
J Sched (2015) 18:263–273
DOI 10.1007/s10951-015-0421-5

Minimizing the expected makespan of a project with stochastic
activity durations under resource constraints

Stefan Creemers

Published online: 10 March 2015
© Springer Science+Business Media New York 2015

Abstract The resource-constrained project scheduling
problem (RCPSP) has been widely studied. A fundamental
assumption of the basic type of RCPSP is that activity dura-
tions are deterministic (i.e., they are known in advance). In
reality, however, this is almost never the case. In this article,
we illustrate why it is important to incorporate activity dura-
tion uncertainty, and develop an exact procedure to optimally
solve the stochastic resource-constrained scheduling prob-
lem. A computational experiment shows that our approach
works best when solving small- to medium-sized problem
instances where activity durations have a moderate-to-high
level of variability. For this setting, our model outperforms
the existing state-of-the-art. In addition, we use our model
to assess the optimality gap of existing heuristic approaches,
and investigate the impact of making scheduling decisions
also during the execution of an activity rather than only at
the end of an activity.

Keywords Project scheduling · Resource constraints ·
Makespan · Stochastic activity durations · Dynamic
programming · Computational experiment

1 Introduction

The resource-constrained project scheduling problem
(RCPSP) is one of the most widely studied scheduling prob-

S. Creemers (B)
IESEG School of Management, Rue de la digue 3,
59000 Lille, France
e-mail: s.creemers@ieseg.fr

S. Creemers
Faculty of Economics and Business, Research Center
for Operations Management, KU Leuven,
Naamsestraat 69, 3000 Leuven, Belgium

lems. The basic type of RCPSP is to find a precedence- and
resource-feasible schedule (i.e., a vector of activity starting
times) that minimizes the makespan of a project. One of
the fundamental assumptions of the basic type of RCPSP is
that activity durations are deterministic (i.e., they are known
in advance). In reality, however, activity durations are sub-
ject to considerable uncertainty. The stochastic RCPSP (or
SRCPSP) takes this uncertainty into account and observes the
RCPSP when activity durations are stochastic. In contrast to
the basic type of RCPSP, the SRCPSP has received only little
attention in the literature (refer to Demeulemeester and Her-
roelen (2002) and Neumann et al. (2003) for an overview of
the field of resource-constrained project scheduling, and to
Herroelen and Leus (2005) for a survey on project scheduling
under uncertainty).

Because the SRCPSP is known to beN P-hard (Ballestín
2007), most researchers have focussed their efforts on devel-
oping heuristic solution methods. Golenko-Ginzburg and
Gonik (1997) propose two heuristics that both rely on solv-
ing a series ofmulti-dimensional knapsack problems (thefirst
heuristic uses an exact procedure, whereas the second proce-
dure resorts to a heuristic solution of the knapsack problems).
Tsai andGemmill (1998) apply simulated annealing and tabu
search procedures, whereas Ballestín (2007) and Ballestín
and Leus (2009) use a genetic algorithm and a GRASP algo-
rithm, respectively. Ashtiani et al. (2011) adopt a two-phase
local-search procedure. Stork (2001), who builds on thework
of Igelmund and Radermacher (1983) and Möhring (2000),
is one of the few researchers who has developed exact pro-
cedures to optimally solve the SRCPSP. In his PhD, he com-
pares the performance of five different branch-and-bound
algorithms.

In this article, we extend the work of Creemers et al.
(2010) and present an exact model that uses a backward sto-
chastic dynamic-programming (SDP) recursion to determine

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-015-0421-5&domain=pdf

264 J Sched (2015) 18:263–273

the minimum expected makespan of a resource-constrained
project with stochastic activity durations. We use acyclic
phase-type (PH) distributions tomodel activity durations and
match the first two moments of the activity duration distrib-
utions. The complexity increases with the number of project
activities and with decreasing levels of activity duration vari-
ability. Therefore, the model is intended for solving small-
to medium-sized problem instances where activity durations
have a moderate-to-high level of variability.

The main contributions of this article are (1) we develop
an exact and analytic solution method for optimally solving
the SRCPSP, (2) our model drastically improves computa-
tional performancewhen compared to themodel of Creemers
et al. (2010), (3) our model outperforms the existing state-of-
the-art when it comes to optimally solving small- tomedium-
sized problem instances where activities have a moderate-to-
high level of duration variability, (4) our model significantly
improves solution quality when compared to the heuristic
approaches available in the literature, and (5) we investigate
the impact of making scheduling decisions also during the
execution of an activity rather than only at the end of an
activity.

The remainder of this article is organized as follows. Sec-
tion 2 presents the basic definitions and outlines the prob-
lem statement. The model itself is explained in Sect. 3. Sec-
tion 4 provides a numerical example. The experiments and
the results are discussed in Sect. 5. Section 6 concludes.

2 Definitions and problem statement

Aproject is a networkof activities that canbe represented by a
graphG = (V, E), where V = {0, 1, . . . , n} is a set of nodes
and E = {(i, j)|i, j ∈ V } is a set of arcs. The nodes repre-
sent project activities, whereas the arcs represent precedence
relationships.Activities 0 andn are dummyactivities and rep-
resent the start and completion of the project, respectively.
The duration of an activity i is a random variable p̃i and has
expected value μi and variance σ 2

i . p̃ = { p̃0, p̃1, . . . , p̃n}
denotes the vector of the activity duration random vari-
ables. pi is a realization (or random variate) of p̃i , and
p = {p0, p1, . . . , pn} is a realization of p̃. An activity i
can start when all of its predecessors are finished and if suffi-
cient resources are available. There are K renewable resource
types. The availability of each resource type k is denoted by
Rk . Each activity i requires ri,k units of resource k, where
r0,k = rn,k = 0 for all k ∈ R = {1, 2, . . . , K }.

A solution to the basic type of RCPSP is a schedule S =
{S0, S1, . . . , Sn}, where Si is the starting time of an activity
i , S0 = 0 (i.e., the project starts at time 0), and Sn represents
the completion time (ormakespan) of the project. In addition,
define A (S, t) = {i ∈ V : Si ≤ t ∧ (Si + pi) ≥ t), the set
of activities in schedule S that are active at time t . A schedule
S is feasible if

Si + pi ≤ S j ∀(i, j) ∈ E, (1)
∑

i∈A (S,t)

ri,k ≤ Rk ∀t ≥ 0,∀k ∈ R, (2)

Si ≥ 0 ∀i ∈ V . (3)

The optimal schedule S∗ minimizes Sn subject to Con-
straints 1–3.

Because activity durations are not known in advance, a
solution to the SRCPSP is a policy rather than a sched-
ule. A policy Π is a set of decision rules that defines
actions at decision times. Decision times are typically the
start of the project and the completion times of activities.
An action, on the other hand, corresponds to the start of a
precedence- and resource-feasible set of activities. In addi-
tion, decisions have to respect the non-anticipativity con-
straint (i.e., a decision at time t can only use information
that has become available before or at time t). As time pro-
gresses, activity duration realizations become known, and
a schedule is generated (i.e., activities are assigned a start-
ing time). Consequently, a policy Π may be interpreted
as a function R

n+1
≥0 �→ R

n+1
≥0 that maps given realizations

of activity durations p to vectors of feasible starting times
S (p;Π) = {S0 (p;Π) , S1 (p;Π) , . . . , Sn (p;Π)} (see
for instance Igelmund and Radermacher (1983), Möhring
(2000), and Stork (2001)). For a given realization p and pol-
icyΠ , Sn (p;Π) denotes themakespan of schedule S (p;Π).
The objective of the SRCPSP is to minimize E (Sn (p;Π))

over a given class of policies (where E (·) is the expectation
operator with respect to p). Optimization over the class of
all policies is computationally intractable. Therefore, most
researchers focus their attention to the class of elementary
policies P , and allow decisions to be made only at the start
of the project (i.e., at time 0) and at the completion times of
activities.

3 Markov decision chain

A project network with stochastic activity durations is often
referred to as a PERT network, and a PERT network with
independent and exponentially distributed activity durations
is also called a Markovian PERT network. For Markovian
PERT networks, Kulkarni and Adlakha (1986) have devel-
oped an exactmethod for deriving the distribution of the earli-
est project completion time using a continuous-time Markov
chain (CTMC). Buss and Rosenblatt (1997), Sobel et al.
(2009), andCreemers et al. (2010) use theCTMCofKulkarni
and Adlakha (1986) as a starting point to develop scheduling
procedures that maximize an expected-NPV (eNPV) objec-
tive. All aforementioned studies, however, assume unlimited
resources and exponentially distributed activity durations. In
this article, we extend the work of Creemers et al. (2010)

123

J Sched (2015) 18:263–273 265

to accommodate (1) resource constraints, (2) PH-distributed
activity durations, and (3) a minimum-makespan objective.

Below, we first study the special case of exponential activ-
ity durations (Sect. 3.1), followed by an overview of the PH
distributions that are used in this article (Sect. 3.2). Next, we
discuss how to incorporate PH distributions in the model
(Sect. 3.3), and explain why they are a good choice for
approximating the activity duration distributions (Sect. 3.4).

3.1 Exponential activity durations

In this section, we assume that duration p̃i is exponentially
distributed with rate parameter λi = μ−1

i for all i ∈ V \
{0, n}. At any time instant t ≥ 0, the status of an activity
is either idle (not yet started), ongoing (being executed), or
finished (completed). Let I (t), O(t), and F(t) denote the
activities in V that are idle, ongoing, and finished at time t ,
respectively. I (t), O(t), and F(t) are mutually exclusive sets
and I (t) ∪ O(t) ∪ F(t) = V for all t ≥ 0. Without loss of
generality, we omit index t when referring to sets I (t), O(t),
and F(t).

The state of the system is defined by the status of the indi-
vidual activities and can be represented by a pair (I, O) (set F
can be obtained from sets V , I , and O). State transitions take
place at the completion of an activity and are determined by
the policy at hand. The starting conditions of the project are
I = V \ {0} and O = {0}. Selecting the optimal scheduling
policy Π∗ corresponds to minimizing a value function G (·)
in a continuous-time Markov decision process (CTMDP) on
the state space Q, with Q containing all feasible states. The
value function G (I, O) returns the expected time until com-
pletion of the project upon entry of state (I, O), conditional
on the assumption that optimal decisions are made in all
subsequent states (i.e., the Bellman principle of optimality
applies).

Upon entry of state (I, O), a decision needs to be made
whether or not to start a set of activities W ⊆ HI,O , with
HI,O the set of activities that are eligible to start. An activity
i is eligible to start if

1. i ∈ I ,
2. j ∈ F for all j for which (j, i) ∈ E ,

3. ri,k ≤
(
Rk − ∑

j∈O
r j,k

)
∀k ∈ R.

In addition, define D (I, O,W), the time until completion of
the project if a decision is made to start a set of activities W
upon entry of state (I, O).

If no activities are started, a transition toward another state
takes place after the first completion of an activity in O .
The probability that an activity i ∈ O finishes first equals
λi/

∑
j∈O λ j . The time until the first completion is expo-

nentially distributed and has expected value
(∑

i∈O λi
)−1.

Therefore, if no activities are started, the time until comple-
tion of the project upon entry of state (I, O) equals

D (I, O,∅) = 1∑
i∈O

λi
+

∑

i∈O

λi∑
j∈O

λ j
G (I, O \ {i}) . (4)

If, on the other hand, a set of activities W ⊆ HI,O is started,
an immediate transition toward another state is made and the
time until completion of the project upon entry of state (I, O)

equals

D (I, O,W) = G (I \ W, O ∪ W) . (5)

In order to determine the best set of activities to start,
Creemers et al. (2010) enumerate all subsets of HI,O , result-
ing in 2|HI,O | decisions to be evaluated. In this article, we
propose amore efficient approach inwhich only

∣∣HI,O
∣∣ deci-

sions have to be evaluated. Each decision corresponds to the
start of a single activity in HI,O , and evaluating all

∣∣HI,O
∣∣

decisions suffices to determine the optimal objective value
upon entry of state (I, O). To see this, one only has to con-
sider that (1) upon starting an activity, an instantaneous tran-
sition is made toward a subsequent state and (2) due to the
Bellman principle of optimality, optimal decisions are made
in subsequent states. In other words, instead of starting mul-
tiple activities in a single instantaneous transition, we make
multiple instantaneous transitions, during each of which a
single activity is started. This modification results in a dras-
tic reduction of the number of decisions to be evaluated upon
entry of a state (I, O). The impact of the modification on the
computational performance of the backward SDP recursion
is verified in Sect. 5.1.

Upon entry of state (I, O), it is optimal to either not start
activities or to start activity i∗

i∗ = argmin
i∈HI,O

{D (I, O, {i})} . (6)

Clearly, if HI,O = ∅, the optimal decision is to not start
activities and G (I, O) = D (I, O,∅). Otherwise, G (I, O)

equals

G (I, O) = min
{
D (I, O,∅) , D

(
I, O, {i∗})} . (7)

The backward SDP recursion starts in (I, O) = ({n},∅) and
stops if (I, O) = (V \ {0}, {0}), and the optimal objective
value equals min E (Sn (p;Π∗)) = G(V \ {0}, {0}).

3.2 PH distributions

In this article, we model activity durations using acyclic,
continuous-time PH distributions. Continuous-time PH

123

266 J Sched (2015) 18:263–273

distributions use exponentially distributed building blocks
to approximate any positive-valued continuous distribution
with arbitrary precision (see Neuts (1981), Latouche and
Ramaswami (1999), and Osogami (2005) for further details
on PH distributions). More formally, a PH distribution is the
distribution of time until absorption in a Markov chain with
absorbing state 0 and state space {0, 1, . . . , Z}. It is fully
characterized by parameters τ and Z. τ is the vector of prob-
abilities to start the process in any of the Z transient states
(i.e., phases), and Z is the transient state transition matrix.
The infinitesimal generator of theMarkov chain representing
the PH distribution is

Q =
(
0 0
t Z

)
,

where 0 is a zero matrix and t = −Ze (with e a vector of
ones).

Various techniques exist to approximate a given distribu-
tion by means of a PH distribution. In this article, we adopt a
two-momentmatchingprocedure thatminimizes the required
number of phases. Let νi denote the squared coefficient of
variation (SCV) of the duration of activity i

νi = σ 2
i μ−2

i . (8)

We define three cases: (1) νi = 1, (2) νi > 1, and (3) νi < 1.
In the first case, we approximate the activity duration dis-
tribution by means of an exponential distribution with rate
parameter λi = μ−1

i . The parameters of the corresponding
PH distribution are

τ i = 1,
Zi = (−λi) .

In the second case, we use a two-phase Coxian distribution
where the rate parameter of the first phase is determined by
means of a scaling factor κ

λi,1 = 1

μiκ
. (9)

The expected value of the two-phase Coxian distribution is

μi = λ−1
i,1 + πi,1,2λ

−1
i,2 , (10)

where λi,2 is the exponential rate parameter of the second
phase and πi,1,2 is the probability of visiting the second
phase. The variance of the two-phase Coxian distribution
is

σ 2
i = λ−2

i,1 + 2πi,1,2λ
−2
i,2 − π2

i,1,2λ
−2
i,2 . (11)

When deriving parameters λi,2 and πi,1,2 as a function of
parameters μi , νi and κ , we obtain

λi,2 = 2 (κ − 1)

μi (2κ − 1 − νi)
, (12)

πi,1,2 = 2 (κ − 1)2

1 + νi − 2κ
. (13)

The parameters of the corresponding PH distribution are

τ i = e1,

Zi =
(−λi,1 πi,1,2λi,1

0 −λi,2

)
,

where e1 is a single-entry vector that is populated with zeroes
except for the first entry, which equals one. In the third case,
we use a hypo-exponential distribution (a series of expo-
nential distributions whose parameters are allowed to differ;
a generalization of the Erlang distribution). The number of
required phases equals

Zi =
ν−1
i �. (14)

Weassume that the first Zi−1phases of the hypo-exponential
distribution are independent and identically exponentially
distributed with rate parameter λi,1 = λi,2 = . . . = λi,Zi−1.
The last phase is exponentially distributed with rate para-
meter λi,Zi . The expected value and variance of the hypo-
exponential distribution are

μi =
Zi∑

z=1

λ−1
i,z , (15)

σ 2
i =

Zi∑

z=1

λ−2
i,z . (16)

When deriving the rate parameters of the hypo-exponential
distribution as a function of parameters μi , νi , and Zi , we
obtain

λi,Zi = 1 + √
(Zi − 1) (Ziνi − 1)

μi (1 − Ziνi + νi)
, (17)

λi,z = (Zi − 1) − √
(Zi − 1) (Ziνi − 1)

μi (1 − νi)
, (18)

for all z ∈ {1, 2, . . . , Zi − 1}. The parameters of the corre-
sponding PH distribution are

τ i = e1,

Zi =

⎛

⎜⎜⎜⎜⎜⎝

−λi,1 λi,1 0 · · · 0 0
0 −λi,2 λi,2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −λi,Zi−1 λi,Zi−1

0 0 0 · · · 0 −λi,Zi

⎞

⎟⎟⎟⎟⎟⎠
.

For the three cases, Zi equals 1, 2, and
ν−1
i �, respectively.

Figure 1 provides an overview of the PH distributions that
are used in this article. Note, however, that our method works
with all acyclic PH distributions.

123

J Sched (2015) 18:263–273 267

Exponential distribution

Hypo-exponential distribution

Two-phase Coxian distribution

1
(λi)

PHASE
(RATE OUT)

0

2
(λi,2) 01

(λi,1)
πi,1,2

1-πi,1,2

2
(λi,2)

1
(λi,1)

Zi
(λi,Z) 0Zi -1

TRANSITION
PROBABILITY

i(λi,Z -1)i

Fig. 1 Overview of PH distributions

3.3 PH-distributed activity durations

In this section, we describe how to obtain the minimum
expected makespan of a resource-constrained project when
activity durations arePHdistributed.Thedurationof an activ-
ity i ∈ V \ {0, n} can be seen as a sequence of Zi phases
where each phase θi,z : (1) has an exponential duration with
rate parameter λi,z , (2) has a probability τi,z to be the ini-
tial phase when starting activity i , and (3) is visited with
probability πi,y,z when departing from another phase θi,y .
Also note that, due to the acyclic nature of the adopted PH
distributions, a phase can never be visited more than once.

The use of PH-distributed activity durations makes it pos-
sible to transform any project network into a Markovian
PERT network. Therefore, given a few adaptations, the SDP
recursion described in Sect. 3.1 can easily be extended to
accommodate PH distributions. The most important adapta-
tion concerns the status of the ongoing activities. If activity
durations are PH distributed, we not only have to keep track
of the ongoing activities themselves, but we also need to keep
track of their ongoing phase. Let (I,O) denote the state of
the system, whereO is the set of ongoing phases. Upon com-
pletion of a phase θi,y ∈ O

1. Activity i completeswith probabilityπi,y,0 (i.e., the prob-
ability of being absorbed when departing from phase
θi,y), and a transition ismade toward state

(
I,O \ {

θi,y
})
.

2. Activity i does not complete, phase θi,z is started with
probability πi,y,z , and a transition is made toward state
(I,O ∪ {θi,z} \ {θi,y}).

Note that F = V \ (I ∪ O), and O can be obtained from O
as follows

O = {i |Zi ∪ O �= ∅} , (19)

where Zi = {
θi,1, θi,2, . . . , θi,Zi

}
.

Let HI,O denote the set of activities that are eligible to
start upon entry of state (I,O) (its definition is analogous
to that of HI,O). If no activities are started, the time until
completion of the project upon entry of state (I,O) equals

D (I,O, ∅) = 1

λO
+

∑

θi,y∈O

λi,y

λO
πi,y,0G

(
I,O \ {

θi,y
})

+
∑

θi,y∈O

λi,y

λO

Zi∑

z=y+1

πi,y,zG
(
I,O ∪ {θi,z}\ {θi,y}

)
,

(20)

where λO = ∑
θ j,z∈O λ j,z .

If HI,O �= ∅, the best activity to start is

i
 = argmin
i∈HI,O

⎧
⎨

⎩

Zi∑

z=1

τi,zG
(
I \ {i},O ∪ {θi,z}

)
⎫
⎬

⎭ . (21)

The optimal objective value upon entry of state (I,O) equals

G (I,O) = min
{
D (I,O,∅) , D

(
I,O, {i
})} . (22)

Note that, after the completion of a phase, it is possible to
interrupt the execution of an activity and/or to make schedul-
ing decisions. Therefore, using PH-distributed activity dura-
tions, it becomes possible to optimize over a class of policies
that is far more general than P . Let N denote the class of
policies where decisions can be made: (1) at the start of the
project, (2) at the completion times of activities, and (3) at
the completion times of activity phases. It is clear that N
dominates P . In Sect. 5.5, we evaluate the gain in solution
quality when we optimize over N rather than over P .

3.4 Why PH distributions?

In most cases, the “true” distribution of the duration of an
activity is unknown. Often, it is assumed that the duration
of an activity follows a beta, uniform, or Gaussian distri-
bution (see for instance Herroelen and Leus (2005), Bidot
et al. (2009), Fu et al. (2012), and Creemers et al. (2014)).
These distributions, however, only allow to match the first
two moments of the true duration distribution. PH distribu-
tions, on the other hand, can match almost any distribution
with arbitrary precision. Therefore, one could argue that PH
distributions are a better choice as an approximation of the
true duration distribution.

The size of a Markovian PERT network is determined
by the number of phases that is required to model the project
activities. Therefore, PH distributions are especially suited to
approximate activity durations that have a moderate-to-high
level of variability. In fact, any activity duration distribution

123

268 J Sched (2015) 18:263–273

that has a SCV in [0.5,∞) can be modeled using a PH dis-
tribution of up to two phases. For SCV smaller than 0.5, the
number of required phases increases rapidly, making PH dis-
tributions less applicable for settings where activity duration
variability is small. It mainly makes sense, however, to solve
the SRCPSP if activity durations exhibit a sufficient degree
of variability. If activity durations have a low level of vari-
ability, solving the SRCPSP has limited added value, and the
RCPSP may serve as an approximation of the SRCPSP.

As is explained in Sect. 3.2, PH distributions are a mixture
of exponential distributions. Due to the memoryless property
of the exponential distribution, there is no need to keep track
of the remaining duration of the ongoing activities (i.e., the
remaining duration of a phase θi,z is exponentially distributed
with rate parameter λi,z for every moment in time at which
phase θi,z is ongoing). As a result, the state of the system
is fully defined by the set of idle activities and the set of
ongoing activity phases. This compact representation of the
state space allows us to solve problem instances which are
beyond reach for other optimal solution methods.

If activity durations are PH distributed, it becomes possi-
ble to interrupt the execution of an activity and/or to make
scheduling decisions at the completion of a phase rather than
only at the completion of an activity. This enables the study
of more complex scheduling problems and also allows to
optimize over a class of policies that is more general than the
class of elementary policies P .

4 Example

Any project network with stochastic activity durations can
be transformed into a Markovian PERT network. In order to
illustrate this transformation process, we consider a project
that consists of five activities (i.e., V = {0, 1, 2, 3, 4}, where
0 and 4 are dummy activities). The data of the project are
summarized in Table 1. The project network and its trans-
formation are presented in Fig. 2. Activity 1 has duration
SCV equal to 1/3 and can be modeled as a series of three
phases that have exponentially distributed durations (i.e., a
hypo-exponential distribution is used). Activity 2 has dura-
tion SCV equal to 1 and can be modeled as a single phase
(i.e., the duration of activity 2 is approximated by an expo-
nential distribution). If the activity duration SCV is larger
than 1, a two-phase Coxian distribution is used. Activity 3,
for example, has a duration SCV equal to 2 and can be mod-
eled as a series of two phases, where the second phase is
executed with probability π3,1,2. Note that this implies that
not all phases have to be executed in order to complete the
project (i.e., there is a probability π3,1,0 of not having to
execute the second phase of activity 3).

Next, we use the example project to illustrate the impor-
tance of stochastic activity durations when solving the

Table 1 Data for the example project

i pi νi ri,1 Zi λi,1 λi,2 πi,1,2

0 0 0 0

1 9 1/3 5 3 1/3 1/3

2 9 1 5 1 1/9

3 10 2 5 2 1/5 1/20 1/4

4 0 0 0

R1 10

1

2

3 θ3,1

4040

π3,1,2

π3,1,0

θ2,1

θ3,2

θ1,1 θ1,2 θ1,3

Fig. 2 Example project network and its corresponding Markovian
PERT network

Activity 1Activity 2 Activity 3

Activity 3

Activity 2

Activity 1

time

ri,1

10

8

6

4

2

0
0 2 4 6 8 10 12 14 16 18 20

time

ri,1

10

8

6

4

2

0
0 2 4 6 8 10 12 14 16 18 20

Policy Π1 Policy Π2

Fig. 3 Illustration of policy Π1 and Π2 if activity durations are deter-
ministic

RCPSP. In the example, we assume that there is a single
resource (i.e., K = 1) that has an availability of 10 resource
units (i.e., R1 = 10). The non-dummy activities each con-
sume 5 resources (i.e., r1,1 = r2,1 = r3,1 = 5). If activity
durations are deterministic, the optimal policy is to start activ-
ities 2 and 3, and to start activity 1 after completion of either
activity 2 or 3. Refer to this policy as Π1. Adopting policy
Π1 results in a project makespan of 18 time units if activity
durations are deterministic. Policy Π2, on the other hand,
starts activities 1 and 2, and starts activity 3 after completion
of either activity 1 or 2. If activity durations are determinis-
tic, policy Π2 corresponds to a makespan of 19 time units.
Figure 3 illustrates both policies. If activity durations are not
deterministic, however, policy Π2 may outperform policy
Π1. This is illustrated in Fig. 4, which shows the makespan
of the project as a function of the variability of the duration of
activity 3. It is clear that, as the variability of the duration of
activity 3 increases, policyΠ2 becomes more effective when
compared to policy Π1. For a duration SCV larger than 4.87
(i.e., for ν3 > 4.87), the makespan that corresponds to pol-
icy Π2 is smaller than the makespan that is associated with
policy Π1.

123

J Sched (2015) 18:263–273 269

1 2 3 4 5 6 7 8 9 10
17

17.5

18

18.5

19

19.5

20

Duration SCV of actvity 3

P
ro

je
ct

 m
ak

es
pa

n

Policy Π
1

Policy Π
2

Fig. 4 Project makespan of policyΠ1 andΠ2 as a function of the SCV
of the duration of activity 3

5 Results

In this section, we assess the difference in performance
between our approach and the approach of Creemers et al.
(Sect. 5.1). Next, we discuss the different problem sets that
are used in the literature (Sect. 5.2), and we compare the
computational performance of our model and other optimal
approaches (Sect. 5.3).We also evaluate the optimality gap of
the existing heuristic procedures (Sect. 5.4), and investigate
the impact of making decisions also during the execution of
an activity (Sect. 5.5).

All our experiments are performed on an AMD Phenom
II 3.2 GHz computer with 32,768 MB RAM.

5.1 Improving the model of Creemers et al. (2010)

Creemers et al. (2010) use a backward SDP recursion to find
the maximum eNPV of a project where activity durations are
exponentially distributed. In this article, we modify this SDP
recursion to accommodate (1) resource constraints, (2) PH-
distributed activity durations, and (3) a minimum-makespan
objective. Next to structural changes, however, we also sug-

gest a modification that drastically reduces the number of
decisions that have to be evaluated upon entry of a state (see
Sect. 3 for more details). In this section, we assess the impact
of this modification on the computational performance of the
backward SDP recursion. For this purpose, we replicate the
study of Creemers et al. (2010).

In their study, Creemers et al. (2010) generate 30 schedul-
ing instances for each combination of order strength (OS) and
network size. The OS is either 0.4, 0.6, or 0.8. The size of
the network ranges from 10 to 120 activities. In total, 1080
instances are generated. We analyze these instances using
(1) the SDP recursion of Creemers et al. (2010) and (2) the
modified SDP recursion that is introduced in Sect. 3.3. The
results are presented in Table 2. For each combination of
parameters, Table 2 aggregates (1) the number of instances
that were solved to optimality, (2) the CPU time of the “old”
approach, and (3) the CPU time of the “new” approach. It is
clear that themodified approach drastically improves compu-
tation times. In fact, on average, the computational efficiency
has been improved by a factor of 56.49.

5.2 Datasets used in the literature on the SRCPSP

Various datasets are available in the literature. Tsai andGem-
mill (1998), Ballestín and Leus (2009), and Ashtiani et al.
(2011) assess the performance of their procedures using the
instances of the Patterson dataset (Patterson 1984). Stork
(2001) evaluates his branch-and-bound algorithms on the
J30 and J60 instances of the well-known PSPLIB dataset
(Kolisch and Sprecher 1996). Ballestín and Leus (2009) and
Ashtiani et al. (2011) use the J120 instances of the same
dataset. Golenko-Ginzburg and Gonik (1997) use a single
instance with 36 activities to evaluate their two heuristics.
The same problem instance is also used in Ballestín and Leus

Table 2 Comparison of the computational results when using the SDP recursion of Creemers et al. (2010) and the modified SDP recursion

Solved successfully Average CPU time (old) Average CPU time (new)

n OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 30 30 30 0.00 0.00 0.00 0.00 0.00 0.00

20 30 30 30 0.00 0.01 0.46 0.00 0.00 0.03

30 30 30 30 0.01 0.33 26.92 0.00 0.02 1.49

40 30 30 29 0.03 6.62 2337.96 0.00 0.49 72.25

50 30 30 4 0.15 100.28 52,267.30 0.01 4.43 823.71

60 30 30 0 0.74 2210.08 – 0.06 67.87 –

70 30 22 0 3.19 17,495.49 – 0.24 378.64 –

80 30 9 0 10.81 72,473.41 – 0.79 1188.01 –

90 30 0 0 50.64 – – 3.15 – –

100 30 0 0 171.42 – – 9.60 – –

110 30 0 0 1193.88 – – 40.93 – –

120 30 0 0 12,789.06 – – 260.66 – –

123

270 J Sched (2015) 18:263–273

(2009) and Ashtiani et al. (2011). In our experiments, we use
the problem instances of the Patterson dataset and the J30
and J60 instances of the PSPLIB dataset. We do not use the
J120 instances of the PSPLIB dataset because they cannot be
solved to optimality. We also do not use the example project
presented inGolenko-Ginzburg andGonik (1997) because its
activities have a very limited duration variability (e.g., when
the uniform distribution is used to model activity durations,
the average duration SCV equals 0.014).

5.3 Computational performance and comparison with
optimal procedures

In this section, we discuss the computational performance
of our model and compare with other optimal approaches
available in the literature. In a first experiment, we assume
that activity durations are exponentially distributed and solve
the instances of the Patterson dataset and the J30 and J60
instances of the PSPLIB dataset. Table 3 summarizes the
results (the state-space sizes are expressed in thousands of
states), and Fig. 5 presents a box plot of the computation
times. It is clear that project networks of up to 32 activities
are analyzed with ease. The results also show that networks
of 62 activities can often be solved (we solve 301 out of 480
networks), albeit at a larger computational cost.

Next, we use the J30 instances of the PSPLIB dataset to
analyze the impact of different levels of activity duration
variability on the performance of our model. Table 4 sum-
marizes the results (the state-space sizes are expressed in
thousands of states). The level of activity duration variabil-
ity determines the number of required phases. For values of
SCV larger than 0.5, one or two phases suffice. If, however,
the SCV of the activity durations is smaller than 0.5, the
number of required phases increases rapidly. As a result, the
size of the state space increases exponentially and compu-
tational performance plummets. For moderate-to-high levels

Table 3 Computational results if activity durations are exponentially
distributed (state-space sizes are expressed in thousands of states)

Dataset Patterson J30 J60

Instances in set 110 480 480

Instances solved 110 480 301

Avg # of activities 26 32 62

Avg CPU time (s) 0.00 0.49 1564

Max CPU time (s) 0.05 13.1 31, 838

Min CPU time (s) 0.00 0.00 1.90

Avg state-space size 7.45 539 661, 315

Max state-space size 136 11, 378 4, 257, 393

Min state-space size 0.03 6.17 3762

of activity duration variability, however, the computational
effort is acceptable.

The main bottleneck of our approach is memory rather
than CPU time. For large networks and/or low levels of activ-
ity duration variability, the state space becomes too big to
store in memory. As a result, our model is mainly suited
for small- to medium-sized projects where activity durations
have a moderate-to-high level of variability. For this setting,
our approach outperforms the current state-of-the-art.

The literature onoptimal solutionmethods for theSRCPSP
is rather scarce. With respect to the Patterson dataset, Tsai
and Gemmill (1998) are able to solve 95 out of 110 instances
to optimality if activity durations are deterministic. If activ-
ity durations are stochastic, optimality cannot be guaranteed.
With respect to the J30 and J60 instances of the PSPLIB
dataset, Stork (2001) is able to optimally solve 179 and 11
out of 480 instances, respectively. It is clear that our model
performs better.

5.4 Comparison with heuristic procedures

In this section, we assess the optimality gap of the heuristic
approaches that are available in the literature. The models of
Ballestín and Leus (2009) and Ashtiani et al. (2011) are the
current state-of-the-art when it comes to heuristically solving
the SRCPSP. Both authors report results on the J120 dataset.
Currently, however, it is impossible to optimally solve the
instances of that dataset (i.e., the optimality gap cannot be
evaluated). If activity durations are exponentially distributed,
our model can optimally solve 480 and 301 instances of the
J30 and J60 datasets, respectively (see Sect. 5.3 for more
details). For these instances, we can measure the optimality
gap if we also have the solutions of the heuristic approaches.
Unfortunately, the solutions are not available from Ashtiani
et al. (2011). We are able, however, to compare with the
solutions of Ballestín and Leus (2009).

We assess the optimality gap of the GRASP method of
Ballestín and Leus (2009) with a limit of 25,000 schedules.
The results are reported in Table 5. Table 5 presents the mini-
mum, average, andmaximumdifference between the optimal
makespan and the makespan produced by the GRASP proce-
dure. In addition, Fig. 6 presents a boxplot of the optimality
gap. We find that our model improves solution quality with
9.11% on average for the J30 instances, and with 15.88% on
average for the J60 instances. It is clear that the optimality
gap increases with increasing network size. Therefore, we
expect that the gap for the J120 instances is even larger. In
addition, theminimumoptimality gap increases rather drasti-
cally, indicating that it becomes more difficult for the heuris-
tic approaches to approximate the optimal solution as the size
of the network increases.

123

J Sched (2015) 18:263–273 271

Fig. 5 Computational
performance if activity durations
are exponentially distributed

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Patterson data set

C
P

U
 ti

m
e

(s
)

0

2

4

6

8

10

12

14

PSPLIB J30 data set

C
P

U
 ti

m
e

(s
)

0

0.5

1

1.5

2

2.5

3

x 10
4

PSPLIB J60 data set

C
P

U
 ti

m
e

(s
)

Table 4 Computational results
for different values of SCV
when solving the J30 instances
of the PSPLIB dataset
(state-space sizes are expressed
in thousands of states)

Average SCV Instances solved CPU time (s) State-space size

Min Avg Max Min Avg Max

1/4 358 0.08 28.32 217.20 181 42,702 580,059
1/3 421 0.03 24.00 593.29 126 66,134 1,092,331
1/2 480 0.02 28.54 1453.03 79 89,863 3,000,505

1 480 0.00 0.49 14.02 6 539 11,378

2 480 0.03 34.83 1731.67 79 89,863 3,000,505

Table 5 Optimality gap of the GRASP method if 25,000 schedules are
used and activity durations are exponentially distributed

Dataset Instances solved Optimality gap

Min (%) Avg (%) Max (%)

J30 480 1.07 9.11 20.20

J60 301 9.61 15.88 24.80

5.5 Value of non-elementary policies

All solution methods in the literature on the SRCPSP allow
decisions to be taken only at the start of the project and at
the completion times of activities (i.e., they optimize over the
class of elementary policiesP). In this section,we investigate
the difference in solution quality if we allow decisions to
be taken also at the completion of an activity phase (i.e.,
we observe the impact of optimizing over the class of non-
elementary policies N).

For this experiment, we use the 110 instances of the Patter-
son dataset. The average SCVof the activity durations ranges
from 0.1 to 2.0. Depending on the SCV, the number of phases
differs, and hence, the number of decision moments during
the execution of an activity differs as well. Table 6 presents
the difference in solution quality when optimizing over N

0

0.05

0.1

0.15

0.2

0.25

06J03J

O
pt

im
al

ity
 g

ap

Fig. 6 Optimality gap of the GRASPmethod if 25,000 simulations are
used and activity durations are exponentially distributed

rather than over P . It is clear that the difference is minimal
(at most, the difference amounts to 0.55 %). This, however,
is not really surprising as it is often optimal to start activi-
ties as soon as possible if makespan is to be minimized (i.e.,
there is limited value in postponing the start of an activity).
We do observe, however, that the difference in solution qual-
ity grows larger if activity duration variability increases (for

123

272 J Sched (2015) 18:263–273

Table 6 Percentual difference in solution quality for policy classes P
and N for different values of SCV

Average
SCV

Number of
phases

Average
difference (%)

Maximum
difference (%)

0.1 10 0.0016 0.015

0.2 5 0.0015 0.017

0.3 4 0.0020 0.015

0.4 3 0.0018 0.031

0.5 2 0.0006 0.006

0.6 2 0.0014 0.013

0.7 2 0.0016 0.018

0.8 2 0.0014 0.016

0.9 2 0.0010 0.010

1.0 1 0.0000 0.000

1.1 2 0.0009 0.029

1.2 2 0.0024 0.066

1.3 2 0.0042 0.103

1.4 2 0.0071 0.115

1.5 2 0.0102 0.215

1.6 2 0.0130 0.319

1.7 2 0.0154 0.399

1.8 2 0.0174 0.462

1.9 2 0.0191 0.511

2.0 2 0.0205 0.550

a constant number of phases/decision moments). This indi-
cates that it is more beneficial to have decision moments dur-
ing the execution of an activity if the duration of that activity
is more variable.

6 Conclusions

In this article, we have presented an exact and analytic solu-
tion method for optimally solving the SRCPSP. Our model
extends the SDP recursion of Creemers et al. (2010) and
accommodates (1) resource constraints, (2) PH-distributed
activity durations, and (3) a minimum-makespan objective.
Next to these structural improvements, we also improve the
computational efficiency of the SDP recursion by a factor of
56.49 on average.

Experiments have shown that our model performs best
when activity durations have amoderate-to-high level of vari-
ability, and that it can be used to optimally solve project
instances that have up to 62 activities. For this setting, our
model outperforms the existing state-of-the-art.

We have also used our model to assess the optimality gap
of the heuristic approaches available in the literature. We
show that our model improves the solution quality of the
GRASP procedure of Ballestín and Leus (2009) with 9.11

and 15.88 % on average for instances that have 32 and 62
activities, respectively. This indicates that it becomes more
difficult for the heuristic approaches to approximate the opti-
mal solution as the size of the network increases.

In addition, we have investigated the difference in solu-
tion quality if we allow scheduling decisions to be made at
the end of an activity phase rather than only at the end of
an activity. An experiment has shown that the difference in
solution quality isminimal (i.e., there is limited value in post-
poning the start of an activity). The experiment also shows
that it is more beneficial to have decision moments during
the execution of an activity if the duration of that activity is
more variable.

Last, we have also illustrated that variability in activity
durations is an important factor when solving the RCPSP.
As such, it might not be advisable to assume that activity
durations are deterministic when making project scheduling
decisions.

References

Ashtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competi-
tive results for the stochastic resource-constrained project schedul-
ing problem: Exploring the benefits of pre-processing. Journal of
Scheduling, 14(2), 157–171.

Ballestín, F. (2007). When it is worthwhile to work with the stochastic
RCPSP? Journal of Scheduling, 10(3), 153–166.

Ballestín, F., & Leus, R. (2009). Resource-constrained project schedul-
ing for timely project completionwith stochastic activity durations.
Production and Operations Management, 18(4), 459–474.

Bidot, J., Vidal, T., Laborie, P., & Beck, J. C. (2009). A theoretic and
practical framework for scheduling in a stochastic environment.
Journal of Scheduling, 12(3), 315–344.

Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic
project networks. Operations Research, 45(1), 126–139.

Creemers, S., Leus,R.,&Lambrecht,M. (2010). SchedulingMarkovian
PERT networks to maximize the net present value. Operations
Research Letters, 38(1), 51–56.

Creemers, S., Demeulemeester, E., & Van de Vonder, S. (2014). A
new approach for quantitative risk analysis. Annals of Operations
Research, 213(1), 27–65.

Demeulemeester, E., & Herroelen, W. (2002). Project scheduling: A
research handbook. AH Dordrecht: Kluwer Academic Publishers
Group.

Fu, N., Lau, H. C., Varakantham, P., & Xiao, F. (2012). Robust local
search for solving RCPSP/max with durational uncertainty. Jour-
nal of Artificial Intelligence Research, 43, 43–86.

Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project
scheduling with non-consumable limited resources. International
Journal of Production Economics, 48(1), 29–37.

Herroelen,W.,&Leus, R. (2005). Project scheduling under uncertainty:
Survey and research potentials. European Journal of Operational
Research, 165(2), 289–306.

Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for
the optimization of stochastic project networks under resource con-
straints. Networks, 13(1), 1–28.

Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project schedul-
ing problem library. European Journal of Operational Research,
96(1), 205–216.

123

J Sched (2015) 18:263–273 273

Kulkarni, V., & Adlakha, V. (1986). Markov and Markov-regenerative
PERT networks. Operations Research, 34(5), 769–781.

Latouche, G., &Ramaswami, V. (1999). Introduction to matrix analytic
methods in stochasticmodeling. Philadelphia:AmericanStatistical
Association and the Society for Industrial and Applied Mathemat-
ics.

Möhring, R. H. (2000). Scheduling under uncertainty: Optimizing
against a randomizing adversary. Lecture Notes in Computer Sci-
ence, 1913, 15–26.

Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project
scheduling with time windows and scarce resources. Berlin:
Springer.

Neuts, M. F. (1981). Matrix-geometric solutions in stochastic models.
Baltimore: Johns Hopkins University Press.

Osogami, T. (2005). Analysis of multiserver systems via dimensionality
reduction of Markov chains. PhD Thesis, Carnegie Mellon Uni-
versity.

Patterson, J. H. (1984). A comparison of exact approaches for solv-
ing the multiple constrained resource, project scheduling problem.
Management Science, 30(7), 854–867.

Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling
projects with stochastic activity duration tomaximize expected net
present value. European Journal of Operational Research, 198(1),
697–705.

Stork, F. (2001). Stochastic resource-constrained project scheduling.
PhD Thesis, Technische Universität Berlin.

Tsai, Y.-W., & Gemmill, D. D. (1998). Using tabu search to sched-
ule activities of stochastic resource-constrained projects.European
Journal of Operational Research, 111(1), 129–141.

123

	Minimizing the expected makespan of a project with stochastic activity durations under resource constraints
	Abstract
	1 Introduction
	2 Definitions and problem statement
	3 Markov decision chain
	3.1 Exponential activity durations
	3.2 PH distributions
	3.3 PH-distributed activity durations
	3.4 Why PH distributions?

	4 Example
	5 Results
	5.1 Improving the model of citeCreemers2010a
	5.2 Datasets used in the literature on the SRCPSP
	5.3 Computational performance and comparison with optimal procedures
	5.4 Comparison with heuristic procedures
	5.5 Value of non-elementary policies

	6 Conclusions
	References

