
J Sched (2014) 17:5–15
DOI 10.1007/s10951-013-0349-6

Minimizing conditional-value-at-risk for stochastic scheduling
problems

Subhash C. Sarin · Hanif D. Sherali · Lingrui Liao

Received: 15 February 2011 / Accepted: 18 September 2013 / Published online: 8 October 2013
© Springer Science+Business Media New York 2013

Abstract This paper introduces the use of conditional-
value-at-risk (CVaR) as a criterion for stochastic schedul-
ing problems. This criterion has the tendency of simulta-
neously reducing both the expectation and variance of a
performance measure, while retaining linearity whenever
the expectation can be represented by a linear expression.
In this regard, it offers an added advantage over tradi-
tional nonlinear expectation-variance-based approaches. We
begin by formulating a scenario-based mixed-integer pro-
gram formulation for minimizing CVaR for general schedul-
ing problems. We then demonstrate its application for
the single machine total weighted tardiness problem, for
which we present both a specialized l-shaped algorithm
and a dynamic programming-based heuristic procedure. Our
numerical experimental results reveal the benefits and effec-
tiveness of using the CVaR criterion. Likewise, we also
exhibit the use and effectiveness of minimizing CVaR in
the context of the parallel machine total weighted tardiness
problem. We believe that minimizing CVaR is an effective
approach and holds great promise for achieving risk-averse
solutions for stochastic scheduling problems that arise in
diverse practical applications.

Keywords Stochastic scheduling · Conditional-value-at-
risk · Total weighted tardiness · Benders decomposition ·
Dynamic programming

S. C. Sarin (B) · H. D. Sherali · L. Liao
Grado Department of Industrial and Systems Engineering,
Virginia Tech, Blacksburg, VA 24061, USA
e-mail: sarins@vt.edu

1 Introduction

Machine scheduling problems involve the processing of
given sets of jobs on a finite number of machines. The per-
formance measure that is typically used is a scalar func-
tion of job completion times. Deterministic versions of this
problem have been studied extensively over several decades.
However, as pointed out by McKay et al. (1988), the practi-
cal applicability of deterministic scheduling models is ham-
pered due to its disregard of uncertainty factors, which are
encountered frequently in practice. Consequently, various
approaches have been developed to address uncertainty in
scheduling. Robust scheduling strives to provide the best pro-
tection against worst-case scenarios (Daniels and Kouvelis
1995; Kouvelis et al. 2000). Reactive scheduling modifies
a baseline schedule after uncertainties are revealed during
its implementation (Sabuncuoglu and Bayiz 2000; Vieira et
al. 2003). Fuzzy scheduling is suitable for situations in which
available data are insufficient to construct viable probabilistic
models, hence fuzzy numbers are used to represent uncertain
parameters such as job processing times (Balasubramanian
and Grossmann 2003). On the other hand, stochastic schedul-
ing tries to find solutions that optimize a performance mea-
sure under the assumption that the uncertain parameters are
random variables with known distributions. In this spirit, for
cases when probability density functions of job processing
times are known, Sarin et al. (2010) presented an expectation-
variance analysis for a given job assignment/sequence solu-
tion. In this paper, we address stochastic scheduling prob-
lems where a reliable prior knowledge of random parameters
exists.

Since the value of an objective function depends on prob-
lem parameters, randomness of these parameters implies that
the objective value is also a random variable. To compare per-
formances of different schedules, some distributional prop-

123

6 J Sched (2014) 17:5–15

erty of the objective function is usually adopted as a schedul-
ing criterion. A commonly used criterion is the expected
value, which can be regarded as the long-run average per-
formance of a schedule (see, for example, Pinedo 2001 and
Skutella and Uetz 2005). As pointed out by Daniels and Kou-
velis (1995), a critical disadvantage of using expectation as a
performance measure is that it does not account for the risk-
averse attitude of a decision-maker. De et al. (1992) used vari-
ance as a risk measure and determined expectation-variance-
based efficient schedules. However, using variance as a risk
measure has several drawbacks. First, except for some spe-
cial cases (such as the single machine flow time problem
discussed by De et al. 1992), it is difficult to derive ana-
lytical expressions for the variance of typical performance
measures. Moreover, in case a scenario-based approach is
adopted, the sample variance of any given performance mea-
sure involves a quadratic expression, which makes the opti-
mization problem relatively hard to solve. Second, minimiz-
ing the variance of a random variable equally penalizes pos-
itive and negative deviations from its mean value. For exam-
ple, suppose that two solutions yield identical expectation
and variance values of the objective function, and that the
distribution of the objective function value for the first solu-
tion has a longer tail on the right side of its probability density
function. For a minimization problem, a risk-averse decision-
maker would choose the second solution to avoid the risk of
encountering large outcomes. However, based on the values
of the expectation and variance alone, it is not possible to
distinguish between these two solutions. To avoid the above
drawbacks of variance, we use the conditional-value-at-risk
(CVaR) as a criterion for stochastic scheduling. This crite-
rion, which was introduced in the finance context by Rock-
afellar and Uryasev (2000), is advantageous due to its ten-
dency of simultaneously minimizing both the variance and
the expectation of a given performance measure, while main-
taining linearity whenever the expectation objective function
can be represented by a linear expression.

In this paper, we formulate a scenario-based mixed-integer
program (MIP) to minimize CVaR for general scheduling
problems. We propose a decomposition approach based on
Benders algorithm (Benders 1962) for its solution, wherein
we include certain additional valid inequalities to strengthen
the relaxed master program. We demonstrate the effective-
ness of minimizing CVaR through two classic scheduling
problems: the single machine total weighted tardiness prob-
lem and the parallel machine total weighted tardiness prob-
lem. To solve large-sized problem instances, we also develop
a dynamic programming-based heuristic procedure, which
is shown to yield good solutions with significantly reduced
computational effort.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the concept of CVaR and formulate a
general model for its minimization. In Sect. 3, we consider the

application of the foregoing formulation to the classic single
machine total weighted tardiness scheduling problem, and
we develop an optimization approach for the solution of this
problem, as well as a heuristic procedure for handling large-
sized instances. Results of numerical experiments are pro-
vided to demonstrate the benefits and effectiveness of using
the CVaR criterion. An extension of this approach to a par-
allel machine total weighted tardiness problem is addressed
in Sect. 4. Finally, some concluding remarks are presented
in Sect. 5.

2 Optimizing CVaR in a stochastic scheduling
environment

2.1 Motivation

Definition 1 Given a random variable X and a probabil-
ity level α ∈ (0, 1), the Value-at-Risk (VaR) and the
Conditional-Value-at-Risk (CVaR) are, respectively, defined
as:

ηX (α) = inf{x : FX (x) ≥ α}
and

φX (α) = E[X |X ≥ ηX (α)] = 1

1− α
∫ +∞
ηX (α)

x dFX (x),

where FX (x) is the cumulative distribution function of X .

Loosely speaking, φX (α) is the average value of the
(1 − α) · 100 % largest outcomes of X . As a risk mea-
sure, CVaR possesses several useful properties, which have
enabled it to gain popularity in the fields of insurance and
finance. First of all, CVaR is consistent with second degree
stochastic dominance (SSD) (see Ogryczak and Ruszczynski
2002). Specifically, if a random variable X dominates a ran-
dom variable Y under the SSD rule (denoted as X ≥SSD Y),
then X is better than Y with respect to all risk-averse non-
decreasing utility functions. CVaR is consistent with SSD in
the sense that

X ≥SSD Y : φX (α) ≤ φY (α), ∀α ∈ (0, 1).

Interestingly, this property does not always hold for the vari-
ance (see Porter and Gaumnitz 1972). Secondly, CVaR is a
coherent risk measure as defined by Artzner et al. (1999), in
that it satisfies the four axioms of translation invariance, sub-
additivity, positive homogeneity, and monotonicity. The VaR,
on the other hand, does not satisfy subadditivity. Also, note
that, for any random variable X with finite values of φX (α)

and E[X], we always have φX (α) ≥ E[X], ∀α ∈ (0, 1).
Therefore, minimizing the CVaR of a random variable tends
to reduce its expected value as well. Furthermore, it can be
shown that (see Rockafellar and Uryasev 2000):

123

J Sched (2014) 17:5–15 7

φX (α) = min
η∈�

{
η + 1

1− α E
[
(X − η)+]}

(1)

where (ξ)+ denotes max{0, ξ}. This representation allows
the incorporation of CVaR into an optimization framework.
Wang and Ahmed (2008) have used CVaR to construct side-
constraints while minimizing the expected objective value.
In contrast, as discussed next, we investigate the formulation
of a stochastic scheduling problem that directly minimizes
CVaR as the objective function.

2.2 Problem formulation and a decomposition approach

Consider a general scheduling problem whose deterministic
version can be formulated as the following MIP:

P1 : Minimize hTy
subject to: x ∈ �,Ax ≥ b

Cx + Dy ≥ g
y ≥ 0,

where the vectors x and y are the decision variables, and the
set � denotes bound values and possibly integrality restric-
tions. Suppose now that due to the stochastic nature of the
problem, once x is determined, the parameters C and g are
subject to random variations. We assume that such random-
ness is captured by a finite set of scenarios, S, with corre-
sponding parameter values Cs and gs, ∀s ∈ S. These sce-
narios are derived either from some discrete approximation
of the underlying distributions of the problem parameters, or
from some scenario generation procedure, with the probabil-
ity value πs being associated with a scenario s,∀s ∈ S. The
stochastic version of Problem P1 can then be formulated as
a two-stage stochastic program as follows:

P2 : Minimize
∑

s∈S πshTys

subject to: x ∈ �,Ax ≥ b
Csx + Dys ≥ gs, ∀s ∈ S
ys ≥ 0, ∀s ∈ S,

where the objective function considers the traditional mini-
mization of the expected value. In this context, x is the vector
of first-stage decision variables, which need to be determined
before the values of the random parameters are observed as
alluded above, and y ≡ {y1, y2, . . . , yS} is the vector of sec-
ond stage recourse variables with the sub-vector ys denoting
the decision under scenario s, ∀s ∈ S. Furthermore, note
that we assume a fixed recourse situation, so that the matrix
D is constant across all scenarios.

As discussed in the introduction, our interest lies in min-
imizing CVaR for the scheduling criterion hTy, instead of
minimzing the common expected value objective as in Prob-
lem P2. Adopting the derivation (1) of Rockafellar and Urya-
sev (2000), it can be shown that the following MIP provides
an equivalent formulation for the minimization of CVaR:

MP : Minimize φ = η + 1

1− α
∑
s∈S

πsμs

subject to: x ∈ �,Ax ≥ b (2)

η + μs ≥ hTys, ∀s ∈ S (3)

Csx + Dys ≥ gs, ∀s ∈ S (4)

μs ≥ 0 and ys ≥ 0, ∀s ∈ S. (5)

Note that, by constraints (3) and (5),μs represents (hTys−
η)+. Because of the size and structure of Problem MP, partic-
ularly for a large number of scenarios, it is attractive to con-
sider Benders decomposition to solve this problem (Benders
1962). For each scenario s ∈ S, we define the second-stage
problem as follows:

MPII(s) : Qs(x) ≡ min
ys≥0
{hTys : Dys ≥ gs − Csx}.

We further assume relatively complete recourse, so that Prob-
lem MPII(s) is feasible for all relevant values of x fea-
sible to (2), and that MPII(s) is bounded. Observe that,
consequently, the first stage problem seeks to minimize φ
subject to (2), μs ≥ 0 for s ∈ S, and that η + μs ≥
Qs(x), ∀s ∈ S. Hence, the first-stage problem can be written
as follows:

MPI : Minimize φ = η + 1

1− α
∑
s∈S

πsμs

subject to: x ∈ �,Ax ≥ b

η + μs ≥ (gs − Csx)Tψ, ∀s ∈ S, ψ ∈ 	
μs ≥ 0, ∀s ∈ S,

(6)

where 	 denotes the set of extreme point feasible solutions
to the dual of MPII(s) for any s ∈ S, and where the latter is
given as follows:

Qs(x) ≡ max
ψ≥0
{(gs − Csx)Tψ : DTψ ≤ h}.

Since the set 	 is in general exponentially sized, we solve
Problem MPI via a constraint relaxation and cut generation
procedure. Specifically, given a solution x to some relax-
ation of MPI that only has a subset of restrictions in (6) for
some selected ψ ∈ 	s ⊂ 	, ∀s ∈ S, we compute Qs(x) by
solving MPII(s), ∀s ∈ S. In the case where the inequality
η + μs ≥ Qs(x) is violated for some s ∈ S, we generate
an optimality cut of the form η + μs ≥ (gs − Csx)Tψ∗,
where ψ∗ denotes an optimal dual solution to MPII(s), and
we augment	s ← 	s∪{ψ∗}. Also note that as described by
Sherali and Lunday (2010), we can generate maximally non-
dominated Benders cuts by perturbing the right-hand side
of MPII(s) to gs(1 + λ) − Cs(x + λe), where e is a con-
formable vector of ones and λ is a suitable (small) perturba-
tion parameter. Adding such cuts for all s ∈ S as necessary
to the relaxed MPI, we re-solve the augmented first stage

123

8 J Sched (2014) 17:5–15

problem and repeat the above procedure until we obtain a
first stage solution for which η + μs ≥ Qs(x), ∀s ∈ S.
To reduce the number of added cuts, we aggregate, using
equal weights, the optimality cuts that are generated within
the same iteration. We also embed this cut generation pro-
cedure in a branch-and-bound (B&B) framework whenever
� contains integrality restrictions, so that the B&B tree is
explored only once. The resulting algorithm is a specialized
implementation of the integer l-shaped method (Birge and
Louveaux 1997, Chap. 8). In addition, the following valid
inequality further improves the (initial) relaxation of MPI.

Theorem 1 For any given set S′ ⊂ S such that πS′ �∑
s∈S′ πs ≥ 1−α, the following inequality is valid for Prob-

lem MP:

φ ≥ 1

πS′

∑
s∈S′

πshTys . (7)

Proof By aggregating the inequalities (3) using weights of
πs, ∀s ∈ S′, we have

∑
s∈S′

πsη +
∑
s∈S′

πsμs ≥
∑
s∈S′

πshTys

⇒ η + 1

πS′

∑
s∈S′

πsμs ≥ 1

πS′

∑
s∈S′

πshTys . (8)

Since πS′ ≥ 1− α, we further have

φ = η + 1

1− α
∑
s∈S

πsμs

≥ η + 1

πS′

∑
s∈S

πsμs ≥ η + 1

πS′

∑
s∈S′

πsμs . (9)

Using (8) in (9) thus validates (7). ��

The idea here is to select some reasonable set of scenarios
S′ ⊂ S that satisfy the condition of Theorem 1 and then
to explicitly incorporate the restrictions (7) along with the
constraints (4) and (5) pertaining to s ∈ S′ directly within
MPI. We denote these restrictions as:

(φ, x, y) ∈ Z . (10)

In particular, this set Z provides a lower bound for CVaR
based on the outcomes of a selected set of scenarios, and
induces a tighter relaxation for the first-stage problem MPI

without complicating its formulation too much. Ideally, the
selected scenarios for S′ should yield relatively large val-
ues of hT ys at optimality. Note that with this modifica-
tion, φ is regarded both as a decision variable and as the
objective function of MPI, where we accommodate within

the constraints the additional inequality: φ ≥ η + 1
1−α∑

s∈S πsμs .
Alternatively, we can incorporate the constraints (3), (4),

and (5) pertaining to s ∈ S′ directly within MPI. We denote
these restrictions as:

(η,µ, x, y) ∈ Z ′, (11)

which can be regarded as a disaggregated version of the
restrictions in (10).

3 Application to a single machine scheduling problem

To demonstrate the viability and benefit of optimizing CVaR,
we first apply the above methodology to the single machine
total weighted tardiness (TWT) problem. We assume the
processing times to be the only random elements in this prob-
lem. Consider the following notation:

Parameters:

J : Set of jobs;
w j : Weight of job j, ∀ j ∈ J ;
d j : Due date of job j, ∀ j ∈ J ;
πs : Probability of scenario s, ∀s ∈ S.
ps

j : Processing time of job j under scenario s, ∀ j ∈ J, s ∈
S.

Decision variables:

cs
j : Completion time of job j under scenario s, ∀ j ∈

J, s ∈ S;
t s

j : Tardiness of job j under scenario s, ∀ j ∈ J, s ∈ S;
η: A threshold value (equal to the value-at-risk when an

optimal solution is obtained);
μs : Amount of TWT exceeding the threshold valueη under

scenario s, ∀s ∈ S;
zi, j : Job precedence binary variable, where, zi, j = 1 if

job i is processed before job j, zi, j = 0 otherwise,
∀i �= j ∈ J .

The model formulation of the single machine total
weighted tardiness problem SM-TWTP is as follows:

SM− TWTP :
Minimize φ = η + 1

1− α
∑
s∈S

πsμs

subject to: η + μs ≥
∑
j∈J

w j t
s
j , ∀s ∈ S (12)

∑
i∈J\{ j}

ps
i zi, j + ps

j ≤ cs
j , ∀s ∈ S, j ∈ J (13)

t s
j + d j ≥ cs

j , ∀s ∈ S, j ∈ J (14)

zi, j + z j,i = 1, ∀i �= j ∈ J (15)

123

J Sched (2014) 17:5–15 9

Table 1 Parameters of an
example problem Job j 1 2 3 4 5 6 7 8

E[p j] 64 98 93 21 12 55 14 19

V ar [p j] 42 7 8 36 20 400 5 100

w j 4 3 1 3 2 5 2 4

d j 137 157 147 150 168 141 162 142

zi, j + z j,k + zk,i ≤ 2, ∀i �= j �= k ∈ J (16)
cs

j ≥ 0, t s
j ≥ 0, μs ≥ 0, ∀s ∈ S, j ∈ J (17)

zi, j ∈ {0, 1}, ∀i �= j ∈ J.

For each scenario s, constraint (12) (along with (17)) deter-
mines μs as the amount of TWT that exceeds the thresh-
old value of η (if at all). Constraint (13) bounds the job
completion times according to job sequencing relation-
ships. Constraints (14) and (17) determine the tardiness of
jobs. Constraints (15) and (16) ensure feasibility of the job
sequence by eliminating cyclic sequences (see Sarin et al.

2005). Note that the variables
{
zi, j

}
and

{
cs

j , t s
j

}
corre-

spond to the variables x and ys , respectively, in the general
formulation MP.

As an illustration, consider an 8-job problem with 100
scenarios. The job processing times are assumed to fol-
low left-truncated normal distributions (truncated at zero to
ensure nonnegativity). The job parameter values are sum-
marized in Table 1. Scenario-wise values of p j were gener-
ated via Monte Carlo sampling. This problem was solved
to optimality for each of the criteria of minimizing the
expected value as well as minimizing CVaR (with α = 0.8),
which resulted in different optimal sequences: sequence
δE = 〈1, 6, 8, 4, 5, 7, 2, 3〉 for the expected value criterion,
and sequence δC = 〈6, 8, 4, 7, 5, 1, 2, 3〉 for the CVaR cri-
terion. The empirical cumulative distribution functions of
total weighted tardiness under both sequences are plotted
in Fig. 1. Note that δC, the sequence that minimizes CVaR,
does not achieve the minimal expected value given by the
optimal sequence δE. However, for a slight increment in the
expected value (about 7 %), δC results in almost a 50 %
reduction in the value of variance. As a result, the cumula-
tive distribution function of the TWT corresponding to δC

reaches probability 1 at the TWT value of 1179.5, while the
TWT corresponding to δE has a substantial associated prob-
ability of exceeding this value. This example illustrates the
risk-averse nature of CVaR and its effectiveness in reducing
variability.

To further illustrate the above observation, we randomly
generated 30 sample problems with 8 jobs and with uniformly
distributed processing times. The processing time distribu-
tion for job j was taken as

U (ρ j (1− r j), ρ j (1+ r j)),

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Total Weighted Tardiness

min(Expectation) min(CVaR)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

200 400 600 800 1000 1200 1400 1600

P
ro

ba
bi

lit
y

Total Weighted Tardiness

min(CVaR)
min(Expectation)

Fig. 1 Cumulative distribution function and histogram of TWT for the
expected value and CVaR criteria

where the values of ρ j and r j were generated from uniform
distributions U (20, 100) and U (0.1, 0.25), respectively. The
job due dates were generated according to

U

(
1− T F − RDD

2
, 1− T F + RDD

2

)
·
∑
j∈J

E[p j],

with a tardiness factor T F of 0.6, and a relative due date
RDD of 0.4. One hundred scenarios were generated for
each sample problem. After the optimal sequences (δE and
δC) were obtained, the expectation and variance of the total
weighted tardiness were evaluated for both δE and δC. The
results obtained are plotted in Fig. 2. The horizontal axis rep-
resents the ratio of expectations corresponding to the optimal
sequences δC and δE, which indicates the relative increment
in expectation due to choosing δC over δE. The vertical axis
corresponds to the ratio of the corresponding variances. The
smaller the ratio, the greater is the reduction in variability
of the TWT value. Note that for 15 out of the 30 problem
instances used, the resulting distributions of TWT are differ-
ent for δE and δC. In these cases, choosing δC over δE leads
to a significant reduction in the variability of TWT, with only
a slight increment in its expected value.

123

10 J Sched (2014) 17:5–15

Fig. 2 Expectation-variance comparison for the sequences δC and δE
for the 8-job single machine problems

3.1 Solution approach for SM-TWTP

To solve the SM-TWTP model more efficiently, we imple-
mented the integer l-shaped method after enhancing its first-
stage model with the valid inequalities (10) or (11). In par-
ticular, the selected set of scenarios, S′, was determined
according to the total weighted processing times. A sce-
nario having a higher value of the total weighted processing
time tends to have larger tardiness values as well. Hence, to
induce a tight bound, we constructed the set S′ incremen-
tally, starting with the empty set, and then adding scenar-
ios in nonincreasing order of the total weighted process-
ing time, until πS′ reaches or exceeds 1 − α. In addi-
tion, since a job sequence (given by

{
zi, j

}
) is fixed by

the first-stage problem MPI, the subproblem has the fol-
lowing simple structure, which leads to its straightforward
solution in closed-form, where Cs

j ≡
∑

i∈J\{ j} ps
i zi, j + ps

j ,∀ j ∈ J, s ∈ S:

MPII(s) :
Minimize

∑
j∈J w j t s

j
subject to: cs

j ≥ Cs
j , ∀ j ∈ J

ts
j − cs

j ≥ −d j , ∀ j ∈ J
cs

j ≥ 0, t s
j ≥ 0, ∀ j ∈ J.

Dual of MPII(s) :
Maximize

∑
j∈J (Cs

j u j − d jv j)

subject to: u j − v j ≤ 0, ∀ j ∈ J
v j ≤ w j , ∀ j ∈ J
u j ≥ 0, v j ≥ 0, ∀ j ∈ J.

Note that an optimal dual solution is given by u j = v j = w j ,
if Cs

j ≥ d j ; and u j = v j = 0 otherwise. It is easy to verify

Table 2 Average results obtained with l-shaped method, with and with-
out the set Z and Z ′ inequalities

|J | |S| Valid ineq. Initial LP
bound

No. of nodes CPU time (s)

8 100 N/A 0.00 2,400.57 6.49
Z 1,091.77 140.90 0.92

Z ′ 1,091.77 86.00 0.56

15 400 N/A 0.00 110,310.00 3,600.00

Z 3,003.53 10,077.20 571.71

Z ′ 3,003.53 7,793.90 362.37

that this produces maximally nondominated Benders cuts
(see Sherali and Lunday 2010).

To evaluate the performance of our decomposition appr-
oach, we benchmarked it against a method that directly uses
CPLEX 10.1 to solve the formulation MP. To further reduce
the size of the problem formulation, we applied the following
substitution for both methods, which is implied by constraint
(15):

zi, j = 1− z j,i , ∀i > j.

Experiments were conducted on a workstation with a 3.6 GHz
CPU and 3 GBytes of RAM. We used α = 0.8. In addition to
the 8-job problems previously considered, we further gener-
ated 30 sample problems having 15 jobs and 400 scenarios.
To begin with, we applied the integer l-shaped method with
and without the additional inequalities defined by Z given by
(10) or Z ′ given by (11), in order to determine the effective-
ness of these alternative formulations. A maximum time limit
of 3,600 s was applied. The average results are summarized
in Table 2.

Note that, the inclusion of the inequalities of Z or Z ′
greatly enhances the performance of the l-shaped method
by inducing a good lower bound for the first stage problem.
Between Z and Z ′, the disaggregated set Z ′ generated fewer
nodes, and hence required less CPU time. However, both sets
of restrictions generated identical initial lower bound values.
We also experimented with McDaniel and Devine (1977)’s
approach of generating an initial set of optimality cuts based
on the LP relaxation of MPI. However, it was not found to
improve the computational efficiency of the integer l-shaped
method.

With the addition of the Z ′-inequalities to MPI, we fur-
ther compared the performance of the l-shaped method with
the direct solution of Problem MP by CPLEX. The results
are summarized in Table 3. Although the l-shaped method
generated more B&B nodes, since its first-stage problem is
smaller in size than the original problem MP, it consumed
significantly smaller CPU times, reducing the average com-
putational effort required for the 8-job and 15-job instances
by 61.6 and 81.0 %, respectively.

123

J Sched (2014) 17:5–15 11

Table 3 Comparison of the
proposed l-shaped method and
a direct solution by CPLEX

|J | |S| Approach Initial LP bound No. of nodes CPU time (s)

8 100 Directly by CPLEX 1,100.05 64.63 1.46

L-shaped method 1,091.77 86.00 0.56

15 400 Directly by CPLEX 3,021.33 5,910.70 2,012.37

L-shaped method 3,003.53 7,793.90 362.37

3.2 Solution of large-sized problems

Although the l-shaped method provides a good alternative
approach to solving Problem MP directly by CPLEX, yet it
cannot be used for large-sized problem instances because
of excessive memory requirements. Therefore, to handle
large-sized problem instances, we adapted the determinis-
tic Dynasearch method proposed by Congram et al. (2002)
and further extended by Grosso et al. (2004) in order to
address the stochasticity present in our problem. Dynasearch
is a local search heuristic method. Given a complete job
sequence, δ, as the current solution, Dynasearch searches
all solutions that can be reached from δ by non-overlapping
pairwise interchanges of jobs (see Congram et al. 2002, for
details). If a neighboring solution is found to be better than
δ, it is designated as the starting point for the next itera-
tion of the local search process. Although the local search
neighborhood has a size that grows exponentially with the
number of jobs, Dynasearch affords an efficient determina-
tion of a local optimal solution by using a dynamic program-
ming approach. For this approach, the stages are defined by
the number of jobs already fixed in the leading part of a job
sequence. At each stage j , Dynasearch considers the applica-
tion of non-overlapping pairwise interchanges over the first
j jobs of δ. The minimum TWT of these j jobs is regarded
as the value function f (j). The value of f (j + 1) can then
be determined recursively by considering the following two
options: keeping the (j + 1)th job at its original position in
δ, or by exchanging it with the i th job, ∀i < j . Dynasearch
has been shown to be quite competitive in solving single
machine TWT problems. Grosso et al. (2004) generalized
the idea of pairwise interchanges to also include forward- and
backward-shifted reinsertions, calling this procedure gener-
alized pairwise interchanges (GPI). Our method is built upon
this GPI-version of Dynasearch to exploit its full strength.

Congram et al. (2002) and Grosso et al. (2004) consid-
ered the deterministic version of the single machine TWT
problem. In our stochastic setting, multiple scenarios intro-
duce additional complications. First, the value function of
the dynamic program needs to be modified to account for
scenario-wise outcomes. Second, the CVaR objective func-
tion precludes the separability required by dynamic program-
ming. In particular, given a partial sequence 〈ξ, ζ 〉 that min-
imizes CVaR for the considered |ξ | + |ζ | jobs, it is not nec-

essarily true that ξ is optimal with respect to CVaR for the
jobs in ξ . We show this by an example: Let |S| = 5, α =
0.8, |ξ | = 2, and |ζ | = 1, and πs = 0.2,∀s ∈ S. For
the two jobs in ξ , there exist two alternative sequences: ξ
and ξ ′ ≡ reverse(ξ). Suppose that the scenario-wise TWT
values of these two sequences are {1, 2, 2, 5, 2} for ξ , and
{1, 2, 3, 3, 4} for ξ ′. The corresponding CVaR values are 5
and 4, respectively. If the weighted tardiness values of the
third job, ζ , are {4, 3, 2, 1, 3}, the total weighted tardiness
values of the three jobs are {5, 5, 4, 6, 5} for the sequence
〈ξ, ζ 〉, and {5, 5, 5, 4, 7} for the sequence

〈
ξ ′, ζ

〉
. Note that

although 〈ξ, ζ 〉 yields a smaller CVaR value (=6) for the
three job problem, ξ ′ gives a better value of CVaR for the
first two jobs than ξ does. This outcome follows from the
fact that max{a, b} ≥ max{c, d} �⇒ max{a + e, b + f } ≥
max{c + e, d + f } for all real e, f .

To overcome these difficulties, our proposed method com-
prises two types of steps: Selection step (S-step) and Opti-
mization step (O-step). Hence, we call our procedure SO-
Dynasearch. The S-step chooses a set of worst scenarios, Ŝ,
which yield the highest TWT-values for the current solution.
This set is defined such that the cumulative probability value,
πŜ ≡

∑
s∈Ŝ πs , is no less than 1− α, but removing any sce-

nario from it would violate this condition. The O-step then
uses dynamic programming to search for the sequence that
optimizes the average value (weighted by probabilities) of the
total weighted tardiness over the scenarios in Ŝ. Note that,
the weighted average over Ŝ gives a lower bound on CVaR by
Theorem 1. The definition of stages is the same as that in the
Dynasearch method. At each stage j , we consider all non-
overlapping combinations of GPI operations over the jobs
δ1, . . . , δ j . The optimal value of 1

πŜ

∑
s∈Ŝ πs

∑ j
k=1w[k]t

s
[k]

1 is regarded as the value function f (j), and is computed
according to the following recursive equation:

f (j) = min

⎧⎪⎨
⎪⎩

f (j − 1)+ 1
πŜ

∑
s∈Ŝ πsw[j]t s

[j],

min
1≤i≤ j−1;γ

{
f (i − 1)
+ 1
πŜ

∑
s∈Ŝ πs I γs (i, j)

}
⎫⎪⎬
⎪⎭ ,

where I γs (i, j) is the total weighted tardiness of jobs
δi , . . . , δ j in scenario s, subject to the application of some

1 w[k] and t s
[k] denote the weight and tardiness of the job in the kth

position, respectively.

123

12 J Sched (2014) 17:5–15

GPI operator γ (i, j). In view of these two types of steps, our
SO-Dynasearch method can be described as follows:

Control parameters:

N0: Maximum number of S-steps after each random start;
N1: Total number of random starts.

Variables:

φ∗: The smallest value of CVaR found so far;
δ∗: The best incumbent solution (job sequence) found so

far;
δ: The starting solution of the next local search step;
is : Number of S-steps allowed before the next random

start;
ir : Remaining number of random starts.

Function:

TWT(δ, s): The total weighted tardiness resulting from
solution δ under scenario s.

SO-Dynasearch method:

Step 1. Let φ∗ = ∞, is = N0, and ir = N1.
Randomly generate a job sequence and assign it to
δ.

Step 2. Use δ to calculate the values of TWT under all sce-
narios in S. Determine the set of worst scenarios Ŝ
by sorting the TWT values in ascending order and
picking the minimal set of top scenarios such that
π(Ŝ) ≥ (1− α).(S-step)

Step 3. Perform iterated local search starting from δ (O-
step):

(a) Use dynamic programming to find a sequence δ′,
in the GPI neighborhood of δ, which minimizes
the average value of TWT across all scenarios in
Ŝ.

(b) If δ′ is better than δ, let δ = δ′, and go to Step
3a; otherwise, continue.

Step 4. Use δ to calculate total weighted tardiness values
under all scenarios in S. Determine φ as the resulting
CVaR value. If φ < φ∗, let φ∗ = φ and δ∗ = δ.

Step 5. If is > 0 and φ > 1
πŜ

∑
s∈Ŝ πsTWT(δ, s), let is ←

is − 1, and go to Step 2; otherwise, continue.
Step 6. If ir = 0, stop; otherwise, let ir ← ir − 1 and is =

N0.
Step 7. Permute δ∗ by applying |J |2 random pairwise inter-

changes sequentially, and denote the resulting sequ-
ence as δ. Go to Step 2.

Fig. 3 Expectation-variance comparison of sequences δC over δE for
the 100-job single machine problems

Note that in Step 5, the estimated objective value 1
πŜ∑

s∈Ŝ πs T W T (δ, s) is compared with the true correspond-
ing value of CVaR. If these two values are not the same, the
current set Ŝ does not constitute the worst scenarios under
the sequence δ. Therefore, the S- and O-step are repeated
to seek a further improvement. The parameter N0 is used
to control the number of repetitions and to avoid an infinite
loop. Also, note that SO-Dynasearch can be used to optimize
E[TWT] by letting α = 0, in which case, the O-step would
be executed only once after each random start.

To evaluate the quality of solutions generated by SO-
Dynasearch and its computational performance, we imple-
mented it for the same data set used to produce the results
of Table 3, for both types of objectives (CVaR ≡ φTWT(0.8)
and E[TWT]). The resulting solutions were observed to be
optimal for all the problem instances considered. Moreover,
the average CPU time required by SO-Dynasearch for the
15-job instances, in particular, was within 25 s, which yields
more than a 14- and 80-fold improvement over the l-shaped
method and the direct solution of Problem MP by CPLEX,
respectively.

Next, we applied SO-Dynasearch to large-sized problems.
We were able to solve problem instances involving upto
100 jobs and 800 scenarios within a reasonable amount of
CPU time. We present the results for 25 problem instances
involving 100 jobs and 800 scenarios in Fig. 3. These prob-
lem instances are randomized versions of the first 25 of
125 instances from the OR-Library Beasley (2012) used in
Congram et al. (2002), and have RDD = 0.2 and TF =
{0.2, 0.4, 0.6, 0.8, 1.0}, with 5 instances for each of the 5 T F
values. For each problem instance, the processing time of job

123

J Sched (2014) 17:5–15 13

Table 4 Computational
performance of the enhanced
SO-Dynasearch method for the
100-job single machine
problems

Obj. TF CPU time (s) No. of visited neighborhoods

Average Max Average Max

CVaR 0.2 4060.2 4410.4 220 238

0.4 6020.6 7332.7 327 398

0.6 11751.8 13721.4 650 759

0.8 10572.9 12517.0 583 689

1.0 11906.4 13605.0 653 750

E[T W T] 0.2 19781.6 22747.7 218 251

0.4 28787.4 29749.5 317 328

0.6 35051.6 36445.5 386 401

0.8 37298.1 38919.0 407 421

1.0 35677.0 37280.5 396 413

j is uniformly distributed as per U (ρ j (1− r j), ρ j (1+ r j)),
where ρ j is the processing time of job j in the determin-
istic version from the OR-Library and r j is a sample from
U (0.2, 0.5). To deal with these large instances, we further
enhanced the SO-Dynasearch by applying Elimination rule
1(a) of Grosso et al. (2004) to the selected scenarios in each
optimization step of SO-Dynasearch. With this enhance-
ment, SO-Dynasearch was able to solve these problems with
an average CPU time of 8862.4 s for minimizing CVaR
≡ φT W T (0.8) and 31319.1 s for minimizing E[TWT]. Based
on the solutions obtained, the distribution of TWT was deter-
mined for each of the 25 problems. Figure 3 depicts the results
obtained. Note that, the optimization of CVaR tends to reduce
variance while only slightly increasing the expected value of
TWT. For completeness, we have also presented average and
maximum values of CPU times and numbers of Dynasearch
neigbhorhoods visited for these problem instances in Table 4.

4 Application to a parallel machine scheduling problem

We extend the above discussion to the problem of minimizing
CVaR for the total weighted tardiness objective in an identical
parallel machine environment. As in the single machine case,
we assume that the only uncertain elements are the random
processing times. Consider the following notation in addition
to that for the single machine case:

Parameters:

M : Set of machines;

Decision variables:

xi, j : Job assignment; xi, j = 1, if job j is assigned to
machine i , and xi, j = 0, otherwise, ∀i ∈ M, j ∈ J ;

z j,k : Sequencing priority when job j and job k are
assigned to the same machine; z j,k = 1, if job j pre-
cedes job k, and z j,k = 0, otherwise, ∀ j �= k ∈ J ;

γ i
k, j : Linearization variable defined as γ i

k, j ≡ zk, j xi,k .

PM− TWTP :
Minimize φ = η + 1

1− α
∑
s∈S

πsμs

subject to: η + μs ≥
∑
j∈J

w j t
s
j , ∀s ∈ S (18)

∑
k∈J\{ j}

ps
kγ

i
k, j + ps

j xi, j ≤ d j

+t s
j + (Λ− d j)(1− xi, j),∀s ∈ S, i ∈ M, j ∈ J

(19)∑
i∈M

xi, j = 1, ∀ j ∈ J (20)

∑
j∈J

j x(i−1), j ≥
∑
j∈J

j xi, j ,∀i ∈ M, i > 1 (21)

z j,k + zk, j = 1, ∀ j �= k ∈ J (22)
z j,k + zk,l + zl, j ≤ 2, ∀ j �= k �= l ∈ J (23)∑

i∈M

ixi,k −
∑
i∈M

ixi, j

≤ (|M | − 1)z j,k , ∀ j �= k ∈ J (24)
γ i

k, j + 1 ≥ zk, j + xi,k , ∀i ∈ M, j �= k ∈ J (25)
xi, j ∈ {0, 1}, z j,k ∈ {0, 1},

γ i
k, j ∈ [0, 1], ∀i ∈ M, j �= k ∈ J

ts
j ≥ 0, μs ≥ 0, ∀s ∈ S, j ∈ J (26)

Constraints (18) and (26) enforce the definitional role for
μs . Constraints (19) and (26) determine the tardiness of job
j when it is assigned to machine i . The parameter Λ is a
sufficiently large number to ensure the validity of constraint
(19) when xi, j = 0; in our implementation, we took Λ as
a pre-calculated upper bound value on the makespan. Con-
straint (20) assigns each job j to a machine in M . Since all
machines are identical, constraint (21) serves as symmetry-

123

14 J Sched (2014) 17:5–15

Fig. 4 Expectation-variance comparison of sequences δC and δE for
the 8-job parallel machine problems

breaking constraints, requiring the summation of job indices
on a lower-numbered machine to be no less than that on
a higher-numbered machine. Constraints (22) and (23) are,
respectively, two- and three-city subtour elimination con-
straints for the sequencing priority variables (see Sarin et al.
2005). Constraint (24) reduces the symmetry caused by the
inconsequence of the variables z j,k when job j and job k are
assigned to different machines, by requiring a job assigned
to a lower-indexed machine to precede the other job (in
light of (22)). Constraint (25) enforces the definitional role
for γ i

k, j .
We adapted the 30 instances of the 8-job single machine

problem that were solved to obtain part of the results in Table
2, in order to conduct a computational study for the parallel
machine case. We assumed two identical machines in paral-
lel, where the job due dates were reduced by half accordingly.
For the sake of illustrating the nature of solutions obtained,
we simply used CPLEX to obtain optimal solutions for min-
imizing φTWT(0.8) and E[TWT]. The expectation and vari-
ance of TWT were calculated for both resulting solutions,
and the related statistics are depicted in Fig. 4. Note that our
previous observations with respect to minimizing CVaR ver-
sus E[TWT] carry over to the parallel machine case as well;
optimizing CVaR has the potential to reduce variability sig-
nificantly, with only a slight increase in the expected value
of TWT.

5 Conclusions and future research

The use of CVaR as an objective criterion appears to be quite
promising to simultaneously control both the expected value
and the variability of different performance measures in a

stochastic scheduling environment. We have demonstrated
the effectiveness of this strategy for the single machine and
parallel machine total weighted tardiness (TWT) problems,
where the variance in TWT was shown to be significantly
reduced with only a marginal increase in the expected value
in comparison with minimizing E[TWT]. The application of
this concept and approach for other performance measures
and in alternative scheduling environments are important top-
ics for future study.

Acknowledgments This Research has been supported by the National
Science Foundation under Grant CMMI-0856270.

References

Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures
of risk. Mathematical Finance, 9, 203–228.

Balasubramanian, J., & Grossmann, I. E. (2003). Scheduling opti-
mization under uncertainty—an alternative approach. Computers &
Chemical Engineering, 27(4), 469–490.

Beasley, J. E. (2012). OR-Library: Weighted tardiness. http://people.
brunel.ac.uk/mastjjb/jeb/orlib/wtinfo.html. Accessed 3 June 2012.

Benders, J. F. (1962). Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik, 4(1),
238–252.

Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic program-
ming. New York: Springer.

Congram, R. K., Potts, C. N., & van de Velde, S. L. (2002). An iterated
dynasearch algorithm for the single-machine total weighted tardiness
scheduling problem. INFORMS Journal on Computing, 14(1), 52–
67.

Daniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge
against processing time uncertainty in single-stage production. Man-
agement Science, 41(2), 363–376.

De, P., Ghosh, J. B., & Wells, C. E. (1992). Expectation-variance analyss
of job sequences under processing time uncertainty. International
Journal of Production Economics, 28(3), 289–297.

Grosso, A., Croce, F. D., & Tadei, R. (2004). An enhanced dynasearch
neighborhood for the single-machine total weighted tardiness
scheduling problem. Operations Research Letters, 32(1), 68–72.

Kouvelis, P., Daniels, R. L., & Vairaktarakis, G. (2000). Robust schedul-
ing of a two-machine flow shop with uncertain processing times. IIE
Transactions, 32(5), 421–432.

McDaniel, D., & Devine, M. (1977). A modified Benders’ partitioning
algorithm for mixed integer programming. Management Science,
24(3), 312–319.

McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop
scheduling theory: What is relevant? Interfaces, 18(4), 84–90.

Ogryczak, W., & Ruszczynski, A. (2002). Dual stochastic dominance
and related mean-risk models. SIAM Journal on Optimization, 13(1),
60–78.

Pinedo, M. (2001). Scheduling: Theory, algorithms, and systems (2nd
ed.). Upper Saddle, NJ: Prentice Hall.

Porter, R. B., & Gaumnitz, J. E. (1972). Stochastic dominance vs. mean-
variance portfolio analysis: An empirical evaluation. The American
Economic Review, 62(3), 438–446.

Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional
value-at-risk. The Journal of Risk, 2(3), 21–41.

Sabuncuoglu, I., & Bayiz, M. (2000). Analysis of reactive scheduling
problems in a job shop environment. European Journal of Opera-
tional Research, 126(3), 567–586.

123

http://people.brunel.ac.uk/mastjjb/jeb/orlib/wtinfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/wtinfo.html

J Sched (2014) 17:5–15 15

Sarin, S., Sherali, H., & Bhootra, A. (2005). New tighter polynomial
length formulations for the asymmetric traveling salesman problem
with and without precedence constraints. Operations Research Let-
ters, 33(1), 62–70.

Sarin, S. C., Nagarajan, B., & Liao, L. (2010). Stochastic scheduling:
Expectation-variance analysis of a schedule (1st ed.). New York:
Cambridge University Press.

Sherali, H., Lunday, B. (2010). On generating maximal nondominated
Benders cuts. Annals of Operations Research (in press).

Skutella, M., & Uetz, M. (2005). Stochastic machine scheduling with
precedence constraints. SIAM Journal on Computing, 34(4), 788.

Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manu-
facturing systems: A framework of strategies, policies, and methods.
Journal of Scheduling, 6(1), 39–62.

Wang, W., & Ahmed, S. (2008). Sample average approximation
of expected value constrained stochastic programs. Operations
Research Letters, 36(5), 515–519.

123

	Minimizing conditional-value-at-risk for stochastic scheduling problems
	Abstract
	1 Introduction
	2 Optimizing CVaR in a stochastic scheduling environment
	2.1 Motivation
	2.2 Problem formulation and a decomposition approach

	3 Application to a single machine scheduling problem
	3.1 Solution approach for SM-TWTP
	3.2 Solution of large-sized problems

	4 Application to a parallel machine scheduling problem
	5 Conclusions and future research
	Acknowledgments
	References

