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Abstract The artificial bee colony (ABC) is a population-
based metaheuristic that mimics the foraging behaviour of
honeybees in order to produce high-quality solutions for
optimisation problems. The ABC algorithm combines both
exploration and exploitation processes. In the exploration
process, the worker bees are responsible for selecting a ran-
dom solution and applying it to a random neighbourhood
structure, while the onlooker bees are responsible for choos-
ing a food source based on a selection strategy. In this paper,
a disruptive selection strategy is applied within the ABC
algorithm in order to improve the diversity of the popula-
tion and prevent premature convergence in the evolutionary
process. A self-adaptive strategy for selecting neighbour-
hood structures is added to further enhance the local intensi-
fication capability (adaptively choosing the neighbourhood
structure helps the algorithm to escape local optima). Finally,
a modified ABC algorithm is hybridised with a local search
algorithm, i.e. the late-acceptance hill-climbing algorithm,
to quickly descend to a good-quality solution. The experi-
ments show that the ABC algorithm with the disruptive selec-
tion strategy outperforms the original ABC algorithm. The
hybridised ABC algorithm also outperforms the lone ABC
algorithm when tested on examination timetabling problems.
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1 Introduction

The examination timetabling problem (ETTP) is one of the
most difficult combinatorial optimisation problems and is
considered to be N P-hard (Cooper and Kingston 1995;
Schaerf 1999), being prevalent in many academic institu-
tions (Carter et al. 1996). The ETTP can be considered as
the process of allocating a set of examinations to a limited
number of time slots while satisfying a predetermined set of
constraints (Burke et al. 1996; Qu et al. 2009). A large number
of approaches have been described and discussed for solving
such examination timetabling problems, which can be classi-
fied into two main types: local-search-based and population-
based approaches (Qu et al. 2009). Interested readers can
find more details about examination timetabling research in
Abdullah et al. (2009), Burke and Newall (2004), Burke et
al. (1996, 2010), Burke et al. (2004), Carter (1986), Lewis
(2008) and Turabieh and Abdullah (2011a,b).

Observation of group behaviours in natural self-organised
systems motivated researchers to develop population-based
approaches, which are known as swarm intelligence. Exam-
ples of population-based approaches for examination
timetabling problems include the following: ant colony
(Dowsland and Thompson 2005), particle swarm optimisa-
tion (Chu et al. 2006), fish swarm optimisation algorithm
(Turabieh and Abdullah 2011a,b) and honeybee mating opti-
misation (Sabar et al. 2009). Swarm intelligence aims to sim-
ulate the behaviour of such self-organised systems. In par-
ticular, the intelligent behaviour of honeybees motivated the
development of metaheuristic algorithms that model such
behaviour in order to find better solutions to optimisation
problems. Such honeybee algorithms can be classified based
on three different groups of behaviour (Baykasoglu et al.
2007), i.e. foraging, marriage and queen bee behaviours.
Algorithms that are based on the foraging behaviour of
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honeybees are applied to solve optimisation problems, e.g.
the artificial bee colony (ABC), bee algorithm (BA) and bee
colony optimisation (BCO). These three algorithms have dif-
ferent behaviour models for the drone bees.

In this paper, we study the ABC algorithm that was first
proposed by Karaboga (2005) for solving numerical opti-
misation problems. A further version of the ABC algorithm
was later updated and proposed by Karaboga and Basturk
(2007) for solving constrained optimisation problems. This
algorithm has drawn great attention from researchers (Bao
and Zeng 2009; Kang et al. 2009; Karaboga and Akay 2009;
Pham et al. 2006; Singh 2009). The ABC algorithm works
based on local communication between three groups of bees
(i.e. scouts, workers and onlookers) and with their environ-
ment, contributing to the collective intelligence of the bee
colony (Karaboga 2005).

This paper focusses on hybridising the ABC and the
late-acceptance hill-climbing (LAHC) algorithm. The LAHC
algorithm is a local search method that was introduced by
Burke and Bykov (2008). The algorithm has the capability to
quickly explore the search space and accept a worse solution
based on adaptive criteria using fewer parameters, in con-
trast to the ABC algorithm, which only accepts an improved
solution. This capability is believed to be able to prevent the
algorithm from becoming stuck in local optima. Thus, better
solutions can be obtained.

In addition, the performance of the ABC algorithm can
be enhanced by using a selection strategy and a self-
adaptive mechanism as previously presented by Alzaqebah
and Abdullah (2011a,b).

This paper is organised as follows: Sect. 2 presents the
examination timetabling problem and its formulation, while
the artificial bee colony algorithm is presented in Sect. 3. The
proposed approach is discussed in Sect. 4. The experimental
results are presented in Sect. 5, and conclusions are given in
Sect. 6.

2 Problem description and formulation

In this paper, the problem description is divided into two
distinct parts: the Toronto datasets and the International
Timetabling Competition (ITC2007) datasets, as discussed
below:

2.1 The Toronto datasets

These datasets were introduced by Carter et al. (1996), and
were considered as uncapacitated examination timetabling
problems, i.e. where room capacity requirements are not
taken into account. The description of the problem is adapted
from Burke and Newall (2004). In these datasets the problem
consists of the following inputs:

• N is the number of examinations.
• Ei is an examination, i ∈ {1, . . . , N }.
• T is the given number of available time slots.
• M is the total number of students.
• C = (ci j )N×N is the conflict matrix, where each element

denoted by ci j , i, j ∈ {1, . . . , N } is the number of students
taking examination i and j .

• tk (1 ≤ tk ≤ T ) specifies the assigned time slot for exam-
ination k (k ∈ {1, . . . , N }).

The minimisation of the fitness function in Eq. 1 is formulated
to space out students’ examinations throughout the examina-
tion period:

Min

∑N−1
i=1 F1(i)

M
, (1)

where

F1(i) =
N∑

j=i+1

ci j · Proximity(ti , t j ) (2)

with

Proximity(ti , t j ) =
{

25/2|ti −t j | if 1 ≤ |ti − t j | ≤ 5
0 otherwise

(3)

subjected to

N−1∑

i=1

N∑

j=i+1

ci j · γ (ti , t j ) = 0,

where

γ (ti , t j ) =
{

1 if ti = t j

0 otherwise
(4)

Equation 2 represents the penalty for examination i , which
is given by the proximity value multiplied by the number of
students in conflict. Equation 3 represents a proximity value
between two examinations (Carter et al. 1996). Equation 4
represents a clash-free requirement so that no student is allo-
cated to sit more than one examination at the same time. The
clash-free requirement is considered to be a hard constraint.

Table 1 presents the details of the Toronto datasets (Qu et
al. 2009).

2.2 The International Timetabling Competition (ITC2007)
datasets

ITC2007 introduced three tracks of problems: examination
timetabling, curriculum-based course timetabling and post-
enrolment course timetabling problems. In this paper, the
focus is on the first track, i.e. the examination timetabling
problems, which include a number of real-world constraints.
The details of the datasets are given in Table 2 followed by
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Table 1 Toronto datasets

Dataset Number of
time slots

Number of
examinations

Number of
students

Conflict
density

car92 32 543 18,419 0.14

car91 35 682 16,925 0.13

ear83 I 24 190 1,125 0.27

hec92 I 18 81 2,823 0.42

kfu93 20 461 5,349 0.06

lse91 18 381 2,726 0.06

pur93 I 42 2,419 30,032 0.03

rye92 23 486 11,483 0.07

sta83 I 13 139 611 0.14

tre92 23 261 4,360 0.18

uta92 I 35 622 21,267 0.13

ute92 10 184 2,750 0.08

yor83 I 21 181 941 0.29

Table 2 ITC2007 examination datasets

Dataset D1 D2 D3 D4 D5 D6 CD

Exam_1 7,833 607 54 7 12 0 5.05

Exam_2 12,484 870 40 49 12 2 1.17

Exam_3 16,365 934 36 48 170 15 2.62

Exam_4 4,421 273 21 1 40 0 15.0

Exam_5 8,719 1,018 42 3 27 0 0.87

Exam_6 7,909 242 16 8 23 0 6.16

Exam_7 13,795 1,096 80 15 28 0 1.93

Exam_8 7,718 598 80 8 20 1 4.55

(D1 number of students, D2 number of examinations, D3 number of
time slots, D4 number of rooms, D5 period hard constraints, D6 room
hard constraints, CD conflict density)

Table 3 Hard constraints

Hard
constraint

Explanation

H1 No student should be sitting more than one examination at
the same time

H2 The total number of students assigned to each room in
each period cannot exceed the room capacity

H3 The length of examinations assigned to each time slot
should not violate the time slot length

H4 Some sequences of examinations have to be respected,
e.g. exam A must be scheduled before exam B

H5 Room-related hard constraints must be satisfied, e.g.
exam A must be scheduled in room 80

a set of hard and soft constraints, listed in Tables 3 and 4,
respectively (McCollum et al. 2010).

A feasible timetable is one where each exam is assigned
to a period and room, and there is no violation of hard con-
straints. The objective is to minimise the violation of soft
constraints as given in Eq. 5 (McCollum et al. 2010).

Table 4 Soft constraints

Soft
constraint

Mathematical
symbol

Explanation

S1 C2R
S Two examinations in a row:

minimise the number of
consecutive exams in a row for a
student

S2 C2D
S Two examinations in a day: students

should not be assigned to sit more
than two examinations in a day. Of
course, this constraint becomes
important only when there are
more than two examination periods
on the same day

S3 CPS
S Periods spread: all students should

have a fair distribution of exams
over their timetable

S4 C2NMD
S Mixed durations: the numbers of

examinations with different
durations that are scheduled into
the same room has to be
minimised as much as possible

S5 CFL Larger examinations appearing
later in the timetable: minimise
the number of examinations of
large class size that appear later
in the examination timetable (to
facilitate the assessment process)
wPS

S6 CP Period penalty: some periods have
an associated penalty; minimise
the number of examinations
scheduled in penalised periods

S7 CR Room penalty: some rooms have
an associated penalty; minimise
the number of examinations
scheduled in penalised rooms

Table 5 Associate weights of the ITC2007 collection of examination
datasets

Dataset w2D w2R wPS wNI wFL wP wR

Exam_1 5 7 5 10 100 30 5

Exam_2 5 15 1 25 250 30 5

Exam_3 10 15 4 20 200 20 10

Exam_4 5 9 2 10 50 10 5

Exam_5 15 40 5 0 250 30 10

Exam_6 5 20 20 25 25 30 15

Exam_7 5 25 10 15 250 30 10

Exam_8 0 150 15 25 250 30 5

min
∑

s∈S

(
W 2RC2R

S + W 2DC2D
S + W PSCPS

S

)

+
(

W NMDC2NMD
S + W FLCFL + W PCP + W RCR

)
. (5)

Each dataset has its own set of weights as presented in
Table 5 (McCollum et al. 2010).
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3 Artificial bee colony (ABC) algorithm

3.1 Basic artificial bee colony (ABC) algorithm

The ABC algorithm was originally developed based on the
foraging behaviour of real honeybees in finding and sharing
information on food sources in their hives (Kang et al. 2009;
Karaboga and Basturk 2007, 2008; Karaboga 2009; Pham et
al. 2006; Bao and Zeng 2009).

The ABC system consists of three groups of agents (scout,
worker and onlooker bees). In the ABC algorithm, the posi-
tion of a food source represents a possible solution, and the
quality of nectar in the food source corresponds to the quality
(fitness value) of this solution. The number of worker bees
is equal to the number of solutions in the population. Table 6
illustrates the analogy between the natural and artificial bee
colonies.

The algorithm begins with a population of randomly gen-
erated solutions (or food sources); then, steps 1–4 (in Fig. 1)
are repeated until a termination criterion is met (Karaboga
2005, 2009).

The search process of the original ABC algorithm starts
with initialisation of the population (food sources). After the
initialisation, the worker bees adjust the food source position
in their memories and start to discover the position of nearby
food sources (step 1). If the quality of nectar in the new food

Table 6 Analogy between natural and artificial bee colonies

Natural bees ABC

Food source Solution

Quality of nectar Fitness function

Onlooker Exploitation process

Worker Exploration process

Scout Scouting process (also can be
exploration for new solutions)

Fig. 1 Original ABC search algorithm

source is higher than the previous food source, the bees mem-
orise the position of the new source and forget the old one.
After all the worker bees have completed the search process,
they share the information on the sources with the onlooker
bees by doing a wiggle dance. Each onlooker bee watches the
dance, chooses one food source, and searches locally in the
neighbourhood of the selected food source (step 2). In step 3,
the scout bees find the abandoned sources and replace them
by randomly produced new food sources. Finally, the algo-
rithm memorises the best food source found so far (step 4).

3.2 The selection process

In the original ABC algorithm, the onlooker bees applied a
stochastic selection strategy based on roulette-wheel selec-
tion to select a food source based on the information gathered
from the worker bees, which can be summarised as follows:

(i) Calculate the value of fiti as follows:

fiti = 1

1 + fi
, (6)

where fi is the fitness value of the i th food source. ( f is
calculated using Eq. 1 or 5 for the Toronto or ITC2007
datasets, respectively.)

(ii) Calculate the probability Pi as follows:

Pi = fiti
∑SN

i=1 fiti
, (7)

where SN is the number of food sources and Pi is the
probability of the i th food source.

(iii) Finally, from all the solutions (food sources), select a
candidate solution with probability Pi using roulette-
wheel selection as discussed in Holland (1975).

There are two problems when using the basic ABC selection
strategy as stated in Bao and Zeng (2009): (i) The super-
individual is selected too often, which makes the whole pop-
ulation tend to converge towards its position. This will cause
loss of diversity because the same solutions are selected too
often; (ii) When all the solutions converge to the same area
(because of the loss in diversity), the new generated solution
will be from the same area as these solutions, so it is not
guaranteed that the generated solution will be better than the
existing one. Furthermore, this generated solution cannot be
added to the current population. Consequently, the algorithm
becomes stuck in a local optimum, thus preventing a better
solution from being found. To alleviate these problems, a dis-
ruptive selection strategy, as introduced by Kuo and Huang
(1997) and explained in Sect. 3.2, is therefore applied.
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The findings from our previous work in Alzaqebah and
Abdullah (2011a) showed that the ABC algorithm with the
disruptive selection strategy is able to explore the search
space better than either the original ABC algorithm or the
ABC algorithm with tournament and rank selection strate-
gies. The tournament selection strategy randomly selects a
number of solutions and compares them based on a prob-
ability. The solution with the highest fitness value is cho-
sen. In the rank selection strategy, the solutions are ranked
based on the fitness values, so it is biased towards solutions
with higher rank (i.e., better fitness). Meanwhile, the dis-
ruptive selection strategy gives preference to both low- and
high-quality solutions, and tries to retain population diversity
by improving the worse-fitness solutions concurrently with
the high-fitness solutions. This motivated us to use the dis-
ruptive selection strategy within the ABC algorithm in this
work.

Disruptive selection provides more chances for higher and
lower individuals to be selected by changing the definition
of the fitness function as shown in Eq. 8 (Kuo and Huang
1997).

fiti = | fi − fi |Pi = fiti
∑SN

i=1 fiti
, (8)

where fi is the average value of the fitness function fi of the
individuals in the population.

4 The proposed algorithm

4.1 Neighbourhood search operations

In this paper, the following neighbourhood operations are
employed to enhance the search algorithm performance
(adapted from Abdullah and Burke 2006; Abdullah et al.
2007a,b):

Nbs1 Select two examinations at random and swap their
time slots (including rooms if rooms are available)
feasibly.

Nbs2 Select a single examination at random and move to a
new feasible time slot (including a new room if a room
is available).

Nbs3 Select four examinations randomly and swap the time
slots (including rooms if rooms are available) between
them feasibly.

Nbs4 Select two examinations at random and move to new
random feasible time slots (including random feasible
new rooms if rooms are available).

The neighbourhood is selected by using a self-adaptive
method as discussed in Sect. 4.2. Note that, for the ITC2007

datasets, the room is considered to be included in the above
neighbourhood operators.

4.2 Self-adaptive method for neighbourhood search

During the search processes performed by the worker and
onlooker bees, a self-adaptive strategy is applied in finding
the neighbouring food sources, which is explained as follows
(Pan et al. 2011):

(i) The self-adaptive method starts by filling a neighbour
list (NL) with the four neighbourhood operations (as in
Sect. 4.1) that are randomly selected. Note that the list
NL with a specified length is generated previously.

(ii) During the search process, one neighbourhood opera-
tion is taken from NL and is used to generate a new
food source for a worker or onlooker bee. If the new
food source is better than the current one, this approach
inserts the neighbourhood operation into a new list
known as the winning neighbouring list (WNL). The
process is repeated until NL becomes empty.

(iii) When NL becomes empty, 75 % of NL is refilled from
the WNL list, the remaining 25 % is refilled randomly
from the four neighbourhood search operations, and
WNL is reset to zero. If WNL is empty, then the most
recent NL is used again (Pan et al. 2011).

By using the self-adaptive method, suitable neighbourhood
operations are learned and the winning ones are reused later.
The chance of using the winning neighbourhood operations
is higher than for others due to the fact that the NL list is 75 %
filled from WNL. This method also has some randomness,
i.e. 25 % of the NL. In this paper, the length of NL is set
to 200 as stated in Pan et al. (2011). The details of the self-
adaptive method can be found in Alzaqebah and Abdullah
(2011b).

4.3 Late-acceptance hill climbing (LAHC)

The simple local search method LAHC is embedded into the
basic ABC algorithm in order to quickly explore the search
space in the ABC algorithm and prevent it from becoming
stuck in local optima. This is due to the use of a greedy
acceptance criterion in the basic ABC that only accepts an
improved solution and eliminates the worst.

LAHC seems to be as fast as simple hill climbing but
more powerful. This is due to the fact that LAHC is able to
accept a worse solution based on intelligent use of an adaptive
memory to keep information from previous iterations and
reuse it later (Burke and Bykov 2012).

The main idea behind the LAHC method is based on a
memory Ĉ (LAHC list) of size L that is used to memorise
the fitness values of the previous solutions. During the search
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process, the acceptance decision is made according to a com-
parison between the candidate solution and the previous solu-
tion obtained at the Lth step, as follows: the candidate solu-
tion is accepted if its fitness value is better than or equal to the
fitness value in the list Ĉ with index v (the virtual beginning
of the list). The virtual beginning (v) is calculated dynami-
cally as the remainder of the integer division of the current
iteration number I by the length (L) (see Eq. 9).

v = I mod L . (9)

Figure 2 (lines 27–49) shows the pseudo-code for the LAHC
algorithm (Burke and Bykov 2012). The stopping condition
used in this algorithm is described in Sect. 5.

4.4 Adaptive artificial bee colony with LAHC algorithm

Figure 2 illustrates the pseudo-code that represents the
approach embedding the LAHC algorithm, as used in this
paper.

As shown in Fig. 2, the algorithm starts with a feasible
initial solution, as described in Sect. 4.5. The population is
initialised as follows: (i) select a number of examinations at
random and swap their time slots and/or rooms; (ii) select a
number of examinations at random and move them to feasi-
ble time slots and/or rooms. There are three processes in each
iteration. In the first process, the worker bees work on ran-
dom solutions and apply neighbourhood operators based on
the self-adaptive method (as explained in Sect. 4.2) to all solu-
tions in the population in order to find more profitable ones.

In the second process, the solutions are arranged based on
the profitability. The onlooker bees select a solution based on
one of the three selection strategies (as explained in Sect. 4),
and then a local search (LAHC) is utilised (as explained in
Sect. 4.3). Finally, in the last process, the scout bees deter-
mine the abandoned food source (i.e. the food source that
has been visited by all other bees without improvement) and
replace it with a new food source (which is generated as the
food source when the population is initialised).

4.5 Initial solution construction

The explanation of the application of two constructive heuris-
tic algorithms in constructing the feasible initial solutions for
the Toronto and ITC2007 datasets is given below:

• Toronto datasets: A largest degree graph colouring heuris-
tic (Carter et al. 1996) is used to generate initial solutions.

• ITC2007 datasets: The examination with the largest num-
ber of hard constraints is scheduled first (step 1). Then,
the largest degree heuristic (Carter et al. 1996) is applied
by randomly selecting a time slot and a room that sat-
isfy the hard constraints (step 2). If the examination can-

Fig. 2 Pseudo-code for ABC with the LAHC algorithm

not be scheduled to a specific room, then it is allocated
to any randomly selected room. In some cases, a fea-
sible timetable can be obtained after employing these
two steps. However, if a feasible initial solution is not
obtained, certain exams are moved (into different time
slots and/or rooms) or swapped until feasibility is achieved
(step 3).
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5 Simulation results and comparison

In all our experiments, three different modifications of
the ABC algorithm were investigated: (i) the ABC algo-
rithm based on disruptive selection (denoted DABC), which
emphasised the selection strategy chosen based on the experi-
mental results presented in Sect. 5.1; (ii) the DABC algorithm
with the self-adaptive method for neighbourhood search
(denoted SA-DABC); and (iii) SA-DABC with a local search
(LAHC) (denoted LAHC-SA-DABC).

The performance of these modifications was compared
with the basic ABC algorithm to show the effects of employ-
ing the different modifications. Table 7 presents the final
setting of the parameters, which were experimentally cho-
sen from a total of ten runs to obtain average results (note
that the experiments were carried out on Intel� CoreTM i3
processors).

Note that the length of the LAHC list of 500 is adopted
from Burke and Bykov (2008). The stopping condition for
LAHC is 500 iterations, or until there is no more improve-
ment after a number of non-improved moves (set to 50 in this
work).

5.1 Toronto dataset experimental results

This section presents a comparison of the performance
among the basic ABC, DABC, SA-DABC and LAHC-SA-

Table 7 Parameters: final setting

Parameter Value

No. of iterations 500

Population size = no. of onlooker
bees = no. of worker bees

50

No. of scout bees 1

DABC algorithms when tested on the Toronto datasets,
as presented in Table 8. Note that all the algorithms in
Table 8 use the same computational resources. The best
results are highlighted in bold. Note that these results were
obtained from 11 independent runs and the central process-
ing unit (CPU) times are between 300 and 9,600 s based on
Intel� CoreTM i3 processors.

The comparison in Table 8 shows that the three modi-
fied versions of the basic ABC algorithm perform better than
the lone basic ABC algorithm. From Table 8, it can also
be deduced that the disruptive selection strategy (DABC)
outperforms the lone basic ABC algorithm. Use of the self-
adaptive method to select the neighbourhood search opera-
tions further enhances the quality of the solutions. Applying
the local search (LAHC algorithm) within the SA-DABC
aids the algorithm to produce better solutions.

Figure 3 shows the resulting convergence graphs when
applying the basic ABC, DABC and LAHC-SA-DABC algo-
rithms on the Toronto datasets.

The lines in the graphs represent the trends between the
number of iterations and the solution quality (penalty). These
graphs show that the quality of the solution obtained by the
basic ABC algorithm was greatly improved by the modifica-
tions, whereas the convergence of the lines in these graphs
shows how the ABC, DABC and LAHC-SA-DABC algo-
rithms explore the search space.

The behaviour of the algorithms is similar at the begin-
ning of the search, where improvement of the solutions can
be easily obtained. However, later, when the search becomes
steady, it becomes harder to improve a solution. Regard-
ing the effect of the LAHC algorithm, it can be easily
seen that it is more flexible in accepting worse solutions,
which later provides a better chance of finding a better solu-
tion compared with the ABC and DABC algorithms. It can
be concluded that employing the local search (LAHC in

Table 8 Results of comparisons
between the algorithms on the
Toronto datasets

Instance ABC DABC SA-DABC LAHC-SA-DABC

Best Average Best Average Best Average Best Average

car91 5.86 5.97 5.42 5.83 5.01 5.08 4.62 4.74

car92 4.92 5.12 4.84 4.9 4.31 4.36 4.00 4.08

ear83 I 38.34 38.63 37.54 37.73 35.08 35.92 33.14 33.72

hec92 I 11.51 11.85 11.21 11.52 11.13 11.31 10.43 10.59

kfu93 16.04 16.49 15.13 15.83 14.48 14.67 13.59 13.86

lse92 12.42 12.62 12.06 12.62 11.49 11.72 10.75 11.00

rye 11.37 11.74 10.48 10.52 10.27 10.36 9.17 9.54

sta83 I 158.12 158.47 157.52 157.76 157.43 157.48 157.06 157.16

tre92 9.58 9.81 9.23 9.79 8.68 8.76 8.00 8.14

uta92 I 3.99 4.28 3.94 4.02 3.47 3.53 3.27 3.33

ute92 27.8 27.98 27.57 27.9 26.17 26.44 25.16 25.37

yor83 I 41.44 41.42 40.94 41.23 38.48 39.30 35.58 36.32
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Fig. 3 Convergence graphs for the Toronto datasets

this case) within DABC helps to descend quickly to high-
quality solutions. In addition, the self-adaptive method for
selecting neighbourhood search operations also helps the
algorithm to determine the best neighbourhood structure,
unlike selecting a neighbourhood structure at random as
applied in ABC and DABC. This is indicated by the greater
improvement in the fitness value with the self-adaptive
mechanism.

5.2 International Timetabling Competition (ITC2007)
dataset experimental results

The performance of the basic ABC, DABC, SA-DABC and
LAHC-SA-DABC algorithms was also tested on the Interna-
tional Timetabling Competition (ITC2007) datasets. Table 9
presents a comparison of the results produced by these algo-
rithms. The best results are highlighted in bold. Note that
these results were obtained from 11 independent runs with a

stopping condition of 460 s (as a result of using the compe-
tition computation tools to determine the “time limit” based
on Intel� CoreTM i3 processors).

Table 9 shows that, once again, there is a significant
improvement as ABC progresses to DABC, then to SA-
DABC and finally to LAHC-SA-DABC.

The graphs in Fig. 4 show the status of the improve-
ment of the population for the ABC, DABC and LAHC-
SA-DABC algorithms. The diamond symbol in the graphs
indicates how the initial population was spaced throughout
the search process, and the triangle symbol represents the
improved solutions in the population after 460 s. From this
figure, it can be concluded that the DABC and LAHC-SA-
DABC algorithms improved the solutions of the population.
This can be observed in the spacing of the triangle symbols
for the DABC and LAHC-SA-DABC algorithms, which are
located much closer to each other. This indicates the close-
ness of the quality of the solutions in the population, unlike
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Table 9 Results of the
comparisons between the
algorithms on the ITC2007
datasets

Dataset ABC DABC SA-DABC LAHC-SA-DABC

Best Average Best Average Best Average Best Average

Exam_1 6,971 7,124.7 6,552 6,590.8 6,236 6,420.55 5,328 5,517.3

Exam_2 989 1,012.2 893 925.4 809 849.36 512 537.9

Exam_3 11,912 12,114.7 11,441 11,614.3 11,390 11,461.18 10,178 10,324.9

Exam_4 17,470 17,454.5 17,168 17,197.5 16,937 16,988.45 16,465 16,589.1

Exam_5 4,261 4,368.8 3,864 3,970.6 3,797 3,805.73 3624 3,631.9

Exam_6 26,905 27,217 26,845 26,867.5 26,755 26,779.09 26,240 26,275

Exam_7 6,247 6,572.1 5,480 5,841.2 4,847 4,945.09 4,562 4,592.4

Exam_8 10,653 10,913.2 9,888 9,954.4 8,501 8,764.36 8,043 8,328.8

Fig. 4 Convergence graphs for three datasets (Exam_2, Exam_4 and Exam_5)

the spacing found in the lone basic ABC, which appears to
be more scattered.

Figure 5 shows the behaviour of the proposed algorithms
during the search process when tested on the ITC2007
datasets. Again from this figure, it can be easily seen that
the use of the stochastic selection strategy in the basic ABC

algorithm can lead to premature convergence of the algorithm
and limits the search scope by repeatedly choosing only high-
quality individuals. This can be noted by the curve represent-
ing DABC, which shows a downward slope that is steeper
than for the basic ABC algorithm. Later, when both the local
search and self-adaptive method are added to the algorithm, it
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Fig. 5 Convergence graphs for the ITC2007 datasets

is obvious from the presented figures that the embedded local
search proves to be the dominant factor in obtaining better
solutions in the ABC algorithm, where the local search helps
to intensify the selected solution obtained by the onlooker
bees during the exploitation process (as shown in Fig. 2).

Based on the graphs presented in Fig. 5, it can be seen
that the ABC and DABC algorithms reach the stopping con-
dition at about 300–320 iterations, but the LAHC-SA-DABC
algorithm reaches the stopping condition at about 200–300
iterations (given the same stopping condition). This shows
that, even with a smaller number of iterations (representing
a smaller number of candidate solutions), the LAHC-SA-
DABC algorithm is still able to obtain better results. It is
believed that this is due to the ability of the adaptive mech-
anism in selecting the correct neighbourhood search oper-
ations (based on the quality of the current solution in hand
rather than a random selection of neighbourhood search oper-
ations), and the embedded local search can further improve
the performance of the algorithm in finding better solutions.
Thus, these results clearly show the effectiveness (in terms
of the quality of the solution obtained in a smaller number
of iterations) of the modified algorithm compared with the
basic ABC approach.

It is also observed that the ABC algorithm with the dis-
ruptive selection strategy is able to better explore the search
space and transport all the solutions to converge together.
The introduction of the self-adaptive strategy (compared with

the stochastic selection strategy) in selecting neighbourhood
structures manages to help the algorithm to escape from local
optima. The results from Table 9 also show that the LAHC-
SA-DABC algorithm is able to obtain better solutions com-
pared with the other proposed approaches on all the tested
datasets.

5.3 Results analysis and comparison with the best known
results for the Toronto datasets

A comparison between the best results obtained from the tests
run in this paper, i.e. using LAHC-SA-DABC, with the best
known results (the three best approaches from the survey by
Qu et al. (2009), i.e. Caramia et al. (2009), Yang and Petrovic
(2005) and Burke and Bykov (2008)) for the Toronto datasets
is presented in Table 10. The best results are highlighted
in bold. In addition, statistical analysis of the LAHC-SA-
DABC and the best literature approaches was conducted to
identify any significant differences between them. These are
presented in Tables 11 and 12.

For the statistical analysis, the Friedman test was first
employed, followed by the Holm and Hochberg tests as
post hoc methods (if a significant difference was detected)
to obtain the adjusted p value for each comparison between
a control algorithm (the best performing one) and the rest
(Garcia et al. 2010, 2009). Table 11 summarises the ranking
obtained by the Friedman test, where the lowest rank reflects

123



J Sched (2014) 17:249–262 259

Table 10 Toronto datasets:
experimental comparisons with
the best approaches

Dataset LAHC-SA-DABC Caramia Yang and Petrovic Burke and Bykov

Best Average Best Best Average Best Average

car91I 4.62 4.74 6.6 4.50 4.53 4.58 4.68

car92I 4.00 4.08 6.2 3.93 3.99 3.81 3.92

ear83 I 33.14 33.72 29.3 33.7 34.87 32.65 32.91

hec92 I 10.43 10.59 9.2 10.83 11.36 10.06 10.22

kfu93 13.59 13.86 13.8 13.82 14.35 12.81 13.02

lse91 10.75 11.00 9.6 10.35 10.78 9.86 10.14

rye92 9.17 9.54 6.8 8.53 8.79 7.93 8.06

sta83 I 157.06 157.16 158.2 158.3 158.02 157.03 157.05

tre92 8.00 8.14 9.4 7.92 8.1 7.72 7.89

uta92 I 3.27 3.33 3.5 3.14 3.2 3.16 3.26

ute92 25.16 25.37 24.4 25.39 26.1 24.79 24.82

yor83 I 35.58 36.32 36.2 36.53 36.88 34.78 35.16

Table 11 Average (Friedman) ranking of the algorithms on the Toronto
datasets

Algorithm Ranking

Burke and Bykov (2008) 1.5

LAHC-SA-DABC 1.66

Yang and Petrovic (2005) 2.833

Table 12 Adjusted (Friedman) p values on the Toronto datasets

Algorithm Adjusted PHolm PHoch

Yang and Petrovic (2005) 0.6833 0.6833 0.6833

LAHC-SA-DABC 0.0011 0.0020 0.0020

the best algorithm. Note that Caramia et al. (2009) were not
included in the statistical analysis because their average val-
ues are not available.

The p value computed by the Friedman test was 0.0018,
which is below the critical level (α = 0.05). This value shows
that there is a significant difference in the observed results.
The post hoc methods (Holm and Hochberg tests) were
also applied for the LAHC-SA-DABC algorithm. Table 12
presents the adjusted (Friedman) p value, where the Fried-
man test considers the Burke and Bykov algorithm as a con-
trol algorithm.

The Holm and Hockberg procedures show a significant
difference when using the Burke and Bykov algorithm as the
control. The LAHC-SA-DABC algorithm is better than the
Yang and Petrovic algorithm and comparable to the Burke
and Bykov algorithm, with α = 0.05 and α = 0.01 (1/3
algorithms).

This comparison with the best known results shows that,
even though these tests were unable to beat any of the best
known results in the literature, they were still able to produce
“good enough” solutions.

5.4 Results analysis and comparison with the best known
results on the International Timetabling Competition
(ITC2007) datasets

Table 13 compares the proposed algorithm with the four best
approaches in the literature. Note that these approaches and
the approach employed here use 11 runs for each dataset and
the same CPU time (as set in the ITC2007 computation rule).
The best results are highlighted in bold.

The LAHC-SA-DABC algorithm is able to obtain solu-
tions that are better than some of those obtained with the
compared approaches, such as those of Atsuta et al. and Pil-
lay, on all the tested datasets. It is highlighted here that the
difference between these results and the best known results
in the literature is in the range of 5.2–26.4 %.

The results were also analysed and compared against
five winners of the International Timetabling Competition
2007 that can be found at http://www.cs.qub.ac.uk/itc2007/
as listed below:

First place: Tomas Müller
Second place: Christos Gogos
Third place: Mitsunori Atsuta, Koji Nonobe and Toshi-
hide Ibaraki
Fourth place: Geoffrey De Smet
Fifth place: Nelishia Pillay

Friedman’s test was applied to the ITC2007 datasets, yielding
a p value of 9.425E-6, which is below the significance level
of α = 0.05, showing that there is a significant difference in
the observed results.

Table 14 presents the average algorithm rankings found
by the Friedman test, where a lower value indicates a better
rank.
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Table 13 ITC2007 datasets:
experimental comparison with
the best approaches

Dataset Muller
(2009)

Atsuta et al.
(2007)

Pillay
(2007)

Gogos et al.
(2008)

LAHC-SA-DABC

Best Average

Exam_1 4,370 8,006 12,035 5,905 5328 5517.3

Exam_2 400 3,470 3,074 1,008 512 537.9

Exam_3 10,049 18,622 15,917 13,862 10,178 10,324.9

Exam_4 18,141 22,559 23,582 18,674 16,465 16,589.1

Exam_5 2,988 4,714 6,860 4,139 3,624 3,631.9

Exam_6 26,950 29,155 32,250 27,640 26,240 26,275

Exam_7 4,213 10,473 17,666 6,683 4,562 4,592.4

Exam_8 7,861 14,317 16,184 10,521 8,043 8,328.8

Table 14 Average (Friedman) rankings of the algorithms on ITC2007

Algorithm Ranking

Muller 1.5

LAHC-SA-DABC 1.625

Gogos 2.875

Atsuta et al. 4.125

Pillay 4.875

Table 15 Adjusted (Friedman) p values on the ITCC2007 datasets

Algorithm Adjusted PHolm PHoch

LAHC-SA-DABC 0.8743 0.8743 0.8743

Gogos 0.0819 0.1639 0.1639

Atsuta et al. 8.9891E-4 0.0026 0.0026

Pillay 1.9628E-5 7.8514E-5 7.8514E-5

Table 15 presents the adjusted (Friedman) p value and the
further results of the post hoc methods (Holm and Hochberg
tests).

5.5 Box and whisker plots for the Toronto and ITC2007
datasets

Figures 6 and 7 show box and whisker plots for the Toronto
and ITC2007 datasets, respectively, comparing the distrib-
ution percentiles for the LAHC-SA-DABC algorithm. Each
box has lines at the lower quartile, the median and the upper
quartile for the set of 11 runs.

The figures show less dispersion of the solution points,
particularly for the upper and lower quartiles, in Figs. 6
(car91, car92, hec92I and uta92I datasets) and 7 (Exam_2,
Exam_5 and Exam_6). The LAHC-SA-DABC algorithm
generally finds good-quality solutions for both problems. In
all the Toronto datasets (Fig. 6), the median lies between the

Fig. 6 Box and whisker plots obtained for LAHC-SA-DABC on the Toronto datasets
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Fig. 7 Box and whisker plots obtained for the LAHC-SA-DABC algorithm on the ITC2007 datasets

best and worst runs, and their qualities are closer than for
ITC2007, because of the complexity of the problem.

6 Conclusions and future work

The primary aim of this paper is to enhance the performance
of the basic ABC algorithm by use of a disruptive selec-
tion strategy (DABC), a self-adaptive strategy for select-
ing neighbourhood structures and local search algorithms
(late-acceptance hill climbing, in this case). The experimen-
tal results demonstrate that the LAHC-SA-DABC algorithm
outperforms other modifications of the ABC algorithm and
is comparable to state-of-the-art approaches when tested on
examination timetabling problems. The experimental results
also show that, with the disruptive selection strategy, the solu-
tions in the population tend to converge together. In future
research work, it is suggested to investigate the effect of these
modifications on other categories of honeybee algorithms and
to test their performance on a broader range of timetabling
problems.
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