
J Sched (2016) 19:401–408
DOI 10.1007/s10951-014-0413-x

Lawler’s minmax cost algorithm: optimality conditions
and uncertainty

Nadia Brauner · Gerd Finke · Yakov Shafransky ·
Dzmitry Sledneu

Received: 27 November 2013 / Accepted: 19 December 2014 / Published online: 4 January 2015
© Springer Science+Business Media New York 2014

Abstract The well-known O(n2) minmax cost algorithm
of Lawler (MANAGE SCI 19(5):544–546, 1973) was devel-
oped to minimize the maximum cost of jobs processed by
a single machine under precedence constraints. We propose
two results related to Lawler’s algorithm. Lawler’s algorithm
delivers one specific optimal schedule while there can exist
other optimal schedules. We present necessary and sufficient
conditions for the optimality of a schedule for the problem
with strictly increasing cost functions. The second result con-
cerns the same scheduling problem under uncertainty. The
cost function for each job is of a special decomposable form
and depends on the job completion time and on an addi-
tional numerical parameter, for which only an interval of
possible values is known. For this problem we derive an
O(n2) algorithm for constructing a schedule that minimizes
the maximum regret criterion . To obtain this schedule, we
use Lawler’s algorithm as a part of our technique.

Keywords Lawler’s minmax cost algorithm · Uncertainty ·
Maximum regret

N. Brauner · G. Finke (B)
Université Grenoble Alpes, G-SCOP, F-38000 Grenoble, France
e-mail: gerd.finke@g-scop.inpg.fr

N. Brauner
e-mail: nadia.brauner@imag.fr

N. Brauner · G. Finke
CNRS, G-SCOP, F-38000 Grenoble, France

Y. Shafransky
United Institute of Informatics Problems, NAS of Belarus,
Minsk, Belarus
e-mail: shafr-04@yandex.ru

D. Sledneu
Lund University, Lund, Sweden
e-mail: dzmitry.sledneu@gmail.com

1 Introduction

Lawler (1973) considered the following single-machine
scheduling problem. Each of n simultaneously available jobs
is to be processed without preemption on a single machine,
which can process at most one job at a time. Job j, j =
1, . . . , n, has a processing time p j ≥ 0. To each of the jobs
j is assigned a non-decreasing cost functionΦ j (t) that spec-
ifies the cost incurred if job j is completed at time t . There
are precedence constraints represented by an acyclic directed
graph G = (V, E) with n vertices, where each vertex v ∈ V
corresponds to one of the jobs. Note that graph G contains
all transitive arcs. If job j1 precedes job j2 (j1 → j2), i.e.,
(j1, j2) ∈ E , then the processing of job j2 cannot start
before the completion of processing job j1. The objective is
to find a feasible schedule s that minimizes the maximum
cost Φmax(s) = max j=1,...,n Φ j (C j (s)), where C j (s) is the
completion time of job j under schedule s.

A feasible schedule may be presented by the permutation
π = (π(1), . . . , π(n)) of jobs. Here π(k) is the job in posi-
tion k of permutation π . The permutation feasibility means
that job j1 is allocated on the left of job j2 in the permutation if
j1 → j2. Denote byC j (π) = pπ(1)+. . .+ pπ(k) the comple-
tion time of job j = π(k) allocated in position k of π . A fea-
sible permutation that minimizes Φmax(π) is called optimal.
The formulated problem 1|prec|Φmax is solved by Lawler’s
minmax cost algorithm that may be described as follows:

Algorithm 1 Lawler (1973)

1. Set k = n and T = ∑n
j=1 p j .

2. Let Ω be the set of terminal vertices of graph G =
(V, E), i.e., vertices without successors.

3. Find vertex u ∈ Ω such that Φu(T) = min{Φv(T)|v ∈
Ω}. Break ties arbitrarily.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-014-0413-x&domain=pdf

402 J Sched (2016) 19:401–408

4. Set π(k) = u, k = k − 1, T = T − pu and modify graph
G by setting V = V \{u} and removing all arcs adjacent
to u.

5. If k > 0, then go to Step 2. If k = 0, then the optimal
permutation is constructed.

The time complexity of the algorithm is O(n2). It is sup-
posed that graph G is represented by its adjacency matrix,
and we assume that each value of Φ j (t) can be calculated in
O(1) time.

Lawler’s algorithm delivers one specific optimal solution
while there can exist other optimal solutions. Lin and Wang
(2007) derived necessary and sufficient conditions for the
optimality of a schedule for a number of scheduling problems
without precedence constraints, in particular, for problem
1||Lmax, where Lmax is the maximum lateness.

We present necessary and sufficient conditions for the
optimality of a schedule for the general problem 1|prec|Φmax

with strictly increasing cost functions. For non-decreasing
cost functions these conditions are sufficient.

The traditional scheduling models, in which values of all
numerical parameters are given in advance, fail in many
practical applications. For a number of the real-world sit-
uations, values of some parameters (processing and trans-
portation times, release and due dates, etc.) are not precisely
known in advance. Everything that is known is the set of
possible values for each of the parameters. These parame-
ters are not controllable, each of them takes any value from
the given set, and the choice of the particular value does
not depend on the will of the decision maker. If such uncer-
tain parameters are included in the model, then one obtains
a model and a corresponding optimization problem under
uncertainty.

For a problem under uncertainty, each possible choice of
the parameter values generates a scenario. Once a scenario
is given, we have to solve a deterministic problem. The main
peculiar feature of any problem under uncertainty is that we
do not know in advance, which particular scenario will be
realized.

One of the most popular approaches of dealing with
problems under uncertainty is the worst-case or robust
approach, Kouvelis and Yu (1997). Under this approach,
the decision maker expects that the real scenario will be the
worst possible from the point of view of the problem to be
solved, and constructs a solution that is the best one under
the expected worst scenario. Intuitively, a robust solution
is a solution that remains suitable whatever scenario finally
occurs. There are different ways to define the worst scenario.
The twomain concepts are the worst objective function value
and the maximum deviation of the objective function value
from the optimum.

To simplify the formal description of the robust solutions,
consider as an example a scheduling problem where the aim

is to minimize an objective function. Then in the first con-
cept, the decision maker’s aim is to minimize the objective
function under maximally unsuitable values of the uncer-
tain parameters. In the second concept, the decision maker
tries to find a schedule that minimizes the maximum possi-
ble difference between the objective function values for the
schedule obtained and the optimal schedule for a real sce-
nario. Respectively, these approaches are called minmax and
minmax regret approaches, see Kouvelis and Yu (1997).

To be more formal, denote the set of all possible scenarios
by X and the set of all feasible schedules by S. Denote the
objective function by F(x, s). Here we point out that the
objective function depends on schedule s ∈ S andon scenario
x ∈ X . Then the minmax approach is to find a schedule s
that minimizes the function

max{F(x, s)|x ∈ X},
whereas the minmax regret approach is to find a schedule s
that minimizes the function

max{F(x, s) − F(x, s∗(x))|x ∈ X},
where s∗(x) is an optimal schedule for scenario x .

It appears that Wald (1950) was the first who proposed
the minmax approach to deal with uncertainty and Savage
(1954) is the author of the minmax regret approach.

In Lawler (1973) the cost functions of jobs are arbi-
trary non-decreasing functions. In our problem, we assume
decomposable non-decreasing functions that will be defined
in Sect. 3. A processing time p j and a cost function parame-
ter λ j are associated with each job j . We suppose that the
additional parameters λ j are uncertain and the set of possi-
ble values of λ j for each job j is an interval. In our case,
the set of all possible scenarios is the Cartesian product of
these intervals. We examine the two mentioned approaches:
the minmax approach and the minmax regret approach. In
both cases we actively use Lawler’s algorithm.

The only known result for problems of this type is pre-
sented in Kasperski (2005), where the problem 1|prec|Lmax

was considered under uncertainty of processing times and
due dates of the jobs. Also in Kasperski (2005) the set of pos-
sible values for eachof the uncertain parameters is an interval.
An O(n4) algorithm has been developed for constructing a
schedule that is optimal with respect to the minmax regret
criterion. In our model, we consider a more general objec-
tive function that includes Lmax as a special case. At the
same time, we are dealing with a single uncertain parameter
for each job. One of our results is an O(n2) algorithm for
constructing a schedule that is optimal with respect to the
minmax regret criterion.

We denote by AG(v) and BG(v) the set of all successors
of vertex v in graph G and the set of all predecessors of v,
respectively.

123

J Sched (2016) 19:401–408 403

This paper is organized as follows: In Sect. 2 we consider
a deterministic version of the main problem and formulate
necessary and sufficient conditions for a feasible permutation
to be optimal. In addition, we present some related results
that are used in the subsequent sections. In Sect. 3 we deal
with the main problem under uncertainty. We present O(n2)
algorithms for constructing schedules that are optimal with
respect to the minmax criterion (Sect. 3.1) and to the min-
max regret criterion (Sect. 3.2). In the last section, we sum-
marize our results and outline possible directions for further
research.

2 Conditions of optimality

For our problem 1|prec|Φmax, we require first that all func-
tions Φ j (t) are strictly increasing. Compared to Lin and
Wang (2007), where necessary and sufficient conditions of a
permutation optimality were derived for problem 1||Lmax,
difficulties arise in connection with the precedence con-
straints and with the presence of zero-length jobs. In Lin and
Wang (2007), all processing times are implicitly assumed to
be strictly positive.

Let a feasible permutation π be given. We describe a job
exchange, as Lawler did in his original paper, but in a slightly
modified form. Suppose the job permutation π can be repre-
sented schematically as follows:

π : A u B v C

with segments A, B, and C and jobs v and u with pu > 0
and u �→ v, i.e., u /∈ BG(v). We consider only jobs u that
are close to v so that the setW = B∩ AG(u) of all successor
jobs of u in B contains only zero-length jobs, i.e., if j ∈ W
then p j = 0. Set U = (u,W) and move subpermutation
U to the right just following v. Then we obtain the feasible
permutation π ′:

π ′ : A B ′ v u W C

where B ′ = B\W . Here it is understood that the inner order
of jobs in B ′ and W is saved from the order in π . The fol-
lowing definition describes the transitions from π to π ′ that
yield some kind of strict improvement, at least locally.

Definition 1 Consider a feasible permutation π and a job v

in π with completion time t . We say that job v has a local
improvement in π if there exists job u, as described above,
which satisfies the conditions Φ j (t) < Φv(t) for all j ∈
{u} ∪ W .

If job v has a local improvement in π , then for the permu-
tation π ′ above, we get the following properties:

1. The positions of jobs j ∈ A ∪ C are unchanged. Hence
these jobs keep the same completion times and costs.

2. Let R = {u} ∪ {v} ∪ B. Then the maximum cost of the
jobs in R is strictly reduced, i.e., max j∈R Φ j (C j (π

′)) <

max j∈R Φ j (C j (π)). The validity of the property follows
from the conditions pu > 0 and Φ j (t) < Φv(t) for all
j ∈ {u} ∪ W .

3. We have Φmax(π
′) ≤ Φmax(π).

Definition 2 Job v is called critical in permutation π, if
Φmax(π) = Φv(Cv(π)).

Theorem 1 If all functions Φ j (t) are strictly increasing,
then a feasible permutation π is optimal for problem
1|prec|Φmax if and only if there exists a critical job in π

without any local improvement.

Proof Necessity. Let π be an optimal permutation. We prove
the necessity by induction on the number of critical jobs.

Consider a situation with a single critical job v. If job
v has a local improvement in π , then in view of the above
properties of the local improvement, there exists a feasible
permutation π ′ such thatΦv(Cv(π

′)) < Φv(Cv(π)), and the
values of the cost functions of all other jobs are less than
Φv(Cv(π)). So, Φmax(π

′) < Φmax(π) that contradicts the
optimality of π .

Suppose that the theorem conditions are necessary for the
optimality of any permutation with less than l ≥ 2 critical
jobs.

Consider the case with l critical jobs. If each of the critical
jobs has a local improvement, then consider the critical job
v = π(k) in the left-most position. Acting similarly to the
case with a single critical job, we can move job u (see the
definition of local improvement) along with its successors in
positions j, j < k, to the positions to the right of v. As a
result, we obtain a feasible permutation π ′, in which job v

is not a critical job and the general number of critical jobs
in π ′ equals l − 1. Besides, Φmax(π

′) ≤ Φmax(π), i.e., π ′
is an optimal permutation. All these l − 1 critical jobs are
in the same positions as in permutation π . Since for π, each
of these l − 1 critical jobs has a local improvement, each of
them has a local improvement in permutation π ′ as well. It
means that for the optimal permutation π ′ with l − 1 critical
jobs, the theorem conditions are violated. That contradicts
our induction hypothesis.
Sufficiency Suppose that in a feasible permutation π, there
exists a critical job v = π(k) without local improve-
ments. We have Φmax(π) = Φv(Cv(π)) ≥ Φ j (C j (π)) for
all j ∈ {1, . . . , n}. Let π ′ be an optimal permutation. If
Cv(π

′) ≥ Cv(π), then Φmax(π
′) ≥ Φmax(π) and π is an

optimal permutation.
Denote L(v) = {π(l) /∈ BG(v)| l < k, pπ(l) > 0},

remembering that job v is in position k in π .
Suppose that for an optimal permutation π ′, we have

Cv(π
′) < Cv(π). Then there exists at least one job π(l) ∈

123

404 J Sched (2016) 19:401–408

L(v) on the right of v in π ′, otherwise we would have
Cv(π

′) ≥ Cv(π).
Let π(l) be the right-most job from L(v) in π ′, then

Cπ(l)(π
′) ≥ Cv(π). Since v does not have a local improve-

ment in π, we have Φπ(l)(Cv(π)) ≥ Φv(Cv(π)). There-
fore, Φπ(l)(Cπ(l)(π

′)) ≥ Φπ(l)(Cv(π)) ≥ Φv(Cv(π))

and Φmax(π
′) ≥ Φmax(π), i.e., π is again an optimal

permutation. ��
Corollary 1 If all Φ j (t) are non-decreasing functions, then
a feasible permutation π is optimal for problem 1|prec|Φmax

if there exists a critical job in π without any local improve-
ment.

Definition 3 Given a feasible permutation π and a job v in
π with completion time t . Let job u be on the left of v in π ,
and U is the set of jobs between u and v in π . We say that
job v has a weak improvement in π if Φu(t) < Φv(t) and
none of the jobs in U ∪ {v} is a successor of u.
Lemma 1 If all functions Φ j (t) are non-decreasing and
job v has a weak improvement in a feasible permuta-
tion π , then there exists a feasible permutation π ′ such
that Cv(π

′) ≤ Cv(π), Φu(Cu(π
′)) < Φv(Cv(π)), and

Φmax(π
′) ≤ Φmax(π).

Proof To construct the mentioned permutation π ′, it is
enough to move job u from its position to position of job
v in π , simultaneously shifting all jobs of the setU ∪{v} one
position to the left. ��

Evidently, if a job has no weak improvement in a feasible
permutation π, then it also has no local improvement in π .

Corollary 2 If all functions Φ j (t) are non-decreasing, then
a feasible permutation π is optimal for problem 1|prec|Φmax

if there exists a critical job in π without any weak improve-
ment.

Corollary 3 If for problem 1|prec|Φmax, permutation π is
constructed by Algorithm 1, then none of the jobs has a weak
improvement in π .

Proof Suppose that job π(k) has a weak improvement in π .
Consider the kth run of Step 3 in Algorithm 1. The definition
of weak improvement means that in this run, there is at least
one job j in the current set Ω such that Φ j (T) < Φπ(k)(T).
In accordance with the description of Step 3, job j has to be
chosen to be placed in position k in π instead of job π(k).

��

3 Decomposable cost functions with uncertainty

Now we formulate our main single-machine problem under
uncertainty. We give in detail the differences between our

problem and its deterministic version considered so far with
n non-preemptive jobs and precedence constraints presented
bygraphG.We restrict the cost functions of jobs to bedecom-
posable into a sum of two components. The first component
is a monotone function that depends on the job completion
time. The second component is an uncertain parameter.

Job j has a processing time p j ≥ 0 and an additional
real-valued parameter λ j . Each job j has an associated cost
function Φ j (t, λ j) = ϕ(t) + λ j that presents a cost to be
incurred if the job processing is completed at time t . Here
ϕ(t) is a non-decreasing function. The aim is to find a job
permutation π that is feasible with respect to the precedence
constraints and that minimizes the maximum cost

Φmax(π) = max{Φ j (C j (π), λ j)| j = 1, . . . , n}.
The best known examples of functionsΦ j (t, λ j) = ϕ(t)+λ j

are

– lateness of job j : L j (t, d j) = t − d j , where d j ≥ 0 is
a due date of job j ; here λ j = −d j , and

– delivery time of job j : Dj (t, q j) = t+q j , where q j ≥ 0
is the transportation time of job j , i.e., after completing
the processing, job j is to be delivered to its end user, and
the delivering takes q j time units; here λ j = q j .

We consider the problem above under uncertainty of the
additional parameterλ j : for each job j there are given a lower
bound λ−

j and an upper bound λ+
j of possible values of λ j .

The actual value of λ j is unknown; λ j may take any value
from the interval [λ−

j , λ+
j] of real numbers.

We denote the uncertain version of the problem by

1|prec; λ j ∈ [λ−
j , λ+

j]|Φmax.

Further, we suppose that the calculation of each value of
function ϕ(t) takes a constant time.

Suppose we are given particular values λ−
j , λ+

j , and p j

for each j ∈ {1, . . . , n}, a particular function ϕ(t) and a par-
ticular graph G presenting the precedence constraints. If we
choose the values of the uncertain parameters in any feasible
way, i.e., λ j ∈ [λ−

j , λ+
j] for each j ∈ {1, . . . , n}, we get sce-

nario I for the problem 1|prec; λ j ∈ [λ−
j , λ+

j]|Φmax under
uncertainty. We denote by I the set of all scenarios. Clearly,
set I is infinite if λ−

j �= λ+
j for at least one j ∈ {1, . . . , n}.

Given scenario I ∈ I, we have a deterministic version of
the problem in question, and we can find an optimal permu-
tation using Lawler’s algorithm.

For a given scenario I ∈ I and a permutation π , we write
Φmax(I, π) to denote the correspondingvalue of the objective
function, andwewriteΦ∗

max(I) to denote theminimumvalue
of the objective function for scenario I . Let π∗(I) be an
optimal permutation for scenario I .

123

J Sched (2016) 19:401–408 405

In the following sections we consider the two robust
approaches, described earlier, to solve theproblem1|prec; λ j

∈ [λ−
j , λ+

j]|Φmax under uncertainty: minmax and minmax
regret criteria.

3.1 Minmax criterion

Since each functionΦ j (t, λ j) = ϕ(t)+λ j is strictly increas-
ingwith the parameterλ j , for any permutationπ , the value of
the objective function Φmax(I, π) gets its maximum if each
λ j takes its maximum value.

Thus, to obtain a permutation that is optimal with respect
to the minmax criterion, it is enough to solve the problem of
minimizing function Φmax(I+, π), where I+ is the scenario
with λ j = λ+

j for all j = 1, . . . , n. Hence the permutation
may be constructed by Algorithm 1.

The following statement characterizes the quality of solu-
tions obtained according to the minmax criterion.

Theorem 2 Let π+ be an optimal permutation for scenario
I+. Then for any scenario I 0 the bound

Φmax(I
0, π+) − Φmax(I

0, π∗(I 0))
≤ max{λ+

j − λ−
j | j = 1, . . . , n}

holds, and this bound is tight.

Proof Let scenario I 0 be defined by the vector λ0 =
(λ01, . . . , λ

0
n). For simplicity, denote permutation π∗(I 0) by

π0. Without loss of generality, suppose that the jobs are
numbered in accordance with permutation π0. Let job l
be a critical job in permutation π0 for scenario I+, i.e.,
Φmax(I+, π0) = ϕ(

∑l
j=1 p j) + λ+

l . Then ϕ(
∑l

j=1 p j) +
λ+
l ≥ Φmax(I+, π+).

For I 0 we have Φmax(I 0, π0) ≥ ϕ(
∑l

j=1 p j) + λ0l .

Therefore, Φmax(I+, π+) − Φmax(I 0, π0) ≤ λ+
l − λ0l .

Evidently, Φmax(I+, π+) ≥ Φmax(I 0, π+). Thus, δ =
Φmax(I 0, π+) − Φmax(I 0, π0) ≤ Φmax(I+, π+) −
Φmax(I 0, π0) ≤ λ+

l − λ0l ≤ max1≤ j≤n{λ+
j − λ−

j }.
Now we construct a simple example that shows the tight-

ness of the bound. Given number A > 1, let ϕ(t) =
t; n = 2; p1 = A, p2 = 1, λ−

1 = 1 + ε, λ+
1 =

A + 1 + ε; λ−
2 = 2, λ+

2 = A + 1, where ε > 0 is an
arbitrary small number. It is easy to see that π+ = (1, 2).
Suppose that λ01 = 1 + ε, λ02 = A + 1. Then π0 = (2, 1),
Φmax(I 0, π+) = 2A+ 2, Φmax(I 0, π0) = A+ 2+ ε. Thus,
δ = A − ε, and δ tends to A, while ε tends to 0. ��

It is interesting to note that in case of the “optimistic” sce-
nario I− with λ− = (λ−

1 , . . . , λ−
n), we get the same bound.

Note 1 Let π− be an optimal permutation for scenario I−.
Then for any scenario I 0, the bound

Φmax(I
0, π−) − Φmax(I

0, π∗(I 0))
≤ max{λ+

j − λ−
j | j = 1, . . . , n}

holds, and this bound is tight.

The proof of this statement is similar to that of Theorem 2.

3.2 Minmax regret criterion

Let us define the minmax regret criterion for problem
1|prec; λ j ∈ [λ−

j , λ+
j]|Φmax.

Definition 4 For problem 1|prec; λ j ∈ [λ−
j , λ+

j] |Φmax, a
permutation is called optimal with respect to the maximum
regret if it minimizes the function

	(I, π) = max
I∈I

{Φmax(I, π) − Φmax(I, π
∗(I))}. (1)

The approach based on minimizing function (1) is known
also as the robust deviation decision approach, see Kouvelis
and Yu (1997).

Denote by λ′ = (λ′
1, . . . , λ

′
n) the collection of the para-

meter values λ that defines scenario I ∈ I and rewrite the
function Φmax(I, π) − Φmax(I, π∗(I)) from (1) in the fol-
lowing way:

Φmax(I, π) − Φmax(I, π
∗(I))

= max
j=1,...,n

{ϕ(C j (π)) + λ′
j } − Φmax(I, π

∗(I))

= max
j=1,...,n

{ϕ(C j (π)) − (Φmax(I, π
∗(I)) − λ′

j)}.

Thus,

Δ(I, π) = max
I∈I

{

max
j=1,...,n

{ϕ(C j (π))

−(Φmax(I, π
∗(I)) − λ′

j)}
}

= max
j=1,...,n

{

max
I∈I

{ϕ(C j (π))

− (Φmax(I, π
∗(I)) − λ′

j)}
}

= max
j=1,...,n

{

ϕ(C j (π))

− min
I∈I

{Φmax(I, π
∗(I)) − λ′

j }
}

.

Definition 5 For each h ∈ {1, . . . , n} define scenario Ih ∈ I
by setting λh = λ+

h and λ j = λ−
j for all j �= h.

Denote by π∗
h an optimal permutation for scenario Ih . The

following lemma shows the importance of scenarios Ih .

Lemma 2 Given scenario I 0 ∈ I, let π0 be an optimal
permutation for I 0. Then for any h ∈ {1, . . . , n} the following
inequality is valid:

Φmax(Ih, π
∗
h) − λ+

h ≤ Φmax(I
0, π0) − λ0h, (2)

123

406 J Sched (2016) 19:401–408

where the collection λ0 = (λ01, . . . , λ
0
n) defines scenario I 0.

Proof Construct scenario I ′ replacing λ0j with λ−
j in scenario

I 0 for all j �= h. Evidently, Φmax(I ′, π0) ≤ Φmax(I 0, π0).
Since Φmax(Ih, π∗

h) ≤ Φmax(Ih, π0), to prove the validity
of (2), it is enough to show that the inequality

Φmax(Ih, π
0) − λ+

h ≤ Φmax(I
′, π0) − λ0h

holds.
If h is not a critical job in π0 for scenario Ih, then

Φmax(Ih, π0) = Φmax(I ′, π0) and Φmax(Ih, π0) − λ+
h ≤

Φmax(I ′, π0) − λ0h .
If h is a critical job, then Φmax(Ih, π0) − λ+

h =
(ϕ(Ch(π

0)) + λ+
h) − λ+

h = (ϕ(Ch(π
0)) + λ0h) − λ0h ≤

Φmax(I ′, π0) − λ0h . ��
Corollary 4 The maximum regret is of the form

	(I, π) = max
j=1,...,n

{ϕ(C j (π)) + d j },

where d j = −(Φmax(I j , π∗
j) − λ+

j).

Proof Lemma 2 implies that

	(I, π) = max
j=1,...,n

{

ϕ(C j (π))

− min
I∈I

{Φmax(I, π
∗(I)) − λ′

j }
}

= max
j=1,...,n

{ϕ(C j (π)) − (Φmax(I j , π
∗
j) − λ+

j)}.
��

Evidently, 	(I, π) belongs to the class of maximum cost
functions (with decomposable costs). Therefore, Lawler’s
algorithm may be used to minimize 	(I, π). The follow-
ing two-step algorithm constructs a permutation that gives
the minimum of the maximum regret 	(I, π).

Algorithm 2 1. For each scenario I j ∈ I, j = 1, . . . , n,

calculate the value Φmax(I j , π∗
j) and set

d j = −Φmax(I j , π∗
j) + λ+

j .
2. Apply Algorithm 1 to problem 1|prec|	max with cost

function 	 j (t) = ϕ(t) + d j to obtain an optimal per-
mutation π∗, and the minimum value 	∗ = 	max(π

∗).

The validity of Algorithm 2 is immediate. Using Corol-
lary 4 and Definition 4, π∗ is an optimal permutation, and
	∗ = 	(I, π∗) is the minimum value for the minmax regret
criterion.

Below (see Algorithm 3) we show that the running time of
Step 1 of Algorithm 2 is O(n2) if we use a special procedure
to implement this step. Thus, the running time of Algorithm
2 is O(n2).

Note that the idea of using scenarios Ih in the minmax
regret approach is due to Averbakh (2000). In Averbakh

(2000) the single-machine sequencingproblemwith themax-
imum weighted tardiness criterion is considered. However,
in this problem, an uncertain weight is given for each job and
all the other parameters (i.e., the processing times and the due
dates) are precisely known. In such a situation, the problem
of minimizing the maximum regret criterion can be solved
in time O(n3). As it is mentioned in Averbakh (2000), the
results hold if instead of weighted tardiness w j Tj we con-
sider any function w j f j with uncertain weight w j , where f j
is non-decreasing in C j .

Now we describe a procedure that implements Step 1 of
Algorithm 2. Given problem 1|prec; λ j ∈ [λ−

j , λ+
j] |Φmax,

we describe an algorithm for calculating the values
Φmax(Ih, π∗

h) for all n scenarios Ih ∈ I, h = 1, . . . , n,

in O(n2) time.

Algorithm 3 1. Construct scenario I− ∈ I by setting
λ j = λ−

j for all j = 1, . . . , n. Apply Algorithm 1 to

construct an optimal permutation π− for scenario I−.
Compute the value Φmax(I−, π−).
Renumber the jobs according to permutation π− (i.e.,
π− = (1, . . . , n) after the renumbering).
Compute C j (π

−) for all j = 1, . . . , n.
Set h = n.

2. Construct scenario Ih replacing λ−
h with λ+

h in I−.
Set v = h − 1, π∗

h = π− and Jh = (h).
3. If Ch(π

−) + λ+
h ≤ Φmax(I−, π−), then set

Φmax(Ih, π∗
h) = Φmax(I−, π−) and go to Step 7.

4. If v = 0 or λ+
h ≤ λ−

v , then go to Step 6, otherwise, go
to Step 5.

5. If job v is a predecessor of job h, then set Jh = (v, Jh).
Otherwise, modify permutation π∗

h exchanging posi-
tions of job v and the subpermutation Jh.
Set v = v − 1 and go to Step 4.

6. Calculate Φmax(Ih, π∗
h) for the current permutation

π∗
h .

7. Set h = h − 1. If h ≥ 1, then go to Step 2, otherwise,
the process of calculating the values Φmax(Ih, π∗

h) has
been completed.

Theorem 3 Algorithm 3 finds permutations π∗
h correctly,

h = 1, . . . , n, and its running time is O(n2).

Proof According to Corollary 3, none of the jobs in per-
mutation π− has a weak improvement. After transforming
scenario I− into Ih, job h is the only job in π− that may have
a weak improvement.

In Step 5 of Algorithm 3, we eliminate weak improve-
ments if they exist. Indeed, if job h has a weak improvement
in π−, then there is job l with l < h such that λ−

l < λ+
h and

AG(l) ∩ {π(l + 1), . . . , π(h)} = ∅. Thus, if λ+
h ≤ λ−

v and
v /∈ BG(h) in Step 5, then h has noweak improvements in the
current permutation π∗

h . Otherwise, wewould have λ−
l < λ−

v

123

J Sched (2016) 19:401–408 407

and v /∈ AG(l), i.e., job v would have a weak improvement
in π−.

Thus, if h really has a weak improvement in the current
permutation π∗

h , then there are only two possibilities for job
v. Either v → h or λ−

v < λ+
h . In the first case, we include

v into the current subpermutation Jh ; in the latter case, we
interchange the positions of v and Jh and obtain a new fea-
sible permutation π∗

h with the value Φmax(Ih, π∗
h), which is

not greater than the one of the previous permutation π∗
h (see

Lemma 1). In the new permutation none of the jobs (exclud-
ing possibly job h) has a weak improvement.

If we have a situation with v = 0 or λ+
h ≤ λ−

v , then in the
current permutation π∗

h , job h has no weak improvements. In
view of Corollary 2, the final permutation π∗

h is optimal for
scenario Ih .

If the inequality Ch(π
−) + λ+

h ≤ Φmax(I−, π−) holds in
Step 3, then π− is an optimal permutation for scenario Ih .
Indeed, if λ+

h > λ−
h , then the validity of the above inequality

means that there exists a critical job j �= h in π− and the
optimality of π− follows from Corollary 2.

The running time of Algorithm 3 is O(n2). In fact, Step
1 takes O(n2) time. For each h, each run of steps 2–5 and 7
takes O(1) time (for each pair v and h checking the validity
or invalidity of the relation v → h takes O(1) time if we
use the representation of graph G by its adjacency matrix).
Each of the steps 2–5 and 7 repeats at most n times. Step 6
takes O(n) time and for each h it runs at most once. Thus,
the overall complexity of steps 2–7 is O(n2). ��

There are situations where there exists a permutation that
is optimal for all scenarios simultaneously. Therefore, having
an instance of a problem under uncertainty, it is reasonable
to check the existence of such a permutation.

Definition 6 A permutation π is called globally optimal for
problem 1|prec; λ j ∈ [λ−

j , λ+
j] |Φmax if π is optimal for all

scenarios I ∈ I simultaneously.

We get immediately two characterizations for the global
optimality.

Theorem 4 A globally optimal permutation π is obtained if
Algorithm 2 returns the value 	∗ = 0. If 	∗ > 0 then no
globally optimal permutation exists. This also means that π
is globally optimal if and only if π is optimal for all instances
Ih.

Consider a simple example illustrating the notion of global
optimality.

Set ϕ(t) = t; n = 3; p1 = 1, p2 = 3, p3 = 0; λ−
1 =

λ+
1 = 1, λ−

2 = 5, λ+
2 = 7, λ−

3 = 4, λ+
3 = 8. Graph G has

a unique arc (1, 2).
For this instancewe have only three feasible permutations:

(1, 2, 3), (1, 3, 2), and (3, 1, 2). Algorithm 2 gives permu-
tation π = (3, 1, 2), and it is a globally optimal permutation

Table 1 Values p j , λ−
j and λ+

j

Jobs 1 2 3 4 5 6 7 8

p j 1 32 6 20 27 29 29 4

λ−
j 43 32 47 33 46 54 44 58

λ+
j 54 41 57 39 56 68 57 70

since 	(I, π) = 0. It is interesting to note that the min-
max approach produces the same permutation, whereas the
minmin approach (minimizing the objective function under
scenario I−) generates permutation π− = (1, 2, 3), which
is not globally optimal (e.g., we haveΦmax(I+, π) = 11 and
Φmax(I+, π−) = 12). There is one more globally optimal
permutation (1, 3, 2), but this permutation cannot be con-
structed with minmax or minmin approaches.

Consider the following example, which shows that a glob-
ally optimal permutation may exist in quite complicated sit-
uations.

Set ϕ(t) = t; n = 8. Values p j , λ−
j and λ+

j are presented
in Table 1.

Graph G is presented by the set of its arcs: (4, 5), (3, 6),
(6, 7), (6, 2), (5, 2), (8, 5). Here we do not list the transitive
arcs of the graph. We have π = (8, 3, 6, 7, 4, 5, 1, 2) as a
globally optimal permutation.

4 Conclusion

Our two main results related to the well-known minmax cost
algorithm of Lawler (1973) are necessary and sufficient con-
ditions for the permutation optimality and an O(n2) algo-
rithm for constructing a schedule that minimizes the maxi-
mum regret criterion for the problem under interval uncer-
tainty whenever the cost functions are decomposable.

Possible directions for further research include both con-
sidering more general cost functions (compared to decom-
posable functions) and addressing situations with more than
one uncertain parameter for each job.Another possibility is to
consider the relative regret approach instead of the absolute
regret approach discussed in the paper. There are also other
criteria that deal with uncertainty such as the OWA operator
(Ordered Weighted Averaging aggregation operator). OWA
operatorswere introduced byYager (1988) toworkwithmul-
ticriteria problems. Recently, OWA operators were used in
connectionwith discrete optimization problems under uncer-
tainty (see Kasperski and Zieliński (2013)) with a discrete
scenario set containing a finite number of possible scenar-
ios. In our case of interval uncertainty with the infinite set
of scenarios, the direct use of OWA operators is impossible,
but some special cases of the general OWA operator may be
considered.

123

408 J Sched (2016) 19:401–408

One should mention the considerable difference between
uncertainty problems with the discrete scenario set and those
with interval uncertainty as in our case. The former prob-
lems are very often more difficult than the problems with
the interval uncertainty. For example, in the recent paper by
Aissi et al. (2011), the strongNP-hardness of finding themin-
max decision for the single-machine scheduling problem to
minimize the number of late unit-time jobs was established
under the due date uncertainty and the discrete scenario set
where the number of the scenarios is the input parameter. Ear-
lier, the NP-hardness of finding the minmax decision for the
same problem was established in Aloulou and Della Croce
(2008) under the processing time uncertainty and the discrete
scenario set even for the case of two scenarios. Unlike the dis-
crete scenario set situation, finding the minmax decision for
this problem is polynomially solvable for the case of inter-
val uncertain due dates and processing times. It is enough
to set the minimum values for all due dates, the maximum
values for all processing times and to solve the obtained deter-
ministic problem, using for instance the algorithm of Moore
(1968).

Acknowledgments Financial support has been provided in part by the
joint BRFFR-PICS Project (PICS 5379, BRFFR Φ10Φ� − 001). The
research of the first two authors have been partially supported by the
LabEx PERSYVAL-Lab (ANR–11-LABX-0025). We are grateful to
referees for their substantial and helpful comments.

References

Aissi, H., Aloulou, M. A., & Kovalyov, M. Y. (2011). Minimizing the
number of late jobs on a singlemachine under due date uncertainty.
Journal of Scheduling, 14, 351–360.

Aloulou,M.A.,&DellaCroce, F. (2008). Complexity of singlemachine
scheduling problems under scenario-based uncertainty. Opera-
tions Research Letters, 36, 338–342.

Averbakh, I. (2000).Minmax regret solutions for minimax optimization
problems with uncertainty. Operations Research Letters, 27, 57–
65.

Kasperski, A. (2005). Minimizingmaximal regret in the single machine
sequencing problemwith maximum lateness criterion.Operations
Research Letters, 33, 431–436.

Kasperski, A., & Zieliński, P. (2013). Bottleneck combinatorial opti-
mization problems with uncertain costs and the OWA criterion.
Operations Research Letters, 41, 639–643.

Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its
applications. Dordrecht: Kluwer Academic Publishers.

Lawler, E. L. (1973). Optimal sequencing of a single machine subject
to precedence constraints.Management Science, 19(5), 544–546.

Lin, Y., &Wang, X. (2007). Necessary and sufficient conditions of opti-
mality for some classical scheduling problems. European Journal
of Operational Research, 176, 809–818.

Moore, J. M. (1968). A n job, one machine scheduling algorithm for
minimizing the number of late jobs. Management Science, 15,
102–109.

Savage, L. J. (1954). The foundations of statistics. New York: Wiley.
Wald, A. (1950). Statistical decision functions. New York: Wiley.
Yager, R. R. (1988). On ordered weighted averaging aggregation oper-

ators in multicriteria decision making. IEEE Transaction on Sys-
tems, Man, and Cybernetics, 18, 183–190.

123

	Lawler's minmax cost algorithm: optimality conditions and uncertainty
	Abstract
	1 Introduction
	2 Conditions of optimality
	3 Decomposable cost functions with uncertainty
	3.1 Minmax criterion
	3.2 Minmax regret criterion

	4 Conclusion
	Acknowledgments
	References

