
J Sched (2014) 17:371–383
DOI 10.1007/s10951-013-0359-4

On the configuration-LP for scheduling on unrelated machines

José Verschae · Andreas Wiese

Received: 11 May 2012 / Accepted: 28 October 2013 / Published online: 10 November 2013
© Springer Science+Business Media New York 2013

Abstract Closing the approximability gap between 3/2
and 2 for the minimum makespan problem on unrelated
machines is one of the most important open questions in
scheduling. Almost all known approximation algorithms for
the problem are based on linear programs (LPs). In this paper,
we identify a surprisingly simple class of instances which
constitute the core difficulty for LPs: the so far hardly stud-
ied unrelated graph balancing case in which each job can be
assigned to at most two machines. We prove that already for
this basic setting the strongest LP-relaxation studied so far—
the configuration-LP—has an integrality gap of 2, matching
the best known approximation factor for the general case.
This points toward an interesting direction of future research.
For the objective of maximizing the minimum machine load
in the unrelated graph balancing setting, we present an ele-
gant purely combinatorial 2-approximation algorithm with
only quadratic running time. Our algorithm uses a novel pre-
processing routine that estimates the optimal value as good as
the configuration-LP. This improves on the computationally
costly LP-based algorithm by Chakrabarty et al. (Proceedings
of the 50th Annual Symposium on Foundations of Computer
Science (FOCS 2009), pp 107–116, 2009) that achieves the
same approximation guarantee.

J. Verschae
Departmento de Ingeniería Industrial, University of Chile,
República 701, Santiago, Chile
e-mail: jverscha@ing.uchile.cl

J. Verschae
Center for Mathematical Modeling, University of Chile,
Blanco Encalada 2120, Santiago, Chile

A. Wiese (B)
Max-Planck-Institut für Informatik, Campus E1 4,
66123 Saarbrücken, Germany
e-mail: awiese@mpi-inf.mpg.de

Keywords Machine scheduling · Integrality gap ·
Configuration-LP · Approximation algorithms

1 Introduction

The problem of minimizing the makespan on unrelated
machines, usually denoted R||Cmax, is one of the most promi-
nent and important problems in the area of machine schedul-
ing. In this setting, we are given a set of n jobs and a set of m
unrelated machines to process the jobs. Each job j requires
pi, j ∈ N

+ ∪ {∞} time units of processing if it is assigned
to machine i . The scheduler must find an assignment of jobs
to machines with the objective of minimizing the makespan,
i.e., the largest completion time of a job.

In a seminal work, Lenstra et al. (1990) give a
2-approximation algorithm based on a natural LP-relaxation.
On the other hand, they show that the problem is N P-hard to
approximate within a better factor than 3/2, unless P = N P .
Reducing this gap is considered to be one of the most impor-
tant open questions in the area of machine scheduling (Schu-
urman and Woeginger 1999) and it has been open for more
than 20 years.

The best known approximation algorithm for this prob-
lem and its special cases are derived by linear programming
techniques (Ebenlendr et al. 2008; Lenstra et al. 1990; Svens-
son 2012). A special role plays the configuration-LP (which
has been successfully used for Bin-Packing (Karmarkar and
Karp 1982) and other scheduling problems (Bansal and
Sviridenko 2006; Svensson 2012). It is the strongest linear
program for the problem considered in the literature and
it implicitly contains a vast class of inequalities. In fact,
for the most relevant cases of R||Cmax (i.e., the general
case, the restricted assignment case, and the graph balanc-
ing case), the best known approximation/estimation factors

123

372 J Sched (2014) 17:371–383

match the best known upper bounds on the integrality gap of
the configuration-LP.

Given the apparent difficulty of this problem, researchers
have turned to consider simpler cases. One special case that
has drawn a lot of attention is the restricted assignment
problem. In this setting, each job can only be assigned to
a subset of machines, on which it has the same process-
ing time. That is, the processing times pi, j of a job j equal
either a machine-independent processing time p j ∈ N

+ or
infinity. Surprisingly, the best known approximation algo-
rithm for this problem continues to be the 2-approximation
algorithm by Lenstra et al. (1990). Svensson (2012) shows
that the configuration-LP has an integrality gap of at most
33/17 ≈ 1.94. Thus, it is possible to compute in polynomial
time a lower bound that is within a factor 33/17 + ε to the
optimum. However, no polynomial time algorithm is known
to construct an α-approximate solution for α < 2.

The restricted assignment case seems to capture the com-
plexity of the general case to a major extend. However, we
show that worst case instances for the configuration-LP lie in
the unrelated graph balancing case, where each job can be
assigned to at most two machines, but with possibly differ-
ent processing times on each of them. Together with Svens-
son’s (2012) result, this indicates that the core obstacles for
the state-of-the-art algorithmic methods for the general case
already lie in the unrelated graph balancing case which moti-
vates more research in this direction.

In the second part of this paper, we study a differ-
ent objective function which has been actively studied by
the scheduling community in recent years, see e.g., Asadpour
et al. (2008), Asadpour and Saberi (2010), Bansal and Sviri-
denko (2006), and Chakrabarty et al. (2009). In the MaxMin-
allocation problem, we are also given a set of jobs, a set
of unrelated machines, and processing times pi, j as before.
The load of a machine i , denoted by �i , is the total process-
ing time of jobs assigned to i . The objective is to maximize
the minimum load of the machines, i.e., to maximize mini �i .
The idea behind this objective function is a fairness property:
Consider that jobs represent resources that must be assigned
to machines. Each machine i has a personal valuation of
job (resource) j , namely pi, j . The objective of maximizing
the minimum machine load is equivalent to maximizing the
total valuation of the machine that receives the least total
valuation.

An extended abstract of this paper appeared in the pro-
ceedings of the European Symposium on Algorithms (ESA)
2010 (Verschae and Wiese 2011).

1.1 The minimum makespan problem

The problem of minimizing the makespan on unrelated
machines is considered to be an important problem in
machine scheduling. In the sequel, we discuss the literature

for the general problem and the already mentioned special
cases.

1.1.1 General setting

As mentioned above, in a seminal paper Lenstra et al. (1990)
present a 2-approximation algorithm and prove that the prob-
lem is N P-hard to approximate within a factor of 3/2 − ε

for all ε > 0. Besides this paper, there has not been much
progress on improving the approximation ratio for R||Cmax.
Shchepin and Vakhania (2005) give a more sophisticated
rounding for the linear program by Lenstra et al. and improve
the approximation guarantee to 2 − 1/m, which is best pos-
sible among all rounding algorithms for this LP. On the other
hand, Gairing et al. (2007) propose a more efficient combina-
torial 2-approximation algorithm based on unsplittable flow
techniques. If the number of machines is constant, Horowitz
and Sahni (April, 1976) give a (1 + ε)-approximation algo-
rithm. Note that also in this setting the problem is N P-
hard (follows from a straightforward reduction from Parti-
tion).

In the preemptive version of this problem, we are allowed
to stop processing a job at an arbitrary time and resume it
later, possibly on a different machine. In contrast to the non-
preemptive problem, Lawler and Labetoulle (1978) introduce
a polynomial time algorithm to compute an optimal preemp-
tive schedule. Thus, it is possible to design an approxima-
tion algorithm for R||Cmax by using the value of an optimal
preemptive schedule as a lower bound. Shmoys and Tardos
(cited as a personal communication in Lin and Vitter 1992),
show that it is possible to obtain a 4-approximation algorithm
using this method. Moreover, Correa et al. (2012) prove that
this is best possible by showing that the power of preemp-
tion, i.e., the worst case ratio of the makespan of an optimal
preemptive and non-preemptive schedule, equals exactly 4.

1.1.2 Restricted assignment

The best approximation algorithm for the restricted assign-
ment problem known so far is the (2 − 1/m)-approximation
algorithm that follows from the general setting of R||Cmax.
As mentioned above, Svensson (2012) shows how to esti-
mate the optimal makespan within a factor 33/17 + ε in
polynomial time. In particular, he proves that in this setting
the configuration-LP has an integrality gap of at most 33/17.
However, no polynomial time rounding procedure is known.

There are further results for various special cases in the
restricted assignment setting, depending on the structure of
the jobs and the machines, see Leung and Li (2008) for a
survey. If all processing times are equal, Lin and Li (2004)
prove that the restricted assignment problem is solvable in
polynomial time.

123

J Sched (2014) 17:371–383 373

1.1.3 Restricted graph balancing

The restricted graph balancing case can be interpreted as a
problem on an undirected graph. The nodes of the graph cor-
respond to machines and the edges correspond to jobs. The
endpoints of an edge associated to a job j are the machines on
which j has finite processing time p j ∈ N

+. The objective is
to find an orientation of the edges so as to minimize the max-
imum load of all nodes, where the load of a node is defined
as the sum of processing time of its incoming edges (jobs).
Notice that the graph may have loops and in that case the cor-
responding job must be assigned to one particular machine.

Ebenlendr et al. (2008) give a 1.75-approximation algo-
rithm based on a tighter version of the LP-relaxation by
Lenstra et al. (1990). They strengthen this LP by adding
inequalities that prohibit two large jobs to be simultane-
ously assigned to the same machine. Additionally to the
1.75-approximation algorithm for graph balancing, Eben-
lendr et al. (2008) also show that it is N P-hard to approximate
this problem with a better factor than 3/2. This matches the
lower bound for the general problem R||Cmax. Furthermore,
some special cases are studied. For example, it is known
that if the underlying graph is a tree, the problem admits
a PTAS. If the processing times are either 1 or 2, there is
a (3/2)-approximation algorithm, which is best possible,
unless P = N P . For these and more related results see Lee
et al. (2009) and the references therein.

There is not much known for the unrelated graph balanc-
ing problem, where the processing time of a job can be differ-
ent on its two available machines. To the best of our knowl-
edge, everything that is known about this problem follows
from results for the general case of R||Cmax. In this paper,
we show that even for this special case the configuration-
LP has an integrality gap of two. Hence, already for this case
methods are needed which go beyond the pure configuration-
LP.

1.2 The MaxMin-allocation problem

1.2.1 Unrelated machines

The MaxMin-allocation problem has drawn a lot of atten-
tion recently. For the general setting of unrelated machines,
Bansal and Sviridenko (2006) show that the configuration-
LP has an integrality gap of �(

√
m). On the other hand,

Asadpour and Saberi (2010) show constructively that this is
tight up to logarithmic factors, yielding an algorithm with
approximation ratio O(

√
m log3 m). Relaxing the bound on

the running time, Chakrabarty et al. (2009) present a poly-
logarithmic approximation algorithm that runs in quasi-
polynomial time. In terms of complexity, the best known
result is that it is N P-hard to approximate the problem within
a factor of 2−ε for any ε > 0 (Bateni et al. 2009; Chakrabarty

et al. 2009). If the number of machines is bounded by a con-
stant, the PTAS by Lenstra et al. (1990) for a constant number
of machines for R||Cmax can easily be adapted to a PTAS for
MaxMin-allocation. This is best possible since even for two
machines MaxMin-allocation is N P-hard (straightforward
reduction from Partition).

1.2.2 Restricted assignment

Bansal and Sviridenko (2006) study the case where every
job has the same processing time on every machine that it
can be assigned to. They show that the configuration-LP
has an integrality gap of O(log log m/ log log log m) in this
setting. Based on this, they present an algorithm with the
same approximation ratio. The bound on the integrality gap is
improved to O(1) by Feige (2008) and to 5 and subsequently
to 4 by Asadpour et al. (2008, 2012). The former proof is
non-constructive using the Lovász Local Lemma, the latter
two are given by a (possibly exponential time) local search
algorithm. However, Haeupler et al. (2011) give a construc-
tive version of the Lovász Local Lemma which—together
with the proof by Feige (2008)—yields a polynomial time
constant factor approximation algorithm.

1.2.3 Unrelated graph balancing

For the special case that every job can be assigned to at most
two machines (but still with possibly different processing
times on them), Bateni et al. (2009) give a 4-approximation
algorithm. This is improved by Chakrabarty et al. (2009) who
give an algorithm with an approximation factor of 2. Their
algorithm is based on solving an LP with knapsack-cover
inequalities, which are exponentially many. Although their
algorithm does not compute a feasible solution to this LP,
but rather a solution that satisfies a solution-dependent set
of knapsack-cover inequalities of polynomial size, they still
need to resort to the ellipsoid method in order to find such
fractional solution. After, they round the fractional assign-
ment with a procedure analogous to the one in Lenstra et al.
(1990).

On the other hand, even in this special case it is N P-hard
to approximate the MaxMin-allocation problem with a better
ratio than 2 (Bateni et al. 2009; Chakrabarty et al. 2009).
In fact, the proofs for this result use only jobs which have
the same processing time on their two respective machines.
Interestingly, the case that every job can be assigned to at
most three machines is essentially equivalent to the general
case (Bateni et al. 2009).

1.3 Our contribution

Almost all known approximation algorithms for R||Cmax

and its special cases are based on linear programs (Eben-

123

374 J Sched (2014) 17:371–383

Table 1 The integrality gap of the configuration-LP for R||Cmax in the
various settings

General Unrel. graph balancing

General
assignment

2 2

Restrict.
assignment

[
1.5, 33

17

]
(Ebenlendr et al.

2008; Svensson 2012)
[1.5, 1.75]

(Ebenlendr et al. 2008)

lendr et al. 2008; Lenstra et al. 1990; Svensson 2012). The
strongest LP that has been considered in the literature is the
configuration-LP, which implicitly contains a vast class of
inequalities. In this paper, we identify a surprisingly basic
class of instances which captures the core complexity of the
problem for LPs: the unrelated graph balancing setting. In
Sect. 3, we show that even the configuration-LP has an inte-
grality gap of 2 in the unrelated graph balancing setting and
hence cannot help to improve the best known approximation
factor. Interestingly, if one additionally requires that each job
has the same processing time on its two machines, the inte-
grality gap of the configuration-LP is at most 1.75 (implicitly
in Ebenlendr et al. 2008). We prove our result by presenting
a family of instances for which the configuration-LP has an
integrality gap of 2. The instances have two novel techni-
cal properties which together lead to this large integrality
gap. The first property is the usage of gadgets that we call
high-low-gadgets. These gadgets form the seed of the inac-
curacy of the configuration-LP. Second, the machines of our
instances are organized in a large number of layers. Through
the layers, the introduced inaccuracy is amplified such that
the integrality gap reaches 2. To the best of our knowledge,
the unrelated graph balancing case has not been considered in
its own right before. Therefore, our result points to an inter-
esting direction of future research to eventually improve the
approximation factor of 2 for the general case. We note that
for the restricted assignment case the configuration-LP has
an integrality gap of 33/17 < 2 (Svensson 2012). We con-
clude that—at least for the configuration-LP—the restricted
assignment case is easier than the unrelated graph balancing
case. Table 1 shows an overview of the integrality gap of
the configuration-LP for the respective cases. We note that
our lower bound for the unrelated graph balancing case was
independently obtained by Ebenlendr et al. (2012) using a
similar construction.

In Sect. 4, we study special cases for which we obtain
better approximation factors than 2. In particular, we obtain
a (1 + 5/6)-approximation algorithm for the special case
of R||Cmax where the processing times belong to a set
[γ, 10γ /3] ∪ {∞} for some γ > 0. In other words, the
processing times of the jobs differ by at most a factor of
10/3. Note that the strongest known N P-hardness reduc-
tions create instances with this property. Moreover, we show
that there exists a (2 − g/pmax)-approximation algorithm,

where g denotes the greatest common divisor of the process-
ing times, and pmax the largest finite processing time. This
generalizes the result by Lin and Li (2004), that states that
the case where the processing times are either 1 or infinity is
polynomially solvable.

Only few approximation algorithms are known for sche-
duling unrelated machines which do not rely on solving a
linear program. As seen above, LP-based algorithms have
certain limitations and can be costly to solve. It is then
preferable to have combinatorial algorithms with lower run-
ning times. For the unrelated graph balancing case of the
MaxMin-allocation problem, we present an elegant combi-
natorial approximation algorithm with only quadratic run-
ning time and an approximation guarantee of 2. This result
can be found in Sect. 5. Our algorithm uses a new preprocess-
ing method that simplifies the complexity of a given instance
and also yields a lower bound on the optimal makespan. This
lower bound is as strong as the worst case bound given by the
LP based on knapsack-cover inequalities in Chakrabarty et al.
(2009). 1 Therefore we can completely avoid the use of an
LP and the subsequent rounding of a fractional assignment.
Indeed, we can compute directly an integral assignment by
constructing a bipartite graph to link pairs of jobs which can
be assigned to the same machine. A coloring for the graph
then implies an assignment of the jobs to machines which
ensures the claimed approximation factor.

Although the approximation guarantee is on a par with the
best known algorithm—which is best possible unless P =
N P—our approach has several advantages. The 2-approx-
imation algorithm by Chakrabarty et al.’s (2009) resorts to the
ellipsoid method, and thus has a high time complexity. On
the other hand, our algorithm needs only quadratic running
time. Also, it is elegant and very simple to implement. Finally,
our analysis identifies the key difficulties of the problem and
thus contributes to a better understanding of its underlying
structure.

2 LP-based approaches

In this section, we go over the known LP-relaxations for
assigning jobs to unrelated machines and elaborate on the
implications of our results. In the sequel, we denote by J the
set of jobs and M the set of machines of a given instance.

Canonical LP-relaxation The IP-formulation which was
used by Lenstra et al. (1990) employs assignment variables
xi, j ∈ {0, 1} that denote whether job j is assigned to machine

1 Note that this LP has an integrality gap of exactly 2 due to the upper
bound proven in Chakrabarty et al. (2009) and suitable lower bound
instances, e.g., instances that stem from the NP-hardness reduction
in Chakrabarty et al. (2009).

123

J Sched (2014) 17:371–383 375

i . This formulation, which we denote by LST-IP, takes a tar-
get value for the makespan T (which will be determined later
by a binary search) and does not use any objective function:

(LST-IP)
∑

i∈M

xi, j = 1 ∀ j ∈ J, (1)

∑

j∈J

pi, j · xi, j ≤ T ∀i ∈ M,

xi, j = 0 ∀i, j : pi, j > T,

xi, j ∈ {0, 1} ∀i ∈ M, j ∈ J.

The corresponding LP-relaxation of this IP, which we denote
by LST-LP, can be obtained by replacing the integrality con-
dition by xi, j ≥ 0. Let CLP be the smallest integer value
for T so that LST-LP is feasible, and let C∗ be the optimal
makespan of our instance (or equivalently, C∗ is the smallest
target makespan for which LST-IP is feasible). Thus, since
the LP is feasible for T = C∗ we have that CLP is a lower
bound on C∗. Moreover, we can easily find CLP in polyno-
mial time with a binary search procedure.

Lenstra et al. (1990) give a rounding procedure that takes
a feasible solution of LST-LP with target makespan T and
returns an integral solution with makespan at most 2T . By
taking T = CLP ≤ C∗ this yields a 2-approximation algo-
rithm. The rounding, which we call LST-rounding, consists
in interpreting the xi, j variables as a fractional matching in a
bipartite graph, and then rounding this fractional matching to
find an integral solution. This yields the following rounding
theorem.

Theorem 1 (Lenstra et al. 1990) Let (xi, j) j∈J,i∈M be a fea-
sible solution of LST-LP with a target makespan T . Then,
there exists a polynomial time rounding procedure that com-
putes a binary solution {x̄i, j } j∈J,i∈M satisfying Eq. (1) and
∑

j∈J

x̄i, j · pi, j < T + max{pi, j : j ∈ J and xi, j > 0}

for all i ∈ M.

We remark that in Lenstra et al. (1990) the inequality in
the theorem is not strict. However, it is easy to see that the
same proof yields a strict inequality. This will be useful later
in Sect. 4.

Integrality Gaps and the Configuration-LP Lenstra et al.
(1990) implicitly show that the LST-rounding is best possible
by means of the integrality gap of LST-LP. For an instance
I of R||Cmax, let CLP(I) be the smallest integer value of
T so that LST-LP is feasible, and let C∗(I) the minimum
makespan of this instance. Then the integrality gap of this
LP is defined as supI C∗(I)/CLP(I). It is easy to see that
if CLP is used as a lower bound for deriving an approxima-
tion algorithm then the integrality gap is the best possible
approximation guarantee that we can show. Lenstra et al.

(1990) give an example showing that the integrality gap of
LST-LP is arbitrarily close to 2, and thus the rounding proce-
dure is best possible. This together with Theorem 1 implies
that the integrality gap of LST-LP equals 2.

It is natural to ask whether adding a family of cuts can help
to obtain a formulation with smaller integrality gap. For spe-
cial cases of our problem this is indeed the case. For example,
Ebenlendr et al. (2008) show that adding the inequalities

∑

j∈J :pi, j >T/2

xi, j ≤ 1 ∀i ∈ M, (2)

to LST-LP yields an integrality gap of at most 1.75 in the
graph balancing setting if each job has the same processing
time on each of its at most two machines.

We study whether it is possible to add similar cuts to
strengthen the LP for the unrelated graph balancing prob-
lem or even for the general case of R||Cmax. To this end we
consider the configuration-LP, defined as follows. Let T be
a target makespan, and define Ci (T) as the collection of all
subsets of jobs whose total processing time in i is at most T ,
i.e.,

Ci (T) :=
⎧
⎨

⎩
C ⊆ J :

∑

j∈C

pi, j ≤ T

⎫
⎬

⎭
.

We introduce a variable yi,C for all i ∈ M and C ∈ Ci (T),
representing whether jobs in C are exactly the jobs assigned
to machine i . The configuration-LP is defined as follows:

∑

C∈Ci (T)

yi,C = 1 ∀i ∈ M,

∑

i∈M

∑

C∈Ci (T): j∈C

yi,C = 1 ∀ j ∈ J,

yi,C ≥ 0 ∀i ∈ M, C ∈ Ci (T).

It is not hard to see that an integral version of this LP is a
formulation for R||Cmax. Also notice that the configuration-
LP suffers from an exponential number of variables, and thus
it is not possible to solve it directly in polynomial time. How-
ever, it is easy to show that the separation problem of the
dual corresponds to an instance of Knapsack and thus we
can solve the LP approximately in polynomial time. More
precisely, given a target makespan T there is a polynomial
time algorithm that either asserts that the configuration-LP is
infeasible or computes a solution which uses only configura-
tions whose makespan is at most (1 + ε)T , for any constant
ε > 0 (Bansal and Sviridenko 2006). The following result,
which will be proven in the next section, shows that the inte-
grality gap of this relaxation is as large as the integrality gap
of LST-LP, even for the unrelated graph balancing case.

Theorem 2 The configuration-LP for the unrelated graph
balancing problem has an integrality gap of 2.

123

376 J Sched (2014) 17:371–383

A solution (yi,C) for the configuration-LP yields a feasible
solution to LST-LP with the same target makespan by using
the following formula

xi, j =
∑

C∈Ci (T): j∈C

yi,C ∀i ∈ M, j ∈ J. (3)

This implies that the integrality gap of the configuration-LP
is not larger than the integrality gap of LST-LP, and thus it
is at most 2. On the other hand, there are solutions to LST-
LP that do not have corresponding feasible solutions to the
configuration-LP. For example, consider an instance with
three jobs and two machines, where pi, j = 1 for all jobs j
and machines i . If we have a target makespan T = 3/2, it is
easy to see that LST-LP is feasible, but the solution space of
the configuration-LP is empty for any T < 2.

Now we elaborate on the relation of the two LPs, by giving
a formulation in the space of the xi, j variables that is equiv-
alent to the configuration-LP. Intuitively, the configuration-
LP contains all possible (local) information for any single
machine. Indeed, we show that any cut in the xi, j vari-
ables that involves only one machine is implied by the
configuration-LP. Let α ∈ Q

J be an arbitrary row vector.
The configuration-LP will imply any cut which is of the form∑

j∈J α j xi, j ≤ δα,i , where δα,i is properly chosen so that no
single machine schedule for machine i is removed by the cut.

Proposition 1 Fix a target makespan T . For each α ∈ Q
J

we define

δα,i := max

⎧
⎨

⎩

∑

j∈S

α j : S ∈ Ci (T)

⎫
⎬

⎭
.

The feasibility of the configuration-LP is equivalent to the
feasibility of the linear program
∑

i∈M

xi j = 1 for all j ∈ J, (4)

∑

j∈J

α j xi, j ≤ δα,i for all α ∈ Z
J , i ∈ M. (5)

Proof For a given T , let P be the polytope defined in the
statement of the proposition. Consider a solution to the
configuration-LP, yi,C , and let us define

xi, j :=
∑

C∈Ci (T): j∈C

yi,C ,

for all i ∈ M, j ∈ J . We show that these variables belong
to P . Indeed, we first note that
∑

i∈M

xi, j =
∑

i∈M

∑

C∈Ci (T): j∈C

yi,C = 1,

where the last inequality follows since yi,C is a solution to
the configuration-LP. Thus, xi, j satisfies the first restriction

of LST-LP. Let now α ∈ Q
J . Then,

∑

j∈J

α j · xi, j =
∑

j∈J

α j

∑

C∈Ci (T): j∈C

yi,C

=
∑

C∈Ci (T)

yi,C

∑

j∈C

α j

≤ max

⎧
⎨

⎩

∑

j∈C

α j : C ∈ Ci (T)

⎫
⎬

⎭
= δα,i ,

where the last inequality follows since
∑

C∈Ci (T) yi,C = 1
and yi,C ≥ 0 for all i ∈ M, C ∈ Ci (T).

For the other implication, let us now consider a solution
(xi, j) in P . We show that there exists a feasible solution to the
configuration-LP. For a fixed i ∈ M , we pose the following
linear program whose variables are yi,C for C ∈ Ci (T),

∑

C∈Ci (T): j∈C

yi,C = xi, j for all j ∈ J, (6)

∑

C∈Ci (T)

yi,C = 1, (7)

yi,C ≥ 0 for all C. (8)

In order to show that this system is feasible, consider a dual-
variable α j corresponding to each equality in (6), and let β

be the dual-variable of equality (7). By linear duality, the
previous system is feasible if and only if the following linear
program does not admit a feasible solution with negative
value,

min β +
∑

j∈J

α j xi, j

s.t.
∑

j∈C

α j + β ≥ 0 for all C ∈ Ci (T).

Consider any feasible solution β, α. We show that its value
is non-negative. Without loss of generality we can assume
that β takes its smaller possible value given α, i.e., β =
δ−α,i . Thus, Inequality (4) for vector −α implies that β +∑

j∈J α j xi, j ≥ 0. We conclude that there exist variables
(yi,C) satisfying Eqs. (6)–(8) for all i ∈ M .

Now it is easy to see that these variables satisfy the restric-
tions of the configuration-LP. Indeed, it is enough to notice
that

1 =
∑

i∈M

xi, j =
∑

i∈M

∑

C∈Ci (T): j∈C

yi,C .

This concludes the proof of the proposition. �
As an example of the implications of this proposition, we

note that adding the inequalities in (2) does not help dimin-
ishing the integrality gap of LST-LP for the unrelated graph
balancing problem. This follows by taking α as the charac-
teristic vector of the set { j ∈ J : pi, j > T/2} for each
i ∈ M .

123

J Sched (2014) 17:371–383 377

Fig. 1 A sketch of the instance
of R||Cmax where the
configuration-LP has an
integrality gap of 2 − 1

k

3 Integrality gap of the configuration-LP

We have seen in the previous section that the configuration-
LP implicitly contains a vast class of linear cuts. Hence, it
is at least as strong (in terms of its integrality gap) as any
linear program that contains any subset of these cuts. How-
ever, in this section we prove that the configuration-LP has
an integrality gap of 2. This implies that even all the cuts
that are contained in the configuration-LP are not enough
to construct an algorithm with a better approximation factor
than 2.

Then we show that even for the special case of unre-
lated graph balancing the configuration-LP has an integral-
ity gap of 2. This is somehow surprising: if one additionally
requires that each job has the same processing time on its
two machines then Ebenlendr et al. (2008) implicitly proved
that the configuration-LP has an integrality gap between 1.5
and 1.75. Hence, we demonstrate that the property that a job
can have different processing times on different machines
makes the problem significantly harder. This lower bound
was independently obtained by Ebenlendr et al. (2012).

3.1 Integrality gap of the configuration-LP

We describe a family of instances for the general R||Cmax

problem such that for each k ∈ N there is an instance for
which the configuration-LP has an integrality gap of at least
2− 1

k . Even though this is usually considered folklore, it will
provide intuition on the behavior of the configuration-LP.

Let k ∈ N. In the constructed instance there are 2k
machines m1, m′

1, m2, m′
2, . . . , mk, m′

k . Then, for any pair
of machines mi , m′

i there are k jobs j1
i , j2

i , . . . , j k
i which

have processing time 1
k on mi , processing time 1 on m′

i , and
processing time ∞ on any other machine. Finally, there is
one job jbig which has processing time 1 on any machine mi

and ∞ on any machine m′
i . See Fig. 1 for a sketch of this

construction.
Every integral solution for this instance has a makespan

of at least 2 − 1
k . The reason is that the job jbig has to be

assigned to one of the machines mi and then either mi or
m′

i has a makespan of at least 2 − 1
k . However, there is a

solution of the configuration-LP that uses only configurations
with makespan 1: we assign to every machine mi a fraction

of 1
k of the configuration { jbig} and a fraction of 1 − 1

k of
the configuration { j1

i , j2
i , . . . , j k

i }. Also, we assign to every
machine m′

i a fraction of 1
k of each configuration { j�i } for

� ∈ {1, . . . , k}. This yields the following proposition.

Proposition 2 The configuration-LP for R||Cmax has an
integrality gap of at least 2 − 1

k for instances such that
pi, j ∈ { 1

k , 1,∞} for all machines i and all jobs j .

3.2 Integrality gap for unrelated graph balancing

Now we improve the result from the previous section and
show that even for unrestricted graph balancing the integral-
ity gap of the configuration-LP is 2. For each integer k, we
construct an instance Ik such that pi, j ∈ { 1

k , 1,∞} for each
machine i and each job j . We will show that for Ik there is a
solution of the configuration-LP which uses only configura-
tions with makespan 1+ 1

k . However, every integral solution
for Ik requires a makespan of at least 2 − 1

k .
Let k ∈ N and let N be the smallest integer satisfying

k N /(k − 1)N+1 ≥ 1
2 . Consider a k-ary tree of height N − 1,

i.e., a tree of height N − 1 in which apart from the leaves
every vertex has k children. Let r be the root of the tree. We
say that all vertices with the same distance to the root are
in the same layer. Let L be the set containing the leaves.
For every leaf v ∈ L , we introduce another vertex w(v) and
k edges between v and w(v). (Hence, v ∈ L is no longer
a leaf.) We call such a pair of vertices v,w(v) a high-low-
gadget. Observe that the resulting “tree” has height N , i.e.,
the distance of any vertex to r is at most N .

Based on this, we describe our instance of unrelated graph
balancing. For each vertex v of the constructed graph we
introduce a machine mv . For each edge e = {u, v} we intro-
duce a job je. Assume that u is closer to r than v. We define
that je has processing time 1

k on machine mu , processing time
1 on machine mv , and infinite processing time on any other
machine. This motivates the term “high-low-gadget” of a pair
v,w(v) for v ∈ L: each job inside such a gadget has a high
processing time on mw(v) and a low processing time on mv .
We now make a copy of the whole construction, obtaining two
identical graphs and corresponding scheduling instances. Let
r1 and r2 be the roots of the each of the constructed graphs,
respectively. Similarly as before, for i ∈ {1, 2} we define Li

as the set of all vertices whose distance to ri equals N −1. Let

123

378 J Sched (2014) 17:371–383

Fig. 2 A sketch of the
construction for the instance of
unrelated graph balancing with
an integrality gap of 2 − O

(1
k

)
.

The jobs on the machines
correspond to the fractional
solution of the configuration-LP
for this instance with
makespan T = 1 + 1

k

m(1)
r and m(2)

r denote the two machines corresponding to the
two root vertices. We introduce a job jbig which has process-

ing time 1 on m(1)
r and m(2)

r , and ∞ on any other machine.
Denote by Ik the resulting instance. See Fig. 2 for a sketch.

To gain some intuition for the construction, consider a
high-low-gadget consisting of two machines mv , mw(v) for
some v ∈ L1∪L2. In any solution with a makespan of at most
1 + 1

k , it is clear that mv can schedule only the jobs whose
respective edges connect v and w(v). However, we will see
in the sequel that there are solutions for the configuration-
LP with makespan 1 + 1

k in which also a fraction of the job
with processing time 1 is scheduled on mv (similarly to the
construction presented in Sect. 3.1). Since we chose a large
number of layers, this fraction will be amplified through the
layers to the root until we obtain a feasible solution to the
configuration-LP using only configurations with makespan
at most 1+ 1

k . However, any integral solution has a makespan
of at least 2− 1

k as we will prove in the following lemma. This
implies that the configuration-LP has an integrality gap of 2.

Lemma 1 Any integral solution for Ik has a makespan of at
least 2 − 1

k .

Proof Assume that we are given an integral solution for
Ik which has a makespan strictly smaller than 2. W. l. o. g.
assume that jbig is assigned to machine m(1)

r . As the
makespan of our solution is strictly less than 2 at most k − 1
jobs with processing time 1

k can be assigned to m(1)
r . Hence,

there is an edge e adjacent to the root r1 of the first tree such

that je is not assigned to m(1)
r . Thus, je must be assigned to

the machine corresponding to the other vertex that e is adja-
cent to. We iterate the argument. Eventually, we have that
there must be a vertex v ∈ L1 and a corresponding machine
mv which has a job j with processing time 1 assigned to it.
Recall that our solution has a makespan strictly less than 2.
Hence, at most one job can be assigned to machine mw(v).
Thus, k − 1 jobs with processing time 1

k are assigned to mv .
Together with j this gives a makespan of 1+(k−1) 1

k = 2− 1
k

on machine mv . �
Now we want to show that there is a feasible solution of

the configuration-LP for Ik which uses only configurations
with makespan 1+ 1

k . To this end, we introduce the concept of
j −α-solutions for the configuration-LP. A j −α-solution is
a solution for the configuration-LP whose right-hand side is
modified as follows: job j does not need to be fully assigned
but only to an extent of a fraction α ≤ 1. This value α cor-
responds to the fraction of the big job assigned to a machine
like mv as described above.

For any h ∈ N denote by I (h)
k a subinstance of Ik defined

as follows: Take a vertex v whose distance to r1 equals to
N − h, and consider the subtree T (v) rooted at v. That is,
T (v) is the set of all vertices whose shortest path to r1 passes
through v. Note that h can be interpreted as the height of v in
the corresponding tree. For the subinstance I (h)

k , we take all
machines and jobs which correspond to vertices and edges
in T (v). We remark that since our construction is symmet-
ric it does not matter which vertex v of distance N − h to

123

J Sched (2014) 17:371–383 379

r1 (or r2) we take. Additionally, we take the job which has
processing time 1 on mv . We denote the latter by j (h). We
prove inductively that there are j (h) − α(h)-solutions for the
subinstances I (h)

k for values α(h) which depend only on h.
These values α(h) increase for increasing h. The important
point is that α(N) ≥ 1

2 . Hence, there are solutions for the
configuration-LP which distribute jbig on the two machines

m(1)
r and m(2)

r (which correspond to the two root vertices).
The following lemma gives the base case of the induction.

It explains the inaccuracy of the configuration-LP introduced
by the high-low-gadgets.

Lemma 2 There is a j (1) − 1
k−1 -solution for the configura-

tion-LP for I (1)
k which uses only configurations with make-

span at most 1 + 1
k .

Proof Let v ∈ L1 ∪ L2 be the vertex which corresponds to
the root of I (1)

k . Let j (0)
1 , . . . , j (0)

k be the jobs which have
processing time 1 on mw(v) and processing time 1

k on mv .
For mw(v) the configurations with a makespan of at most

1 + 1
k are C� :=

{
j (0)
�

}
for each � ∈ {1, . . . , k} (so only

the configurations which consist of exactly one job having
processing time 1 on mw(v)). Then we define ymw(v),C�

:= 1
k

for each �. Hence, for each job j (0)
� a fraction of k−1

k remains
unassigned. For mv there are the following (maximal) con-

figurations: Csmall :=
{

j (0)
1 , . . . , j (0)

k

}
(so the set of all jobs

having processing time 1
k on mv) and C�

big :=
{

j (1), j (0)
�

}

for each � ∈ {1, . . . , k} (the single job with processing 1
on mv together with one of the jobs with processing time
1
k on mv). We define ymv,C�

big
:= 1

k(k−1)
for each � and

ymv,Csmall := 1 − 1
k−1 . This assigns each job j (0)

� completely

and the job j (1) to an extent of k · 1
k(k−1)

= 1
k−1 . �

After having proven the base case, the following lemma
yields the inductive step. It shows how the value α of our
j − α-solutions is increased by the layers of our construc-
tion, and thus the effect of the high-low-gadgets is amplified.

Lemma 3 Assume that we are given a j (n)−(
kn/(k−1)n+1

)
-

solution for the configuration-LP for I (n)
k which uses only

configurations with makespan at most 1 + 1
k . Then, there is

a j (n+1)-
(
kn+1/(k − 1)n+2

)
-solution for the configuration-

LP for I (n+1)
k which uses only configurations with makespan

at most 1 + 1
k .

Proof Note that I (n+1)
k consists of k copies of I (n)

k , one addi-
tional machine and one additional job. Denote by mv the
additional machine (which forms the “root” of I (n+1)

k). Recall
that j (n+1) is the (additional) job that can be assigned to mv

but to no other machine in I (n+1)
k . For � ∈ {1, . . . , k} let j (n)

�

be the jobs which have processing time 1
k on mv .

Inside the copies of I (n)
k we use the solution defined in

the induction hypothesis. Hence, each job j (n)
� is already

assigned to an extent of
(
kn/(k − 1)n+1

)
. Like in Lemma 2

the (maximal) configurations for mv are given by Csmall :={
j (n)
1 , . . . , j (n)

k

}
and C�

big :=
{

j (n+1), j (n)
�

}
for each � ∈

{1, . . . , k}. We define the value ymv,C�
big

:= kn/(k − 1)n+2

for each � and ymv,Csmall := 1−kn+1/(k−1)n+2. This assigns
each job j (n)

� completely and the job j (n+1) is assigned to an
extent of k · kn/(k − 1)n+2 = kn+1/(k − 1)n+2. �

Now our main theorem follows from the previous lemmas.

Theorem 2 The configuration-LP for the unrelated graph
balancing problem has an integrality gap of 2.

Proof Lemmas 1, 2, and 3 imply that for instance Ik the
integrality gap of the configuration-LP is at least (2− 1

k)/(1+
1
k). The claim follows since we can choose k arbitrarily large.
The upper bound of 2 follows from Lenstra et al. (1990). �

4 Cases with better approximation factors

In this section, we identify classes of instances of R||Cmax for
which a better approximation factor than 2 is possible. This
can be understood as a guideline of properties that a N P-
hardness reduction must fulfill to rule out a better approxi-
mation factor than 2.

4.1 Bounded range of processing times

We show that if the finite processing times of the jobs dif-
fer by at most a factor of 10/3 we can give a (1 + 5

6)-
approximation algorithm. Hence, using reductions of this
type (which applies to the strongest known N P-hardness
reductions for R||Cmax) one cannot rule out a (2−ε)-approx-
imation algorithm.

Theorem 3 Consider instances of R||Cmax with a value γ

such that pi, j ∈ [
γ, 10γ /3

] ∪ {∞} for all machines i and
all jobs j . For these instances there is a 1 + 5

6 ≈ 1.83-
approximation algorithm.

Proof We use the LST-LP and a combinatorial algorithm,
depending on the target makespan T given by the binary
search. Assume we are given a target makespan T . If T ≥ 4γ

then we solve the (original) LST-LP. If it is feasible, due
to Theorem 1 we know that we can round it to an integral
solution whose makespan is bounded by

T + 10

3
γ ≤

(
1 + 5

6

)
T .

123

380 J Sched (2014) 17:371–383

So now assume that T < 4γ . For that case we give a
matching-based combinatorial algorithm producing a solu-

tion with makespan at most
(

1 + 5
6

)
T . We introduce a bipar-

tite graph with one vertex v j for each job j ∈ J and three
vertices wi,1, wi,2, wi,3 for each machine i ∈ M . We intro-
duce an edge between a vertex v j and a vertex wi,� if and
only if pi, j ≤ T/� for each job j , each machine i , and
each � ∈ {1, 2, 3}. We see that in any feasible solution with
makespan at most T , each machine i has at most one job j
with pi, j > T/2, at most two jobs j with pi, j > T/3 and
at most three jobs in total. Hence, if there is a solution with
makespan at most T then there is a (perfect) matching in
which each vertex v j is matched. On the other hand, each
perfect matching induces a schedule in which the makespan

of each machine is bounded by T + T
2 + T

3 =
(

1 + 5
6

)
T . We

compute a maximum matching. If each vertex v j is matched,

this induces us a solution with makespan at most
(

1 + 5
6

)
T .

On the other hand, if no such matching exists, we output that
the optimum is stricly larger than T and continue the binary
search procedure on T . �
Unfortunately, we do not gain anything by generalizing this
method further to, e.g., the case that pi, j ∈ [

γ, 4γ
] ∪ {∞}.

The reason is that T + T
2 + T

3 = T (1 + 5
6) < 2T but

T + T
2 + T

3 + T
4 ≈ 2.08T > 2T and a 2-approximation

algorithm is already known.

4.2 Bounded GCD of processing times

The inapproximability results for R||Cmax given in Eben-
lendr et al. (2008) and Lenstra et al. (1990) use only jobs j
such that pi, j ∈ {1, 2, 3,∞} for all machines i . We show
now that for classes of instances which use only a finite set
of processing times, there exists an approximation algorithm
with a performance guarantee strictly better than 2.

Theorem 4 There exists a (2 − α)-approximation algo-
rithm for the problem of minimizing makespan on unrelated
machines, where

α = gcd{pi, j | i ∈ M, j ∈ J, pi, j < ∞}
max{pi, j | i ∈ M, j ∈ J, pi, j < ∞} .

Proof We give a slighty strengthened analysis of the 2-ap-
proximation algorithm by Lenstra et al. (1990). Let

g := gcd{pi, j |i ∈ M, j ∈ J, pi, j < ∞}
and

P := max{pi, j |i ∈ M, j ∈ J, pi, j < ∞}.
Note that the optimal makespan of our instance is a multiple
of g, and therefore we can restrict our target makespan T
to be of the form k · g with k ∈ N. Let T ∗ be the target

makespan defined as the smallest multiple of g that yields a
feasible solution to LST-LP (can be computed by a binary
search). Assume we have computed a fractional solution for
LST-LP with target makespan T ∗. We apply LST-rounding
to this fractional solution. By Theorem 1, the makespan of
the rounded solution is strictly less than T ∗ + P ′ with P ′ =
max{pi, j : j ∈ J, pi, j ≤ T ∗}. Since the obtained makespan,
P ′, and T ∗ are multiples of g, we conclude that the former
is bounded by T ∗ + P ′ − g. Let β be a non-negative integer
such that T ∗ = P ′ + β · g. The following calculation then
shows the claimed approximation guarantee:

T ∗ + P ′ − g ≤ T ∗
(

2 − (β + 1)g

T ∗

)

= T ∗
(

2 − (β + 1)g

P ′ + β · g

)

≤ T ∗ (2 − α) .

�
In particular, the above theorem applies to families of
instances which use only a finite set of processing times.
Such families often arise in N P-hardness reductions. Hence,
if one wants to prove that R||Cmax cannot be approxi-
mated with a better factor than 2 then one has to con-
struct reductions which use an infinite number of processing
times. We formalize this observation in the following corol-
lary.

Corollary 1 Let I be a family of instances of R||Cmax. Let
P be a finite set of integers. Assume that for each instance
I ∈ I and each processing time pi, j arising in I it holds
that pi, j ∈ P ∪{∞}. Then for the family of instances I there
is an approximation algorithm with performance guarantee
2 − α with α = gcd{p|p ∈ P}/ max{p|p ∈ P}.

5 MaxMin-allocation problem

In this section, we study the MaxMin-balancing problem on
unrelated machines. Recall that for this problem the objec-
tive is to maximize the minimum load of the machines and
every job can be assigned to at most two machines (with
possibly different processing times on each machine). The
best known approximation algorithm for this problem is a
2-approximation algorithm based on a linear program which
uses knapsack-cover inequalities (Chakrabarty et al. 2009).
This yields the best possible approximation ratio unless
P = N P . However, we show that it is in fact not necessary
to solve a linear program (with the computationally costly
ellipsoid method) to achieve this factor. Instead, we present
here a purely combinatorial 2-approximation algorithm with
only quadratic running time which is quite easy to imple-
ment.

123

J Sched (2014) 17:371–383 381

5.1 A 2-approximation for MaxMin-balancing

Let I be an instance of the problem and let T be a positive
integer. Our algorithm either finds a solution with value T/2
or asserts that there is no solution with value T or larger. With
an additional binary search this yields a 2-approximation
algorithm. For each machine i denote by Ji = {

ji,1, ji,2, . . .
}

the list of all jobs which can be assigned to i . We parti-
tion this set into the sets Ai ∪̇Bi where Ai = {

ai,1, ai,2, . . .
}

denotes the jobs in Ji which can be assigned to two machines
(machine i and some other machine) and Bi denotes the jobs
in Ji which can only be assigned to i . We define A′

i to be the
set Ai without the job with largest processing time (or one
of those jobs in case there is a tie). For any set of jobs J ′

i and
a machine i we define p(J ′

i) := ∑
j∈J ′

i
pi, j .

Denote by pi,� the processing time of job ai,� on machine
i . We assume that the elements of Ai are ordered non-
increasingly by processing time, i.e., pi,� ≥ pi,�+1 for all
respective values of �. If there is a machine i such that
p(Ai) + p(Bi) < T we output that there is no solution with
value T or larger. So now assume that p(Ai) + p(Bi) ≥
T for all machines i . If there is a machine i such that
p(A′

i) + p(Bi) < T (but p(Ai) + p(Bi) ≥ T) then any
solution with value at least T has to assign ai,1 to i . Hence,
we assign ai,1 to i . This can be understood as moving ai,1

from Ai to Bi . We rename the remaining jobs in Ai accord-
ingly and update the values p(Ai), p(A′

i), and p(Bi). We do
this procedure until either

– there is one machine i such that p(Ai) + p(Bi) < T , in
this case we output that there is no solution with value T
or larger, or

– for all machines i we have that p(A′
i) + p(Bi) ≥ T .

We call this phase the preassignment phase.

Lemma 4 If during the preassignment phase the algorithm
outputs that no solution with value T or larger exists, then
there can be no such solution.

Proof If the algorithm moves a job ai,� from Ai to Bi then
any solution with value T or larger has to assign ai,� to Bi .
Hence, if at some point there is a machine i such that p(Ai)+
p(Bi) < T then there can be no solution with value at least
T . �
Now we construct a graph G as follows: For each machine i
and each job ai,� ∈ Ai we introduce a vertex

〈
ai,�

〉
. We con-

nect two vertices
〈
ai,�

〉
,
〈
ai ′,�′

〉
if ai,� and ai ′,�′ represent the

same job (but on different machines). Also, for each machine
i we introduce an edge between the vertices

〈
ai,2k+1

〉
and〈

ai,2k+2
〉

for each respective value k ≥ 0. The reason for the
latter edges is that later exactly one of the two jobs ji,2k+1,
ji,2k+2 will be assigned to i .

Lemma 5 The graph G is bipartite.

Proof Since every vertex in G has degree two or less the
graph splits into cycles and paths. It remains to show that all
cycles have even length. There are two types of edges: edges
which connect two vertices

〈
ai,�

〉
,
〈
ai ′,�′

〉
such that i = i ′ and

edges connecting two vertices which correspond to the same
job on two different machines. On a cycle, the edges of these
two types alternate and hence the graph is bipartite. �

Due to Lemma 5 we can color G with two colors, black
and white. Let i be a machine. We assign each job ai,� to i if
and only if

〈
ai,�

〉
is black. Also, we assign each job in Bi to i .

Lemma 6 The algorithm outputs a solution whose value is
at least T/2.

Proof Let i be a machine. We show that the total processing
time of the jobs assigned to i is at least p(A′

i)/2+ p(Bi). For
each connected pair of vertices

〈
ai,2k+1

〉
,
〈
ai,2k+2

〉
we have

that either ai,2k+1 or ai,2k+2 is assigned to i . We calculate
that

∑
k∈N

pi,2k+2 ≥ p(A′
i)/2. Since pi,2k+1 ≥ pi,2k+2 (for

all respective values k) we conclude that the total processing
time of the jobs assigned to i is at least p(A′

i)/2 + p(Bi).
Since p(A′

i) + p(Bi) ≥ T the claim follows. �
In order to turn the above algorithm into an algorithm for the
entire problem an additional binary search is necessary to find
the correct value of T . Now we discuss how to implement
the overall algorithm efficiently.

First, we test whether n < m. If this is the case then any
(optimal) solution has value 0. So now assume that n ≥ m.
In order to initialize the ordered sets Ai and Bi we need to
sort the jobs by processing time (in the list that we sort we
have two entries for every job, each corresponding to one of
its possible processing times). We sort this list in O(n log n)

steps. Note that the sorting needs to be done only once, no
matter how many values T we try. Starting with an ordered
list of the jobs, we can build the ordered lists Ai and the sets Bi

in linear time. The preassignment phase can be implemented
in linear time: For each machine i we need to check whether
p(A′

i) + p(Bi) < T . We call this a first-check. If we move
a job ai,� from Ai to Bi then the other machine on which
one could possibly assign ai,� needs to be checked again.
We call this a second-check. There are m first-checks and at
most n second-checks necessary. Hence, this procedure can
be implemented in linear time. Coloring the graph G with
two colors also requires only linear time.

For the binary search, we need to try at most log D values,
where D is defined by D := ∑

i, j pi, j . We have that log D ≤
|I | where |I | denotes the length of the overall input in binary
encoding. The sorting needs to be done only once and needs
time O(|I | log |I |). For every value T that we try, O(|I |)
steps are necessary. This yields an overall running time of
O

(|I |2).

123

382 J Sched (2014) 17:371–383

Theorem 5 There is a 2-approximation algorithm for the
MaxMin-balancing problem with running time O

(|I |2).

6 Conclusion

As discussed above, the problem of minimizing the makespan
on unrelated machines is one of the most prominent open
problems in scheduling. To close the gap between the
2-approximation algorithm by Lenstra et al. (1990) and their
3/2-hardness result seems a very challenging task. Since the
machines are unrelated, usual approaches like for identical
machines cannot be used (if the number of machines is part
of the input). However, our results show that most LP-based
approaches are deemed to fail, even for the unrelated graph
balancing case. Hence, when trying to find a better approxi-
mation algorithm it seems reasonable to study the latter set-
ting. To the best of our knowledge, it has not been considered
in its own right so far.

In the paper by Ebenlendr et al. (2008), the setting of graph
balancing and restricted assignment is studied. Our results
and the work by Svensson (2012) indicate that the restricted
assignment feature is actually the reason why this improve-
ment was possible, rather than the restriction to the graph
balancing case. In (2012), Svensson proves an upper bound
for the integrality gap of the configuration-LP of 33/17 in
the restricted assignment case. To the best of our knowledge,
for the restricted assignment case no instance is known for
which the configuration-LP has an integrality gap larger than
3/2. It would be interesting to construct such an instance. In
fact, in our constructions we used only the processing times
{ε, 1,∞}. It is not clear to us how more processing times in
an instance could help to show a larger integrality gap.

For the MaxMin-allocation problem, the algorithm pre-
sented in Sect. 5 achieves the best known approximation
factor in its setting (and it is in fact best possible, unless
P = N P). To the best of our knowledge, it is the only such
algorithm for a non-trivial case of the MaxMin-allocation
problem which does not rely on solving a linear program, in
particular not the computationally expensive configuration-
LP. It would be interesting whether purely combinatorial
algorithms are also possible for other settings of the problem.

Acknowledgments This work was partially supported by Berlin
Mathematical School (BMS), by the DFG Focus Program 1307 within
the project “Algorithm Engineering for Real-time Scheduling and Rout-
ing,” by FONDECYT project 3130407, and by Nucleo Milenio Infor-
mación y Coordinación en Redes ICM/FIC P10-024F.

References

Asadpour, A., Feige, U., & Saberi, A. (2008). Santa Claus meets hyper-
graph matchings. In Proceedings of the 11th International Workshop
and 12th International Workshop on Approximation, Randomiza-

tion, and Combinatorial Optimization. Algorithms and Techniques
(APPROX-RANDOM 2008). LNCS (Vol. 5171, pp. 10–20). Berlin:
Springer.

Asadpour, A., Feige, U., & Saberi, A. (2012). Santa Claus meets hyper-
graph matchings. ACM Transactions on Algorithms, 8, Art. No. 24.

Asadpour, A., & Saberi, A. (2010). An approximation algorithm for
max-min fair allocation of indivisible goods. SIAM Journal on Com-
puting, 39, 2970–2989.

Bansal, N., & Sviridenko, M. (2006). The Santa Claus problem. In Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing (STOC 2006) (pp. 31–40).

Bateni, M., Charikar, M., & Guruswami, V. (2009). Maxmin allocation
via degree lower-bounded arborescences. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC 2009) (pp.
543–552).

Chakrabarty, D., Chuzhoy, J., & Khanna, S. (2009). On allocating goods
to maximize fairness. In Proceedings of the 50th Annual Symposium
on Foundations of Computer Science (FOCS 2009) (pp. 107–116).

Correa, J. R., Skutella, M., & Verschae, J. (2012). The power of preemp-
tion on unrelated machines and applications to scheduling orders.
Mathematics of Operations Research, 37, 379–398.

Ebenlendr, T., Krčál, M., & Sgall, J. (2008). Graph balancing: A special
case of scheduling unrelated parallel machines. In Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008) (pp. 483–490).

Ebenlendr, T., Krčál, M., & Sgall, J. (2012). Graph balancing: A special
case of scheduling unrelated parallel machines. Algorithmica 1–19.
doi:10.1007/s00453-012-9668-9.

Feige, U. (2008). On allocations that maximize fairness. In Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008) (pp. 287–293).

Gairing, M., Monien, B., & Woclaw, A. (2007). A faster combinatorial
approximation algorithm for scheduling unrelated parallel machines.
Theoretical Computer Science, 380, 87–99.

Haeupler, B., Saha, B., & Srinivasan, A. (2011). New constructive
aspects of the Lovász local lemma. Journal of the ACM, 58, Art.
No. 28.

Horowitz, E., & Sahni, S. (April 1976). Exact and approximate algo-
rithms for scheduling nonidentical processors. Journal of the ACM,
23, 317–327.

Karmarkar, N., & Karp, R. M. (1982). An efficient approximation
scheme for the one-dimensional bin-packing problem. In Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 1982) (pp. 312–320).

Lawler, E. L., & Labetoulle, J. (1978). On preemptive scheduling of
unrelated parallel processors by linear programming. Journal of the
ACM, 25, 612–619.

Lee, K., Leung, J. Y., & Pinedo, M. L. (2009). A note on graph balancing
problems with restrictions. Information Processing Letters, 110, 24–
29.

Lenstra, J. K., Shmoys, D. B., & Tardos, E. (1990). Approximation
algorithms for scheduling unrelated parallel machines. Mathematical
Programming, 46, 259–271.

Leung, J. Y., & Li, C. (2008). Scheduling with processing set restric-
tions: A survey. International Journal of Production Economics, 116,
251–262.

Lin, J.-H., & Vitter, J. S. (1992). epsilon-Approximations with mini-
mum packing constraint violation. In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing (STOC 1992) (pp. 771–
782).

Lin, Y., & Li, W. (2004). Parallel machine scheduling of machine-
dependent jobs with unit-length. European Journal of Operational
Research, 156, 261–266.

Schuurman, P., & Woeginger, G. J. (1999). Polynomial time approxima-
tion algorithms for machine scheduling: Ten open problems. Journal
of Scheduling, 2, 203–213.

123

http://dx.doi.org/10.1007/s00453-012-9668-9

J Sched (2014) 17:371–383 383

Shchepin, E. V., & Vakhania, N. (2005). An optimal rounding gives a
better approximation for scheduling unrelated machines. Operations
Research Letters, 33, 127–133.

Svensson, O. (2012). Santa Claus schedules jobs on unrelated machines.
SIAM Journal on Computing, 41, 1318–1341.

Verschae, J., & Wiese, A. (2011). On the configuration-LP for schedul-
ing on unrelated machines. In Proceedings of the 19th European
Symposium on Algorithms (ESA 2011). Lecture Notes in Computer
Science (Vol. 6942, pp. 530–542). Berlin: Springer.

123

	On the configuration-LP for scheduling on unrelated machines
	Abstract
	1 Introduction
	1.1 The minimum makespan problem
	1.1.1 General setting
	1.1.2 Restricted assignment
	1.1.3 Restricted graph balancing

	1.2 The MaxMin-allocation problem
	1.2.1 Unrelated machines
	1.2.2 Restricted assignment
	1.2.3 Unrelated graph balancing

	1.3 Our contribution

	2 LP-based approaches
	3 Integrality gap of the configuration-LP
	3.1 Integrality gap of the configuration-LP
	3.2 Integrality gap for unrelated graph balancing

	4 Cases with better approximation factors
	4.1 Bounded range of processing times
	4.2 Bounded GCD of processing times

	5 MaxMin-allocation problem
	5.1 A 2-approximation for MaxMin-balancing

	6 Conclusion
	Acknowledgments
	References

