2.37 0.32 0.03

50 44.17 (12) 57.12 (6) 8.66 0.10

mentioning that the difficult instances are not the same for
the two B&B algorithms.

The number of precedence constraints obviously affects
the performance of the algorithms (Table 13). On the one
hand, by adding precedence constraints, the set of feasible
sequences shrinks; on the other hand, the lower bounds also
become less tight. The net result of these two effects is a
priori not predictable. For instance classes without release
dates and deadlines (r j = 0 and δ j = ∞), the quality of the
lower bound is very good when OS = 0; therefore, the effect
of a weaker bound due to higher OSwill bemore pronounced
than when release dates and deadlines are also imposed.

To identify the classes of difficult instances, we focus on
case n = 50. Table 14 shows the outcomes of the experiments
for each combination of τ, ρ, andOS.According to this table,
the most time-consuming class of instances is the one where
release dates are neither loose nor tight (τ = 0.50), due dates
are loose (ρ = 0.50) and the set of precedence constraints
is empty (OS = 0). No clear pattern can be distinguished
for the algorithmic performance as a function of the tight-
ness of the deadlines, so these results are excluded from the
table. The unsolved instances are distributed differently for
the two algorithms, although τ = 0.5 in all and OS = 0
in most of the unsolved instances. For example, BB1 solves
all instances with OS = 0.25, whereas BB2 does not solve
six of these instances. Also, BB1 fails to solve two instances

Table 14 Average CPU times (in s) and number of unsolved instances
within the time limit (out of 24) for different choices of τ, ρ and OS in
BB1 and BB2 run on Ins with n = 50

Method τ ρ OS

0 0.25 0.50 0.75

BB1 0 0.05 0.27 0.50 0.18 0.03

0.25 26.84 11.89 0.51 0.05

0.50 127.59 25.92 1.96 0.06

0.5 0.05 1.60 5.16 0.44 0.05

0.25 35.16 (2) 8.86 0.72 0.07

0.50 439.09 (11) 57.55 1.86 0.09

1 0.05 1.77 0.44 0.15 0.04

0.25 1.14 0.50 0.16 0.05

0.50 0.49 2.86 0.16 0.06

BB2 0 0.05 0.21 1.01 0.25 0.03

0.25 0.27 2.79 0.36 0.05

0.50 0.49 3.11 0.37 0.06

0.5 0.05 1.66 76.47 5.97 0.12

0.25 77.95 (1) 158.78 17.96 0.20

0.50 544.25 (11) 338.02 (6) 52.42 0.30

1 0.05 1.75 0.43 0.15 0.06

0.25 1.09 0.51 0.29 0.05

0.50 0.47 3.15 0.19 0.05

withρ = 0.25,whereas this occurs for only one instancewith
ρ = 0.25 for BB2.

We will represent each class of instances by a triple
(τ, ρ, OS). As mentioned before, the hardest class of
instances for both algorithms is (0.5, 0.5, 0). The class
(0, 0.5, 0), which seems to be the thirdmost difficult class for
BB1, is very easy for BB2. Also, (0.5, 0.5, 0.25), which is
the second hardest class for BB2, does not require very high
runtimes from BB1. We infer that BB2 is better than BB1
when release dates are equal (zero); in this case (cf. Sect. 4)
stronger bounds are computed in backward scheduling. Con-
versely, BB1 is better than BB2 when release dates are not
equal (especially when τ = 0.50). With unequal release
dates, backward branching cannot start from the root node
but rather only after a certain number of jobs have already
been scheduled. Because branching forward increases the
earliest possible starting and completion times of jobs, the
trivial lower bound and the Lagrangian-based lower bounds
will be stronger for BB1 than those for BB2. As explained at
the end of Sect. 6.4 and contrary to BB2, in BB1 k is never
restarted in the computation of DRk

6 and therefore we do not
lose any pruning opportunity.

8.5 Experiments for subproblems of P

In this section, we present the results of our B&B algorithms
for subproblems of P that have also been studied in the earlier
literature.
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Table 15 Average CPU times (in s) for different choices of Pr and n
in BB2 and SSDP run on InsTAN

Pr n = 40 n = 50

BB2 SSDP BB2 SSDP

0 0.04 0.04 0.26 0.06

0.005 0.49 0.35 1.83 0.71

0.01 0.61 0.51 4.98 2.05

0.02 0.80 1.67 15.79 6.40

0.05 1.48 6.01 32.11 37.13

0.10 0.57 9.71 2.64 32.78

0.20 0.09 1.67 0.18 3.61

8.5.1 A single-machine problem with precedence
constraints: 1|prec|∑ w j Tj

One special case of P is single-machine scheduling with
precedence constraints where the objective is tominimize the
total weighted tardiness. From our observations in Sect. 8.4,
we know that we only need to consider BB2 for this subprob-
lem because all release dates are zero, and so we compare
the performance of BB2 with the SSDP algorithm proposed
by Tanaka and Sato (2013). We apply both algorithms to the
benchmark instances InsTAN obtained from Tanaka and Sato
(2013). For these instances, parameter Pr denotes the prob-
ability that each arc (i, j) ∈ N × N with i �= j is present
in the precedence graph. Note that the resulting precedence
graphmay contain transitive arcs. In such cases, the transitive
reduction is computed and used as input to BB2. Table 15
shows the computational results for our B&B algorithms and
for the SSDP algorithm (which was run on the same com-
puter). SSDP solves instances in very short runtimes when
there are no precedence constraints. SSDP performs worse,
however,when the precedence graph is dense,while theB&B
algorithms will tend to perform better exactly in this case.
To conclude this comparison, we underline the fact that our
algorithms have been developed to solve the more general
setting in which time windows are also imposed, whereas
the instance set examined here does not contain such time
windows.

8.5.2 A single-machine problem with time windows:
1|r j , δ j | ∑w jC j

Another special case of P is the single-machine problemwith
timewindowswhere the objective function is tominimize the
total weighted sum of the completion times.We run our B&B
algorithmsononeof the instance sets providedbyPanandShi
(2005),which has been introduced as problem set (I) inwhich
the parameters α and β define the ranges for the generation
of release dates and deadlines, respectively. We refer to this

Table 16 Average CPU times (in s; first number) and number of
unsolved instances within the time limit (between brackets, if any; out
of 10) for different choices of n, α and β in BB1 and BB2 run on InsPAN

n α β Method

BB1 BB2

20 0.5 1 0.006 0.005

2 0.008 0.005

4 0.010 0.008

8 0.012 0.010

16 0.012 0.010

1 1 0.002 0.002

2 0.002 0.002

4 0.004 0.004

8 0.013 0.011

16 0.009 0.008

30 0.5 1 0.026 0.022

2 0.040 0.047

4 0.055 0.053

8 0.100 0.110

16 0.105 0.107

1 1 0.007 0.008

2 0.033 0.033

4 0.017 0.018

8 0.161 0.160

16 0.092 0.087

40 0.5 1 0.111 0.123

2 0.306 0.301

4 1.419 1.451

8 2.512 2.477

16 0.987 0.967

1 1 0.014 0.012

2 0.234 0.165

4 0.161 0.170

8 0.267 0.282

16 0.867 0.875

50 0.5 1 0.782 0.784

2 3.028 3.038

4 11.082 11.152

8 17.801 17.718

16 100.041 100.253

1 1 0.036 0.038

2 1.660 1.638

4 13.466(1) 13.686(1)

8 71.697(2) 72.407(2)

16 77.316(3) 77.406(3)

instance set as InsPAN. To solve these instances, we set all
due dates to zero. Table 16 shows the computational results
of BB1 and BB2 applied to InsPAN. Our B&B algorithms
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both solve 394 out of the 400 instances to optimality within
the time limit of 1200 s. Although a consistent pattern cannot
be recognized, it seems that the hardest instances belong to
the subsets where α = 1 and β = 16. Since we do not have
access to the code of Pan and Shi, direct comparisons are
difficult, but overall our runtimes are of the same order of
magnitude, although the most difficult instances for Pan and
Shi are not the most difficult ones for our code, and vice
versa.

Contrary to the discussion in Sect. 8.4, we notice that our
two algorithms behave quite similarly for these instances.
This can be explained as follows. First, for all members of
InsPAN, release dates are non-zero, such that BB2 follows
the same steps as BB1 until the release dates of all remaining
jobs are less than the decision time. Second, the fact that due
dates are zero makes all jobs late already in the root node
and thus the scheduling of any job (even in the beginning
of the schedule) has a positive contribution in the objective
value. For the case where due dates are non-zero, scheduling
backward is advantageous because jobs are mostly early in
the beginning of the schedule, so they have zero contribution
in the objective value.

9 Summary and conclusion

In this article, we have developed exact algorithms for the
single-machine scheduling problem with total weighted tar-
diness penalties. We work with a rather general problem
statement, in that both precedence constraints as well as
time windows (release dates and deadlines) are part of
the input; this generalizes quite a number of problems for
which computational procedures have already been pub-
lished.We develop a branch-and-bound algorithm that solves
the problem to guaranteed optimality. Computational results
show that our approach is effective in solving medium-sized
instances, and that it compares favorablywith two straightfor-
ward linear formulations. Our procedure was also compared
with two existing methods, namely an SSDP algorithm and a
B&B algorithm, for special cases of the problem. The SSDP
algorithm requires only very low runtimes in the absence of
precedence constraints, but it performsworsewhen theprece-
dence graph is dense, which is exactly the easiest setting for
our B&B algorithms.
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Appendix: Proofs

Proof of Lemma 1 Consider the set of constraints (10). For
each (i, j) ∈ A, the following inequalities hold:

xi1 + · · · + xin ≤ 1 − x j1 = x j2 + · · · + x jn

xi2 + · · · + xin ≤ 1 − x j1 − x j2 = x j3 + · · · + x jn
...

xi(n−1) + xin ≤ 1 − x j1 − · · · − x j (n−1) = x jn

xin ≤ 1 − x j1 − · · · − x jn = x j1 + · · · + x jn − 1

By adding the above inequalities, we obtain

xi1 + 2xi2 + 3xi3 + · · · + nxin ≤
x j1 + 2x j2 + 3x j3 + · · · + nx jn − 1.

This is exactly the associated constraint in the set of con-
straints (5).As a result, the solution space of theLP relaxation
of ASF′ is included in that of ASF. To show that the inclu-
sion is strict, consider the following fractional values for the
decision variables corresponding with a couple (i, j) ∈ A:
xi1 = xi5 = 0.5 and x j4 = 1. These values can be seen to
respect the weak but not the strong formulation. ��

Proof of Theorem 1 Since 1||∑ w j Tj is a relaxation of
1|β| ∑ w j Tj , the optimal value of I ′ and any valid lower
bound for this optimal value is considered as a valid lower
bound for I . ��

Proof of Theorem 2 The following equality holds:

TWT∗(I ) =
∑

j∈T
w j (C j (S

∗) − d j )

=
∑

j∈N
w j (C j (S

∗) − d j )

−
∑

j∈E
w j (C j (S

∗) − d j ) =
∑

j∈N
w jC j (S

∗)

−
∑

j∈N
w j d j +

∑

j∈E
w j (d j − C j (S

∗)).

Recall that ¯lbI ′′ is a valid lower bound on the value∑
j∈N w jC j (S∗) and lbE is a valid lower bound on the value

∑
j∈E w j (d j − C j (S∗)). ��

Proof of Theorem 3 We argue that

LB0 = L0(λPV) = L̂1(λPV, μ0) ≤ L̂1(λTPA, μTPA)

≤ L1(λTPA, μTPA) = LB1.

The first inequality follows from Theorem 3 in van de Velde
(1995), where it is shown that TPA generates a series of
monotonically increasing lower bounds. The second inequal-
ity corresponds with Theorem 1. ��
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Fig. 12 Four possible cases for the parameter combinations in the proof of Lemma 4

Proof of Theorem 4 LB1(NO) is obtained by solving LRP1
with A′ = ∅ and A′′ = A, so with the same multipliers the
problem associatedwith LB1(NO) is a relaxation of the prob-
lem associated with LB1(VSP). The multipliers are updated
with TPA in both cases, and will indeed be the same for a
given kmax, so the theorem holds. ��
Proof of Theorem 5 We introduce gBi (λ, μ, S) as follows:

gBi (λ, μ, S) =
∑

j∈Bi
(w j − λ j )Tj +

∑

j∈Bi
λ j (C j − d j )+

∑

j∈Bi

∑

k∈Q j

μ jk(C j + pk − Ck).

Let S∗
1 be an optimal solution to LB∗

1 and S∗
2 = (S∗

B1
, . . . ,

S∗
Bκ

) an optimal solution to LB∗
2. The following result is

derived.

LB∗
1 = g(λ∗, μ∗, S∗

1 ) ≤ g(λ∗, μ∗, S∗
2 )

=
κ∑

i=1

gBi (λ
∗, μ∗, S∗

Bi ) ≤
κ∑

i=1

gBi (λ
∗
Bi , μ

∗
Bi , S

∗
Bi ) = LB∗

2.

��
Proof of Theorem 6 If minπ∈ΠA{Cmax(σB |π)} is greater
than max j∈A {δ̄ j } then at least one job inA cannot be sched-

uled before its deadline and the schedule (σB, σE ) is not
feasible. ��
Proof of Theorem 7 If τ ′

2 = 0, then Γ jk(t, τ1, τ2) =
Γ̂ jk(t, τ1, τ2, τ ′

2) and the theorem holds based on Jouglet
et al. (2004). If τ ′

2 > 0, all jobs in B are shifted to the
left at least τ ′

2 units. Also, τ2 equals zero because no job
is shifted to the right. For all jobs i ∈ B′ we have Ci (S1) ≥
Ci (S′

1) ≥ di . Consequently, τ ′
2

∑
i∈B′ wi ≥ 0 is a lower

bound for the gain of rescheduling jobs in B. The value
w j max{0, t + p j − d j } − w j max{0, r̂ j + p j − d j } equals
the gain of rescheduling job j and the value wk max{0, r̂k +
pk − dk} − wk max{0, t + τ1 + pk − dk} equals the gain of
rescheduling job k. By adding lower bounds for rescheduling
gains of all jobs in U = B ∪ { j, k}, a lower bound for the
gain of interchanging jobs j and k is obtained. ��
Proof of Theorem 8 Weexamine underwhich conditions the
jobs belonging to the set U = B ∪ { j, k} do not violate any
of their deadlines and/or precedence constraints. Precedence
constraints are not violated because jobs j, k ∈ EB are delib-
erately chosen such that Qk ∩ Q j = Qk and job j does not
violate its deadline simply because C j (S′

1) ≤ C j (S1) ≤ δ̄ j .
Condition 1 ensures that job k does not violate its deadline.

We argue that t = st j (S1) ≤ δ̄ j−p j . If δ̄ j−p j ≤ δ̄k−τ1−pk
holds, then we infer Ck(S′

1) = t + τ1 + pk ≤ δ̄k . Also, if
Ψ ≤ δ̂k , then all unscheduled jobs including j and k are
completed at or before δ̂k . Note that δ̂k is preferred over δ̄k
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because δ̄k ≤ δ̂k , thus condition 1 is less violated, and the
inequality Ψ ≤ δ̂k also implies Ck(S′

1) ≤ δ̄k .
Condition 2 verifies that no job in B violates its deadline.

On the one hand, if τ2 = 0, then no job in B is shifted to the
right, whichmeansCi (S′

1) ≤ Ci (S1) ≤ δ̄i for each job i ∈ B.
On the other hand, if τ2 > 0 and Ψ ≤ mini∈B{δ̂i }, then for
all jobs i ∈ B we conclude:Ci (S′

1) ≤ Ψ ≤ mini∈B{δ̂i } ≤ δ̂i .
Again, δ̂i is preferred over δ̄i because of the same reasoning
as for the preference of δ̂k over δ̄k . ��
Proof Lemma 4 Let f have a global minimum at value t∗.
Depending on the values of the parameters α, β, a, and b,
the function f behaves differently. We discuss four possible
cases for the parameter combinations to prove this lemma
(see also Fig. 12). In the two first cases, we assume that
α ≥ β. Case (a): in this case, a ≤ b, and then f is constant
on interval [u, a] and is increasing on interval [a, v], as shown
in Fig. 12a. Case (b): a > b, f is constant on interval [u, b],
decreasing on interval [b, a] and increasing on interval [a, v],
in line with Fig. 12b. The following results are valid for these
two cases: 1- If u ≤ a ≤ v then t∗ = a. 2- If a < u, t∗ = u
because f is always increasing on interval [u, v]. 3- If a >

v, t∗ = v because f is always decreasing on interval [u, v].
We conclude that t∗ = min{max{a, u}, v} for the first two
cases.

In the next two cases, we assume that α < β. Case (c):
a < b, f is constant for [u, b], increasing for [b, a] and
decreasing for [a, v], as shown in Fig. 12c. In this case, t∗
equals either u or v. On the one hand, if α(b−max{a, u}) ≥
(β − α)(max{v, b} − b) ⇒ α(v̄ − ū) ≥ β(v̄ − b) then
f (v) ≥ f (u) is inferred and t∗ = u is concluded. On the
other hand, if α(v̄− ū) < β(v̄−b) then t∗ = v is concluded.
Case (d): a ≥ b, f is constant for [u, b] and decreasing for
[b, v]; see Fig. 12d. We find that t∗ equals v for this case. ��
Proof of Theorem 9 and Theorem 10 Similar to the proof of
Theorem 8. ��
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