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Abstract We consider a scheduling problem where a set
of jobs has already been scheduled to minimize some cost
objective on a single machine when the machine becomes
unavailable for a period of time. The decision-maker needs
to reschedule the jobs without excessively disrupting the orig-
inal schedule. The disruption is measured as the maximum
time deviation, for any given job, between the original and
new schedules. We examine a general model where the max-
imum time disruption appears both as a constraint and as part
of the cost objective. For a scheduling cost modeled as the
makespan or maximum lateness, we provide a pseudopoly-
nomial time optimal algorithm, a constant factor approxima-
tion algorithm, and a fully polynomial time approximation
scheme. The approximation algorithm has an asymptotically
achievable worst-case performance ratio of 2 and has average
performance close to optimal. Managerial insights are given
on how scheduling costs are affected by machine disruption
and the approximation algorithm.

Keywords Deterministic scheduling · Rescheduling ·
Dynamic programming · Machine disruption

1 Introduction

The topic of rescheduling has garnered much attention in
recent years. When considering the dynamic nature and
unforeseen changes that can occur in modern production and
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service environments, a scheduling system must be able to
efficiently alter an existing schedule (Vieira et al. 2003). Dis-
ruptions that create the necessity for rescheduling include due
date changes, labor strikes, machine breakdowns, materials
shortages, order cancelations, and the like.

Many rescheduling applications have been reported. Bean
et al. (1991) introduce a matchup scheduling approach for
an automotive industry application that compensates for the
presence of disruptions. Zweben et al. (1993) use iterative
repair heuristics in a rescheduling system that supports the
space shuttle. In a shipyard application, Clausen et al. (2001)
describe a model for rescheduling the storing of steel plates
for efficient access as well as the assigning of stacker crates
to berths at different container ports. Yu et al. (2003) inves-
tigate a short-range airline planning problem and present
an optimization-based rescheduling approach in the pres-
ence of disruptions caused by crew unavailability, inclement
weather, and air traffic. In a typical health care setting, when
scheduling patients to operating rooms, regular patients are
scheduled in advance, but operating rooms may later become
unavailable due to the arrival of urgent medical cases, creat-
ing the need for rescheduling (Thompson et al. 2009).

The purpose of this paper is to investigate how to resched-
ule jobs from a previously optimized schedule in a produc-
tion environment that experiences a disruption. Initially, we
assume that an optimal schedule for a set of jobs on a single
machine exists that minimizes a cost objective. However, the
processing of most of these jobs has not yet been initiated.
This type of situation can exist when schedules are created
prior to the work start date; in practice, this could typically be
several weeks prior to initiation of job processing. Based on
this optimal schedule, commitments to customers and allo-
cation of resources have already been determined. Then, due
to an unforeseen disruption prior to execution of the sched-
ule, the machine becomes unavailable for a window of time,
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requiring rescheduling of the previously optimized sched-
ule. This situation can create havoc for the already existing
resource allocation. Thus, with any rescheduling, it is impor-
tant to adhere to the cost objective utilized in the original
schedule, while minimizing disruption with respect to the
original schedule. In this paper, we develop mathematical
models that take into account the tradeoff between schedul-
ing cost and severity of disruption.

The degree of disruption over an existing schedule is
often modeled as a constraint or part of a cost objective.
In some cases, the cost of disruption is difficult to gauge,
such as loss of reputation or customer goodwill. For exam-
ple, this can occur when patients are rescheduled to different
surgery times. Thus, controlling the severity of disruption
is captured as a constraint (Hall and Potts 2004; Hall et al.
2007; Yuan and Mu 2007). In some other cases, it is eas-
ier to estimate the costs of disruption, as in the case where
a disruption primarily increases internal production costs.
Thus, modeling the disruption as part of a cost objective,
in essence, considers the tradeoff between disruption and
scheduling costs (Unal et al. 1997; Hall and Potts 2004;
Qi et al. 2006; Yang 2007). In this work, we model dis-
ruption both as a constraint and as part of a cost objective
function.

Due to its importance, scholars have proposed divergent
approaches to rescheduling for a variety of scheduling envi-
ronments. Vieira et al. (2003), Aytug et al. (2004), Herroelen
and Leus (2005), and Yang et al. (2005) provide extensive
reviews of the rescheduling literature, including taxonomies,
strategies, and algorithms, in both deterministic and stochas-
tic environments. Also, Yu and Qi (2004) demonstrate the
framework, models, and applications in disruption manage-
ment, with specific focus on scheduling problems. Pinedo
(2012), in his treatise on scheduling theory, provides a broad
set of descriptions of rescheduling problems. A review of the
literature on problems similar to that described in this paper
follows.

Single machine rescheduling with newly arrived jobs is
considered by Unal et al. (1997), Hall and Potts (2004), Hall
et al. (2007), Yang (2007), and Yuan and Mu (2007). Unal et
al. (1997) investigate the problem where new jobs with type-
dependent setup times are inserted into an existing schedule
with jobs having due dates to meet, to minimize the dis-
ruption cost plus the makespan or the total weighted com-
pletion time of the new jobs. Hall and Potts (2004) study
the case where a set of new jobs is inserted into an existing
schedule, where either total scheduling cost is minimized
subject to a limit on disruption cost, or a total cost is mini-
mized that incorporates both scheduling and disruption costs.
Hall et al. (2007) examine a situation with multiple arrivals
of new jobs, where maximum lateness is minimized, sub-
ject to a limit on maximum time disruption. Yang (2007)
considers the problem with new jobs having time compres-

sion cost, where the objective is to minimize the total of
compression costs, disruption costs, and scheduling costs.
Yuan and Mu (2007) examine rescheduling with new jobs,
where jobs have release dates, and the objective is to min-
imize makespan subject to a limit on maximum sequence
disruption.

Single machine rescheduling with job unavailability is
studied by Hall and Potts (2010). These authors consider a
situation where a set of jobs is available later than expected,
with an objective to minimize total scheduling cost, subject
to a limit on maximum time disruption.

Single-machine rescheduling with changed job character-
istics is investigated by Wu et al. (1993). These authors con-
sider a case where after a schedule has been determined, the
release dates of jobs are changed. The problem is modeled
using bicriteria optimization, with maximum lateness as one
criterion, and total time or sequence disruption as the other
criterion.

Rescheduling for machine disruption is examined by
Leon et al. (1994), Azizoǧlu and Alagöz (2005), and Qi
et al. (2006). Leon et al. (1994) propose a method to find
a schedule for a job shop that is robust to an unfore-
seen period of machine unavailability, where robustness is
defined over makespan and delay of job processing. Azizoǧlu
and Alagöz (2005) investigate a problem with identical
parallel machines, where rescheduling occurs when one
machine becomes unavailable for a period of time. Total
completion time and number of jobs processed on different
machines in the original and new schedules are minimized
using bicriteria optimization. Qi et al. (2006) investigate a
rescheduling problem with machine unavailability in both
single and two-machine settings, with an objective to mini-
mize total completion time plus different measures of time
disruption.

In light of the existing literature on rescheduling, our work
considers a new rescheduling model with machine disrup-
tion. While Leon et al. (1994) focus on the design of a robust
schedule, we consider how to adjust an existing schedule
in the event of a machine disruption. The scheduling cost
used by Azizoǧlu and Alagöz (2005) and Qi et al. (2006) is
total completion time, while we use makespan and maximum
lateness. Also, we use maximum time disruption, instead of
a measure of total disruption, to model the disruption cost
over the original schedule.

This paper proceeds as follows. In Sect. 2, we formally
define our models. In Sect. 3, we develop structural results
and optimization algorithms. In Sect. 4, we provide a con-
stant factor approximation algorithm, and evaluate aver-
age performance of the algorithm using a computational
study. In Sect. 5, a fully polynomial time approximation
scheme is designed. Finally, the paper is concluded with
Sect. 6, which also sets forth recommendations for future
research.
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2 Definitions

We begin by introducing relevant definitions, notations, and
classifications. Let J = {1, . . . , n} denote a set of jobs that
are to be processed nonpreemptively on a single machine.
It is assumed that the jobs have been previously sequenced
in an optimal schedule minimizing some classical objective
and that π∗ represents an already optimized schedule with
no idle time between jobs. Let T1 and T2 (T2 ≥ T1) denote
the beginning and end of a time period, during which the
machine is unavailable for processing jobs. We assume that
both T1 and T2 are known at time zero, prior to processing, but
after scheduling the jobs of J . There is no loss of generality
to this assumption: If after time zero T1 and T2 are both
known, then the jobs of J having already been processed are
removed from the problem, and partially processed jobs, at
most one, can either be processed to completion and removed,
or processing can be halted immediately and started again
from the beginning at a later time, with J and n updated
accordingly. Let p j denote the processing time of job j, d j

its due date, for j = 1, . . . , n. We assume throughout our
model that all values of p j and d j are known integers. Lastly,
we let pmin = min j∈J {p j } and P = ∑

j∈J p j .
For a feasible schedule σ of the jobs of J , we define the

following terms:

S j (σ ) = the start time of job j, for j ∈ J ;
C j (σ ) = S j (σ ) + p j , the time at which job

j is completed, for j ∈ J ;
L j (σ ) = C j (σ )−d j , the lateness of job j, for j ∈ J ;
� j (π

∗, σ ) = |C j (σ ) − C j (π
∗)|, the time disruption

of job j, for j ∈ J.

Let the maximum time disruption �max(π
∗, σ ) = max j∈J

{� j (π
∗, σ )}. When no ambiguity is present, we simplify the

terms S j (σ ), C j (σ ), L j (σ ),� j (π
∗, σ ) and �max(π

∗, σ ) to
S j , C j , L j ,� j and �max, respectively. The time disruption
models any penalties that result from changing of delivery
times of jobs to customers, as well as the cost associated with
the rescheduling of resources so that they are available when
needed. Also, let σ ∗ denote an optimal schedule after the
rescheduling.

Graham et al. (1979) establish a standard α|β|γ classifica-
tion scheme for scheduling problems. For the α term, we use
α = 1, h1 to denote a single machine with a single unavail-
able time period. For the β term, we denote �max ≤ k to
indicate that the maximum time disruption is no more than
k, where k is a constant integer set by managers to provide a
maximum allowable disruption to the rescheduling process.
When considering the γ term, we denote S as scheduling
cost and μ as the relative cost of one unit of disruption
compared to scheduling cost, where μ ≥ 0. In our mod-
els, S ∈ {Cmax, Lmax}, where Cmax = max j∈J {C j } denotes
makespan, i.e., the maximum completion time, of the jobs,

Table 1 Results for rescheduling problems

Objective Optimal algorithm Worst-case ratio bound

Cmax O(nT1k) 2

Thm 1 Thm 3

Lmax O(n2T1k) 2

Thm 2 Thm 4

and Lmax = max j∈J {L j } represents the maximum lateness
of the jobs. Subsequently, the objective functions considered
under γ require that the term S + μ�max be minimized.

In total, considering that the problems 1, h1|�max ≤
k|S + μ�max encompasses three special cases: (1) the
ordinary scheduling problem with machine unavailability
1, h1||S when k is sufficiently large and μ = 0; (2) the con-
strained problem 1, h1|�max ≤ k|S when μ = 0; and (3) the
total cost problem 1, h1||S + μ�max when k is sufficiently
large.

Table 1 provides a summary of our computational com-
plexity and approximation results for the rescheduling prob-
lems studied. The first column indicates which of the two
classical scheduling objectives is being considered. The sec-
ond column provides the time complexity of our optimal
algorithm in each case. The third column indicates the value
of the worst-case performance ratio for our approximation
algorithm. In the appropriate cells, readers can find a refer-
ence to the corresponding proof for each result.

3 Optimization

In Sect. 3.1 we describe the structural properties that reduce
the solution space requiring enumeration for finding an opti-
mal schedule for each problem. In Sect. 3.2, we develop an
optimal dynamic programming algorithm for solving each
problem, following the structural properties established in
Sect. 3.1.

3.1 Structural properties

In this section, we present and prove several properties of
an optimal schedule that will be used later to construct the
optimization algorithms. Note that multiple optimal sched-
ules may exist for the scheduling problem considered. The
properties we present are just for the purpose of finding an
optimal schedule using dynamic programming algorithms,
and may not be satisfied by every optimal schedule.

Consider the original optimal schedule π∗ before the
machine becomes unavailable. Selecting π∗ depends on what
the objective function is chosen to be. For the makespan
objective Cmax, the original optimal schedule π∗ is defined
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by an arbitrarily arranged job sequence. For the maximum
lateness objective Lmax, schedule π∗ is defined by an earliest
due date (EDD) sequence, where jobs are in a nondecreasing
order of due dates (Jackson 1955). For both cases, we assume
that the jobs are indexed in such a way that the schedule π∗ is
defined by the sequence (1, . . . , n) with no idle time between
jobs. For convenience, we denote π∗ = (1, . . . , n). Let
j1 = min{ j |C j (π

∗) > T1}, and j2 = min{ j |S j (π
∗) > T2}.

Here, j1 is the first job in π∗ completed after T1, and j2 is
the first job in π∗ to start after T2.

The constraint �max ≤ k implies that, in a feasible sched-
ule σ, S j (σ ) ≥ S j (π

∗) − k and C j (σ ) ≤ C j (π
∗) + k, for

j = 1, . . . , n. After rescheduling, the partial schedule of jobs
that finish their processing at time T1 or earlier is referred to
as the earlier schedule, and of jobs that begin their processing
at time T2 or later is referred to as the later schedule.

Next, we consider the values of T1, T2, and k that are
practical for study. First, if T1 < pmin, then by moving
schedule π∗ to start at T2, we can obtain schedule σ ∗. Sec-
ond, if T1 ≥ P , then σ ∗ = π∗. Thus, we assume that
pmin ≤ T1 < P . Third, by the definition of j1, at least
one of jobs 1, . . . , j1 in π∗ needs to be scheduled in the later
schedule. If k < T2 −S j1(π

∗), then it is not feasible to sched-
ule any of jobs 1, . . . , j1 in the later schedule. Therefore, we
proceed to assume that k ≥ T2 − S j1(π

∗). Throughout, we
assume each job in σ ∗ is processed as early as possible.

Note that processing jobs following the same sequence
as π∗, each as early as possible, is not necessarily optimal.
This is because such rescheduling may waste a long period
of machine idle time immediately preceding the start time T1

of the machine disruption. This suboptimality is shown by
the following example.

Example 1 n = 2; p1 = 1, p2 = r ; T1 = r, T2 = r + 1;
k = r + 1; μ = 0. The scheduling cost is the makespan.
If jobs are scheduled in the same sequence as π∗, each as
early as possible, then jobs 1 and 2 are scheduled in intervals
[0, 1] and [r + 1, 2r + 1], respectively, with a makespan of
2r + 1. In an optimal schedule, however, jobs 1 and 2 are
scheduled in intervals [r + 1, r + 2] and [0, r ], respectively,
with a makespan of only r + 2.

Next, we show that even though not exactly, the job
sequence of π∗ can be inherited in a certain degree by an
optimal schedule σ ∗ after rescheduling.

Lemma 1 There exists an optimal schedule σ ∗ for problem
1, h1|�max ≤ k|S + μ�max in which (a) the jobs in the
earlier schedule are sequenced in the same order as in π∗;
(b) the jobs in the later schedule are sequenced in the same
order as in π∗.

Proof (a) First, we consider the earlier schedule in σ ∗. If
property (a) is not met, then let j and i be the first pair of
jobs ( j, i) for which i precedes j in π∗ but j immediately

precedes i in σ ∗. We then generate a new schedule σ ′ by inter-
changing jobs j and i , where job i starts at time S j (σ

∗) and
job j starts at time S j (σ

∗) + pi . If C j (σ
′) ≥ C j (π

∗) (note
that this indicates Ci (σ

′) ≥ Ci (π
∗)), then �i (π

∗, σ ′) <

�i (π
∗, σ ∗) and � j (π

∗, σ ′) < �i (π
∗, σ ∗), and therefore

�max(π
∗, σ ′) ≤ �max(π

∗, σ ∗). Alternatively, consider the
case where C j (σ

′) < C j (π
∗). If Ci (σ

′) ≤ Ci (π
∗), then

�i (π
∗, σ ′) ≤ � j (π

∗, σ ′) < � j (π
∗, σ ∗); if Ci (σ

′) >

Ci (π
∗), then �i (π

∗, σ ′) < �i (π
∗, σ ∗) and � j (π

∗, σ ′) <

� j (π
∗, σ ∗). Hence we have �max(π

∗, σ ′) ≤ �max(π
∗, σ ∗)

under all conditions. Further, since π∗ is obtained by a prior-
ity index rule, we have S(σ ′) ≤ S(σ ∗), making σ ′ an opti-
mal schedule. A finite number of repetitions of this argument
establishes part (a).
(b) The sequence of jobs in the latter schedule is established
by the identical interchange argument given in part (a). ��

A period of machine idle time is called inserted idle time
period if it immediately precedes the processing of a job.
Note that after rescheduling, a job processed in the earlier
schedule of σ might be completed earlier than in π∗. In this
case, due to the maximum disruption constraint, the job might
be immediately preceded by an inserted idle time period. We
next establish properties of an optimal schedule for problem
1, h1|�max ≤ k|S + μ�max regarding inserted idle time
periods, which will make it easier to find an optimal schedule
using our algorithms. We consider the earlier schedule first.

Lemma 2 There exists an optimal schedule σ ∗ for problem
1, h1|�max ≤ k|S+μ�max, supposed to be with a maximum
time disruption of l time units, in which (a) the jobs in the
earlier schedule are processed with at most one inserted idle
time period; (b) each job processed in the earlier schedule
after an inserted idle time period is processed exactly l time
units earlier than in π∗; (c) the jobs processed in the earlier
schedule after an inserted idle time period are processed
consecutively in π∗.

Proof Let us assume an optimal schedule σ ∗ with more than
a single inserted idle time period in the earlier schedule. We
then show that schedule σ ∗ can be adjusted to satisfy (a),
(b), and (c), without increasing the scheduling cost or the
maximum time disruption.

According to Lemma 1, we assume that jobs in the ear-
lier schedule of σ ∗ are processed in the same sequence as
in π∗. Let job i be the job immediately following the first
inserted idle time period in the earlier schedule of σ ∗. Let
j3(l) = max{ j |C j (π

∗) − l ≤ T1}. Note that job j3(l) is
the last processed job in π∗ that can be scheduled in the
earlier schedule of σ ∗ with a time disruption no more than
l time units. By our definition of i and j3(l), there are no
other jobs besides i, i +1, . . . , j3(l) that can be scheduled in
the earlier schedule after an inserted idle time period with-
out increasing the maximum time disruption. We further note
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Fig. 1 Gantt chart for
Example 2

that Si (σ
∗) = Si (π

∗)− l, otherwise job i could be processed
earlier to reduce the length of the idle time period it fol-
lows, without increasing the maximum time disruption or its
scheduling cost. Note that there is no inserted idle time in
π∗. Therefore, scheduling jobs i, i + 1, . . . , j3(l) after the
first idle time period consecutively with no inserted idle time
between them is feasible, where each job is scheduled exactly
l time units earlier than in π∗. Obviously, such scheduling
of jobs i, i + 1, . . . , j3(l) will neither increase the schedul-
ing cost or the maximum time disruption from schedule σ ∗.
This constructs an optimal schedule that satisfies (a), (b), and
(c). ��

The inserted idle time period considered by Lemma 2, as
by definition, must immediately precede the processing of
a job. In the earlier schedule of an optimal schedule, there
might exist another idle time period that immediately pre-
cedes the start of the machine disruption. Example 2 illus-
trates how an inserted idle time period occurs and how the
properties in Lemma 2 are met by an optimal schedule of the
rescheduling problem.

Example 2 n = 3; p1 = 3, p2 = 7, p3 = 4; T1 = 6, T2 =
7; k = 9; μ = 0. The scheduling cost is the makespan. Sched-
ules π∗ and σ ∗ are depicted in Fig. 1, where the processing
time is specified in each task, and UN refers to the unavailable
period of the machine.

Next, we consider the property of the job immediately pre-
ceded by an inserted idle time period in the earlier schedule
of an optimal schedule.

Lemma 3 There exists an optimal schedule σ ∗ for problem
1, h1|�max ≤ k|S + μ�max in which if a job is immediately
preceded by an idle time period in the earlier schedule, then
in π∗ the job has a start time later than T2.

Proof According to Lemma 1, we assume that jobs in the
earlier schedule of σ ∗ are processed in the same sequence as
in π∗. Assume that job j immediately follows an idle time
period in the earlier schedule of σ ∗. By parts (a) and (b) of
Lemma 2, we assume that the time disruption of job j is l,
which is also the maximum time disruption of schedule σ ∗.
By contradiction, let us assume job j has a start time no later
than T2 in π∗, i.e., S j (π

∗) ≤ T2.
By assumptions, we have S j (σ

∗) + l = S j (π
∗) ≤ T2,

i.e., l ≤ T2 − S j (σ
∗). However, since no idle time period

exists in π∗, the time interval [0, S j (σ
∗)] is insufficient

for the processing of all jobs that are scheduled from 0 to
S j (σ

∗) in π∗. Note that jobs in the earlier schedule of σ ∗

are processed in the same sequence as in π∗, and thus there
must exist a job, denoted by j ′, that starts before S j (σ

∗) in
π∗ and is processed in the later schedule of σ ∗, i.e., starts at
time T2 or later in σ ∗. Therefore, the time disruption of job
j ′ is � j ′(π∗, σ ∗) > T2 − S j (σ

∗) ≥ l. This contradicts the
assumption that the maximum time disruption of schedule
σ ∗ is l. ��

Now, we consider the existence of an inserted idle time
period in the later schedule of an optimal schedule.

Lemma 4 There exists an optimal schedule σ ∗ for problem
1, h1|�max ≤ k|S + μ�max, in which the jobs in the later
schedule are processed without any inserted idle time period.

Proof According to Lemma 1, we assume that jobs in both
the earlier and later schedules of σ ∗ are processed in the same
sequence as in π∗, each as early as possible. By contradic-
tion, let us assume an optimal schedule σ ∗ with at least one
inserted idle time period in the later schedule.

Suppose job i is scheduled in the later schedule and is
preceded immediately by an inserted idle time period. Note
that all jobs processed earlier than i in π∗ are still processed
earlier than i in σ ∗. Therefore, due to the machine disruption,
in σ ∗ job i is processed no earlier than in π∗. Thus, the time
disruption of job i is nondecreasing with job completion time.
Also, the scheduling cost of job i is also nondecreasing with
job completion time. Therefore, scheduling job i one time
unit earlier, without changing the schedule of any other jobs,
will result in a feasible schedule with total scheduling cost
no less than that of σ ∗, which results in a contradiction with
the assumption that in σ ∗ each job is processed as early as
possible in the current sequence. ��

We next provide a property regarding the maximum time
disruption of jobs in the later schedule of an optimal schedule.

Lemma 5 There exists an optimal schedule σ ∗ for problem
1, h1|�max ≤ k|S + μ�max, in which among all the jobs in
the later schedule, the first processed job has the maximum
time disruption.

Proof We assume that schedule σ ∗ satisfies Lemmas 1 and
4. Under these assumptions, observe that no job in the later
schedule of σ ∗ can be completed earlier than in π∗. Suppose
job j is processed the first in the later schedule of σ ∗ and is
completed l time units later than in π∗. By contradiction, let
us assume a job j ′ processed later than j in σ ∗ is competed
l ′ time units later than in π∗, where l ′ > l.

By Lemma 1, we have that in both π∗ and σ ∗, job j is
processed earlier than j ′. Since there is no inserted idle time
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period in the later schedule of σ ∗, l ′ > l means that the total
processing time of jobs between j and j ′ in σ ∗ is larger than
the total processing time of jobs between j and j ′ in π∗. This
contradicts the assumption that the jobs in the later schedule
of σ ∗ are in the same sequence as in π∗. ��

Note that σ ∗ in Example 2 satisfies properties in Lem-
mas 1–5. Next, we consider how large the value of k in
the maximum time disruption constraint should be to make
problem 1, h1|�max ≤ k|S + μ�max degenerate to problem
1, h1||S + μ�max.

Lemma 6 In problem 1, h1|�max ≤ k|S + μ�max, if k ≥
max{T2, P − pmin}, then an optimal schedule is found by
solving problem 1, h1||S + μ�max.

Proof Let us consider the value of �max(π
∗, σ ∗), where

σ ∗ is an optimal schedule of problem 1, h1||S + μ�max

and satisfies Lemmas 1 and 2. We first consider jobs with
C j (σ

∗) > C j (π
∗). If C j (σ

∗) ≤ T2, then � j ≤ T2; other-
wise, Lemma 1 indicates that all the jobs completed after time
T2 and before job j in σ ∗ are processed before job j in π∗, and
thus � j ≤ T2. Alternatively, when C j (σ

∗) ≤ C j (π
∗), we

have � j ≤ P − pmin, since the makespan of π∗ is P . Thus,
�max(π

∗, σ ∗) ≤ max{T2, P − pmin}, and therefore, σ ∗ is an
optimal schedule for problem 1, h1|�max ≤ k|S + μ�max

with k ≥ max{T2, P − pmin}. ��
In view of Lemma 6, we assume that k ≤ max{T2, P −

pmin} in the following studies. The case k = max{T2, P −
pmin} addresses problem 1, h1||S + μ�max.

3.2 Optimal algorithms

The rescheduling problems occurring under both objec-
tive functions 1, h1|�max ≤ k|S + μ�max with S ∈
{Cmax, Lmax} are binary NP-hard, as follows from the
complexity results for special cases of 1, h1||Cmax and
1, h1||Lmax (Lee 1996). We focus on the design of pseudo-
polynomial time optimal algorithms in this section.

3.2.1 Makespan

We develop a dynamic programming algorithm to solve prob-
lem 1, h1|�max ≤ k|Cmax+μ�max optimally. The algorithm
does not directly track the makespan of a schedule. Instead,
the algorithm finds the length of the inserted idle time period
of the schedule; then, the makespan can be calculated using
the length of the inserted idle time period, the maximum
completion time of jobs in the earlier schedule, and the total
processing time of all jobs.

Algorithm Makespan (M)
Input

Given p1, . . . , pn, π∗ = (1, . . . , n) where jobs are indexed
arbitrarily, T1, T2 and k.

Initialization
Find j1 = min{ j |C j > T1}. Let z∗ = ∞ and l = k.
Value Function
fl( j, t) = the minimum value of the length of inserted idle
time period within the earlier schedule in a schedule for jobs
1, . . . , j that has an earlier schedule with makespan of t ,
under the constraint that the maximum time disruption is no
greater than l time units.
Boundary Condition

fl(0, t) =
{

t, if 0 ≤ t ≤ T1,

∞, otherwise.

Optimal Solution Value for Given l
min

0≤t≤T1
{P + T2 − t + fl(n, t)}, and let σl denote the corre-

sponding schedule.

Recurrence Relation

fl ( j, t)

= min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fl ( j − 1, t), if S j (π
∗) + l ≥ T2, (1)

fl ( j − 1, t − p j ), if C j (π
∗) − l < t, (2)

min
0≤t ′≤t−p j

{ fl ( j − 1, t ′) + S j (π
∗) − l − t ′}, if C j (π

∗) − l = t, (3)

∞, otherwise. (4)

The sequence of jobs considered by the recurrence relation
is verified by Lemma 1. In the recurrence relation, Eq. (1)
places job j in the later schedule, under the condition that job
j has a time disruption not exceeding l time units. All jobs
satisfying S j (π

∗) + l ≥ T2 can be feasibly scheduled after
machine disruption, since they are scheduled sequentially in
π∗ with different start times. By Lemma 5, among jobs in
the later schedule, the first processed job has the maximum
time disruption. Eq. (2) places job j in the earlier schedule
with start time t − p j and a completion time t , with no idle
time preceding it, where condition C j (π

∗) − l < t guaran-
tees that job j has a time disruption strictly less than l time
units. Eq. (3) also places job j in the earlier schedule, but
allows idle time to precede it, under condition that job j is
completed exactly l time units earlier than in π∗. When none
of the three conditions holds, job j cannot be feasibly sched-
uled and a prohibitively large cost is assigned by Eq. (4). Note
that for Eqs. (1–3) in the recurrence relation, the condition of
each job j is necessary, but not sufficient. For example, a job
satisfying S j (π

∗)+ l ≥ T2 in Eq. (1) may not necessarily be
scheduled in the later schedule. In other words, a job j may
satisfy more than one equation of Eqs. (1–3), and the recur-
rence relation schedules j in a way that leads to an optimal
schedule.
Termination Test
Let zl = Cmax(σl) + μ�max(π

∗, σl). If zl < z∗, then update
z∗ = zl . If �max(π

∗, σl) > T2 − S j1(π
∗), then update l =

�max(π
∗, σl)−1 and recalculate the Optimal Solution Value;

otherwise, backtrack to find an optimal schedule with total
cost z∗.
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Note that even though the makespan is nonincreasing with
l, the disruption cost is increasing with l. Therefore, it is hard
to find an optimal l without an implicit enumeration as used
by the termination test. Further, note that part (b) of Lemma 2
plays an important role in the recurrence relation. By part (b)
of Lemma 2, given that �max = l, inserted idle time only
needs to be considered under the condition C j (π

∗) − l = t ,
and hence we need to consider inserted idle time only for one
t value for each pair of l and j , which greatly saves computing
time. Lemma 4 is used by the recurrence relation in that no
inserted idle time is considered when a job is processed in
the later schedule. Parts (a) and (c) of Lemma 2 are not used
by the recurrence relation. But it is not difficult to justify that
for an optimal schedule found, there is at most one inserted
idle time period in the earlier schedule, otherwise removing
the idle time in the earlier schedule can reduce makespan
without increasing the maximum time disruption, and thus
the schedule cannot be optimal.

In the Optimal Solution Value step, makespan is equal to
P + T2 − t plus the length of the inserted idle time period
within the earlier schedule. In the Termination Test step,
the cost of the maximum time disruption is added to total
cost, and variant values of the maximum time disruption are
implicitly enumerated.

Theorem 1 Algorithm M finds an optimal schedule for prob-
lem 1, h1|�max ≤ k|Cmax + μ�max in O(nT1k) time.

Proof Algorithm M uses structural properties justified in
Lemmas 1, 2, 4 and 5. Since the costs of all possible state tran-
sitions are compared, Algorithm M generates optimal sched-
ules for problem 1, h1|�max ≤ l|Cmax for all considered
values of l. Therefore, σl is an optimal schedule for prob-
lem 1, h1|�max(π

∗, σl) ≤ �max ≤ l|Cmax + μ�max. The
values of l considered in the Termination Test step ensure
that an optimal schedule for problem 1, h1|T2 − S j1(π

∗) ≤
�max ≤ k|Cmax + μ�max is found, which is also opti-
mal for problem 1, h1|�max ≤ k|Cmax + μ�max given that
�max(π

∗, σ ) ≥ T2 − S j1(π
∗) for any feasible schedule σ .

Now, we consider the time complexity of Algorithm M.
Since j ≤ n, t ≤ T1 and l ≤ k, the number of possible values
for the state variables is O(nT1k). Eqs. (1–2) in the recur-
rence relation require only constant time. Eq. (3) requires
O(T1) time, but is computed for just one value of t for each
corresponding pair of l and j , i.e., when C j (π

∗) − l = t .
Therefore, the overall time complexity of Algorithm M is
O(nT1k). ��
Corollary 1 Algorithm M finds an optimal schedule for
problem 1, h1|�max ≤ k|Cmax in O(nT1) time, and for prob-
lem 1, h1||Cmax + μ�max in O(nT1 max{T2, P}) time.

Proof Note that when μ = 0, it suffices to consider a single
value of l = k, so the result of the first part follows Theo-

rem 1. The result of the second part follows Lemma 6 and
Theorem 1. ��

3.2.2 Maximum lateness

We design a dynamic programming algorithm that solves
problem 1, h1|�max ≤ k|Lmax + μ�max optimally.

Under the assumption that in σ ∗ jobs in the earlier sched-
ule are processed in the same sequence as in π∗, as verified
by Lemma 1, and are processed as early as possible in that
sequence, we have that in σ ∗ any job in the earlier schedule
is processed no later than in π∗. Hence, only the maximum
lateness of jobs in the later schedule is considered by our algo-
rithm. If the maximum lateness of jobs in the later schedule is
greater than or equal to Lmax(π

∗), then this value is the max-
imum lateness of the new schedule. Otherwise, Lmax(π

∗) is
the maximum lateness of the new schedule, since the max-
imum lateness of a new schedule will never be less than
Lmax(π

∗).
To find the maximum lateness, we track total processing

time of jobs in the earlier schedule, to ensure that they are
feasibly scheduled, and the completion time of each job in the
later schedule, to determine its lateness. The possible inserted
idle time periods in the earlier schedule further complicate
the problem. Using pseudopolynomial terms to enumerate
these values will greatly increase time complexity relative to
Algorithm M. Fortunately, in view of Lemma 2, in the earlier
schedule, after one inserted idle time period, if it exists, jobs
are processed consecutively and each earlier than in π∗ by
exactly the amount of the maximum time disruption, until
there is no room for processing any additional job no later
than time T1. That is, once the job immediately following an
inserted time period is known, the remaining jobs processed
after the idle time period in the earlier schedule are deter-
mined. Below, our algorithm uses a state variable, job i , to
enumerate the job immediately following the inserted idle
time period, if it exists, in the earlier schedule.

Algorithm Maximum Lateness (ML)
Input
Given p1, . . . , pn, d1, . . . , dn, π∗ = (1, . . . , n) where jobs
are indexed according to an EDD order, T1, T2 and k.
Initialization
Find j1 = min{ j |C j (π

∗) > T1} and j2 = min{ j |S j (π
∗) >

T2}. Let z∗ = ∞. Let l = k, and find j3(l) =
max{ j |C j (π

∗) − l ≤ T1}, which is the last processed job
in π∗ that can be scheduled in the earlier schedule with a
time disruption no more than l time units.
Value Function
fl,i ( j, t) = the minimum value for the maximum lateness of
the jobs in the later schedule of a schedule for jobs {1, . . . , j}
in which
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(a) Maximum time disruption is no greater than l time units.
(b) Job i , if scheduled, is processed exactly from time

Si (π
∗) − l to Ci (π

∗) − l in the earlier schedule, with
an idle time period immediately preceding it. By def-
inition of our value function, we require that the time
disruption of job i is no more than l time units when com-
pleted at time T1, i.e., Ci (π

∗) − l ≤ T1. Also, according
to Lemma 3, it suffices to consider i ≥ j2. Further, to
model the case where there is no inserted idle time in the
earlier schedule, a special case where i = n + 1 is also
considered; in this case job i is artificial and not really
scheduled.

(c) Jobs i+1, . . . , j3(l), if scheduled, are processed immedi-
ately following job i in the earlier schedule, with no idle
time among them. The sufficiency of such scheduling of
jobs i, . . . , j3(l) to find an optimal schedule is verified
by Lemma 2.

(d) The maximum completion time of jobs processed before
i in the earlier schedule is t , where t ≤ Si (π

∗) − l.
We specifically define Sn+1(π

∗) = T1 + l to model the
case where there is no inserted idle time in the earlier
schedule.

Given the definition of the value function, the maximum
completion of jobs in the later schedule is T2 + ∑ j

m=1 pm −
t − ∑min{ j, j3(l)}

m=i pm , from which the lateness of jobs in the
later schedule can be tracked.
Boundary Condition

fl,i (0, t) =
{

t, if 0 ≤ t ≤ T1,

∞, otherwise,

where T2 − S j1(π
∗) ≤ l ≤ k; Ci (π

∗)−l ≤ T1 and i ≥ j2,
or i = n + 1. Note that if l < T2 − S j1(π

∗), then there exists
no feasible schedule and thus such an l does not need to be
considered.
Optimal Solution Value for Given l
min

i,t
{max{ fl,i (n, t), Lmax(π

∗)}}, where i ≥ j2 and Ci (π
∗)−

l ≤ T1, or i = n + 1; 0 ≤ t < Si (π
∗) − l when i 
= n + 1

and t ≤ T1 when i = n + 1. For any schedule, the value
of Lmax(π

∗) is selected as the maximum lateness cost if it
is larger than the maximum lateness of the later schedule, as
discussed earlier in this section. Let σl denote the schedule
found.
Recurrence Relations

fl,i ( j, t)

= min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{ fl,i ( j − 1, t), C j − d j }, if C j (π
∗) + l ≥ C j and

j /∈ {i, . . . , j3(l)}, (5)

fl,i (i − 1, t), if j = j3(l) and i 
= n + 1, (6)

fl,i ( j − 1, t − p j ), if t − p j ≥ 0, C j (π
∗) − l

≤ t and j < i, (7)

∞, otherwise, (8)

where C j = T2 + ∑ j
m=1 pm − t − ∑min{ j, j3(l)}

m=i pm is the
completion time of job j in the later schedule.

The sequence of jobs considered by the recurrence rela-
tion is verified by Lemma 1. Eq. (5) places job j in the later
schedule with completion time C j , and the maximum late-
ness of the later schedule for jobs 1, . . . , j is updated if the
lateness of job j, C j − d j , is greater than the maximum late-
ness of jobs in the later schedule of jobs 1, . . . , j − 1, under
condition that the time disruption of job j is no greater than
l time units, and that job j cannot be from jobs i, . . . , j3(l).
Here, no inserted idle time period needs to be considered,
as verified by Lemma 4. Eq. (6) schedules job i, . . . , j3(l)
consecutively in the earlier schedule from time Si (π

∗) − l
to C j3(l)(π

∗) − l, as prescribed by the definition of the value
function, unless i = n + 1. The feasibility and sufficiency
of this equation is verified by Lemma 2. Eq. (7) places jobs
j in the earlier schedule, under condition that its start time
t − p j is no earlier than 0, its time disruption is no more
than l time units when completed at time t , and that job j
is processed earlier than job i in π∗. Finally, if none of the
three sets of conditions is met, then job j cannot be feasibly
scheduled and a prohibitively high cost is assigned. As in
Algorithm M, for Eqs. (5) and (7) in the recurrence relation,
the conditions of each job j are necessary, but not sufficient.
Termination Test
Let zl = Lmax(σl) + μ�max(π

∗, σl). If zl < z∗, then update
z∗ = zl . If �max(π

∗, σl) > T2 − S j1(π
∗), then update l =

�max(π
∗, σl)−1 and recalculate the optimal solution value;

otherwise, backtrack to find an optimal schedule with total
cost z∗. Note that there is no need to consider schedules with
maximum time disruption strictly between �max(π

∗, σl)−1
and l, since they will also have maximum lateness equal to
�max(π

∗, σl).

Theorem 2 Algorithm ML finds an optimal schedule for
problem 1, h1|�max ≤ k|Lmax + μ�max in O(n2T1k) time.

Proof Algorithm ML implicitly enumerates all schedules
satisfying properties established by Lemmas 1–5, subject to
the maximum disruption constraint, through state transition
of dynamic programming, as explicitly explained in each step
of the algorithm, hence finding an optimal schedule.

Now, we consider the time complexity of Algorithm ML.
In the value function fl,i ( j, t), l is in the order k, i and j
are both in the order of n, and t is in the order of T1, and
hence the number of possible state values is O(n2T1k). In
the recurrence relation, each equation and its conditions take
only constant time. Therefore, the overall time complexity
of Algorithm ML is O(n2T1k). ��

Note that it is more straightforward to use the maximum
completion time of jobs in the later schedule as a state vari-
able, instead of the maximum completion time of jobs in the
earlier schedule not followed by an inserted idle time period;
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but such a method requires O(n2 Pk) in time complexity, and
hence is not as efficient as Algorithm ML.

Corollary 2 Algorithm ML finds an optimal schedule for
problem 1, h1|�max ≤ k|Lmax in O(n2T1) time, and for
problem 1, h1||Lmax +μ�max in O(n2T1 max{T2, P}) time.

Proof The proof of Corollary 2 is similar to that of Corol-
lary 1. ��

4 Approximation algorithm

In this section, a constant factor approximation algorithm for
both rescheduling problems is described as follows.
Algorithm H
Step 0 Given the job data, π∗ = (1, . . . , n), T1, T2 and k.
Step 1 Find j1 = min{ j |C j (π

∗) > T1}.
Step 2 Schedule jobs 1, . . . , j1 −1 in that order in the interval
[0,

∑ j1−1
j=1 p j ], and schedule job j1, . . . , n in that order in the

interval [T2, T2 + ∑n
j= j1 p j ].

Step 4 Output the resulting schedule, σ H , and its cost, zH .
Since Algorithm H considers the schedule of each job in a

single position only, the time required to create a schedule by
this algorithm is O(n)when the sequence ofπ∗ is given. If the
complete time of each job in π∗ is given and sorted, then job
j1 can be found by using a binary search over jobs 1, . . . , n
and the complexity of Algorithm H is reduced to O(log n).
Note that we assume T1 < P and k ≥ T2 − S j1(π

∗). By the
definition of j1, jobs 1, . . . , j1 cannot all be scheduled within
the interval [0, T1]. As a result, the maximum time disruption
of any feasible schedule must be no less than T2 − S j1(π

∗),
which is achieved by schedule σ H generated via Algorithm
H; hence schedule σ H is feasible. In the literature, Algorithm
H is applied to problem 1, h1||Lmax (Lee and Liman 1992
and Lee 1996).

In analyzing the performance of Algorithm H, we let z∗
denote the optimal cost for a given problem instance. By
establishing an upper bound on the value of the ratio zH /z∗
over all instances, the worst-case performance of Algorithm
H can be explored.

Lemma 7 For S ∈ {Cmax, Lmax}, if Algorithm H has an
asymptotically achievable worst-case performance ratio of r
for problem 1, h1||S, then the algorithm also has an asymp-
totically achievable worst-case performance ratio of r for
problem 1, h1|�max ≤ k|S + μ�max.

Proof First, the maximum time disruption of any feasible
schedule is at least T2 − S j1(π

∗), which is of schedule σ H .
Hence, we have �max(π

∗, σ H ) ≤ �max(π
∗, σ ∗). Conse-

quently, if zH ≤ r z∗ for problem 1, h1||S, then zH ≤ r z∗
for problem 1, h1|�max ≤ k|S + μ�max. And since any

instance of problem 1, h1||S is also an instance of prob-
lem 1, h1|�max ≤ k|S + μ�max, an asymptotically achiev-
able worst-case performance ratio for problem 1, h1||S is
also asymptotically achievable for problem 1, h1|�max ≤
k|S + μ�max. ��
Theorem 3 For problem 1, h1|�max ≤ k|Cmax + μ�max,
Algorithm H has an asymptotically achievable worst-case
performance ratio of 2 as P → ∞.

Proof According to Lemma 7, it suffices to consider prob-
lem 1, h1||Cmax. We have zH ≤ T2 + P . Also, it is evi-
dent that z∗ ≥ T2 and z∗ ≥ P . Therefore, zH /z∗ ≤
(T2 + P)/ max{T2, P} ≤ 2.

In Example 1 in Sect. 2, we have zH = 2r + 1 and z∗ =
r + 2. Therefore, lim

r→∞ zH /z∗ = lim
r→∞(2r + 1)/(r + 2) = 2,

which shows that ratio 2 is asymptotically achievable. ��
We next analyze the performance of Algorithm H for the

maximum lateness problem. Note that the lateness of a job
can be negative.

Lemma 8 For problem 1, h1|�max ≤ k|Lmax + μ�max, it
is binary NP-hard to determine whether an instance has an
optimal schedule with a total cost less than or equal to zero.

Proof The proof is by reduction from partition: Given 2m
elements with integer sizes a1, . . . , a2m , where

∑2m
i=1 ai =

2A, does there exist a partition S1, S2 of the index sets
{1, . . . , 2m} such that

∑
i∈S1

ai = ∑
i∈S2

ai = A?
Given an instance of partition, we construct an instance

of the rescheduling problem where n = 2m, pi = ai and
di = 2A + 1 for i = 1, . . . , n. Further, let T1 = A, T2 =
A + 1, k = ∞ and μ = 0. Then, the rescheduling problem
has an optimal schedule with total cost less than or equal to
zero if and only if the instance of partition has a solution. ��

In view of Lemma 8, approximation algorithm does not
exist for problem 1, h1|�max ≤ k|Lmax + μ�max, unless
P = N P . Lemma 8 indicates that problem 1, h1|�max ≤
k|Lmax +μ�max is APX-hard. Thus, we assume that d j ≤ 0,
for j = 1, . . . , n, and denote the modified problem by
1, h1, d j ≤ 0|�max ≤ k|Lmax + μ�max. Subtracting a com-
mon constant from all due dates does not change the nature
of the problem, so the assumption is not restrictive. This
assumption is used by Hall et al. (2007) and Hall and Potts
(2010).

Theorem 4 For problem 1, h1, d j ≤ 0|�max ≤ k|Lmax +
μ�max, Algorithm H has an asymptotically achievable
worst-case performance ratio of 2.

Proof According to Lemma 7, it suffices to consider prob-
lem 1, h1||Lmax. Consider a schedule σ ′ of jobs 1, . . . , j1 −
1, j1+1, . . . , n where jobs 1, . . . , j1−1 are scheduled in that
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order in the interval [0,
∑ j1−1

j=1 p j ] and jobs j1 +1, . . . , n are
scheduled in that order in the interval [T2, T2+∑n

j= j1+1 p j ].
Let z′ denote the cost of schedule σ ′. It is evident that
z′ ≤ z∗, and z′ ≥ zH − p j1 . Therefore, we have that
zH − z∗ < p j1 ≤ P ≤ z∗, where P ≤ z∗ follows from
our assumption that d j ≤ 0 for j = 1, . . . , n, and then con-
clude that zH /z∗ ≤ 2. Example 1 in Sect. 2 with d1 = d2 = 0
shows that the ratio is asymptotically achievable. ��

Algorithm H is easy to implement, but it is practically
useful in that it might be the most natural response to a
machine disruption. Next, we generate a set of random prob-
lem instances to evaluate (1) how the minimum rescheduling
cost is affected by the machine disruption; (2) the average
performance of Algorithm H; and (3) how the average per-
formance of Algorithm H is affected by different parameter
values of the rescheduling problem. Following the guidelines
posited by Hall and Posner (2001), (a) we create a broad
range of parameter specifications, (b) all the parameters may
be rescaled without significantly affecting the performance
of the algorithm, and (c) the experimental design varies only
the parameters that could affect the analysis.

Algorithm H is tested on ten randomly generated prob-
lem instances for each combination of the specifications
for five parameters, n, T1, D = T2 − T1, k, and μ. First,
we randomly generate p j ∼ U I [1, . . . , 100], and d j ∼
U I [p j , . . . , 
P/2�], which guarantee that the maximum
lateness of an optimal schedule is at least 
P/2� > 0, and
thus a relative percentage gap from optimality can be used.
Second, we use n ∈ {20, 40, 60, 80, 100, 150, 200}. Third,
we have T1 ∈ {
P/4�, 
P/2�, 
3P/4�}. Fourth, we consider
D ∈ {
P/50�, 
P/25�, 
P/10�}. Finally, for the specifica-
tions for k and μ, we consider three types of problem: (1)
for the constrained problem 1, h1|�max ≤ k|S, we have k ∈
{D+100, D+
2.5P/n�, D+
3P/n�, D+
3.5P/n�, D+

4P/n�}; (2) for the total cost problem 1, h1||S+μ�max, we
use μ ∈ {.5, 1, 2}; (3) for the general problem 1, h1|�max ≤
k|S+μ�max, we consider k ∈ {D+100, D+
2.5P/n�, D+

3P/n�, D + 
3.5P/n�, D + 
4P/n�} and μ ∈ {.5, 1, 2}.
Overall, 7 ∗ 3 ∗ 3 ∗ (5 + 3 + 5 ∗ 3) = 1, 449 combinations
are considered.

Tables 2, 3 and 4 summarize the computational results. In
each table, the first column shows values of the input para-
meters n, T1, D, k, and μ. For both problems with costs Cmax

and Lmax, column APO (resp., MPO) contains the average
(resp., maximum) percentage difference of the cost of an
optimal schedule after the machine disruption relative to that
of the original schedule; column APE (resp., MPE) shows
the average (resp., maximum) relative percentage error of
the schedule obtained by Algorithm H relative to an optimal
schedule; column PI shows the percentage of instances for
which Algorithm H finds an optimal schedule.

Regarding the total extra cost of rescheduling, as a per-
centage of the original scheduling cost, caused by machine
disruption, Tables 2, 3 and 4 show that the extra cost (1)
increases with duration of the machine disruption, but is
insensitive to disruption start time; (2) is insensitive to the
number of jobs when the maximum time disruption does not
appear in the cost objective; (3) deceases with the number of
jobs and increases with the relative cost of time disruption
compared to the scheduling cost when the maximum time
disruption is part of the cost objective; and (4) decreases
with the maximum allowable time disruption k, but becomes
insensitive to k when k is large.

Regarding the performance of Algorithm H, we find that
(1) Algorithm H finds close-to-optimal schedules with APE
values less than 1.2 % except in problem 1, h1|�max ≤
k|Lmax, where the average APE is 2.14 %; and (2) Algo-
rithm H is more likely to find an optimal schedule when the
maximum time disruption is part of the cost objective, which
may be explained by the fact that Algorithm H finds a sched-
ule with the minimum �max among all feasible schedules.

Next, we consider how parameter values affect the perfor-
mance of Algorithm H. First, with a larger number of jobs,
Algorithm H finds schedules with smaller APE values, but
fewer optimal schedules. Second, the start time and duration
of the machine disruption do not significantly affect the per-
formance of Algorithm H. Third, Algorithm H exhibits better
relative performance when the maximum allowable time dis-
ruption is small. This is because Algorithm H finds the same
schedule for different values of k, but with the greater flex-
ibility provided by larger values of k, the total cost of an
optimal schedule decreases. Fourth, on average, Algorithm
H performs better with larger values of μ. This is because
Algorithm H minimizes �max for every instance, where �max

plays a larger role in the cost objective with larger μ.

5 Approximation scheme

Approximation can be achieved by a fully polynomial time
approximation scheme (FPTAS), which is a family of algo-
rithms {Aε} such that for any ε > 0, Aε delivers a solu-
tion that is within a factor 1 + ε of optimality and pos-
sesses a running time polynomial in problem input size
and 1/ε (Schuurman and Woeginger 2001). In this section,
we provide an FPTAS for modified problem 1, h1, d j ≤
0|�max ≤ k|Lmax + μ�max, which contains 1, h1|�max ≤
k|Cmax +μ�max as a special case when d1 = . . . = dn = 0.
Since the problem is NP-hard, this is the strongest type of an
approximation result.

Lemma 9 If there exists an FPTAS for problem 1, h1, d j ≤
0|�max ≤ k|Lmax with O(X) running time that is indepen-
dent of k, then there exists an FPTAS for problem 1, h1, d j ≤
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Table 2 Effect of parameters on performance of Algorithm H for constrained problems

Parameter Cmax Lmax

APO (%) MPO (%) APE (%) MPE (%) PI (%) APO (%) MPO (%) APE (%) MPE (%) PI (%)

n = 20 6.11 19.48 3.10 9.71 11.81 11.47 30.71 4.86 12.62 14.48

n = 40 5.49 11.45 1.53 4.97 7.24 10.71 22.09 2.70 9.05 10.10

n = 60 5.46 10.53 0.87 2.50 5.33 10.71 22.42 1.71 5.07 8.00

n = 80 5.39 10.31 0.89 2.12 2.10 10.69 20.43 1.86 5.00 1.14

n = 100 5.36 10.33 0.49 1.81 9.52 10.62 22.20 1.32 3.50 6.29

n = 150 5.35 10.05 0.43 1.32 4.00 10.61 20.00 0.71 2.07 4.95

n = 200 5.34 10.04 0.27 0.96 3.62 10.57 19.98 0.72 1.62 1.14

T1 = 
P/4� 5.51 13.54 0.99 4.98 8.57 10.75 24.73 2.12 12.62 8.29

T1 = 
P/2� 5.43 11.53 1.15 9.71 6.10 10.81 30.71 1.95 12.17 6.86

T1 = 
3P/4� 5.56 19.48 1.10 8.52 7.14 10.74 23.43 1.88 12.11 7.90

D = 
P/50� 2.23 11.47 1.05 9.71 10.67 4.37 15.35 1.97 12.62 11.33

D = 
P/25� 4.18 13.44 1.09 9.52 7.24 8.18 19.19 2.01 12.18 7.71

D = 
P/10� 10.09 19.48 1.10 9.01 3.90 19.76 30.71 1.97 11.58 4.00

k = D + 100 5.69 19.48 0.90 9.52 16.03 11.14 30.71 1.64 12.62 15.87

k = D + 
2.5P/n� 5.56 19.48 1.03 9.71 8.57 10.89 25.25 1.87 12.62 9.21

k = D + 
3P/n� 5.48 19.48 1.10 9.71 5.56 10.73 22.84 2.02 12.62 6.35

k = D + 
3.5P/n� 5.40 13.19 1.18 9.71 3.17 10.58 21.99 2.16 12.62 3.97

k = D + 
4P/n� 5.37 10.73 1.21 9.71 3.02 10.51 21.99 2.23 12.62 3.02

Overall 5.42 14.47 1.16 9.71 3.92 10.61 22.27 2.14 12.62 4.44

Table 3 Effect of parameters on performance of Algorithm H for total cost problems

Parameter Cmax Lmax

APO (%) MPO (%) APE (%) MPE (%) PI (%) APO (%) MPO (%) APE (%) MPE PI (%)

n = 20 18.40 58.45 1.60 8.93 47.04 33.92 94.24 1.91 11.58 56.30

n = 40 14.25 40.13 0.97 4.68 41.48 27.68 79.20 1.52 7.40 39.26

n = 60 13.25 35.48 0.50 2.20 40.37 26.09 70.59 0.96 4.52 46.67

n = 80 13.01 34.29 0.61 2.00 24.81 26.02 70.15 1.26 4.09 29.26

n = 100 12.37 33.74 0.31 1.62 48.15 25.10 66.60 0.84 3.03 29.63

n = 150 12.19 32.68 0.34 1.30 22.59 24.10 63.58 0.48 1.91 30.74

n = 200 11.96 31.94 0.20 0.93 37.41 23.92 63.03 0.55 1.56 12.96

T1 = 
P/4� 13.56 41.98 0.56 4.68 38.73 26.94 91.64 1.09 11.58 39.84

T1 = 
P/2� 13.57 49.52 0.69 8.93 39.37 26.65 92.12 1.12 10.44 32.22

T1 = 
3P/4� 13.77 58.45 0.69 5.64 34.13 26.48 94.24 1.02 7.25 32.86

D = 
P/50� 6.57 34.40 0.54 8.32 50.32 12.82 48.61 0.96 11.58 46.35

D = 
P/25� 10.78 40.32 0.64 8.93 40.63 21.10 60.77 1.08 11.04 37.46

D = 
P/10� 23.55 58.45 0.76 8.27 21.27 46.16 94.24 1.18 9.65 21.11

μ = 0.5 9.13 24.78 0.74 8.93 33.65 17.91 44.85 1.26 11.58 30.79

μ = 1.0 12.55 38.22 0.64 8.40 37.46 24.55 61.41 1.07 10.70 35.56

μ = 2.0 19.22 58.45 0.57 7.52 41.11 37.61 94.24 0.89 9.28 38.57

Overall 13.63 58.45 0.65 8.93 37.41 26.69 94.24 1.07 11.58 34.97
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Table 4 Effect of parameters on performance of Algorithm H for general problems

Parameter Cmax Lmax

APO (%) MPO (%) APE (%) MPE (%) PI (%) APO (%) MPO (%) APE (%) MPE (%) PI (%)

n = 20 18.44 58.45 1.57 8.93 48.59 33.95 94.24 1.89 11.58 57.26

n = 40 14.26 40.13 0.97 4.68 41.70 27.69 79.20 1.52 7.40 39.48

n = 60 13.26 35.48 0.49 2.20 40.67 26.09 70.59 0.95 4.52 46.89

n = 80 13.01 34.29 0.61 2.00 24.81 26.03 70.15 1.25 4.09 29.78

n = 100 12.37 33.74 0.31 1.62 48.15 25.10 66.60 0.84 3.03 29.85

n = 150 12.19 32.68 0.34 1.30 23.04 24.10 63.58 0.48 1.91 30.74

n = 200 11.96 31.94 0.20 0.93 37.41 23.92 63.03 0.55 1.56 12.96

T1 = 
P/4� 13.56 41.98 0.56 4.68 38.82 26.95 91.64 1.08 11.58 40.18

T1 = 
P/2� 13.57 49.52 0.69 8.93 39.58 26.66 92.12 1.11 10.44 32.51

T1 = 
3P/4� 13.79 58.45 0.67 5.64 34.79 26.48 94.24 1.01 7.25 33.05

D = 
P/50� 6.58 34.40 0.54 8.32 50.87 12.83 48.61 0.95 11.58 46.84

D = 
P/25� 10.79 40.32 0.63 8.93 40.88 21.10 60.77 1.08 11.04 37.65

D = 
P/10� 23.56 58.45 0.75 8.27 21.44 46.16 94.24 1.18 9.65 21.25

k = D + 100 13.65 58.45 0.63 8.93 38.47 26.71 94.24 1.06 11.58 35.98

k = D + 
2.5P/n� 13.64 58.45 0.64 8.93 37.78 26.69 94.24 1.07 11.58 35.24

k = D + 
3P/n� 13.64 58.45 0.64 8.93 37.78 26.69 94.24 1.07 11.58 35.19

k = D + 
3.5P/n� 13.64 58.45 0.65 8.93 37.41 26.69 94.24 1.07 11.58 35.03

k = D + 
4P/n� 13.63 58.45 0.65 8.93 37.41 26.69 94.24 1.07 11.58 34.97

μ = 0.5 9.15 29.22 0.72 8.93 34.35 17.92 46.06 1.25 11.58 31.59

μ = 1.0 12.55 38.96 0.63 8.40 37.77 24.55 61.41 1.07 10.70 35.62

μ = 2.0 19.22 58.45 0.57 7.52 41.07 37.61 94.24 0.89 9.28 38.53

Overall 13.64 58.45 0.64 8.93 37.77 26.70 94.24 1.07 11.58 35.28

0|�max ≤ k|Lmax + μ�max with O((X log k)/ε) running
time.

Proof Let �0 = T2 − S j1(π
∗), i.e., the minimum value

of �max for any feasible schedule. Let δi = 2i�0ε, for
i = 0, . . . , m, where m = max{i |2i�0 < k}. Note
that m < log2(k/�0). Apply the existing FPTAS to solve
instances 1, h1, d j ≤ 0|�max ≤ l|Lmax, with l = k,
and l = 2i�0, 2i�0 + δi , . . . , 2i�0 + 
2/ε�δi excluding
instances where l > k, for i = 0, . . . , m. The running
time for these computations is O((X log k)/ε). Note that
all the schedules found are feasible for problem 1, h1, d j ≤
0|�max ≤ k|Lmax + μ�max, and among these schedules,
we choose the one with the minimum total cost, denoted
by zH .

Let σ ∗ denote an optimal schedule for problem 1, h1, d j ≤
0|�max ≤ k|Lmax + μ�max with total cost z∗. Next we
show that zH ≤ (1 + ε)z∗. Suppose that schedule σ ∗ has
�max(π

∗, σ ∗) = k∗ ≤ k, and hence, σ ∗ is also an opti-
mal schedule for problem 1, h1, d j ≤ 0|�max ≤ k∗|Lmax +
μ�max. Let k′ = 2i�0 + lδi , where 2i�0 + (l − 1)δi <

k∗ ≤ k′. Suppose the existing FPTAS finds a schedule σ ′
for problem 1, h1, d j ≤ 0|�max ≤ k′|Lmax, with a total cost
z′ = Lmax(σ

′) + μ�max(π
∗, σ ′). First, note that zH ≤ z′.

Second, we have Lmax(σ
′) ≤ (1+ε)Lmax(σ

∗) since k′ ≥ k∗.
Third, we have k′ ≤ k∗+δi = k∗+2i�0ε ≤ k∗+k∗ε. There-
fore, we have z′ ≤ (1 + ε)z∗, and then zH ≤ z′ ≤ (1 + ε)z∗.

��

Next we design an FPTAS for problems 1, h1, d j ≤
0|�max ≤ k|Lmax. In our approximation scheme, a lower
bound of Lmax(σ

∗) is used, as defined below. Consider a pre-
emptive schedule σ L B , in which jobs are sequenced as in π∗.
Specifically, job j1 is processed with preemption beginning
at time S j1(π

∗) and completed at time C j1(π
∗)+T2−T1, and

all other jobs are processed without preemption in the same
sequence as in π∗. We have Lmax(σ

L B) ≤ Lmax(σ
∗), since

σ L B is optimal for the corresponding rescheduling problem
with preemption.

We develop a family of algorithms {MLε} such that for
any given ε > 0, Algorithm MLε delivers a schedule σε with
Lmax(σ

ε)/Lmax(σ
∗) ≤ 1 + ε. Similar to Algorithm ML, we

minimize the maximum lateness in the later schedule. Our
algorithm ensures that the generated schedule will be with
maximum lateness equal to Lmax(π

∗) if maximum lateness
does not occur in the later schedule. It should be noted that
π∗ indexes jobs in an EDD order.

123



J Sched (2014) 17:339–352 351

Algorithm MLε

Input
Given p1, . . . , pn, d1, . . . , dn, π∗ = (1, . . . , n), T1, T2, and
ε.
Initialization

Find scheduleσ L B . Compute Lmax(σ
L B), δ = εLmax(σ

L B),
and j3 = max{ j |C j (π

∗) − k ≤ T1}.
State Variables
( j, t, v)i corresponds to a partial schedule containing jobs
1, . . . , j where (a) jobs i, i +1, . . . , j3, if scheduled, occupy
the time interval [Si (π

∗) − k, C j3(π
∗) − k]; (b) the time

interval [0, t] with t ≤ Si (π
∗) − k is occupied by jobs from

1, . . . , min{ j, i} without idle time; (c) the maximum lateness
of jobs in the later schedule is v.
Initial State
(0, 0, 0)i , for Si (π

∗) − k > 0 and Ci (π
∗) > T2.

Trial State Generation
For each state ( j, t, v)i , generate at most four trial states: (1)
( j + 1, t, max{v, C j+1 − d j+1})i , if C j+1(π

∗) + k ≥ C j+1

and j + 1 /∈ {i, . . . , j3}, where C j+1 = T2 + ∑ j+1
m=1 pm −

t − ∑min{ j+1, j3}
m=i pm is the completion time of job j + 1 in

the later schedule; (2) ( j3 + 1, t, v)i if j + 1 = i ; and (3)
( j + 1, t + p j+1, v)i if j + 1 < i and C j+1(π

∗) − k ≤
t + p j+1 ≤ Si (π

∗)− k; and (4) ( j +1, t,∞)i , if none of the
first three trial states applies.
Trial State Rounding

For each trial state ( j + 1, t, v′)i except for v′ = ∞, replace
it with ( j + 1, t, 
v′/δ�δ)i .
Rounded Trial State Elimination

For each pair of rounded trial states ( j + 1, t ′, v)i and ( j +
1, t ′′, v)i (where v is an integer multiple of δ), eliminate the
second state if t ′ ≤ t ′′, and eliminate the first state otherwise.
Termination Test

If j + 1 < n, then set j = j + 1 and return to the Trial
State Generation step. Otherwise, select a state (n, t, v̂)i for
which v̂ is smallest, and backtrack to find the corresponding
schedule σε .

Theorem 5 The family of algorithms {MLε}, for ε > 0, is
an FPTAS for problem 1, h1, d j ≤ 0|�max ≤ k|Lmax, with
O(n2/ε) running time.

Proof Similar to Algorithm ML, Algorithm MLε constructs
a schedule according to the properties given by Lemmas 1–
5. Thus, an optimal schedule is obtained without Trial State
Rounding. Since no rounding is applied to the state variable
t , the Trial State Generation step ensures feasibility of the
schedule found.

Now, we analyze the maximum lateness of the schedule
found by Algorithm MLε . The Termination Test step selects
the state (n, t, v̂)i and schedule σ ε . First, since state variable
v is always rounded down, we have v̂ ≤ Lmax(σ

∗). Also, in
each execution of the Trial State Rounding step, replacing

v′ by 
v′/δ�δ decreases the value of the state variable from
its true value by at most δ. Also, no subsequent decrease
occurs since v either remains unchanged or is replaced by
C j+1 − d j+1 after the Trial State Generation and Trial State
Rounding steps. Therefore, the effect is that Lmax(σ

ε) ≤
v̂ + δ. We deduce that Lmax(σ

ε) ≤ v̂ + δ ≤ Lmax(σ
∗)+ δ =

Lmax(σ
∗) + εLmax(σ

L B) ≤ (1 + ε)Lmax(σ
∗).

It remains to analyze the time complexity of Algorithm
MLε . First, we consider the number of values of the state
variables that remain after the Rounded Trial State Elimi-
nation step. States are generated for n values of j and at
most n values of i . Next, we show that the number of val-
ues of the state variable v is O(1/ε). Algorithm H finds a
schedule that defines an upper bound of v that needs to be
considered, which is supposed to be zH . It is evident that
zH − zL B ≤ p j1 ≤ zL B , and thus zH ≤ 2zL B . There-
fore, the maximum number of values of state variable v is
1 + 
zH /δ� ≤ 1 + 2/ε = O(1/ε). For each j , each rounded
value of v, and each i , only a single value of t remains after the
Rounded Trial State Elimination step. Thus, the overall num-
ber of values of state variables that remain after the Rounded
Trial State Elimination step is O(n2/ε). Since each value of
these state variables generates at most four trial states, the
Rounded Trial State Elimination step requires constant time
for each trial state. Therefore, the overall time complexity of
Algorithm MLε is O(n2/ε). ��

Algorithm MLε applies the same idea as Algorithm ML,
and solves problem 1, h1|�max ≤ k|Cmax as a special case.
One may wonder whether we can apply the idea behind
Algorithm M to design a more efficient FPTAS for prob-
lem 1, h1|�max ≤ k|Cmax. Unfortunately, we are unable to
deliver such an algorithm. We explain this difficulty as fol-
lows. We find upper and lower bounds for the maximum
lateness of an optimal schedule for problem 1, h1, d j ≤
0|�max ≤ k|Lmax with a ratio of no more than 2, as dis-
cussed in the proof of Theorem 5. Algorithm M essentially
minimizes the length of machine idle times in the earlier
schedule, and this length can be zero in an optimal schedule
for a nontrivial instance. We are unable to find an upper and
a lower bound of this length with a bounded ratio, which cre-
ates difficulty for approximation. Of course, one can directly
minimize the makespan for problem 1, h1|�max ≤ k|Cmax,
but we apparently do not have an algorithm more efficient
than Algorithm MLε .

Combining Lemma 9 and Theorem 5, we have the below
result.

Corollary 3 There exists an FPTAS for problem 1, h1, d j ≤
0|�max ≤ k|Lmax + μ�max with O((n2 log k)/ε2) running
time.
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6 Conclusions

In this paper, we study a single machine rescheduling prob-
lem under machine disruption. Two classical scheduling cost
measures are considered: makespan and maximum lateness.
For each measure, we provide a pseudopolynomial time
optimal dynamic programming algorithm. Also, we design
an approximation algorithm with a worst-case performance
ratio of 2, and demonstrate computationally that the algo-
rithm performs near-optimally, on average, for both prob-
lems. We also develop an FPTAS for the two rescheduling
problems.

There are several interesting extensions of our study for
future research. First, it would be interesting to study the
rescheduling problem in a multiple machine situation, where
a disruption cost may be incurred when a job is moved from
one machine to another. Second, additional constraints, such
as the capacity limit for shipping jobs from their original posi-
tions to new positions, needs detailed investigation. Third, it
is useful to optimize the design of preventive schedules that
are robust to fallible machines. Finally, when modeling the
unavailability of operating rooms in a health care setting,
more practical details should be subject to careful explo-
ration.
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