
J Sched (2016) 19:391–400
DOI 10.1007/s10951-014-0408-7

Temporal linear relaxation in IBM ILOG CP Optimizer

Philippe Laborie · Jérôme Rogerie

Received: 29 October 2013 / Accepted: 12 November 2014 / Published online: 25 November 2014
© Springer Science+Business Media New York 2014

Abstract IBM ILOG CP Optimizer is a constraint solver
that implements a model-and-run paradigm. For scheduling
problems, CPOptimizer provides a relatively simple but very
expressive modeling language based on the notion of inter-
val variables. This paper presents the temporal linear relax-
ation (TLR) used to guide the automatic search when solv-
ing scheduling problems that involve temporal and resource
allocation costs. We give the rationale of the TLR, describe
its integration in the automatic search of CP Optimizer, and
present the relaxation of most of the constraints and expres-
sions of themodel.An experimental study on a set of classical
scheduling benchmarks shows that using the TLR is essen-
tial for problems with irregular temporal costs and generally
helps for problems with resource allocation costs.

Keywords Scheduling · Constraint programming · Linear
programming · Irregular objective functions

1 Introduction

IBM ILOGCPOptimizer is a general constraint solver based
on constraint programming (CP) techniques that implement
amodel-and-run paradigm. This paper focuses on scheduling
problems. For these problems, CP Optimizer provides a rel-
atively simple but very expressive modeling language based
on the notion of interval variables (Laborie andRogerie 2008;
Laborie et al. 2009). Real-world scheduling applications

P. Laborie · J. Rogerie (B)
IBM, Software Group, Paris, France
e-mail: rogerie@fr.ibm.com

P. Laborie
e-mail: laborie@fr.ibm.com

often require optimizing irregular temporal costs (such as
minimizing earliness/tardiness, minimizing or maximizing
activities duration or delays between activities, etc.) as well
as non-temporal costs (resource allocation, non-execution,
etc.). When this type of objective function is involved, pro-
viding a good time placement of activities can be a challenge
even in the absence of resource constraints.

In this context, using a linear relaxation of the problem
solved with Mathematical Programming (MP) techniques is
a common approach. MP and CP are generally coupled in
two ways. In decomposition approaches, an MP model com-
municates with a distinct CP model [sequential model solv-
ing, column generation (Desaulniers et al. 2005), and logical
Bender’s decomposition (Ciré et al. 2013)]. Although very
efficient on specific scheduling problems, these approaches
tend to be difficult to automate. In hybrid approaches like
Refalo (2000), Beck and Refalo (2001), and Danna and Per-
ron (2003), the solution to the linear relaxation is maintained
at each search node. For those approaches, scaling to large
models may be an issue.

This paper presents the approach implemented inCPOpti-
mizer that lies somewhere in between and aims at providing
both generality and scalability. Unlike in hybrid approaches,
the linear relaxation is only synchronized at every iteration
of the optimization process that is to say, much less fre-
quently than at each search node. Several linear formulations
of resources have been developed in MP (Hooker 2006), but
all these formulations are quite expensive. As we will see,
our approach works around this complexity issue because
we do not need a tight formulation of resource constraints in
the relaxation. We will take advantage of the ability of CP
to handle resource contention, whereas MP will essentially
be used for optimizing resource selection and the positioning
of activities in time given a set of temporal constraints. The
Temporal Linear Relaxation (TLR) is a linear relaxation of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-014-0408-7&domain=pdf

392 J Sched (2016) 19:391–400

the scheduling model that handles temporal decisions (start
and end of tasks, precedences) as well as most of the assign-
ment decisions (the resource on which a task is processed).

After describing the CP Optimizer model for scheduling
in Sect. 2, we give an overview of the architecture of the
automatic search for scheduling problems in Sect. 3. The
main purpose of this section is to show how the proposed
TLR is integrated in the search. Section 4 describes the lin-
earization of most of the scheduling concepts of the model
in the TLR. The final section presents an experimental eval-
uation that shows the crucial positive impact of the TLR on
the performance of the automatic search.

2 CP Optimizer model for scheduling

CP Optimizer extends the classical Constraint Programming
paradigm by introducing additional mathematical concepts
(such as intervals Laborie and Rogerie 2008, sequences, or
functions Laborie et al. 2009) as new variables or expressions
to capture the temporal aspects of scheduling.

An interval variable a is a decision variablewhose domain
is a subset of {⊥} ∪ {[s, e) : s, e ∈ Z ∧ s ≤ e}. A Boolean
x(a) denotes the presence status of the interval variable. It
is part of the decisions of the problem to decide whether
interval a is present (x(a) is true) or absent (x(a) is false).
More precisely, at a solution,

– if a is present, the value of a is a = [s, e) and the pres-
ence status x(a) is true. In this case, by a small abuse of
notations, s(a), e(a), and l(a), respectively, denote the
start value s, the end value e, and the length (e − s) of
interval variable a.

– else, a is absent, a = ⊥ and the presence status x(a) is
false. In this case, s(a), e(a), and l(a) have no meaning1.

Absent interval variables have an operational meaning :
an optional activity that has not been selected to be executed
in the actual schedule will be represented by an absent inter-
val variable in the solution. Informally speaking, an absent
interval variable is not consideredbyanyconstraint or expres-
sion on interval variables it is involved in. For example, if
an absent interval variable a is used in a precedence con-
straint between interval variables a and b, then the constraint
becomes inactive—in particular, interval variable b is not

1 It is to be noted that x(a), s(a), e(a), and l(a) are not proper decision
variables of the problem, and we use them here only for the purpose
of defining interval variables. In the model, interval variables are basic
variables, and they are not an assembly of lower level variables. The
different features of an interval variable (presence status, start, end,
and length) are constrained via some expressions that we will see later
(Table 1).

constrained by it. Each constraint and expression specifies
how it handles the absent interval variables.

An optional interval variable is an interval variable whose
presence/absence status needs to be decided by the engine,
that is, such that singleton {⊥} is strictly included in the
domain. The use of optional interval variables is quite versa-
tile. A typical use case is for expressing an optional activity
in a schedule. Another common use is for modeling a task
requiring onemachine among an alternativemachine set. For
each machine candidate, an optional interval variable mod-
els the possible execution of the task on the machine. Then
the solver will decide which one among those optional inter-
val variables is present (that is, which machine is selected),
and the others being absent. By design, interval variables are
optional, and they can be made non-optional by adding a
constraint which remove ⊥ from the domain.

The following constraints on interval variables are intro-
duced to model the basic structure of scheduling problems.
Let a, ai , b, and bi denote interval variables and z an integer
variable:

– A presence constraint presenceOf(a) states that inter-
val a is present, that is, a �= ⊥. This constraint can be
used to compose an expression, for instance the constraint
presenceOf(a) ⇒ presenceOf(b) means that the pres-
ence of a implies the presence of b.

– A precedence constraint (e.g., endBeforeStart(a, b, z))
specifies a precedence between interval endpoints with
an integer or variable minimal distance z provided that
both intervals a and b are present.

– A span constraint span (a, {b1, ..., bn}) states that if a is
present, it starts together with the first present interval in
{b1, ..., bn} and ends together with the last one. Interval
a is absent if and only if all the bi are absent.

– An alternative constraint alternative (a, {b1, ..., bn})
models an exclusive alternative between {b1, ..., bn}:
if interval a is present, then exactly one of intervals
{b1, ..., bn} is present and a starts and ends together with
this chosen one. Interval a is absent if and only if all the
bi are absent.

These constraints make it easy to capture the hierarchical,
logical, and temporal structure of scheduling problems (the
breakdown structure of a project, optional activities, alter-
native modes/recipes/processes, etc.) in a well-defined CP
paradigm (Laborie and Rogerie 2008).

CPOptimizer also provides numerical expressions related
with the integer bounds (start, end, and length) of an interval
variable. These expressions are shown in Table 1. The length
of an interval variable is the distance between its start and end
points. In these expressions, F is a piecewise linear function.
For instance, endEval(a, F, V 0) could be used to model an
earliness /tardiness cost function F for an optional activity

123

J Sched (2016) 19:391–400 393

Table 1 Expression semantics

startOf(a, V 0) s(a) if x(a) is true

V 0 otherwise

endOf(a, V 0) e(a) if x(a) is true

V 0 otherwise

lengthOf(a, V 0) l(a) if x(a) is true

V 0 otherwise

startEval(a, F, V 0) F(s(a)) if x(a) is true

V 0 otherwise

endEval(a, F, V 0) F(e(a)) if x(a) is true

V 0 otherwise

lengthEval(a, F, V 0) F(l(a)) if x(a) is true

V 0 otherwise

modeled by an interval variable a evaluated on its end time,
while value V 0 represents a non-execution cost for the activ-
ity. A wide range of arithmetic expressions and constraints
are available in CP Optimizer to combine these numerical
expressions.

For modeling resources, CP Optimizer offers concepts
such as cumul functions, state functions, and interval
sequences. These concepts are summarized below and
detailed in Laborie et al. (2009).

– Cumul functions A cumul function is an expression
whose value in a solution is an integer stepwise function.
A cumul function is defined as the sum of individual con-
tributions of interval variables. For instance, an interval
variable ai could contribute to a cumul function f =
∑

i pulse(ai , hi) with a pulse function pulse(ai , hi).
When interval variable ai is present, a pulse function
pulse(ai , hi) is a step function equal to value hi between
the start and end of interval ai and equal to value 0 out-
side this interval. Otherwise, if the interval variable is
absent, it is the 0 function. Constraints can be posted on
cumul functions to limit their allowed minimal or max-
imal value over the complete horizon (f ≤ K) or over
some constant or variable intervals. Cumul functions are
typically used to model cumulative resources where hi is
the quantity of resource used by activity ai and maximal
value K is the capacity of the resource.

– State functions A state function is a decision vari-
able whose value is any chronological chain of non-
overlapping segments [si , ei) associated with a positive
integer state vi . Different constraints between a state
function variable f and an interval variable a are avail-
able to state that if interval a is present, (1) any segment
[si , ei) of the state function overlapping a should have
its state vi within an integer range passed as argument to
the constraint, (2) a segment of the state function starts

at the start point of interval a, (3) a segment of the state
function ends at the endpoint of the interval a, (4) a seg-
ment of the state function covers interval a, or (5) a does
not overlap any segment of the state function. State func-
tions are typically used to model resources characterized
by a state that may be changed over time (for instance,
the temperature of an oven) and such that some activities
require the resource to be in a particular state (or set of
states) during their execution.

– Interval sequence variables An interval sequence vari-
able is defined by a set of interval variables S. The value
of an interval sequence variable is a permutation of the
present intervals in set S. Different constraints on inter-
val sequence variables are available to state (1) prece-
dence relations between interval variables in the permu-
tation, (2) temporal relations between endpoints of the
intervals (for example, a noOverlap constraint states
that, according to the permutation order, any interval in
the sequence must end before its successor starts). Inter-
val sequence variables and noOverlap constraints are
typically used to model disjunctive unary resources and
the possible transition constraints between consecutive
activities on the resource (like sequence-dependent setup
times or costs).

We group these three concepts under the generic term of
timeline. Timelines are used to constrain the time positioning
of a set of interval variables. The combination of constraints
on the above timeline expressions together with structural
constraints on interval variables like span and alternative
facilitates the modeling of complex resources.

3 Integration of TLR in CP Optimizer automatic search

Large neighborhood search (LNS) (Shaw 1998) is a compo-
nent of CPOptimizer automatic search for scheduling. It con-
sists of a process of continual relaxation and re-optimization:
a first solution is computed and iteratively improved. Each
iteration consists of a relaxation step followed by a re-
optimization of the relaxed solution. This process continues
until some condition is satisfied, typically, when the solution
can be proved to be optimal or when a time limit is reached.
In CPOptimizer, this approach is robustified using portfolios
of large neighborhoods and completion strategies in combi-
nation with Machine Learning techniques to converge on the
most efficient neighborhoods and completion strategies for
the problem being solved.

The large neighborhoods are all based on the initial gener-
ation of a partial order schedule (POS) (Policella et al. 2004)
constructed from a completely instantiated solution where
interval variables have fixed start and end values. A POS is a
directed graph G(A, E) where the nodes inA are the interval

123

394 J Sched (2016) 19:391–400

Fig. 1 Example of a partial order schedule (POS)

variables of the problem and the edges in E are precedence
constraints between interval variables with the property that
any solution to the graph is also a resource-feasible solu-
tion, that is, it satisfies the constraints posted on interval
sequence variables, cumul expressions, and state function
variables. Algorithms for transforming a fully instantiated
solution into a POS P are described in Godard et al. (2005),
Laborie and Rogerie (2008). An example of generated POS
for a single cumul function of maximal value 4 involving 5
interval variables is shown in Fig. 1. Large neighborhoods in
the portfolio differ in the way they select a subset of interval
variables to be relaxed (this subset is called the LNS frag-
ment). The relaxed POS P ′ is obtained by removing from
P all the edges involving at least one selected interval vari-
able and adding new edges to repair broken paths. Further-
more, the presence status of interval variables belonging to
the LNS fragment is also relaxed. Typically, this will allow
the relaxed interval variables to be re-allocated on different
resources. The relaxed POS P ′ is then used to enforce prece-
dence constraints between interval variables before apply-
ing a completion strategy to re-optimize the relaxed frag-
ment.

The completion strategies partially explore a search tree
with a limited number of backtracks.

At the root node of an LNS iteration, in case of irreg-
ular temporal costs, an important issue is finding a good
time placement for the interval variables in the LNS frag-
ment considering the frozen part of the POS. Furthermore,
in case of objective function related with resource alloca-
tion, it is important to reallocate the activities to the cheapest
or the most efficient resources, and this boils down to real-
locating the presence status of the interval variables in the
LNS fragment. In this context, some of the strategies solve
the TLR described in this paper. The optimal solution of this
TLR gives continuous indicative values (xi ∈ [0, 1], si , ei)
for the presence, start, and end of each interval variable
ai .

The completion strategy based on the TLR implements a
generalization of the SetTimes strategy described in Godard
et al. (2005). It considers interval variables in a chronolog-
ical way by increasing indicative endpoint values (si , ei) in
the TLR solution. If the selected interval variable ai has an

unfixed presence status in the CP engine, it will create a
decision point to fix the presence status. The decision is ran-
domized so that the probability to first branch on setting the
interval ai absent is equal to xi , that way, the closer xi is to 1,
the larger the probability to set it present on the left branch.
If the selected interval variable ai is already present in the
CP engine, then a decision point is created to fix the interval
position (start, end). In the left branch, the strategy will try
to set it as close as possible to its indicative values si and ei .
When a failure occurs in the left branch, the interval variable
is marked as unselectable, meaning that it cannot be selected
anymore by the strategy, and will remain so until constraint
propagation removes the value tried in the left branch from
the domain of the variable. When the objective is regular and
all interval variables are present, this strategy boils down to
SetTimes. It is to be noted that the above search strategy nat-
urally interleaves the fixing of presence status and start/end
values for the different variables, while for a given interval
variable, presence status is always fixed before its start/end
values.

The strategies used in the automatic search follow from the
type of objective function which is automatically inspected
before solving the problem. The completion strategy portfo-
lio is configured as follows:

– for objective functions involving some irregular tempo-
ral terms (like earliness cost or interval length maximiza-
tion), only completion strategies using the TLR are used,

– for objective functions involving terms related with the
presence of interval variables (like resource allocation
costs) but only regular temporal objective, both strategies
using the TLR and the SetTimes are used; in this case, the
learning techniques will favor the most efficient strategy
on the instance being solved, and

– for other objective functions (no presence-related terms
and no irregular temporal terms), only strategies based
on SetTimes are used.

Beside its use as a heuristic to guide the search in the
completion strategies, the TLR is also used for two other
purposes:

– A TLR is solved at the root node of the global search in
order to compute a lower bound on the cost. The lower
bound allows to stop the search when a feasible solution
is found with a cost equal to this value. It is useful in
some particular cases for which the linear relaxation is
tight enough, for instance a Simple Temporal Network
with convex piecewise linear start/end costs.

– Each time a TLR is solved at the root node of an LNS iter-
ation, a propagation based on reduced costs is performed
to reduce the variable domains.

123

J Sched (2016) 19:391–400 395

4 Temporal linear relaxation formulations

The TLR is a continuous Linear Program that represents the
relaxation of the current problem solved by the engine at the
root node of an LNS iteration. In CP Optimizer, this TLR is
solved using CPLEX. This section describes the relaxation
of most of the elements of the model. In this section, lower
case symbols represent variables, whereas upper case sym-
bols represent constants. We use underline and overline to
represent the current lower and upper bounds of a variable,
so for instance if y is a variable, its current lower and upper
bound will be, respectively, denoted Y and Y . We also use a
superscript notation Y 0 to denote the particular value taken
by a variable or expression y when the related interval vari-
able(s) is (are) absent.

4.1 Interval variables and logical constraints

An interval variable ai is represented by four numerical vari-
ables in the TLR: three continuous temporal variables si , ei ,
and li for the start point, end point, and length together with
one continuous [0, 1] variable xi for the presence status. The
range of temporal variables si , ei , and li is the domain of the
interval start, end, and length in theCP engine. The constraint
on the length of interval ai can be seen as a special case of
precedence constraint with delay between the start and the
end of the interval, and it will be described in Sect. 4.2.

In the CP engine, binary logical constraints like
presenceOf(ai) ⇒ presenceOf(a j) are aggregated into an
implication network that is updated from the model state-
ments and from engine deductions (Laborie and Rogerie
2008). The TLR formulation of these constraints consists
of binary linear inequalities like xi ≤ x j .

4.2 Precedence constraints

The precedence conditions are constraints like
endBeforeStart(ai , a j , zi j) where zi j is a delay. Delay zi j
can be a constant or variable. These constraints and the
constraints on interval lengths are aggregated by CP Opti-
mizer in a temporal constraint network (Laborie and Rogerie
2008). A precedence relation is a constraint of the form
(xi ∧ x j) ⇒ (yi + zi, j ≤ y j), where xi and x j are the
presence status of intervals ai and a j and yi , y j the interval
endpoints related with the precedence constraint (si or ei , s j
or e j). Let M

i, j
i and Mi, j

j denote large enough coefficients,
the LP formulation reads:

yi + zi, j ≤ y j + Mi, j
i (1 − xi) + Mi, j

j (1 − x j).

Note that in the presence of logical relations between
intervals, this formulation can be simplified. For instance,
if xi ⇒ ¬x j , the precedence constraint does not need to be

linearized at all because it is inactive. If the presence status
of interval variables is equivalent, that is xi ⇔ x j , a single
big-M coefficient can be used. This is in particular the case
for precedence constraints representing the length of inter-
val variables as, here, yi and y j are endpoints of the same
variable.

Let [Yi ,Yi] denote the domain of yi . In order to get a
tighter linear relaxation, the values of big-M coefficients are
minimizedby selecting a specific absence valueY 0

i ∈ [Yi ,Yi]
when the interval is absent (xi = 0). The following constraint
is added to fix yi to value Y 0

i when xi = 0:

Y 0
i + (Yi − Y 0

i)xi ≤ yi ≤ Y 0
i + (Yi − Y 0

i)xi .

Under these conditions, if [Zi, j , Zi, j] denotes the domain
of zi, j for the general case, we can select

Mi, j
i = max

(
0,Y 0

i + Zi, j − Y j

)

Mi, j
j = max

(
0, Yi + Zi, j − Y 0

j

)
.

Absence values Y 0
i are selected so as to minimize the big-

M coefficients resulting in a tighter relaxation. For instance,
if xi = x j , Zi, j constant, and Y 0

i + Zi, j ≤ Y 0
j , the big-M

value is zero.
It is important to keep in mind that even when the interval

variable is absent (xi = 0), in the TLR, the interval endpoints
yi (si or ei) are still defined and associated with a particular
absence value Y 0

i (S0i or E
0
i). We have seen in the model that

expressions on interval variables (like startOf(a, V)) must
take the specifiedvalueV when the interval variable is absent.
It will be part of the role of the linearization of expressions to
reconciliate the absence value of the interval endpoints in the
TLR (like S0 in the case of startOf) with the absence value
V of the expression (see Sects. 4.5 and 4.7).

4.3 Alternative constraints

An alternative constraint alternative (a, {b1, ..., bn}) is both
an exclusive disjunction of the presence status of the bi
and start and end points synchronization between a and
the bi (precedence constraints startAtStart(a, bi), endAtEnd
(a, bi)). The precedences are added to the temporal network.
Beside the relaxation of those precedences (see Sect. 4.2),
the constraint x(a) = ∑

i∈{1..n} x(bi) is added to TLR.

4.4 Span constraints

A span constraint span (a, {b1, ..., bn}) is a conjunction of

– a set of precedences startBeforeStart(a, bi) and
endBeforeEnd(bi , a). These precedence constraints are
linearized as described in Sect. 4.2,

123

396 J Sched (2016) 19:391–400

Fig. 2 Temporal relaxation of piecewise linear expressions

– a set of implications x(bi) ⇒ x(a) that are added in the
TLR (x(bi) ≤ x(a)), and

– as the spanning interval cannot start (resp. end) before
(resp. after) the minimal start value (resp. maximal
end value) of the spanned intervals, the remaining end-
points conditions s(a) ≥ mini∈{1..n} s(bi) and e(a) ≤
maxi∈{1..n} e(bi) are convexified in the TLR.

4.5 Piecewise linear expressions

CP Optimizer provides piecewise linear expressions eval-
uated on interval endpoints and lengths (see Table 1). We
have for instance expression endEval(a, F, V 0) where F is
a piecewise linear function. The value of this expression is
F(endOf(a)) when interval a is present and V 0 when the
interval is absent. Let y denote the endpoint of the interval
variable involved in the expression. For instance in the case
of endEval(a, F, V 0), y denotes the end of interval variable
a.

Let us suppose for now that interval variable a is present.
In theTLR, the valuevp of the expression2 is convexifiedover
the CP domain [Y ,Y] of the interval endpoint y as illustrated
in Fig. 2.

When the interval variable is optional, if x denotes the
presence status of the interval variable, the expression is lin-
earized as v = vp + (1 − x)(V 0 − F(Y 0)).

Indeed, when the interval variable is present (x = 1), we
will be back to the above casewith v = vp.When the interval
variable is absent (x = 0), we will have y = Y 0 by definition
of Y 0 (see Sect. 4.2). In this case by definition of vp as being
the convex domain of F , F(Y 0) will still be a possible value
for vp, and thus F(Y 0) + (1 − x)(V 0 − F(Y 0)) = V 0 a
possible value for the expression.

More generally, all the expressions over interval variables
in CP Optimizer involve some absence value V 0 that rep-
resents the value of the expression when some interval is
absent (Laborie and Rogerie 2008). Unary expressions on
the ranges of an interval variable follow the same scheme
as piecewise linear expressions: for example, the expression
startOf(a, V 0) is relaxed by s(a) + (1 − x(a))(V 0 − S0),
where S0 is the absence value of the start of a (see Sect. 4.2).

2 Subscript p stands for presence value as this is the value of the expres-
sion in case the interval variable is present.

a1

a2

c11

c12 c21

c22

s1

s2

e1

e2

Fig. 3 Overlap length expression

4.6 Arithmetical expressions

CP Optimizer provides a wide range of arithmetical non-
linear expressions such as mini xi , maxi xi , xy, 1/x , |x |, xk ,
ex , log(x), etc.

The TLR implements some classical linear relaxations of
those expressions. For instance,

– Univariate expressions are convexified in a similar way
as piecewise linear expressions. For instance, expressions
x2k+1 are convexified using envelopes studied in Liberti
and Pantelides (2003), and

– Bilinear terms xy assuming x ≥ 0 and y ≥ 0 are relaxed
and represented by a new variable z such that X y ≤ z ≤
X y and xY ≤ z ≤ xY

4.7 Overlap length expressions

An overlap length expression overlapLength(a1, a2, V 0)

measures the length of the intersection of two intervals a1
and a2 as illustrated in Fig. 3. The expression returns value
V 0 if some of the interval variables a1 or a2 is absent.

The overlap length is the minimum length of the four pos-
sible candidate intervals between an end point and a start
point of intervals {a1, a2}:

Candidate terms: ∀i, j ∈ {1, 2}, ci j = max(0, e j − si)
Overlap length: min(c11, c22, c12, c21).

Overlap length expressions are a useful complement of
precedence constraints. They can be used for measuring the
partial or total temporal disjunction between two tasks or for
computing the total energy required by a set of activities ai
requiring qi units of resource over some time window b as∑

i qi overlapLength(ai , b, 0).
The relaxation of the overlap length expression will allow

to present a general scheme for the formulation in the TLR of
any binary expression and constraint on interval variables. It
will also illustrate how to exploit the data structure of prop-
agation algorithms to calculate a tight convexification of the
expression.

123

J Sched (2016) 19:391–400 397

4.7.1 Handling optionality in binary expressions

This section shows how similar ideas as the ones used to lin-
earize unary expressions can be applied to binary expressions
like overlap length.

Let us consider the expression overlapLength(a1, a2, V 0).
Let x1 and x2 denote the [0,1] continuous variables in the
TLR that represents the presence status of intervals a1 and
a2. Variable ovp denotes the value of the overlap length
expression computed by considering the values of the end-
points of the interval variables in the TLR (s1, e1, l1, s2, e2,
l2). When both interval variables x1 and x2 are present, the
value of this expression coincides with the value of expres-
sion overlapLength(a1, a2, V 0), that is why we call such an
expression ovp the present interval formula. Its formulation
will be described in Sect. 4.7.2. When both interval vari-
ables x1 and x2 are absent, the value of ovp denoted OV 0

will be equal to the overlap length of intervals [S01 , E0
1) and

[S02 , E0
2). OV and OV denote the lower and upper bound of

ovp as computed using the current bounds in the propagation
engine. With x12 = x1x2, the overlap length expression ov
to linearize is

ov = x12ovp + (1 − x12)V
0. (1)

We consider two cases depending on whether or not there
exists some relation between the presence statuses x1 and
x2.

General case (no relation between x1 and x2). Relation
x12 = x1x2 is linearized as x12 ≤ x1, x12 ≤ x2, and
x1 + x2 ≤ x12 + 1. The formulation in the TLR consists
in linearizing the bilinear term x12 ovp in Eq. 1:

0 + (1 − x12) V
0 ≤ ov ≤ ovp + (1 − x12) V

0

x12 OV + (1 − x12) V
0 ≤ ov ≤ x12 OV + (1 − x12) V

0.

Case with dependencies between x1 and x2. The formula-
tion of the general case above can be tighten in case some
dependency exists between the presence statuses:

– if x1 ⇒ ¬x2, we know that x12 = 0 and ov = V 0

– if x1 ⇒ x2, we know that x12 = x1 so we can directly
use x1 instead of x12 in the linearization of x12 ovp

– if x1 ⇔ x2, we can linearize the overlap length as ov =
ovp + (1 − x1)(V 0 − OV 0)

This formulation is a general scheme that can be applied
to any binary expression or constraint. We will now see how
the present interval formula ovp is linearized in the case of
the overlap length expression.

4.7.2 Convexification of present interval formula ovp

For the overlap length expression, we have seen that ovp can
be formulated as the minimal value of four candidate terms
ovp = min(c11, c22, c12, c21). Terms cii are the length of
interval ai , they already have a corresponding term li in the
TLR. Terms c12 and c21 measure how much a1 precedes or
follows a2. Their linearization in the TLR is the one of the
max(0, e j − si) expression.

Upper bound formulation of ovp The upper bound of ovp
is formulated by stating constraints ovp ≤ ci j for all i, j ∈
{1, 2}. Good practices in propagation consist in memorizing
and incrementally maintaining supports for bounds on range
involved in a constraint or an expression. By support, we
mean a piece of information that can be updated in reasonable
time and that avoids further calculations. For the upper bound
of the overlap expression, with C = {

ci j , i, j ∈ {1, 2}}, the
support S is a minimal set of candidates required to calcu-
late the upper bound of ovp. Initially, we set S = C . If C
and C , respectively, denote the lower and upper bounds on a
candidate c:

∀c ∈ S ,
(∃ c′ ∈ S \ {c} | C ′ ≤ C

) ⇒ c /∈ S .

Maintaining S is of interest if the constrained structures
involving the variables allow to reduce its size. Here are some
typical usages ofS in the propagation engine and in theTLR:

– S is empty the propagation engine has found an incon-
sistency.

– S is a singleton {c} the propagation engine filtering rule
is OV = C , and the constraint c = ovp is added to the
TLR.

Convexification of the lower bound of ovp By considering a
minimal setS , the propagationmayachieve stronger domain
reductions on a range of the intervals. Eventually,S allows
to improve the convexification of ovp. Figure 4 illustrates the
idea of this convexification. We suppose |S | > 1. Be c and
c′ the two candidates inS such that C is the minimal value
of the overlap length (OV = C) and C ′ is the next minimal
value of the overlap length.

Suppose we have C < C ′. Necessarily, C ′ < OV ≤ C ;
otherwise, c would be the only candidate in S . Conse-
quently, an upper bound inequality can be stated as

(C − OV)ovp ≥ (OV ′ − OV)c + OV (C − OV ′).

Removing candidates of same or near lower bound
strengthen the relaxation. Next paragraph show how prece-
dences may remove candidates.

123

398 J Sched (2016) 19:391–400

valid domain for
overlap length

ovp

c

relaxation

COV =

OV

C'C c c’ c’’
OV

'C

C

Fig. 4 Overlap length relaxation of lower bound

Candidate elimination The propagation engine uses two
kinds of argument to compute and incrementally maintain
a setS .

– Propagation of the constraint network on the expression:
when a new upper bound ub of the overlap length is prop-
agated, the following rule applies:

∀c ∈ S ,
(∃c′ ∈ S \ {c} ,min(C

′
, ub)) ≤ C

) ⇒ c /∈ S .

– Precedence network: if, from the precedence network or
the actual bound of the range of intervals, e1 ≤ e2, then
c11 = e1−s1 ≤ e2−s1 ≤ c21. That is, c21 can eventually
be removed fromS . The elimination rules are

∀i, j ∈ {1, 2}|i �= j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

si ≤ s j ⇒
{
c1 j ∈ S ⇒ c1i /∈ S
c2 j ∈ S ⇒ c2i /∈ S

ei ≤ e j ⇒
{
ci1 ∈ S ⇒ c j1 /∈ S
ci2 ∈ S ⇒ c j2 /∈ S

.

In CP Optimizer, the TLR is computed after restoration of
the relaxed POS. The relaxed POS containsmany precedence
relations that strongly benefits the candidate elimination.

4.8 Timelines and their constraints

Timelines (resources) and their related constraints are often
discrete, sometimes disjunctive andgenerally non-linear con-
cepts. That is one of the reasons why scheduling problems
are often difficult to solve withMP techniques alone. Indeed,
although several linear formulations of resources have been
developed in MP (Hooker 2006), these formulations are
quite expensive. Typically, their size depends on the num-
ber of time values for time-indexed formulations of cumula-
tive resources or is quadratic in the number of activities for
disjunctive formulations.

By construction of the POS in the LNS, timelines val-
ues are represented as a set of precedence constraints. Those
precedence constraints give flexibility for re-inserting the

interval variables of the relaxed LNS fragment. They also
fit well in the TLR because they are linear constraints (see
Sect. 4.2). In this context, the TLR solved at the root node of
an LNS iteration will provide guidelines for re-positioning
the relaxed interval variables in the frozen part of the tempo-
ral network.

A very tight relaxation of the timelines constraints is not
crucial here because most of those constraints are already
linearized as precedence constraints in the POS. This being
said that the TLR includes some global linear constraints
related with timelines. For instance, for a maximum value of
a cumul function like f = ∑

i pulse(ai , hi) ≤ K , if Tmin

and Tmax, respectively, denote the minimal start value and
maximal end value of all possibly present intervals ai , then
the following constraint must hold:
∑

i

li hi ≤ K (Tmax − Tmin).

This type of energetic constraints is added in the TLR for
each cumul function.

5 Experimental evaluation

We studied the impact of the TLR on 15 scheduling bench-
marks involving irregular temporal cost functions (T) and/or
interval presence-related costs (P):

(1) Audit scheduling problems (Brucker and Schumacher
1999) (P)

(2) Job-shop with earliness/tardiness costs (Baptiste et al.
2008) (T)

(3) Oversubscribed satellite communication scheduling
(Kramer et al. 2007) (P)

(4) Personal tasks scheduling (Refanidis 2007) (T&P)
(5) Multi-machine assignment scheduling (Bockmayr and

Pisaruk 2006) (P)
(6) RCPSP with discounted cash flows Vanhoucke (2010)

(T)
(7) Single machine instances of the Masc Lib (Nuijten et

al. 2004) (T)
(8) Flow-shop with earliness/tardiness costs (Morton and

Pentico 1993) (T)
(9) RCPSPwith earliness/tardiness costs (Vanhoucke et al.

2001) (T)
(10) Aircraft landings scheduling (Beasley et al. 2000) (T)
(11) Single machine scheduling with earliness/tardiness

costs (Bulbul et al. 2007) (T)
(12) Maximal quality RCPSP (Policella et al. 2005) (T)
(13) A non-public scheduling problem with earliness/

tardiness costs (T)
(14) Common due-date scheduling problems (Biskup and

Feldmann 2001) (T)

123

J Sched (2016) 19:391–400 399

Table 2 Benchmarks overview

Benchmark Instances Size Time limit

1 40 [94,561] [60,177]

2 48 [63,411] [105,588]

3 150 [4300,7270] [176,264]

4 70 [95,915] [300,300]

5 34 [65,663] [200,200]

6 50 [403,403] [300,300]

7 116 [17,1000] [60,1058]

8 12 [34,309] [105,917]

9 60 [43,103] [176,176]

10 25 [22,254] [60,176]

11 40 [102,402] [176,705]

12 400 [51,66] [60,60]

13 1 4280 706

14 20 [202,402] [350,700]

15 18 [151,301] [177,353]

Fig. 5 Speed-up factor when using TLR

(15) Dynamic resource feasibility problems (Sakkout 1998)
(T)

Experimentswere performedwithCPOptimizerV12.6.0.1.
For each instance of the above benchmarks, we generate a
reference by running for a certain time CP Optimizer with
the TLR switched off. The time limit depends on the bench-
mark and the problem size. The speed-up factor measures
on average how much less time it takes to get to that ref-
erence with the TLR activated (default settings). The num-
ber of instances of each benchmark as well as the range of
problem sizes (in number of variables) and time limits (in
s) are described on Table 2. Note that in CP Optimizer, the
TLR can be switched off by setting the search parameter
TemporalRelaxation to value Off.

The results are summarized in Fig. 5. In the figure, the
speed-up factor is capped to 100. On benchmarkswith speed-
up greater than 100, we noticed that even the initial solution
using the TLR could never be reached within the time limit
when not using the TLR.

Three categories of benchmarks are considered: problems
with irregular temporal costs, problems with the presence-
related cost, and problems with both types of costs.

The experimental evaluation clearly shows that the TLR
is essential for problems with irregular temporal costs and
generally helps for problem with the presence-related costs.

6 Conclusion

This paper presents the temporal linear relaxation of the CP
Optimizer model and its integration in the automatic search
to control the completion strategies. We think that this loose
coupling between a relaxation and the CP engine at the root
node of eachLNS iteration is an efficient and robustmethod if
the relaxation can exploit the dominant structures of the prob-
lem to provide well-informed guidelines for the completion
strategy. In the context of CP Optimizer where only a part of
the POS is unfrozen, the TLR tends to be very informative as
most of the resource constraints are still captured by frozen
precedence arcs of the POS. For instance, in the extreme case
of an empty fragment where no interval variables are relaxed
in the POS, the TLR boils down to the computation of the
optimal placement of interval variables given the temporal
network of the POS.

Future work will concern both the control and the diver-
sification of the temporal relaxation by

– Controlling the size and the content of the TLR depend-
ing on the characteristics of the problem and the current
impact on the search,

– Exploring tighter relaxations in the TLR, for instance by
solving a MILP enforcing the Boolean presence status of
interval variables, and

– Considering concurrent relaxations that exploit other
dominant structures of the problem like capacity plan-
ning, general assignment, or sequencing problems.

References

Baptiste, P., Flamini, M., & Sourd, F. (2008). Lagrangian bounds
for just-in-time job-shop scheduling. Computers and Operations
Research, 35, 906–915.

Beasley, J., Krishnamoorthy, M., Sharaiha, Y., & Abramson, D. (2000).
Scheduling aircraft landings—The static case. Transportation Sci-
ence, 34, 180–197.

Beck, C.,&Refalo, P. (2001). A hybrid approach to schedulingwith ear-
liness and tardiness costs. In Proceedings of the 3th international
CP-AI-OR conference (CP-AI-OR 2001).

Biskup, D., & Feldmann, M. (2001). Benchmarks for scheduling on a
single machine against restrictive and unrestrictive common due
dates. Computers and Operation Research, 28(8), 787–801.

Bockmayr, A., & Pisaruk, N. (2006). Detecting infeasibility and gen-
erating cuts for mixed integer programming using constraint pro-
gramming. Computers and Operations Research, 33, 2777–2786.

123

400 J Sched (2016) 19:391–400

Brucker, P., & Schumacher, D. (1999). A new tabu search procedure for
an audit-scheduling problem. Journal of Scheduling, 2, 157–173.

Bulbul, K., Kaminsky, P., & Yano, C. (2007). Preemption in single
machine earliness/tardiness scheduling. Journal of Scheduling, 10,
271–292.

Ciré, A., Coban, E., & Hooker, J. (2013). Mixed integer programming
vs. logic-based benders decomposition for planning and schedul-
ing. In Proceedings of the CP-AI-OR 2013.

Danna, E., & Perron, L. (2003). Structured versus unstructured large
neighborhood search: A case study on job-shop scheduling prob-
lems with earliness and tardiness costs. In Proceedings of the 9th
International CP Conference (CP 2003) (pp. 817–821).

Desaulniers, G., Desrosiers, J., & Solomon, M. (Eds.) : (2005), Column
generation. New York: Springer.

Godard, D., Laborie, P., & Nuijten, W. (2005). Randomized Large
Neighborhood Search for Cumulative Scheduling. In Proceedings
of the ICAPS-05 (pp. 81–89).

Hooker, J. (2006). Integrated methods for optimization. Heidelberg:
Springer.

Kramer, L.A., Barbulescu, L.V., & Smith, S.F. (2007). Understanding
performance tradeoffs in algorithms for solving oversubscribed
scheduling. In Proceedings of the 22nd AAAI conference on arti-
ficial intelligence (AAAI-07) (pp. 1019–1024).

Laborie, P., & Rogerie, J. (2008). Reasoning with conditional time-
intervals. In Proceedings of the 21th international FLAIRS con-
ference (FLAIRS 2008).

Laborie, P., Rogerie, J., Shaw, P., & Vilím, P. (2009). Reasoning
with conditional time-intervals, Part II: An algebraical model for
resources. In Proceedings of the 22th international FLAIRS con-
ference (FLAIRS 2009).

Liberti, L., & Pantelides, C. C. (2003). Convex envelopes of monomials
of odd degree. Journal of Global Optimization, 25, 157–168.

Morton, T., & Pentico, D. (1993). Heuristic scheduling systems. New
York: Wiley.

Nuijten, W., Bousonville, T., Focacci, F., Godard, D., & Pape, C.L.
(2004). Towards an industrial manufacturing scheduling problem
and test bed. In Proceedings of the 9th international conference
on project management and scheduling.

Policella, N., Cesta, A., Oddi, A., & Smith, S. (2004). Generating robust
schedules through temporal flexibility. In Proceedings ICAPS-04,
Whistler.

Policella, N., Wang, X., Smith, S., & Oddi, A. (2005). Exploiting tem-
poral flexibility to obtain high quality schedules. In Proceedings
of the AAAI-2005.

Refalo, P. (2000). Linear formulation of constraint programmingmodels
and hybrid solvers. In Proceedings of the CP-2000.

Refanidis, I. (2007). Managing personal tasks with time constraints and
preferences. In Proceedings of the 17th international conference
on automated planning and scheduling systems (ICAPS-07) (pp.
272–279).

el Sakkout, H., Richards, T., & Wallace, M. (1998). Minimal perturba-
tion in dynamic scheduling. In Proceedings of the ECAI-98.

Shaw, P. (1998). Using constraint programming and local search meth-
ods to solve vehicle routing problems. InProceedings of the CP-98
(pp. 417–431).

Vanhoucke, M. (2010). A scatter search heuristic for maximising the
net present value of a resource-constrained project with fixed activ-
ity cash flows. International Journal of Production Research, 48,
1983–2001.

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2001). An
exact procedure for the resource-constrained weighted earliness-
tardiness project scheduling problem. Annals of Operations
Research, 102(1–4), 179–196.

123

	Temporal linear relaxation in IBM ILOG CP Optimizer
	Abstract
	1 Introduction
	2 CP Optimizer model for scheduling
	3 Integration of TLR in CP Optimizer automatic search
	4 Temporal linear relaxation formulations
	4.1 Interval variables and logical constraints
	4.2 Precedence constraints
	4.3 Alternative constraints
	4.4 Span constraints
	4.5 Piecewise linear expressions
	4.6 Arithmetical expressions
	4.7 Overlap length expressions
	4.7.1 Handling optionality in binary expressions
	4.7.2 Convexification of present interval formula ovp

	4.8 Timelines and their constraints

	5 Experimental evaluation
	6 Conclusion
	References

