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Abstract We address a novel integrated maintenance and
production scheduling problem in a multi-machine and
multi-period production system, considering maintenance as
a long-term decision. Deterioration of machines over time
decreases production capacity. Since maintenance activities
not only improve machine conditions, increasing produc-
tion capacity, but also take time that cannot be used for
production, the challenge is to assign maintenance to peri-
ods and to schedule maintenance and production activities
within each period to minimize the combined cost of main-
tenance and lost production over the planning horizon. Moti-
vated by logic-based Benders decomposition, we design an
integrated two-stage algorithm to solve the problem. The
first stage assigns maintenance to machines and time peri-
ods, abstracting the scheduling problem, while the second
stage creates a schedule for the current time period. The first
stage is then re-solved using feedback from the schedule.
This iteration between maintenance planning and schedul-
ing continues until the solution costs in two stages con-
verge. The integrated approach models the interdependen-
cies betweenmaintenance and scheduling decisions in highly
coupled processes such as wafer fabrication in the semicon-
ductor manufacturing. Our results demonstrate that the bene-
fit of integrated decisionmaking increaseswhenmaintenance
is less expensive relative to lost production cost and that a
longer horizon for maintenance planning is beneficial when
maintenance cost increases.
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1 Introduction

Production scheduling addresses the problem of allocating
the available production capacity to competing customer
orders to optimize the performance of the system. In many
manufacturing systems, the production capacity decreases
over time as machines deteriorate. For example, a dull drill
bit, a contaminated cooling system, or a worn-out crankshaft
sensor in manufacturing slow the operations, increasing the
number of orders that cannot be delivered by their due dates.
However, maintenance improves machine conditions, restor-
ing the production capacity, while using potential production
time that could be otherwise allocated to processing the cus-
tomer orders. Therefore, scheduling maintenance to mini-
mize the disruption of the production process is a challenging
problem. In this paper, we explore how information about
machine conditions and operational information including
workloads and due dates can be integrated to simultaneously
schedule maintenance and production activities, increasing
the number of orders satisfied by their due dates.

Maintenance planning and production scheduling are
often viewed as separate and sequential decisions in contexts
such as wafer fabrication in the semiconductor manufactur-
ing (Yao et al. 2004). In this process, wafer lots (production
jobs) flow through the system, requiring several operations
to be performed by various cluster tools (machines) (Kumar
and Kumar 2001). The flow of the wafers in a fab forms a
reentrant line, a manufacturing configuration between clas-
sical flowshop and jobshop (Uzsoy et al. 1992; Kumar and
Kumar 2001; Mönch et al. 2011). In the fabrication process,
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on the higher level, the preventive maintenance frequency is
first planned mainly based on the state of tools, such as their
age (Yao et al. 2004) and provided as inputs to the schedul-
ing system. Knowing the information about which tools are
under preventive maintenance and the maintenance duration,
scheduling decisions then find the optimal allocation of the
available tools to competing wafer lots over time. The goal
is to increase the capability of meeting due dates for optimal
customer satisfaction, one of the most important objectives
in the semiconductor market (Mönch et al. 2011). However,
this division ignores the dependency between maintenance
planning and scheduling (Yao et al. 2004): it may be globally
optimal to schedule maintenance earlier or later. As an exam-
ple, if the fabprocess is heavily loaded, there is anopportunity
for significant financial gains by delaying maintenance (Yao
et al. 2004). Therefore, incorporating the operational state
of the process such as workloads and due dates into main-
tenance decisions leads to a better allocation of resources to
maintenance and wafer lots.

There are two areas in the scheduling literature that study
the dependency between maintenance planning and produc-
tion scheduling. The first addresses the limited availabili-
ties of machines due to maintenance requirements (Ma et al.
2010), and the second area models the effect of maintenance
on processing times by considering maintenance as a rate-
modifying activity (Lee and Leon 2001). However, there is
no decision regarding planning maintenance since the time
windows for maintenance are typically given [e.g., Kuo and
Yang (2008), Mosheiov and Sidney (2010), Kellerer et al.
(2013)]. To address the interdependency between mainte-
nance and scheduling decisions in highly coupled processes
such as wafer fabrication (Yao et al. 2004), in this paper,
we consider a flowshop system with multiple machines over
multiple time periods where maintenance concepts are mod-
eled as defined in themaintenance research literature (McCall
1965; Cho and Parlar 1991; Dekker et al. 1997; Wang 2002;
Nicolai and Dekker 2008). We explicitly model the effect of
machine conditions on processing times and consider main-
tenance as a long-term decision.

Motivated by logic-based Benders decomposition
approach (Hooker 2005, 2007), we design an integrated two-
stage algorithm where the maintenance and scheduling deci-
sions are tackled in different, coupled stages. The first stage
finds the optimal maintenance plan, abstracting the produc-
tion scheduling problem. It has a long-term view over the
time periods where information about the customer orders
is available and seeks to minimize the sum of maintenance
and a lower bound on the lost production costs. The mainte-
nance plan determines the assignment of maintenance activ-
ities to machines and time periods. The second stage has a
short-term view over the current period, finding the optimal
schedule of maintenance and production activities given the
specified maintenance plan. The real lost production cost is

then communicated via a constraint to the first stage so that
the maintenance plan can be revised if it is no longer opti-
mal. The decision stages iterate until the optimal solution is
found, i.e., the relaxation of lost production cost in the first
stage solution is equal to the actual lost production cost.

We experimentally compare the performance of this inte-
grated algorithm with three other approaches: hierarchical
decisionmakingwhere there is no feedback betweendecision
stages, a short-term model where maintenance planning and
scheduling are done together for each period, and a heuris-
tic model. Our empirical results demonstrate that the inte-
grated and long-term decision making results in higher solu-
tion quality. It is further shown that the benefit of integrated
decision making increases as the ratio of maintenance cost to
lost production cost decreases while planning maintenance
for multiple periods is beneficial when the ratio increases.

The following section provides an overview of the rele-
vant literature.We then formally define our problem, describe
the proposed solution approaches, present our experiments
and discuss the results. Finally, we end with conclusion and
directions for future work.

2 Literature review

In this section, we review the literature on integratingmainte-
nance and production scheduling problems and provide nec-
essary background on logic-based Benders decomposition,
an inspiration for our integrated approach.

2.1 Integrated maintenance planning and production
scheduling

The problem of maintenance planning and production
scheduling has been studied in the scheduling literature from
two perspectives. The first deals only with the fact that a
machine undergoing maintenance is unavailable for pro-
duction jobs (Schmidt 2000; Lee 2004; Ma et al. 2010;
Hadidi et al. 2012a). The second perspectivemodels different
processing times for a production job depending on whether
it is scheduled before or after maintenance (Lee and Leon
2001). Both perspectives typically consider single-machine
problems and focus on analyzing the computational com-
plexity of the problems and/or deriving the properties of
the optimal schedules. The derived properties are used to
develop polynomial-time approximation algorithms or effi-
cient heuristics, or are modeled as extra constraints to reduce
the computational effort.

A problem of the first category can be defined as follows.
A set of jobs J = {Ji |i = 1, . . . , n} and a set of machines
M = {Mj | j = 1, . . . ,m} are given. Machine Mj is not
available for processing the jobs within S j time intervals
[Bs

j , F
s
j ], s = 1, . . . , S j where Bs

j and Fs
j denote the start
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time and the finish time of the s-th unavailability interval (Ma
et al. 2010). The goal of the problem is to pack the jobs into
the gaps created between unavailability intervals, optimizing
an operational performance measure such as finishing all the
jobs as soon as possible. In different problem variations, jobs
may be resumable (i.e., the job continues its processing after
the unavailability period) (Lee 1996), non-resumable (i.e., it
is re-started if interrupted by the unavailability period) (Lee
1996), or semi-resumable (i.e., the disrupted job has to re-
do part of its processing when the machine becomes avail-
able again) (Lee 1999). One or several unavailability inter-
vals (maintenance periods) might be considered where their
start and end times are either known or decision variables. A
number of different combinations of the unavailability inter-
vals and job characteristics have been studied (Lee 1996;
Liao and Chen 2003; Akturk et al. 2004; Chen 2006; Ji et al.
2007; Kovacs and Beck 2007; Xu et al. 2010; Yu et al. 2014).
While the majority of this literature deals with determinis-
tic problems where limited availabilities of machines only
result from planned maintenance, a number of authors have
studied a single- machine scheduling problem assuming that
themachine is not continuously available due to both planned
maintenance and randommachine breakdowns (Cassady and
Kutanoglu 2003, 2005; Kuo and Chang 2007; Hadidi et al.
2011, 2012b).

The problem of integrated maintenance planning and
production scheduling of the first category has also been
extended to flowshop setting that is similar to themanufactur-
ing configuration of the fabrication process in the semicon-
ductor industry (Allaoui and Artiba 2004). Different compu-
tationally efficient solution approaches are developed to find
a good schedule. Some examples of the solution approaches
are meta-heuristic algorithms including genetic algorithm,
tabu search (Aggoune 2004; Ruiz et al. 2007), and vari-
able neighborhood search (Naderi et al. 2009); a heuristic
algorithm combining dispatching rules, simulated anneal-
ing, and simulation (Allaoui and Artiba 2004); and a branch-
and-bound algorithm (Allaoui and Artiba 2006). A detailed
review of this literature can be found in Naderi et al. (2009).

The above scheduling problems do not model any cor-
relation between machine conditions and processing times,
ignoring the effect of maintenance on machine deteriora-
tion and restoration processes (Rustogi and Strusevich 2012;
Kellerer et al. 2013). Lee and Leon (2001) were the first to
introduce such maintenance considerations into the schedul-
ing literature, initiating the study of the second category
of problems. More specifically, the authors defined mainte-
nance as a rate-modifying activity that changes the process-
ing times of production jobs scheduled after maintenance to
λ j p j where 0 < λ j < 1 and p j represents the process-
ing time of job j before maintenance. In the work of Lee
and Leon and many subsequent models [e.g., Mosheiov and
Sarig (2009), Mosheiov and Sidney (2010)], only a single

rate-modifying activity is considered and the processing time
of a job does not depend on its position in the schedule or its
start time, onlywhether it comes before or aftermaintenance.
However, recentwork has studied the problemof dividing the
jobs into groups where the number of groups indicates the
number of maintenance activities and the processing time of
each job depends both on its assigned group and its posi-
tion within the group (Kuo and Yang 2008; Yang and Yang
2010; Lodree andGeiger 2010; Rustogi and Strusevich 2012;
Kellerer et al. 2013; Kim andOzturkoglu 2013). The focus of
suchwork is the development of polynomial-time algorithms
for single-machine problems.

In the scheduling literature, unlike the broader mainte-
nance literature (Dekker et al. 1996;Wang 2002; Nicolai and
Dekker 2008; Pintelon and Parodi-Herz 2008), maintenance
is considered as a short-term decision when reasoning about
it in combination with production scheduling. That is, the
problem is defined over a fixed horizon where maintenance
and machine deterioration act on the same time-scale as the
production jobs. In practice, a machine does not deteriorate
as fast as the production jobs are processed and so mainte-
nance decisions are naturallymade over longer time horizons
than detailed scheduling decisions (Cassady and Kutanoglu
2005; Budai et al. 2006; Grigoriev et al. 2006; Aghezzaf and
Najid 2008).

In this paper, we study a scheduling problem where main-
tenance is considered as a long-termdecision andwhere there
is an explicit model representing the deterioration processes
of machines and their effects on the processing times. This
perspective on the problem takes into account common con-
ceptualizations of maintenance as they appear in the main-
tenance literature (McCall 1965; Dekker et al. 1997; Wang
2002; Pintelon and Parodi-Herz 2008) and introduce them
to the scheduling literature. Furthermore, we study the prob-
lem in a multi-machine flowshop environment rather than a
single-machine problem.

2.2 Logic-based Benders decomposition

Our integrated two-stage approach is motivated by logic-
basedBenders decomposition. The classical Benders decom-
position (Benders 1962; Geoffrion and Graves 1974) is a
mathematical programming approach for solving large-scale
mixed integer programmingmodels. It partitions the problem
into a mixed integer master problem (MP), which is a relax-
ation of the global model, and a set of linear sub-problems
(SPs). Solving a problem by classical Benders involves iter-
atively solving the MP to optimality and using the solution
to generate the sub-problems. The linear programming dual
of the SPs is then solved to derive the tightest bound on the
global cost function. If this bound is less than or equal to
the current MP solution (assuming a minimization problem),
the MP solution and the SP solutions constitute a globally
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optimal solution. Otherwise, a constraint, a Benders cut, is
added to the MP to express the violated bound and another
iteration is performed.

Logic-based Benders decomposition (Hooker and Yan
1995; Hooker and Ottosson 2003) was developed excluding
the necessity that the MP must be a mixed integer model and
the SPs linear. Therefore, the inference duals (Hooker 2005)
of the SPs are solved rather than the linear duals to find the
tightest bound on the global cost function from the origi-
nal constraints and the current MP solution. Although logic-
based Benders decomposition has more flexibility in mod-
eling the problems, there is no standard procedure to derive
the Benders cuts, it is problem-specific and requires creative
effort. Nonetheless it has been successfully applied to a num-
ber of combinatorial optimization problems, often reporting
computational results that are several orders of magnitude
better than the previous state-of-the-art (Hooker 2005, 2007;
Beck 2010; Fazel-Zarandi and Beck 2011; AramonBajestani
and Beck 2013).

The formal representation of logic-based Benders decom-
position can be found in Hooker (2007).

3 Problem definition

We consider a multi-machine flowshop production environ-
ment, producingmultiple products over afinite planninghori-
zon. There are K discrete time periods, each T time units
long. Machines deteriorate as they are used for production.
To model each machine deterioration process, we assume
that the speed of a machine decreases as the number of time
periods since preventive maintenance increases. A machine,
m ∈ {1, 2, . . . , M}, is in state sm ∈ {0, 1, . . . ,Sm}, if itsmost
recent preventive maintenance was sm time periods ago. In
state sm , machine m operates at speed νmsm . Without loss of
generality, it is assumed that the speed of machine m in state
sm = 0 is νm0 = 1 and νm0 > νm1 > · · · > νmSm

= 0.
In the semiconductor manufacturing, one of the commonly
used tool parameters is the throughput rate, i.e., the num-
ber of wafers produced per time unit by each tool (Ramíez-
Hernández and Fernández-Gaucherand 2003), that can be
seen as equivalent to the speed used here. Performing a pre-
ventive maintenance job, p, at any point on machinem takes
tmp units of time, costs τmp , and changes the machine’s speed
to νm0 . In other words, preventive maintenance makes the
machine as good as new such that it operates at the high-
est speed. Since the complex machines such as cluster tools
in the semiconductor manufacturing require highly skilled
technicians for maintenance (Yao et al. 2004), we assume
that the number of machines that can be maintained in each
period is limited to C. The initial state of machine m at the
beginning of the planning horizon is known and denoted as
αm .

At the beginning of each time period, the set of production
jobs is known for the next L periods where L < K . The set of
production jobs at time period k ∈ {1, 2, . . . , K } is denoted
as Jk . The production jobs are not carried over time periods:
job j in time period k, j ∈ Jk , can only be processed during
time period k. Furthermore, job j has to be processed on
all machines in sequence, requires processing time p jm on
machine m, and has the due date d j . The processing time of
job j on machine m is

n jm
νmsm

where n jm is the processing time

of job j at sm = 0, the best state of the machine. The due
date d j corresponds to the latest possible completion time of
job j and is a time point within the k-th period. If a job is not
finished by its due date, it is lost at cost hk .

The goal of the problem is to allocate preventive mainte-
nance tomachines and timeperiods over the planning horizon
and to assign start times to both production jobs and preven-
tive maintenance activities, if any, within each time period
such that the total cost of lost jobs and performing mainte-
nance is minimized.

4 Problem formulation

We use the following decision variables to formulate the
problem.

ymk ymk = 1 if machine m at time period k is main-
tained, and ymk = 0, otherwise.

u j u j = 1 if job j is lost and u j = 0, otherwise.
Nm(k) The state of machine m in period k before per-

forming maintenance.
st jm The start time of job j on machine m.
p jm The processing time of job j on machine m.
stpm The start time of preventive maintenance job p

on machine m.
x jim x jim = 1 if job j is processed before job i on

machine m.
b jm b jm = 1 if job j is processed before preventive

maintenance on machine m.

The objective function (1) minimizes the sum of lost pro-
duction and maintenance cost over the planning horizon.

min
K∑

k=1

∑

j∈Jk

hku j +
K∑

k=1

M∑

m=1

τmp ymk (1)

The problem is subject tomaintenance planning andmain-
tenance/production scheduling constraints which are defined
below.
Maintenance planning constraints Since in any time period,
there is a limit on the number of machines that can be main-
tained denoted as C, Constraints (2) enforce the maintenance
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capacity limit in each time period.

M∑

m=1

ymk ≤ C, ∀k (2)

Maintenance/production scheduling constraintsThedetailed
descriptions of the maintenance/production scheduling con-
straints in period k are provided below:

– In Constraints (3), Nm(k) defines the state of machine m
at timeperiod k before performingmaintenance.Defining
the dummy variable ym0 = 1 and the indicator function
I (x) being equal to 1 if x is true and to 0 otherwise, we
have (i) if machine m is not maintained in any of the
previous periods, I (max{l|yml = 1, 0 ≤ l < k} = 0)
equals 1 and machine m’s state is k − 1 + αm , or (ii) if
the most recent maintenance on machine m is in period
l > 0, I (max{l|yml = 1, 0 ≤ l < k} > 0) is equal to 1
and machine m is in state k − l.

Nm(k) = (k − 1 + αm)

× I (max{l|yml = 1, 0 ≤ l < k} = 0)

+ (k − max{l|yml = 1, 0 ≤ l < k})
× I (max{l|yml = 1, 0 ≤ l < k} > 0),∀m

(3)

– Constraints (4) denote the processing times of jobs in
time period k. If job j is scheduled before maintenance
on machine m (b jm = 1), the state of the machine is
Nm(k) and if scheduled after maintenance, the machine
is in state 0.

p jm = n jm

νmNm (k)

b jm + n jm

νm0
(1 − b jm),∀ j ∈ Jk,∀m

(4)

– Constraints (5) enforce the precedence constraints: the
job should be finished on an upstreammachine before its
processing starts on downstream machines.

st jm + p jm ≤ st j (m+1),∀ j ∈ Jk, ∀m (m �= M) (5)

– Constraints (6) ensure that maintenance activities on
machines requiring maintenance at time period k (ymk =
1) are scheduled within the length of the time period
where B is a big value.

stpm + tmp + B(ymk − 1) ≤ T, ∀m (6)

– Constraints (7), (8), and (9) define the relationships
between the binary decision variables b jm and the main-
tenance decisions. Respectively, the constraints guaran-
tee that if a job is processed before maintenance (b jm =

1), then its processing is finished before maintenance is
started; if a job is processed aftermaintenance (b jm = 0),
then maintenance is performed before processing the job
is started; if a machine does not require maintenance
(ymk = 0), all jobs are processed before maintenance
(b jm = 1).

st jm + p jm ≤ stpm + B(1 − b jm),∀ j ∈ Jk, ∀m
(7)

stpm + tmp ≤ st jm + Bb jm, ∀ j ∈ Jk, ∀m (8)

1 − b jm ≤ ymk, ∀ j ∈ Jk, ∀m (9)

– Since M is the last machine, Constraints (10) define
whether job j in time period k is lost or not. If a job
is not finished before or at its due date, it is then lost.

st jM + p jM ≤ d j + Bu j , ∀ j ∈ Jk (10)

– Constraints (11) and (12) are disjunctive constraints
ensuring that all jobs on a machine form a total order-
ing, meaning that no two jobs execute at the same time.

st jm + p jm ≤ stim + B(1 − x jim),∀ j, i ∈ Jk ( j > i),

∀m (11)

stim + pim ≤ st jm + Bx jim,∀ j, i ∈ Jk ( j > i),

∀m (12)

Since the number of production jobs is only known for the
next L periods, we use a rolling horizon approach to make
the decisions at the beginning of each period.Without loss of
generality, the current period is considered as the first period
and the future periods where the number of production jobs
is known are numbered from 2 to L . Defining maintenance
assignment decisions as Y = {ymk |∀m, ∀k} and the schedul-
ing decisions as S = {st jm | j ∈ Jk, ∀m, ∀k}, the optimiza-
tion problem for making the current time period decisions is
shown in Model 1. The schedule is executed for the current
time period; the decision horizon is then extended, and the
same procedure repeats until the end of the planning horizon.

min
Y,S

L∑

k=1

∑

j∈Jk

hku j +
L∑

k=1

M∑

m=1

τmp ymk

s.t. Constraints (2) to (12)

ymk , u j , x jim , b jm ∈ {0, 1}, ∀ j, i ∈ Jk , ∀m,

∀k ∈ {1, . . . , L}
st jm , p jm , stpm ∈ Z

+ ∪ {0}, ∀ j ∈ Jk , ∀m,

∀k ∈ {1, . . . , L}

Model 1 The non-linear mixed integer programming model.
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The optimization problem in Model 1 is a non-linear
mixed integer programming model since Constraints (3),
defining the state of machines at each period, and Constraints
(4), denoting the processing times of the jobs, are non-linear.

5 Solution approaches

To solve the optimization problem (Model 1) at the begin-
ning of each period, we design a two-stage decomposed but
coupled approach, Integrated, where each stage is modeled
as a mixed integer linear program (MILP).

In this section, the Integrated approach and three alterna-
tive approaches, Non-integrated, Short-term, and Heuristic
are presented.

5.1 The Integrated approach

There are two different decisions in the problem: (i) assigning
maintenance to machines and time periods and (ii) schedul-
ing the production jobs and maintenance activities, if any,
in each period. Therefore, similar to a logic-based Benders
decomposition (LBBD), the global problem (Model 1) can
be decomposed into a maintenance planning problem (MPP)
and L production scheduling problems (PSP). The MPP is
the master problem assigning maintenance to machines and
time periods and each PSP defines one sub-problem, find-
ing the schedule of a period. However, solving the problem
using the logic-based Benders decomposition framework is
computationally expensive, though both MPP and PSPs are
mixed integer linear models (see Sect. 7.1). Therefore, as
illustrated in Figs. 1 and 2, we adjust the LBBD such that
only one PSP problem is solved at each iteration.

In the Integrated algorithm, the MPP is solved in the
first stage to determine the assignment of maintenance to

Fig. 1 The schematic representation of the logic-based Benders
decomposition approach

Fig. 2 The schematic representation of the Integrated approach

machines and time periods, minimizing the sum of mainte-
nance and lost production costs over the L time periodswhere
the production jobs are known. In the MPP, the PSPs and the
production capacity are relaxed, discarding the scheduling
combinatorics. Therefore, the lost production cost in the first
stage is a lower bound on the actual lost production cost.

The PSP in the second stage creates a production and
maintenance schedule for the first period, minimizing the
actual lost production cost of the first period given the main-
tenance plan specified by the MPP. If the achieved lost pro-
duction cost is equal to the lower bound computed on the lost
cost of the first period in the MPP, the computed schedule is
executed. Otherwise, a constraint expressing a new bound
on the lost production cost of the first period, called a cut,
is added to the MPP and the MPP is re-solved. The iteration
between MPP and PSP continues until the lower bound on
the lost production cost of the first period in theMPP is equal
to the cost calculated in the PSP. The finite convergence of
the Integrated approach is demonstrated below in Sect. 5.1.3.

The decision horizon then rolls over one time period, the
initial state of each machine (αm) is updated, the customer
orders become known for time period L+1, and the solution
procedure repeats.

In the balance of this section, we present our optimization
models for both MPP and PSP, the cut, and the relaxation
of the PSPs in the MPP. We have proved a number of struc-
tural properties about the PSP but our early experimentation
showed that none of them had significant impact on the per-
formance of the solver (Aramon Bajestani and Beck 2012).

5.1.1 The maintenance planning problem (MPP)

To model the MPP as a MILP, we change the maintenance
binary decision variable from ymk to ymlk that equals 1 if
machine m at time period k is most recently maintained in
time period l where l ≤ k. We further define the new vari-
able Λk as the lost cost decision variable of time period k.
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To abstract production scheduling problems in the MPP and
to find a lower bound on the lost cost decision variables,
we assume that maintenance is performed at the beginning
of the period with negligible time and define the following
notation where 0 is a dummy period. Let Nm

lk denote the state
of machine m in period k after performing the most recent
maintenance in period l.

Nm
lk =

⎧
⎨

⎩

0 k = l
k − 1 + αm k > l, l = 0
k − l k > l, l > 0

To explain the notation defined above, we distinguish three
cases:

1. k = l: Machinem is maintained at period k, i.e., ymkk = 1.
Maintenance makes machine m as good as new, setting
its state to the best value, 0.

2. k > l, l = 0: Machine m at time period k has not been
maintained in any of the previous periods, i.e., ym0k = 1.
Machine m’s state is equal to k − 1 + αm .

3. k > l, l > 0: Machine m at time period k is previously
maintained at time period l, l > 0, i.e., ymlk = 1.Machine
m is then at state k − l.

TheMILPmodel forMPP in the first time period is shown
in Model 2.

min
L∑

k=1

Λk +
L∑

k=1

M∑

m=1

τmp ymkk (13)

s.t.
k∑

l=0

ymlk = 1, ∀m, ∀k ∈ {1, . . . , L} (14)

ymlk − yml(k−1) ≤ 0, ∀m, ∀k ∈ {1, . . . , L}, ∀l ∈ {1, . . . , k − 1}
(15)

M∑

m=1

ymkk ≤ C, ∀k ∈ {1, . . . , L} (16)

Λk ≥ hk

⎛

⎝|Jk | − min
m

⎛

⎝
k∑

l=0

νmNm
lk

× T

min
j∈Jk

(n jm)
ymlk

⎞

⎠

⎞

⎠ , ∀k ∈ {1, . . . , L}

(17)

Cuts

ymlk ∈ {0, 1},Λk ≥ 0, ∀m, ∀k ∈ {1, . . . , L}, ∀l ∈ {1, . . . , k}

Model 2 The MPP model.

The MPP objective function (13) minimizes the total cost
composed of the lower bound on the lost cost of L peri-
ods and maintenance cost. Constraints (14) and (15) ensure
the feasibility of the maintenance plan where the former
defines the previous maintenance period on machine m at

time period k and the latter guarantees that if time period
l, l < k, is the previous maintenance period on machine
m before the k-th period, then l is also the previous mainte-
nance period before period k − 1. Constraints (16) enforce
the maintenance capacity limit in each time period. Con-
straints (17) are the relaxations of PSPs, calculating the lower
bound on the lost cost at period k where |Jk | is the number
of production jobs at time period k. In a flowshop system,
the upper bound on total number of products produced is
equal to the minimum number of products produced over all
machines. The upper bound on the number of finished jobs
on machine m given that it was last maintained in period l,

i.e., ymlk = 1, equals
νm
Nm
lk

×T

min
j∈Jk

(n jm)
where the numerator is the

upper bound on the total available processing time and the
denominator is the minimum processing time required by a
job on machinem in period k. The cuts are explained in Sect.
5.1.3.

Thenon-linearConstraints (17) are replacedby the follow-
ing two constraints where δk is a dummy decision variable.

Λk ≥ hk(|Jk | − δk), ∀k ∈ {1, . . . , L}

δk ≤
k∑

l=0

νmNm
lk

× T

min
j∈Jk

(n jm)
ymlk , ∀m, ∀k ∈ {1, . . . , L}

5.1.2 The production scheduling problem (PSP)

After the maintenance assignment decisions denoted as ymh
lk

are found by theMPP in iteration h, the states ofmachines are
known. The PSP model for finding the optimal maintenance
and production schedule in the first time period for a given
maintenance plan by the MPP is shown in Model 3 where
in Constraints (4) to (12): (i) k equals 1; (ii) ym1 changes to
ymh
11 ; and (iii) Nm(1) equals αm denoting the state of machine
m before performing maintenance at the first period.

min h1

|J1|∑

j=1

u j

s.t. Constraints (4) to (12)

u j , x jim , b jm ∈ {0, 1}, ∀ j, i ∈ J1, ∀m
st jm , p jm , stpm ∈ Z

+ ∪ {0}, ∀ j ∈ J1, ∀m

Model 3 The PSP model.

If we relax the PSP by assuming there is no deterioration
and that |M | = 2, then the PSP problem corresponds to a
two-machine flowshop with the objective of minimizing the
number of tardy jobs, anNP-complete problem (Lenstra et al.
1977).
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5.1.3 The MPP cuts

As noted above, the MPP and PSP are iteratively solved with
each optimal MPP solution defining a PSP and each PSP
returning cuts if the lost production cost of the first period
from the MPP cannot be achieved. Assume that in iteration
h, the first period lost production cost in the MPP is less than
the optimal lost production cost in the PSP, represented as
Λh

1. The cut after iteration h is

Λ1 ≥ Λh
1

⎛

⎝1 −
∑

m∈Qh

(1 − ym11) −
∑

m /∈Qh

ym11

⎞

⎠ (18)

where Qh = {m|ymh
11 = 1} denotes the set of machines

requiring maintenance in iteration h found in the MPP.
The cut is a no-good cut guaranteeing that if the same

set of machines are maintained (m ∈ Qh) and the same set
of machines are not maintained (m /∈ Qh) in the current
first period, the lost production cost of the first period in the
MPP (Λ1) should be greater than or equal to Λh

1. As the
MPP and the PSP find, respectively, a lower bound and an
upper bound on the lost production cost of the first period in
each iteration, iterating between stages terminates when the
bounds are equal. Furthermore, the finite number of possible
maintenance plans guarantees the finite convergence of the
Integrated approach.

Changing the cut to Λ1 ≥ Λh
1(1 − ∑

m /∈Qh ym11) would
make it stronger, but is unsound due to the non-monotonic
behavior of Qh : depending on the problem, maintaining a
subset of Qh can decrease or increase the lost production cost
making the stronger cut invalid (see Example 1 below). The
stronger cut is not valid unless we make further assumptions.
For example, if we assume that the maintenance duration
of all machines is less than the increase in the processing

times of all jobs, then maintaining fewer machines never
decreases the lost production cost, making the stronger cut
valid. However, we do not make such an assumption here.

Example 1 A facility with 3 machines (M1, M2, M3) and
2 production jobs (J1, J2) is considered where the length of
the time period is 40, the due dates of production jobs are
24 and 35, the processing time of each production job on
each of three machines is 10 and decreases to 5 if scheduled
after maintenance. The durations of maintenance activities
on machines (P1, P2, P3) are 30, 5, and 15, respectively.

Assuming that the MPP at iteration h decides to maintain
machines 1, 2, and 3 (Qh = {1, 2, 3}), the optimal schedule
is shown in Fig. 3 where the number of on-time jobs is one.
If the subset {1, 2} is maintained in the next iteration, none of
the jobs is then on-time, increasing the lost production cost.
However, maintaining the subset {2, 3} makes both jobs on-
time decreasing the lost production cost.

5.1.4 Relaxation of the PSP in the MPP

As noted, Constraints (17) are the relaxation of the PSPs in
the MPP, expressing a lower bound on the lost production
cost. We tighten the lower bound for the first time period by
applying Moore’s algorithm on the last machine. Moore’s
algorithm finds the optimal number of tardy jobs in a single-
machine problem when all jobs are ready at time 0 with the
computational complexity of O(n log n) (Pinedo 2002).

The last machine is considered as a single-machine where
the due dates of the production jobs are changed to d ′

j =
d j −Δ since all are not available at time 0. Δ corresponds to
the sum of the minimum processing times of the jobs on the
upstreammachines denoted as

∑M−1
m=1 min

j∈J1

(n jm). SinceΔ is

calculated assuming that all previous machines are process-
ing at their best states and that there is no precedence con-

Fig. 3 The optimal schedules
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straint, then the following constraint, added to the MPP, is
a lower bound on the lost production cost of the first time
period.

Λ1 ≥ h1U
1yM11 + h1U

0yM01 (19)

U 1 and U 0 represent the value of Moore’s algorithm when
the last machine is maintained and is not, respectively. Sim-
ilarly, the processing times of the jobs on the last machine
are n jM or

n jM

νM
αM

in Moore’s algorithm. Note that, Moore’s

algorithm to find U 1 and U 0 is just applied before starting
to iterate. We use both relaxations, i.e., Constraints (17) and
(19), in our model.

5.2 The Non-integrated approach

The Non-integrated approach (Fig. 4) is the standard hierar-
chical decision-making procedure where there is no iteration
between the MPP and PSP. The MPP (Model 2) solves the
maintenance planning problem over L periods minimizing
the sumofmaintenance and a lower bound on the lost produc-
tion costs. The PSP (Model 3) then finds the optimal lost pro-
duction cost for the current timeperiodgiven themaintenance
activities specified by theMPP. The schedule is executed, the
decision horizon then rolls over one time period updating the
machine states (αm), and the same procedure repeats.

5.3 The Short-term approach

The Short-term approach has a reasoning horizon of one time
period (Fig. 5) consideringmaintenance as a short-term deci-

Fig. 4 The schematic representation of the Non-integrated approach

Fig. 5 The schematic representation of the Short-term approach

sion. The maintenance and production scheduling problem
(MPSP) determines machines for maintenance and finds the
optimal schedule, minimizing the sum of maintenance and
lost production costs simultaneously. The computed sched-
ule is then executed, the machine states (αm) are updated,
and the same procedure repeats for the next time period.

The MPSP model for the first period is shown in Model
4, where k = 1 and Nm(1) = αm in Constraints (2) and
Constraints (4) to (12).

min h1

|J1|∑

j=1

u j +
M∑

m=1

τmp ym1

s.t. Constraints (2), (4) to (12)

ym1, u j , x jim , b jm ∈ {0, 1}, ∀ j, i ∈ J1, ∀m
st jm , p jm , stpm ∈ Z

+ ∪ {0}, ∀ j ∈ J1, ∀m

Model 4 The MPSP model.

5.4 Heuristic approaches

We investigate two heuristic approaches for the PSP and the
MPSP models inspired by Moore’s algorithm.

5.4.1 A heuristic for the PSP

In the heuristic algorithm, the maintenance activities are per-
formed first on machines that have to be maintained, i.e.,
∀m ∈ Q1. Q1 is the set of machines determined for mainte-
nance in the first iteration of the MPP. Moore’s algorithm
is then applied on the last machine, M , as explained in
Sect. 5.1.4 where

Δ =
∑

m∈Q1

m �=M

(
tmp + min

j∈J1

(n jm)

)
+

∑

m /∈Q1

m �=M

min
j∈J1

(
n jm

νmαm

)

d ′
j =

⎧
⎨

⎩
d j − (Δ + t Mp ) if M ∈ Q1

d j − Δ if M /∈ Q1

The sequence found by Moore’s algorithm is used to
schedule the jobs on all machines.

5.4.2 A heuristic for the MPSP

The heuristic is the same as one for the PSP with the only
difference that the decision onwhichmachines require main-
tenance is also incorporated.Machines are ordered in increas-
ing order of their indices and the first C machines in an initial
state greater than or equal to Sm

2 are maintained. Recall that
Sm is theworst state ofmachinem. Themaintainedmachines
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then form set Q1 and the Heuristic for the PSP is applied to
find a feasible schedule.

6 Computational study

The next sub-section describes the problem instances and the
experimental details. We then compare the performance of
the solution approaches experimentally and present insights
into each algorithm’s performance through a deeper analysis
of the results.

6.1 Experimental setup

The problem instances have M ∈ {3, 4, 5, 6} machines and
|J | ∈ {5, 10, 15} jobs in each time period. Note that in our
experimental study, the number of jobs at each time period is
equal, i.e., |Jk | = |J | in a given instance. Twenty instances
for each combination of parameters are generated, resulting
in 240 instances.
Machines Each machine has five states and is randomly
assigned to one of the deterioration processes shown in
Table 1. The deterioration process is classified into three cat-
egories of slow, medium, or fast, defining the speed of the
machine in different states. The initial state of each machine,
αm , is drawn from the discrete uniform distribution [0, 3]
assuming that no machine is in the worst state at the begin-
ning of the planning horizon. The maintenance cost for each
machine, τmp , is generated from the discrete uniform distrib-
ution [50, 100].
Time periods The length of time period, T , is set at 79, 152,
and 224 in instances with 5, 10, and 15 jobs, respectively.
As with the maintenance cost, the lost production cost per
each job at time period k, hk , is generated from the discrete
uniform distribution [50, 100]. The maintenance capacity at
each time period, C, is equal to 	M

2 
.
Production jobs To generate the processing times of the
jobs at the best state of machines, i.e., n jm , we assume that
they are uniformly distributed with mean μ and variance
σ 2. Further we assume that νa denotes the average speed
of a machine. The average processing time of a job on a
machine regardless of its state is then uniformly distributed

Table 1 The speed of a machine at each state in different deterioration
processes

Deterioration process States

0 1 2 3 4

Slow 1 0.9 0.6 0.3 0

Medium 1 0.75 0.5 0.25 0

Fast 1 0.6 0.3 0.15 0

with mean μ
νa

and variance σ 2

ν2a
. The sum of the average

processing times of all jobs has an approximately normal
distribution with mean |J | × μ

νa
and variance |J | × σ 2

ν2a
. Set-

ting νa = 0.5, μ and σ 2 are found such that the probabil-
ity that the sum of the average processing times of all jobs
is less than eighty percent of the length of the time period
equals 0.75. In our experiment, μ and σ 2 equal 5.5 and 6.75
in all instances and the length of the time periods are set
based on the number of jobs, as described above. n jm is then
drawn from the discrete uniform distribution [1, 10]. The due
date of job j is generated from the discrete uniform distrib-
ution [ f d × ∑M

m=1 n jm,max(T, f d × ∑M
m=1 n jm)], where

f d = 1.5 and T is the length of each time period.
MaintenanceActivitiesThemaintenancedurationonmachine
m, tmp , is drawn from the discrete uniform distribution
[0.05 × T, 0.15 × T ].

There are K = 24 time periods in the planning horizon
where the number of production jobs are always known for
the next L = 4 periods. The CPU time limit to find the
maintenance and production schedule at each time period is
900 s. As noted above, the length of the time periods varies
between 79, 152, and 224 time units. Since it is not uncom-
mon in practice to have one time unit correspond to 10 or 15
minutes, the CPU time limit being less than 2% of the length
of the time period is compatible with the on-line execution
requirement. We execute the best feasible maintenance and
production schedule found by the time-limit if an algorithm
times out. In the case that no feasible solution is found before
the time limit, the schedule found by a heuristic is executed:
Heuristic for the PSP is executed when the PSP times out and
Heuristic for the MPSP is executed when the MPSP times
out.

All experiments were run on an AMD 270 CPU with 1
MB cache per core, 4 GB of main memory, running Red Hat
Enterprise Linux 4. The MILP solver is CPLEX 12.3.

6.2 Computational results

In this section, we discuss our results to compare the per-
formance of different algorithms on the total cost of mainte-
nance and lost production. The total cost is calculated over
the first 21 time periods to reduce end-of-horizon effects.
The algorithms are Integrated, Non-integrated, Short-term,
and Heuristic. The Heuristic algorithm refers to the Heuris-
tic for the MPSP defined in Sect. 5.4.2.

Figure 6 shows the mean and the standard error of the
normalized total cost for different algorithms and different
number of jobs. The number of jobs is 5, 10, and 15, each
representing a different problem set with 80 instances. The
total cost of each instance for each algorithm is normalized
by dividing to the total cost achieved using the Heuristic
algorithm. The graph shows a lower mean and standard error
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Fig. 6 The mean and the standard error of the normalized total cost
for different algorithms and different number of jobs

for the Integrated approach for all problem sets, indicating its
superiority over the other three approaches. Table 2 presents
further data for each algorithm and each problem set: the
mean and the standard error of the normalized total cost, the
number of instances for which the best known solution is
found, and the number of timed-out instances. An instance
is counted as a timed-out if it reaches the time limit without
finding the optimal solution in at least one time period.
Integrated vs. Non-integrated The Integrated approach out-
performs the Non-integrated, achieving a lower normalized
total cost and finding the best known solutions on 99% of
the instances.
Integrated vs. Short-term The Integrated algorithm results
in a lower normalized total cost on 73% of the problem
instances and a higher value on 27%. A closer look to the
results shows that for 89% of the instances where Short-
term outperforms Integrated, both algorithms time out. If the
Integrated approach times out, it executes the best feasible
schedule found for that time period. Therefore, the compar-
ison between the performance of the algorithms reduces to
comparison between different heuristics.
Integrated vs. Heuristic Although the Heuristic approach is
fast, the Integrated algorithm has a significant superiority
over it, decreasing the mean normalized cost by 42% and
resulting in a lower normalized total cost for all problem
instances.

7 Discussion

The results in Table 2 provide evidence that solving the pro-
duction scheduling problem (PSP) of each period to optimal-
ity can improve the performance of the Integrated approach.
As shown in Table 2, the PSP in the Integrated approach
times out at least in one time period in all instances hav-

Table 2 The mean and the standard error (se) of the normalized total
cost, the number of instances for which the best known solution is found
(best), and the number of timed-out instances for different algorithms

J
5 10 15 {5, 10, 15}

Integrated

Mean 0.69 0.49 0.57 0.58

se 0.07 0.10 0.11 0.09

Best 73 79 22 174

Timed-out 0 22 80 102

Non-integrated

Mean 0.88 0.77 0.68 0.78

se 0.09 0.12 0.11 0.11

Best 1 0 1 2

Timed-out 0 2 79 81

Short-term

Mean 0.90 0.75 0.58 0.74

se 0.21 0.51 0.34 0.35

Best 6 2 57 65

Timed-out 0 60 80 140

Heuristic

Mean 1 1 1 1

se 0 0 0 0

Best 0 0 0 0

Timed-out 0 0 0 0

ing 15 jobs and in instances with 10 jobs and 6 machines.
The existing literature on the flowshop scheduling problem
with the objective of minimizing the number of tardy jobs
(Gupta and Stafford 2006; Shabtay 2012) can be investi-
gated in the future to tighten the relaxation of the PSP in
the maintenance planning problem, to design a stronger cut,
and to develop more efficient dominance properties in order
to decrease the run-time of the PSP.

Furthermore, the results in Table 2 show that the Inte-
grated, the Non-integrated, and the Short-term approaches
outperform the Heuristic approach though they are compu-
tationally more expensive and their implementation requires
investment in data analysis and software development. How-
ever, since the maintenance cost of the cluster tools in the
semiconductor manufacturing has the largest share in the
total cost, i.e., 80% of $2.5 billion (Ramíez-Hernández and
Fernández-Gaucherand 2003; Blau 2003), the capital cost in
software development will trade off with savings that will
be achieved by considering the process interdependencies in
planning and scheduling maintenance operations.

A more detailed analysis of our experimental results sug-
gest that the superiority of the Integrated over the Non-
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integrated and the Short-term decreases as the maintenance
becomesmore expensive andmore inexpensive, respectively.

In both Integrated and Non-integrated algorithms, the
maintenance decision is made primarily based on long-term
reasoning and both decide to do the same amount of main-
tenance over the MPP horizon. However, having the same
number of maintenance jobs does not mean that the two
approaches find the same schedule. In particular, recall that
the iterations of the Integrated approach result in the total lost
production cost over the MPP horizon being composed of
the actual lost production cost in the first period plus a lower
bound from the later periods. This asymmetry results in the
Integrated approach preferring to schedule its maintenance
in the first period because that leads to reduced lost produc-
tion cost. The outcome therefore is that Integrated adopts
a schedule which is less expensive than Non-integrated but
which tends to schedule its maintenance in the first period.
When maintenance cost is high, the bias to perform main-
tenance earlier in each MPP horizon tends to result in more
frequentmaintenance over the planning horizon. Therefore, a
higher maintenance cost over the 21 time periods results in a
higher total cost since the savings on the lost production costs
is insignificant compared to the maintenance cost. Adjusting
the Integrated approach to have a symmetric view over all
periods such that the total lost production cost consists of the
actual lost costs of all periods in the MPP horizon is likely to
remove the bias of the Integrated approach (see Sect. 7.1).

Turning to the comparison of Integrated and Short-term,
the primary difference is the long-term maintenance reason-
ing done by the former. A limitation of the Integrated com-
pared to the Short-term is likely to arise whenmaintenance is
inexpensive. If maintenance costs less than failing to satisfy
a customer order, then it is almost always best to do more
maintenance. Furthermore, the Short-term approach will be
able to find such solutions because maximizing maintenance
is worthwhile both in the long and short runs.

To verify our interpretations,we defineρ = τmp
hk

as the ratio
of maintenance cost to lost production cost and use the 240
problem instances as defined in Sect. 6.1 running two other
experiments with the modification that the maintenance cost
of each machine is multiplied by 0.5 and 1.5, respectively:
0.5 ≤ ρ ≤ 2 in the first experiment is changed to 0.25 ≤
ρ ≤ 1 and 0.75 ≤ ρ ≤ 3. Figure 7 illustrates the mean and
the standard error of normalized total cost for different algo-
rithms and different ρ values over all 240 problem instances.

Table 3 shows the difference between the means of nor-
malized total costs for different algorithms. As the ρ values
increase, i.e., performingmaintenance becomesmore expen-
sive, the difference between the Non-integrated and the Inte-
grated approaches decreases while the difference between
the Short-term and the Integrated increases, supporting our
interpretations.

Fig. 7 The mean and the standard error of the normalized total cost
for different algorithms and different ρ values

Table 3 The difference between the means of normalized total costs
for different algorithms and different ρ values

ρ Non-integrated:Integrated Short-term:Integrated

0.25 ≤ ρ ≤ 1 0.27 0.02

0.5 ≤ ρ ≤ 2 0.19 0.16

0.75 ≤ ρ ≤ 3 0.14 0.22

7.1 The Extended Integrated approach

As already discussed, the Integrated approach has an asym-
metric view over the PSPs in the MPP horizon: because the
MPP lost cost value in the current period converges to the
actual lost cost but the same value is represented only by
a lower bound in later periods, the Integrated approach has
a bias to perform immediate maintenance. The lost cost is
essentially more expensive in the current period than in sub-
sequent periods. Adjusting the Integrated approach to rep-
resent the actual lost production cost from all periods will
remove this bias while also allowing the MPP to reason with
more accurate lost cost information.

We can therefore use the logic-based Benders decompo-
sition representation of the problem shown in Fig. 1, called
the Extended Integrated approach. The extension is that for
each MPP solution, a PSP for each period within the known
horizon is solved to find the actual lost costs for each of the L
time periods. While this increases the number of PSPs, given
a maintenance plan, each PSP is independent and they can
be solved in parallel with multiple processors.

While the Extended Integrated approach is actually a stan-
dard logic-based Benders decomposition, the approach has
two critical weaknesses in our context.
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1. Observe that the lost production cost of time period k
is dependent on both the set of maintained machines
in period k and the machine speeds, and therefore the
machine conditions, at the beginning of the period.While
the L PSPs can be solved independently, a cut for a time
period k, k > 1, cannot simply refer to the mainte-
nance decisions in period k. In a subsequent iteration,
a change in maintenance decisions in an earlier period
would change the machine conditions at the beginning
of period k and, therefore, would change the lost cost
impact of the maintenance decisions in period k. A cut
that only includes the maintenance decisions for time
period k is therefore invalid. In fact, a valid cut for period
k in the Extended Integrated approach must refer to the
maintenance decisions for the first k periods and provide
a bound on the sum of the lost costs over the first k peri-
ods. Formally, the cuts after iteration h are:

k∑

i=1

Λi ≥
(

k∑

i=1

Λh
i

) ⎛

⎜⎝1 −
k∑

i=1

∑

m∈Qh
i

(1 − ymii )

−
k∑

i=1

∑

m /∈Qh
i

ymii

⎞

⎟⎠ ,∀k ∈ {1, . . . , L} (20)

Qh
k indicates the set of machines maintained in period

k in iteration h. The iterations between the MPP and the
PSPs continue until the total lost cost over L time periods
is equal to the one computed in the MPP.

2. At each iteration of theMPP, the PSPs return cuts until the
convergence criterion is achieved. The maximum num-
ber of iterations therefore equals the maximum number
of times that the PSPs might return cuts to the MPP.
Since the cuts in the Integrated approach (Eq. 18) involve
only the lost production cost variable for the first period,
the maximum number of iterations is

∑C
i=0

(M
i

)
, enu-

merating all possible ways of assigning maintenance to
i machines and the first period considering the main-
tenance capacity limit of C . However, the cuts in the
Extended Integrated approach (Eq. 20) involve the lost
production cost variables for all L periods. The max-
imum number of iterations consequently increases to
(
∑C

i=0

(M
i

)
)L . The Extended Integrated approach will

then be expected to have an extremely high computa-
tional expense not because of the linear increase in the
number of PSPs in eachMPP iteration (i.e., solving L−1
more PSPs), but because of the exponential increase in
the number of iterations.

These weaknesses make the Extended Integrated model
unlikely to be successful. To confirm this analysis, we ran it
on the 240 problem instances of Sect. 6.1 where 0.5 ≤ ρ ≤ 2

and where the CPU time limit is 900 s for each period. As
expected, it times out on 198 problem instances and the
mean of the normalized total cost over all instances mar-
ginally increases to 0.59 compared to 0.58 for the Integrated
approach in Table 2.

7.2 Job-dependent lost production cost

Although in the Integrated approach we assume that the lost
production cost, hk , is only dependent on the time period, our
solution approach can be adapted for a problem where the
lost production cost is dependent on both the time period and
the job, i.e., hkj . To calculate a lower bound on the lost cost
of all periods, we replace hk in Eq. (17) with min j∈Jk (hkj ).
Similar to Sect. 5.1.4, to tighten the lower bound on the first
period, we consider the last machine as a single-machine
where the due dates of jobs are changed to d ′

j = d j − Δ, but
we use a dynamic programming to minimize the weighted
number of tardy jobs on the last machine (Pinedo 2002; Cai
andVairaktarakis 2012). Constraint (19) is therefore replaced
with

Λ1 ≥ Ū 1yM11 + Ū 0yM01, (21)

where Ū 1 and Ū 0 are the optimal values of dynamic pro-
gramming when the last machine is maintained and is not,
respectively. Similarly, the processing times of the jobs on
the last machine are p jM = n jM or p jM = n jM

νM
αM

in dynamic

programming. To calculate Ū 1 or Ū 0, we first assume the
jobs are indexed in Earliest Due Date (EDD) order and let
Fj (t) be the minimumweighted number of tardy jobs for the
first j jobs such that the processing time of the on-time jobs
is at most t . Defining the initial conditions as:

Fj (t) =
{∞ for t < 0, j = 1, 2, . . . , |J1|
0 for t ≥ 0, j = 0

,

we use the following recursive equations for j = 1, . . . , |J1|
and T = ∑|J1|

j=1 p jM .

Fj (t)

=
{
min{Fj−1(t − p jM ), Fj−1(t) + h j1} 0 ≤ t ≤ d j

Fj (d j ) d j < t ≤ T
.

The optimal weighted number of tardy jobs is then
F|J1|(d|J1|). The dynamic programming algorithm is
pseudopolynomial with the computational complexity of
O(|J1|T ) (Pinedo 2002).

To investigate the performance of the algorithms with job-
dependent lost production cost, we consider the 80 problem
instance of Sect. 6.1 with |J | = 5 jobs and generate the lost
production cost of each job at each time period, h jk , from
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the discrete uniform distribution [50, 100]. Our results on
the 80 problem instances show that the Integrated approach
decreases the total cost on average by 31 and 29% com-
pared with the Non-integrated when the lost costs are job-
dependent and job-independent, respectively.1 Therefore, the
superiority of the Integrated approach is preserved with dif-
ferent lost production cost per job. However, when the lost
production cost is job-dependent,we expect the lower bounds
on the lost costs of the future periods are weaker than the
lower bounds with job-independent lost cost. As a result, the
tendency of the Integrated approach to perform more fre-
quent maintenance is likely to increases due to the asymmet-
rical representation of the lost costs of the PSPs in the MPP
horizon and the superiority of the Integrated over the Non-
integrated decreases more as the maintenance cost becomes
more expensive.

8 Conclusion and future work

In this paper, we address an integrated maintenance plan-
ning and production scheduling problem that arises in highly
coupled processes such as wafer fab in the semiconductor
manufacturing: a multi-machine production system where
production capacity decreases as machines deteriorate and
where each customer order has specific processing require-
ments and due date. At the beginning of each time period, two
decisions are made: which machines are to be maintained, if
any, andwhen each production and eachmaintenance activity
shouldbe executed in order tominimize the totalmaintenance
and lost production costs over the planning horizon.

Our problem has two novel features: (i) a multi-machine
scheduling problem is studied and (ii) maintenance concepts
are modeled as they appear in the maintenance research liter-
ature: maintenance is considered as a long-term decision and
there is an explicit model representing the effect of machine
deterioration and restoration processes on processing times.

Topreciselymodel the production capacity as a functionof
both machine states and scheduling combinatorics including
due dates andworkloads, we propose an integrated two-stage
algorithm. In the first stage of the algorithm, maintenance
planning is done over time periodswhere the customer orders
are known. The production scheduling problem and produc-
tion capacity are abstracted in the first stage and the objective
is to find a maintenance plan for each machine, minimizing
the sum of maintenance cost and a lower bound on lost pro-
duction cost. The second stage then schedules maintenance
and production activities in the current period, minimizing
the actual lost production cost assuming the given mainte-
nance plan. The iteration between two stages continues, with

1 We used CPLEX 12.6 as the MIP solver for these results.

feedback, until the lower bound and the actual lost production
cost of the current period converge.

The computational results demonstrate that the Integrated
approach yields lower total cost than three other approaches
tested: a Non-integrated approach, a Short-term, integrated
approach, and a Heuristic approach. The benefit for Inte-
grated decision making over Non-integrated, furthermore,
increases for lower maintenance cost relative to lost pro-
duction cost. Finally, the benefit of long-term decision mak-
ing in the Integrated approach over a myopic, Short-term
approach increases with higher relative maintenance cost.
These observations suggest that at extreme low or high
relative maintenance cost, Short-term and Non-Integrated
approaches should be adopted. However, for a broad range
of intermediate relative costs, Integrated provides superior
quality solutions.

Our investigation of the integrated maintenance planning
and scheduling for long horizon and multi-machine prob-
lems opens substantial scope for future work. In particular,
the investigation of real world maintenance planning and
scheduling problems is likely to inspire a variety of prob-
lem definitions, formulations, and solution approaches that
may be complementary to and improve upon the work pre-
sented here. The most interesting extension is to model prob-
lem characteristics such as customer orders, machine state,
and the effect of maintenance on machine state as stochas-
tic variables, requiring a combination of tools from stochas-
tic maintenance planning (Sloan 2004, 2008; Nicolai and
Dekker 2008) and stochastic scheduling (Cai et al. 2003,
2004; Beck andWilson 2007). For work in this direction, see
Aramon Bajestani et al. (Aramon Bajestani et al. 2014).
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