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Abstract Resource leveling problems arise whenever it
is expedient to reduce the fluctuations in resource utiliza-
tion over time, while maintaining a prescribed project com-
pletion deadline. Several resource leveling objective func-
tions may be defined, consideration of which results in well-
balanced resource profiles. In this paper, we concentrate on
a special objective function that determines the costs arising
from increasing or decreasing the resource utilizations. The
resulting total adjustment cost problem occurs, for exam-
ple, in the construction industry and can be formulated using
mixed-integer linear programming models. Apart from a dis-
crete time-based formulation, two polynomial formulations,
namely an event-based model and a start-based model, which
exploit structural properties of the problem are presented. In
addition, a heuristic solution algorithm is proposed to gen-
erate start solutions for the problem. We use CPLEX 12.4 to
solve medium-scale instances known from the literature. A
computational performance analysis shows that the discrete
time-based model and the start-based model are suitable for
practical applications.
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1 Introduction

Industrial as well as agricultural production activities require
a number of resources, like tools, components, facilities,
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and people, for execution. In order to avoid the extremes of
resource overload and resource underload, associated with an
increase in costs, companies are forced to utilize expensive
renewable resources such as special machines, equipment,
or highly qualified manpower evenly over time. Scheduling
problems in which interdependent activities are to be sched-
uled such that the resource utilization will be as smooth as
possible over a medium-term planning horizon are called
resource leveling problems (Demeulemeester and Herroelen
2002, Sect. 5).

Resource leveling problems (RLPs) are interesting from
both practical and theoretical points of view. On the one
hand, the resource utilization is generally linked to quality
of products, reject rates, and balanced material flows; there-
fore, pursuing a resource leveling approach makes good eco-
nomic sense. On the other hand, RLPs are NP-hard in the
strong sense and difficult to solve to optimality (Neumann
et al. 2003b, Sect. 3.4). Thus, many researchers have devel-
oped heuristic algorithms for RLPs to generate good solu-
tions for practical relevant problem sizes (Neumann et al.
2003a; Ballestin et al. 2007). However, RLPs also have nice
structural properties, consideration of which can be used to
find optimal solutions for medium-scale instances in moder-
ate computation times.

A multitude of resource leveling functions may be defined,
where the minimization will provide well-balanced resource
profiles. In this paper, we consider a special objective func-
tion that coincides with the cumulative costs arising from
increasing or decreasing the utilizations of resources. Despite
its practical importance, the resulting “total adjustment cost
function” has achieved little attention in the literature. In
comparison with changeover costs that depend on the activ-
ity sequence (Schwindt 2005, Sect. 5.2), adjustment costs
arise at every jump discontinuity in the resource profiles.
Hence, adjustment costs serve as surrogate or auxiliary costs
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on a quantity basis that help to reach a stability and conti-
nuity in resource utilizations, which is, e.g., important dur-
ing coating, casting, or heat-treatment processes (Harris and
Ioannou 1998; Zhuchkov 2004; Al-Joma and Mangin 2004;
Steinboeck et al. 2013).

The remainder of this paper is organized as follows: In
Sect. 2, we formally describe basic concepts on project
scheduling and present a formulation of the general prob-
lem with temporal constraints. In Sect. 3, we discuss differ-
ent resource leveling objective functions and give a review
on exact and heuristic solution methods. Section 4 con-
tains structural properties of the “total adjustment cost prob-
lem” and Sect. 5 is devoted to practical applications. In
Sect. 6, mixed-integer linear model formulations, among
which, two polynomial formulations are presented. Based
on those models, we proceed to describe preprocessing meth-
ods for improving the quality of the resulting formulations in
terms of computation time and solution gap (cf. Sect. 7). The
results of a comprehensive performance analysis are given
in Sect. 8, and finally, conclusions are presented in Sect. 9.

2 Problem description

In what follows, we assume that the project under consid-
eration consists of n ≥ 1 activities, as well as two ficti-
tious activities, 0 and n + 1, representing the beginning and
completion of the project, respectively. Each activity i has
a given processing time pi ∈ N0 and must be carried out
without interruption. For the activities 0 and n +1, as well as
for milestones, which specify significant events, we set the
processing time to zero.

Si ≥ 0 indicates the start time and Ci := Si + pi the
completion time of activity i . We assume that the underlying
project begins at time 0, i.e., S0 := 0. Then, the project
duration equals Sn+1. Furthermore, we consider start-to-start
relationships between activities. A minimum time lag dmin

i j ∈
N0 between activities i and j makes sure that activity j cannot
be started earlier than dmin

i j time units after the start of activity

i . If dmin
i j = pi , i.e., activity j can be begun as soon as

activity i is finished, the minimum time lag is referred to as
“precedence constraint.” A maximum time lag dmax

i j ∈ N0

exists, if activity j must be started no later than dmax
i j time

units after activity i . More formal, a given minimum time lag
between the start of activities i and j says that S j −Si ≥ dmin

i j ,
and a maximum time lag between the start of activities i and
j implies that S j − Si ≤ dmax

i j has to be satisfied.
We assume that a project is represented by an activity-

on-node network N = (V, A; δ), where activities are iden-
tified with nodes. Thus, the node set may be specified by
V := {0, 1, . . . , n + 1}. Set A contains an arc for every
minimum and maximum time lag, respectively. For a mini-

mum time lag, an arc 〈i, j〉 having weight δi j := dmin
i j , and

for a maximum time lag, a backward arc 〈 j, i〉 with weight
δ j i := −dmax

i j is introduced. At a medium-term planning

level, a deadline d for the termination of the project is usu-
ally given. To ensure the adherence to the prescribed dead-
line, the constraint Sn+1 ≤ d must be introduced. Hence, the
maximum project duration d may be considered by adding
an arc 〈n+1, 0〉 with weight δn+1,0 := −d to the network. In
order to guarantee that activities 0 and n + 1 really represent
the beginning and completion of the project in question, the
conditions Si − S0 ≥ 0 and Sn+1 − Si ≥ pi , i ∈ V, must be
fulfilled.

Owing to the maximum project duration d , the set of fea-
sible start times of activity i ∈ V forms a proper time win-
dow [ESi , LSi ], where ESi is the earliest and LSi the latest
start time of activity i with respect to the given temporal
constraints. By definition, ES0 = LS0 := 0. For activity
i ∈ V \ {0}, both the earliest start time, which equals the
length of a longest path from node 0 to node i , and the lat-
est start time, which equals the negative of the longest path
length from node i to node 0, can be determined by applying
some label-correcting algorithm (see, e.g., Ahuja et al. 1993,
Sect. 5.4).

A sequence of start times S = (S0, S1, . . . , Sn+1), where
Si ≥ 0, i ∈ V, and S0 = 0, is termed a “schedule.” A sched-
ule is said to be feasible if it satisfies all temporal constraints
of the project given by minimum and maximum time lags.
The set of all feasible schedules is denoted by ST . Then, the
problem of finding an optimal schedule for some objective
function f : R

n+2
≥0 → R can be formulated as follows:

Minimize f (S)

subject to S j − Si ≥ δi j 〈i, j〉 ∈ A
S0 = 0.

⎫
⎬

⎭
(1)

The feasible region ST of the described problem is non-
empty, iff network N contains no cycle of positive length
(Bartusch et al. 1988).

In project scheduling, we distinguish between time-based,
financial, and resource-based objectives. A resource leveling
approach always considers some nonregular resource-based
objective function that evaluates the resource utilization over
time. We assume that renewable resources, such as machines,
equipment, manpower, or space, are required for carrying out
the project activities. Let R be the set of renewable resources
available at each point in time, independently of their utiliza-
tion formerly. The amount of resource k ∈ R used constantly
during execution of activity i ∈ V (resource requirement) is
represented by rik ∈ N0. The project in question consists
of n activities that can be separated into m milestones (with
pi = 0) and n′ := n − m real activities (with pi > 0).
The set of real activities is denoted by V r and the set of mile-
stones by V m . Without loss of generality, we suppose that the
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resource requirements of milestones, as well as activities 0
and n+1, are zero. In order to avoid that two activities i and j
with Ci = S j compete for a renewable resource, we assume
that each real activity is executed during the half-open time
interval [Si , Si + pi [.

Given some schedule S, the set of points in time from
interval [0, d] at which at least one real activity i ∈ V r

is started or completed, is denoted by DT (decision times
concerning schedule S). Furthermore, we make use of the so
called “active set,” A(S, t), which contains all real activities
in progress at time t , i.e., A(S, t) := {i ∈ V r |Si ≤ t <

Si + pi }. Thus, rk(S, t) := ∑
i∈A(S,t) rik represents the total

amount of resource k ∈ R required for those activities in
progress at time t . The resulting resource profiles rk(S, ·) :
[0, d] → R≥0 are step functions continuous from the right
at their jump points.

3 Objective functions and literature review

Resource leveling functions usually aim at leveling the avail-
able renewable resources over the planning horizon. Conse-
quently, the resources necessary to carry out the activities
involved should be distributed evenly within the project dura-
tion. In this section, we briefly discuss three different objec-
tive functions for RLPs. In particular, we consider the “total
adjustment cost function,” as well as two other functions that
are usually proposed in the literature. Each function may be
used to model specific applications appearing in resource
leveling (i.e., scheduling of maintenance as well as consult-
ing teams, scheduling of machines, or scheduling of internal
staff). In Sect. 4, we will depict the common and different
structural properties of the three objective functions.

The first resource leveling objective function coincides
with the cumulative costs arising from increasing or decreas-
ing the resource utilizations. The resulting “total adjustment
cost function” is used, for example, if the resources repre-
sent different kinds of manpower, where changing the size
of work force from period to period is associated with high
costs.

For a formal description of the total adjustment costs,
some parameters must be introduced. Let σt := max{τ ∈
DT |τ < t}be the decision time preceding some t ∈ DT \{0},
then

Δrkt :=
{

rk(S, t) − rk(S, σt ), if 0 < t ≤ d

rk(S, 0), otherwise

represents the jump difference in the resource profile of
resource k ∈ R at some time t ∈ DT . Moreover, let
Δ+rkt := (Δrkt )

+ and Δ−rkt := (−Δrkt )
+ be the increase

and decrease, respectively, in utilization of resource k at time
t , where (z)+ := max(z, 0). Consequently, the total adjust-
ment cost function may be given by

f (S) :=
∑

k∈R

∑

t∈DT

(c+
k Δ+rkt + c−

k Δ−rkt ).

The parameters c+
k ≥ 0 and c−

k ≥ 0 denote the costs
for positive and negative jumps in resource utilization of
resource k by one unit. Since the condition

∑
t∈DT Δ+rkt =

∑
t∈DT Δ−rkt holds for all k, the total adjustment cost func-

tion may be formulated by

f (S) :=
∑

k∈R
ck

∑

t∈DT \{d}
Δ+rkt , (A-RL)

where ck := c+
k + c−

k , k ∈ R. Hence, it is sufficient to
consider only the positive jump differences in the resource
profiles.

Several authors have dealt with the “classical resource
leveling objective function,” where smooth resource profiles
have to be realized, and high resource utilizations are more
penalized than low resource utilizations. The corresponding
function can be specified by

f (S) :=
∑

k∈R
ck

∫

t∈[0,d]
r2

k (S, t) dt, (C-RL)

where ck ≥ 0 is the cost incurred per unit of resource k ∈ R
and per time unit.

The “overload problem” considers costs if either given
supplies of renewable resources or thresholds Yk, k ∈ R,

for the resource utilization are exceeded. Let ck ≥ 0 be, for
example, the cost for overtime premiums, then the “overload
cost function” may be given as follows

f (S) :=
∑

k∈R
ck

∫

t∈[0,d]
(rk(S, t) − Yk)

+dt. (O-RL)

Note that we could find an individual application for each
objective function. In Sect. 5, an application for the total
adjustment cost problem is presented. Other resource lev-
eling objective functions are not suitable in this particular
case as they may lead to undesirable results (e.g., resource
profiles with breaks). Moreover, some applications may exist
for which a simultaneous consideration of two or three objec-
tives in a multi-criteria approach could be of interest. We will
investigate this further in Sect. 9.

One of the first exact solution approaches for RLPs was
introduced in Petrovic (1969). The method is based on
dynamic programming and aims at minimizing objective
function (C-RL). Later on, Ahuja (1976, Sect. 11) presented
a procedure that enumerates every combination of feasible
start times to minimize a quadratic variant of objective func-
tion (A-RL). A mixed-integer linear model and an extended
dynamic programming approach for overload problems are
specified in papers by Easa (1989) and Bandelloni et al.
(1994). All aforementioned procedures only treated instances
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with a maximum of 16 real activities, one renewable resource,
and just precedence constraints between activities.

Younis and Saad (1996) proposed a method based on
integer programming to solve problems with more than one
renewable resource. Thereby, the authors considered objec-
tive functions that are similar to (A-RL) and (O-RL).

For all described RLPs with general temporal constraints
and several renewable resources, Neumann and Zimmer-
mann (2000) presented a time-window based branch-and-
bound procedure, and Neumann et al. (2006) as well as
Gather et al. (2011) developed a tree-based enumeration
scheme that enumerates extreme points of order polytopes
(quasistable schedules). Mixed-integer programming (MIP)
formulations for problems with objective functions (C-RL)
and (O-RL) are introduced by Rieck et al. (2012). The authors
solved instances with a maximum of 50 real activities and
varying project completion deadlines to optimality using
CPLEX 12. The corresponding algorithm outperforms the
procedures presented by Neumann and Zimmermann (2000)
as well as Gather et al. (2011) in terms of computation
time. We therefore use this observation as an opportunity
to develop smart MIP-formulations for the total adjustment
cost problem. Moreover, the underlying structural properties
(cf. Sect. 4) allow a completely new programming model that
can be formulated as a MIP, where the number of variables
and the number of constraints is polynomial in |V | and |R|.

In order to solve RLPs approximately, many authors devel-
oped heuristic approaches, where most of them may be used
for all objective functions mentioned above. Shifting and
priority-rule methods for problems with precedence con-
straints can be found in Burgess and Killebrew (1962), Gal-
breath (1965), Morder and Phillips (1970, Sect. 8), Ahuja
(1976), as well as Harris (1978, 1990). In addition, several
metaheuristics either based on local search or on ant colony
optimization are introduced by Takamoto et al. (1995), Savin
et al. (1997), Raja and Kumanan (2007), and Geng et al.
(2011). In the latter (relatively new) article, the authors do
not execute a comprehensive performance study, they rather
consider only one small problem instance with nine real activ-
ities.

Neumann and Zimmermann (1999, 2000) proposed
heuristic methods being suitable for most RLPs as well as
projects with general temporal constraints. In Neumann et al.
(2003a) neighborhoods, which allow schedule-improvement
procedures to reach optimal solutions independently of the
initial schedule chosen, are presented. Moreover, Ballestin
et al. (2007) published a population-based approach of the
integrated greedy-type that generates the best-known results
for large instances with a maximum of 1,000 activities so far.
Due to the success of the procedure, we adapted the Ballestin
et al. (2007) method to generate upper bounds as well as
start solutions for the total adjustment cost problem (cf.
Sect. 7).

4 Structural properties for the total adjustment
cost problem

The objective function (A-RL) is lower semicontinuous and
quasiconcave on each set of schedules implying the same
precedence constraints [i.e., (A-RL) is locally quasiconcave],
just as functions (C-RL) and (O-RL). For that reason, there
invariably exists a quasistable schedule (cf. Rem. 1) that will
be optimal for the total adjustment cost problem (Neumann
et al. 2003b, Sect. 3.3).

Remark 1 A feasible schedule S is termed quasistable if
there is no pair of opposite order-preserving shifts.

Let S be a quasistable schedule. For each activity i ∈ V ,
there is either an activity j ∈ V such that Si + pi = S j or
Si + δi j = S j , or an activity h ∈ V such that Si = Sh + ph

or Si = Sh + δhi . As we assume that the input data, pi and
δi j , i, j ∈ V , are integers and S0 := 0, every quasistable
schedule will be integer valued and no optimal solution will
be lost due to an adequate discretization of the time horizon.

For a given schedule S, the values of (C-RL) and (O-
RL) may be determined by considering the total amount of
resource k ∈ R required for all activities in progress at each
point in time t ∈ {0, . . . , d − 1}. In contrast, evaluation of
objective function (A-RL) requires the knowledge of jump
differences in the resource profiles at each point in time. If
there is an increase or decrease in resource utilizations from
one period to the next, the change must be absorbed with
costs, and if the resource utilization remains constant, no
additional costs arise. Therefore, the value of (A-RL) may
be calculated by considering the start and end times (events)
of activities, i.e., points in time τ ∈ {Si , Ci }i∈V r . Notice, if
more than one event occurs at the same time, for example
Ci = S j holds for two consecutive activities i and j , only
one point must be incorporated.

Furthermore, functions (C-RL) and (O-RL) are
r-monotone (cf. Rem. 2), whereas (A-RL) is not r-monotone.

Remark 2 A function is called r-monotone if for partial
schedules S and S′ with rk(S, t) ≤ rk(S′, t), k ∈ R, t ∈
[0, d], the condition f (S) ≤ f (S′) is implicitly specified
(Zimmermann 2001).

For problems with r-monotone objective functions, the
generation of lower bounds within a branch-and-bound or
branch-and-cut approach is performed using the information
of already fixed activity start and completion times. Let C
be the completed set, i.e., the set of all activities which have
already been scheduled, and let SC be a partial schedule,
where SC

i ≥ 0 for every activity i ∈ C ⊆ V and SC
0 = 0. A

partial schedule is feasible if all temporal constraints between
activities i ∈ C are satisfied. Then, f (SC) forms a lower
bound on objective functions (C-RL) and (O-RL). Since
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Fig. 1 Activity-on-node network N = (V, A; δ)

function (A-RL) does not have the r-monotone character-
istic, the determination of lower bounds is more difficult and
requires the estimation of jump differences in resource pro-
files with respect to scheduled and unscheduled activities.
Consequently, the values of lower bounds, e.g., the values of
linear programming relaxations used in solvers like CPLEX,
are relatively weak for the total adjustment cost problem in
comparison to lower bounds for the classical resource level-
ing or the overload problem.

The following example will illustrate the structural prop-
erties of the total adjustment cost problem. Thereby, we
consider a project network with four real activities and one
renewable resource (index k can be eliminated, cf. Fig. 1).

Let c := 1 be the respective costs per resource unit.
Figure 2 depicts the resource profiles of an optimal sched-
ule for problem (1) with objective function (A-RL), i.e.,
S∗ = (0, 2, 3, 6, 6, 9), and with objective function (C-RL),
i.e., S� = (0, 1, 2, 6, 7, 9). It is obvious that successive
activities should be scheduled without breaks in the total
adjustment cost problem to obtain as much end-start rela-
tionships as possible. Furthermore, assume that the resource
profile of a partial schedule SC := S� is illustrated in
the lower part of Fig. 2 and an additional activity i with
ri := 2, pi := 1, ESi := 0, and LSi := 8 has to be sched-
uled. Then, due to the r-monotone characteristic, f (SC) rep-
resents a lower bound on the classical RLP. For the total
adjustment cost problem, a better objective value is achieved
by setting Si := 5, i.e., f (SC) indicates no lower bound.

5 Practical applications

The total adjustment cost problem is discussed by Ahuja
(1976, Sect. 11) as well as Younis and Saad (1996), but no
explicit and common application area is given in both papers.
That is why this section is devoted to interesting practical
applications that can be found in the construction industry.

Large construction sites typically exist in the fields of
structural engineering, underground mining, traffic route
engineering, bridge-building, or power plant construction.
At all those sites, a lot of international partners are involved
to carry out a variety of work packages and activities. For

Fig. 2 Resource profiles of schedules S∗ and S�

example, facilities and machines must be put into opera-
tion, mechanical control software must be tested, or mainte-
nance activities must be performed. The individual activities
require time (usually some weeks or months) and renewable
resources (usually employees with different skills). More-
over, there are given temporal and/or precedence relation-
ships among activities, which result from technological or
organizational constraints in practice, and that may be mod-
eled by minimum and maximum time lags. A precedence
constraint specifies, for example, the sequence in which two
consecutive operations have to be performed, e.g., building
a foundation must precede establishing a building structure.

Most activities identified by the site management could
be covered by internal staff of the construction company.
However, there are some activities that must be arranged
by specialized, international professionals (e.g., electrical
engineers, installers, plant mechanics, or scientists). The
commitment of those professionals (modeled as renewable
resources) must be planned in detail. Since the employees
usually want to work continuously at the same construction
site, the constitution of large periods of employment is of par-
ticular importance. If the completion time of a work package
is equal to the start time of a successive work package, both
packages can be consolidated and offered to one and the same
person. In addition, the consideration of such (meta) work
packages is also advantageous for the construction company,
as an employment-interruption results in high administrative
costs (e.g., for entry visa, residence permit, and work permit),
or rather transport and relocation costs. In what follows, those
costs are considered as “adjustment costs” and by minimiz-
ing these costs, we obtain smooth resource profiles. Note
that a solution S with a few large resource jumps and another
solution S′ with a lot of small resource jumps are equiva-
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Fig. 3 Resource profiles of schedules S and S′

lent (cf. Fig. 3), if f (S) = f (S′) and no quantity discounts
are considered. Since specialized professionals usually come
from different regions and countries, the costs for entry visa,
transport or relocation have to be considered individually,
i.e., no quantity discounts for groups can be achieved.

In contrast to traditionally qualified staff, high-qualified
professionals know the extent of their possibilities and skills,
have high requirements from themselves and their surrounds,
and often possess a very high inner motivation (Blaskova
and Grazulis 2009, Sect. 16), therefore they want to perform
“knowledge work” without paid breaks on-site (in marked
contrast to machines). For example, if machines are needed
for the execution of activities and must be rented, fixed and
variable costs occur. Then, at some points in time it is optimal
to rent more resource units than used to reduce the fixed costs
(Nübel 2001).

As a special example, we consider the construction of off-
shore wind farms in the North Sea. In order to cover more
than 15 % of the German energy requirements in the future,
more than 5,500 wind turbines will be installed within the
next 20 years (Haubrich et al. 2008). In this process, cer-
tain sub-projects, and within the sub-projects a large num-
ber of work packages, must be defined and executed. Sub-
projects are the construction of grid connection and cable, the

erection and assembly of upper and lower parts of the sub-
station, pile driving, laying of foundations for turbines, and
erection of turbines. For performing sub-projects and work
packages, several external professionals are required (e.g.,
offshore and sub-sea engineers, geologists, or turbine opera-
tors). Figure 4 depicts a simplified activity-on-node network
for constructing offshore wind farms, where the work pack-
ages are weighted with their durations and resource require-
ments (only one kind of professional, i.e., the offshore engi-
neers that supervise the whole construction process, is mod-
eled as a renewable resource). Additionally, the resource pro-
file of an optimal schedule S∗ for the total adjustment cost
problem is given.

The solution S∗ shows that four offshore engineers are
necessary to carry out the project activities and if each pro-
fessional can be employed for successive work packages,
two persons must be engaged for 23 weeks and two persons
for 12 weeks, respectively. The corresponding staff planning
schedule is demonstrated in Fig. 5.

6 Model formulations

In this section, we present three different MIP-formulations
for the total adjustment cost problem. The basic idea of the
first formulation comes from Pritsker et al. (1969) who used
a discretization of the time horizon (cf. Sect. 6.1). The associ-
ated discrete time-based formulation is often very efficient in
solving project scheduling problems with tight project com-
pletion deadlines (Rieck et al. 2012). In Sect. 6.2, we adapted
a start/end event-based formulation that was presented by
Koné et al. (2011) within the field of resource-constrained
project scheduling. The third formulation is entirely new and

Fig. 4 Activity-on-node
network for constructing
offshore wind farms and
resource profile of schedule S∗
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Fig. 5 Staff planning schedule

uses a polynomial number of variables and constraints due to
the fact that a positive jump in resource profiles only occurs
at a start time of a real activity (cf. Sect. 6.3).

6.1 Discrete time-based formulation

Most common model formulations for project scheduling
problems are based on a time discretization, where the time
axis is divided into equidistant subintervals. The correspond-
ing discrete time-based model applies binary variables xit

that allocate a feasible start time t ∈ Wi := {E Si , . . . , L Si }
to each activity i ∈ V , i.e.,

xit :=
{

1, if activity i starts at time t
0, otherwise.

(2)

In order to specify the total adjustment cost objective func-
tion, auxiliary variables �+

kt ≥ 0, which indicate the positive
adjustment of resource utilizations for resource k ∈ R and
time t ∈ T := {0, . . . , d − 1}, are introduced. If the start
time of real activity i is an element of set {t − pi +1, . . . , t},
activity i is in progress at time t and requires renewable
resources. Consequently, the total resource requirement for
some resource k and some schedule S at time t may be given
by

rk(S, t) =
∑

i∈V r

rik

min{t,LSi }∑

τ=max{ESi ,t−pi +1}
xiτ .

The discrete time-based formulation for the total adjustment
cost problem then takes the form:

Minimize
∑

k∈R
ck

∑

t∈T

�+
kt (A-RL-I)

subject to:
∑

t∈Wi

xit = 1 i ∈ V (3)

∑

t∈W j

t x jt −
∑

t∈Wi

t xit ≥ δi j 〈i, j〉 ∈ A (4)

�+
kt ≥

∑

i∈V r

rik

min{t,LSi }∑

τ=max{ESi ,t−pi +1}
xiτ

−
∑

i∈V r

rik

min{t−1,LSi }∑

τ=max{ESi ,t−pi }
xiτ k ∈ R, t ∈ T (5)

x00 = 1 (6)

�+
kt ≥ 0 k ∈ R, t ∈ T (7)

xit ∈ {0, 1} i ∈ V, t ∈ Wi . (8)

Constraints (3) and (8) guarantee that each activity receives
exactly one start time within the project duration. Since
∑

t∈Wi
t xit equals the start time of activity i ∈ V , inequali-

ties (4) ensure that the temporal constraints will be satisfied.
Constraints (5) and (7) estimate the positive jump difference
in the resource profile of resource k at time t . Finally, condi-
tion (6) sets the project beginning to zero.

The formulation incorporates O(|V |2 + |R||T |) con-
straints, as well as |R||T | real-valued auxiliary variables and
∑

i∈V |Wi | binary variables. Since all numbers depend on
the time discretization, the model cannot be designated as a
polynomial model. Easa (1989) as well as Younis and Saad
(1996) presented float-formulations for RLPs that have some
similarities to the discrete time-based formulation. However,
such models turned out to be less efficient in numerical tests
(Rieck et al. 2012).

6.2 Start/end event-based formulation

In order to reduce the number of decision variables and the
number of constraints for problems with large time horizons,
Koné et al. (2011) presented a MIP-formulation that consid-
ers only the start and end times (henceforth called events)
of the activities. In Sect. 4 we have pointed out that at least
one integer valued, quasistable schedule is optimal for the
total adjustment cost problem. Consequently, the number E
of possible events is restricted to the number of start and
end times of the activities or the project completion dead-
line d. Since the condition Si = Ci is satisfied for fictitious
activities i ∈ {0, n + 1}, as well as for milestones i ∈ V m ,
the number of start and end times may be determined by
2 |V r | + 2 + |V m |, i.e., E := min{2 |V r | + 2 + |V m |, d}.

The start/end event-based formulation involves two types
of binary decision variables indicating whether activity i ∈ V
starts or ends at event e ∈ E := {1, . . . , E}, i.e.,

xs
ie (xc

ie) :=
{

1, if activity i starts (ends) at event e
0, otherwise.

In order to specify the corresponding points in time of events
e ∈ E , continuous variables te ∈ [0, d] are introduced. Addi-
tionally, continuous variables �+

ke ≥ 0 state the positive
jump in the resource profile of resource k ∈ R at event e.
The start/end event-based formulation can then be given as
follows:
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Minimize
∑

k∈R
ck

∑

e∈E
�+

ke (A-RL-II)

subject to
∑

e∈E
xs

ie = 1 i ∈ V (9)

∑

e∈E
xc

ie = 1 i ∈ V (10)

xs
01 = 1, xc

01 = 1, t1 = 0 (11)

te+1 − te ≥ 1 e ∈ E \ {E} (12)

te + pi xs
ie − pi

(
1 − xc

i f

)
≤ t f

i ∈V, e, f ∈ E : f >e (13)

te + pi xs
ie + 2d

(
1 − xc

i f

)
− d

(
xs

ie − xc
i f

)
≥ t f

i ∈V, e, f ∈ E : f >e (14)
e∑

f =1

xc
i f + xs

ie ≤ 1 i ∈ V r , e ∈ E (15)

E Si xs
ie ≤ te i ∈ V, e ∈ E (16)

L Si xs
ie + d

(
1 − xs

ie

) ≥ te i ∈ V, e ∈ E (17)

xc
ie (E Si + pi ) ≤ te i ∈ V, e ∈ E (18)

xc
ie (L Si + pi ) + d

(
1 − xc

ie

) ≥ te

i ∈ V, e ∈ E (19)

t f − te − δi j ≥ 2d
(

xs
ie + xs

j f − 2
)

〈i, j〉 ∈ A, e, f ∈ E (20)

�+
ke ≥

∑

i∈V r

rik
(
xs

ie − xc
ie

)
e ∈ E, k ∈ R (21)

�+
ke ≥ 0 e ∈ E, k ∈ R (22)

te ∈ [0, d] e ∈ E (23)

xs
ie ∈ {0, 1} , xc

ie ∈ {0, 1} i ∈ V, e ∈ E . (24)

Constraints (9), (10), and (24) ensure that each start and each
completion time of an activity coincides with an event. Equa-
tions (11) set the start time of the project to zero. Constraints
(12) guarantee that two successive events are one time period
apart. Supposing that activity i starts at event e and ends at
event f , the condition t f = te + pi must be satisfied (cf.
inequalities (13) and (14)). Constraints (15) ensure that the
completion-event of real activity i has a greater number than
the start-event of i . By means of inequalities (16) to (20),
the given temporal constraints are fulfilled, and finally the
positive adjustment of resource k at event e is estimated with
constraints (21) and (22).

The start/end event-based model contains O(|V |4 +
|V | |R|) constraints along with |E |(1+|R|) real-valued aux-
iliary and 2|V ||E | binary variables. All numbers are indepen-
dent of the scaling of the time axis, therefore the model can
be classified as a polynomial model.

Koné et al. (2011) used the start/end event-based method-
ology in order to solve resource-constrained project schedu-

ling problems with precedence constraints. For those prob-
lems, there always exists an optimal solution in which the
start time of an activity is either 0 or coincides with the end
time of some other activity. Therefore, the number of pos-
sible events can be defined as E ′ := min{n + 1, d} which
is significantly lower than the number E of events needed
for problems with general temporal constraints. In addition,
RLPs are characterized by many feasible schedules with the
same objective function value. Therefore, the events may be
positioned at various analogous points in time, which reduces
the performance of a solver.

Note that polynomial flow-based and on/off event-based
formulations are also available for resource-constrained
project scheduling problems (Koné et al. 2011). However,
both formulations cannot be extended to a RLP as they are
not able to describe total resource requirements at specific
points in time, which are needed for determining the objec-
tive function values.

6.3 Start-based formulation

The start-based formulation focuses on the fact that a positive
jump in the resource profiles occurs, only if one or more real
activities are started. Thus, the corresponding model con-
siders characteristics of the total adjustment cost function,
as well as the idea that a time-index must not be explicitly
used while specifying the decision variables (cf. the start/end
event-based model in Sect. 6.2).

For all real activities i, j ∈ V r , i < j , we make use of
binary decision variables gi j indicating whether activities i
and j start at the same time, i.e.,

gi j :=
⎧
⎨

⎩

1 or 0, if the start of activity i is equal to
the start of activity j

0, otherwise.

Additionally, we consider binary decision variables ei j spec-
ifying if the start of real activity i and the completion of real
activity j, i �= j , occurs at the same point in time, i.e.,

ei j :=
⎧
⎨

⎩

1 or 0, if the start of activity i is equal to
the completion of activity j

0, otherwise.

Both types of variables have some “degree of freedom” when
more than two activities start or end at the same time. For
three activities with Si = S j = Sh, i < j < h, the vari-
ables gi j , gih, and g jh could be equal to one by definition.
However, the resource requirements rik, r jk , and rhk must be
considered once to determine the correct jump difference in
the resource profiles. That is always guaranteed in our model
if gi j = gih := 1 and g jh := 0 is satisfied.

Let Si ∈ [ESi , LSi ] be the start time of activity i ∈ V .
If only one real activity i is started at a specific point in
time, then continuous variables Δ+

ki ≥ 0 indicate the positive
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adjustment of resource k ∈ R at the start time of activity i .
In case that a set of real activities, e.g., activities i, j , and h,
is started at the same time, (Δ+

ki +Δ+
k j +Δ+

kh) ≥ 0 represents
the positive jump in the resource profile of resource k. Using
two “big-M-values” for each activity pair {i, j}, i, j ∈ V r ,
and one “big-M-value” for each renewable resource k, the
start-based formulation for the total adjustment cost problem
takes the form:

Minimize
∑

k∈R

ck

∑

i∈V r

Δ+
ki (A-RL-III)

subject to

S j − Si ≥ δi j 〈i, j〉 ∈ A (25)

Si − (S j + p j ) ≤ Mi j (1 − ei j ) i, j ∈ V r , i �= j (26)

S j + p j − Si ≤ Mi j (1 − ei j ) i, j ∈ V r , i �= j (27)
∑

i∈V r

i �= j

ei j ≤ 1 j ∈ V r (28)

Si − S j ≤ M
′
i j (1 − gi j ) i, j ∈ V r , i < j (29)

S j − Si ≤ M
′
i j (1 − gi j ) i, j ∈ V r , i < j (30)

∑

i∈V r

i< j

gi j ≤ 1 j ∈ V r (31)

∑

k∈V r

j<k

g jk ≤ (1 − gi j ) i, j ∈ V r , i < j (32)

Δ+
ki ≥ rik +

∑

j∈V r

i< j

r jk gi j −
∑

j∈V r

j �=i

r jkei j −
∑

j∈V r

j<i

g ji Mk

i ∈ V r , k ∈ R (33)

Δ+
ki ≥ 0 i ∈ V r , k ∈ R (34)

Si ∈ [ESi , LSi ] i ∈ V (35)

gi j ∈ {0, 1} i, j ∈ V r , i < j (36)

ei j ∈ {0, 1} i, j ∈ V r , i �= j. (37)

Inequalities (25) correspond to the given minimum and max-
imum time lags between activities. If the start time of activ-
ity i is not equal to the completion time of activity j , then
decision variable ei j receives the value zero—otherwise, the
value might be equal to one (cf. constraints (26) and (27)).
With constraints (28), it is guaranteed that every completing
activity j is assigned to at most one starting activity, even if
C j = Si holds for more than one activity i ∈ V r . Since
the strongest LP-relaxation will result from choosing the
smallest possible “big-M-value,” we set Mi j := max{L Si −
(E Sj +p j ), L Sj +p j −E Si }. Inequalities (29) and (30) spec-
ify the values of decision variables gi j in an analogous man-
ner, where M

′
i j := max{L Si − E Sj , L Sj − E Si }. If Si �= S j

is satisfied for activities i and j , then variables gi j will be
set to zero—otherwise, the values might be equal to one.
Constraints (31) ensure that starting activity j is assigned to

Fig. 6 Resource profile of schedule S = (0, 1, 2, 4, 4, 4, 9)

at most one starting activity i . If gi j = 1, constraints (32)
guarantee that the start of any other activity k > j cannot be
assigned to starting activity j , i.e., only nontransitive pairs
of decision variables can receive the value one, and thus each
resource requirement is considered once within the calcula-
tion of Δ+

ki . Inequalities (33), together with objective func-
tion (A-RL-III), make sure that the significant decision vari-
ables are set to one and the positive adjustment of resource
k at the start time of real activity i is estimated correctly. In
order to ensure that no resource jump is counted more than
once, the big-Mk-value reduces the irrelevant decision vari-
ables Δ+

ki ≥ 0 to zero. Constant Mk represents the maximum
possible resource adjustment that may occur for resource k
throughout the planning horizon (cf. Sect. 7).

In order to investigate the allocation of decision vari-
ables in more detail, we consider some special cases where
either several opportunities for choosing positive decision
variables exist, or only an unique allocation is possible. In
what follows, instances with one renewable resource are ana-
lyzed, thus, the index k can be omitted. Figure 6 depicts
a resource profile with five real activities. We concentrate
on the resource jump at time t = 4, where activities 1
and 2 are completed and activities 3, 4, 5 are started, i.e.,
C1 = C2 = S3 = S4 = S5 := 4.

Due to constraints (26) to (32), at most two variables ei j

and at most two variables gi j will be set to one. A possible
valid assignment is e31 = e32 := 1 and e41 = e51 = e42 =
e52 := 0, as well as g34 = g35 := 1 and g45 := 0. The
allocation leads to the following system of inequalities

Δ+
3 ≥ r3 + r4g34 + r5g35 − r1e31 − r2e32 = 2

Δ+
4 ≥ r4 + r5g45 − r1e41 − r2e42 − g34 M = 2 − M

Δ+
5 ≥ r5 − r1e51 − r2e52 − g35 M − g45 M = 1 − M

which ensures that the correct jump difference of two
resource units is considered. Another alternative for setting
decision variables is, for example, g34 = g35 = g45 := 0,
as well as e51 = e42 := 1 and e31 = e41 = e32 = e52 = 0.
Then, the resource requirements of activities 1 and 5 as
well as those of activities 2 and 4 are compensated with
each other, and only r3 has to be taken into account. Conse-
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Fig. 7 Resource profile of schedule S = (0, 3, 4, 4, 4, 9)

quently, the continuous decision variables receive the values
Δ+

3 = 2, Δ+
4 = Δ+

5 = 0.
Figure 7 shows a resource profile with four real activities,

where activity 1 is completed at time t = 4, and activities
2, 3, and 4 are started at the same time, i.e., C1 = S2 = S3 =
S4 := 4. In addition, the resource requirement of activity 1 is
larger than the resource requirement of any starting activity.

A valid allocation is, for example, g23 = g24 := 1, g34 :=
0, and e21 := 1, e31 = e41 := 0, which leads to

Δ+
2 ≥ r2 + r3g23 + r4g24 − r1e21 = 1

Δ+
3 ≥ r3 + r4g34 − r1e31 − g23 M = 2 − M

Δ+
4 ≥ r4 − r1e41 − g24 M − g34 M = 2 − M.

The resulting jump difference at t = 4 is equal to one
resource unit. Another feasible alternative for specifying pos-
itive decision variables is g23 = g24 := 0, g34 := 1 and
e31 := 1, e21 = e41 := 0. For the continuous variables,
we then obtain the values Δ+

2 = 2,Δ+
3 = 0 ≥ −1, and

Δ+
4 = 0 ≥ 2 − M. However, an adjustment of two resource

units will not be considered in an optimal solution, since
objective function (A-RL-III) is to be minimized, and there-
fore the minimal sum of resource requirements finds its way
into the calculation, i.e., Δ+

2 + Δ+
3 + Δ+

4 = 1.
In order to restrict the solution space and to synchronize

the binary decision variables, the following inequalities may
be added:

ei j + e ji + gi j ≤ 1 i, j ∈ V r , i < j (38)
∑

i∈V r

∑

j∈V r

j>i

gi j ≤ |V r | − 1 (39)

∑

i∈V r

∑

j∈V r

j �=i

ei j ≤ |V r | − 1. (40)

With constraints (38), the number of positive decision vari-
ables for two real activities i and j, i < j , is restricted to no
more than one. Inequalities (39) and (40) set upper bounds on
the total number of positive decision variables. Additionally,
we are able to fix some binary variables in advance. If the

length li j of a longest path from activity i to j or the length
l j i from j to i, i, j ∈ V r , i < j , in the underlying network
N is greater than zero, we can fix gi j := 0. Furthermore, con-
dition ei j := 0 holds if li j > −p j , and condition e ji := 0 is
satisfied if li j > pi , i, j ∈ V r , i �= j .

The resulting model contains O(|V |2 + |V | |R|) con-
straints, as well as |V | + |V r ||R| real-valued auxiliary and
3
2 |V r |2 − 3

2 |V r | binary variables. Since all numbers are inde-
pendent of the scaling of the time axis, the model can be
classified as a polynomial model.

7 Preprocessing techniques

The three MIP-formulations introduced in Sect. 6 may be
improved by reducing the domains of auxiliary variables (cf.
Sect. 7.1). Additionally, the solution process of a branch-and-
bound or branch-and-cut approach is usually faster if a start
solution is provided (cf. Sect. 7.2).

7.1 Domain reduction techniques

In all model formulations, we used continuous auxiliary vari-
ables that represent the positive adjustment of resource k ∈ R
at a specific time or event. The domain of those variables
may be restricted by considering lower and upper resource
requirement bounds (Rieck et al. 2012). Let Pkt ≥ 0 be
the minimum and Hkt ≥ 0 the maximum requirement for
resource k ∈ R that can occur at time t ∈ {0, . . . , d − 1} in
a feasible schedule. Rieck et al. (2012) determine the values
Pkt by analyzing the unavoidable time interval, [L Si , ECi [,
for each activity i ∈ V , and the values Hkt by making use of
the concept of antichains. With these bounds, we are able to
estimate the maximum positive jump

Mkt := Hkt − Pk,t−1

in the resource profile of resource k ∈ R at time t , where
Pk,−1 := 0 for all k. Moreover,

Mk := max
t∈T

{Hkt − Pk,t−1}

represents the maximum positive jump that may occur for
resource k throughout the planning horizon. The domains of
continuous variables may then be defined as follows:

discrete time-based formulation

�+
kt ∈ [0, Mkt ] k ∈ R, t ∈ T (41)

start/end event-based formulation

�+
ke ∈ [0, Mk] k ∈ R, e ∈ E (42)

start-based formulation

Δ+
ki ∈ [0, Mk] k ∈ R, i ∈ V r . (43)
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7.2 Generation of start solutions

For RLPs with locally concave objective functions, there
invariably exists a quasistable schedule which will be opti-
mal (cf. Sect. 4). Therefore, in order to generate good feasi-
ble solutions S� for RLPs, quasistable schedules should be
determined. This structural property is utilized by Ballestin
et al. (2007) within a population-based method. The algo-
rithm starts with a set of feasible solutions that are generated
by means of a priority-based method with a serial generation
scheme (Zimmermann 1997). Then, some solution is chosen
with respect to its objective function value. A set of activities
is removed (destruction step) and locally optimal reinserted
(reconstruction step) to improve the current schedule. In a
subsequent local improvement step, the early and late free
float of each activity is consecutively used to optimize its
position. Afterward, the quasistable characteristic of the con-
structed solution S is recovered by a function quasistable.
If the resulting solution S′ is better than the worst Sw in the
population, then it replaces Sw. The algorithm terminates
once a stop criterion is fulfilled and returns the best solution
found.

We improved the Ballestin et al. (2007) algorithm to obtain
a quasistable schedule S′ with f (S′) ≤ f (S) after exe-
cuting function quasistable. Hence, in our algorithm non-
quasistable schedule S is transferred into a quasistable sched-
ule S′ with lower or equal objective function value.

Let N (O(S)) be the order network of schedule S that
results from the underlying network N by introducing arcs
〈i, j〉, i, j ∈ V, i �= j with δi j := pi if S j − Si ≥ pi is
satisfied. Thus, arc set A(S) of the order network may be
specified as follows

A(S) := A ∪ {(i, j) ∈ V × V | i �= j and S j ≥ Si + pi }.
Neumann et al. (2003b, Sect. 3.2) have shown that every
quasistable schedule may be represented by a spanning tree
(i.e., a weakly connected directed graph with |V | nodes and
|V |−1 arcs) of the corresponding order network, where every
arc represents a binding temporal or precedence constraint.

Since a non-quasistable schedule S does not contain
|V | − 1 binding constraints, schedule S can be associated
with a spanning forest. Each spanning forest is comprised of
different components (spanning subtrees). The activities of a
component V ′ ⊂ V \{0} may be shifted upward or downward
until a temporal or precedence constraint becomes binding.
For each component, a left- and a right-shift are executed, the
first binding constraints are determined, and the constraint
that leads to the lowest adjustment costs is realized. Thereby,
it is ensured that a quasistable schedule S′ with lower or equal
objective function value is generated.

For component V ′, arcs 〈i, j〉 ∈ A(S) with i ∈ V ′, j /∈
V ′, are candidates for binding constraints. In addition to and
in contrast to Ballestin et al. (2007), we also consider activi-

Fig. 8 Order network N = (O(S)) and spanning forest with compo-
nent V ′

Fig. 9 Spanning trees of S′1 =(0, 0, 2, 4) and S′2 =(0, 0, 4, 6)

ties i ∈ V ′, j /∈ V ′, which are simultaneously in execution.
For those activities, a precedence constraint can be added
when activities in V ′ are moved. Figure 8 depicts the order
network of non-quasistable schedule S = (0, 0, 3, 5), where
activities 1 and 2 are carried out simultaneously, and the cor-
responding spanning forest with component V ′.

If component V ′ = {2, 3} is left-shifted, then the first tem-
poral constraint that becomes binding is S3 − S1 = δ13 = 4,
and if V ′ is right-shifted, then the first binding precedence
constraint is S2 − S1 = p1 = 4. The spanning trees of
the resulting quasistable schedules S′1 = (0, 0, 2, 4) and
S′2 = (0, 0, 4, 6) are given in Fig. 9. With c := 2 and
r1 = r2 := 1, we obtain f (S′1) = 4 and f (S′2) = 2,
which means that schedule S′2 is realized. Without the con-
sideration of activities that are simultaneously in execution
as it is done in Ballestin et al. (2007), component V ′ would
be right-shifted until the backward arc 〈3, 0〉 becomes bind-
ing. Then, a quasistable schedule S′ is generated, but it is not
ensured that S′ has a lower or equal objective function value
than initial schedule S.

In order to integrate the described capabilities, we assume
that component V ′

i is the one that contains activity i . Arc set
AV ′(S) of schedule S and component V ′, which contains all
arcs between activities i and j that are candidates for binding
temporal and precedence constraints, can be defined as

AV ′(S) := A(S) ∪ {
(i, j) | V ′

i =V ′orV ′
j =V ′, V ′

i �=V ′
j ,

Si ≥ S j and Si < S j + p j
}
.

Thereby, arcs 〈i, j〉 ∈ AV ′(S)\A(S) obtain weights δi j :=
pi . The times σ−

V ′(S) and σ+
V ′(S) by which activities i ∈

V ′ may be left- or right-shifted to generate a quasistable
schedule S′ with f (S′) ≤ f (S) are then given by
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σ−
V ′(S) :=min{Si −S j −δ j i |( j, i)∈ AV ′(S), i ∈V ′, j /∈V ′}

σ+
V ′(S) :=min{S j −Si −δi j |(i, j)∈ AV ′(S), i ∈V ′, j /∈V ′}.

8 Performance analysis

In this section, the results of a comprehensive performance
analysis are presented. In order to investigate the perfor-
mance of the three MIP-formulations

• discrete time-based (TB) formulation:
(A-RL-I), (3)–(8), (41),

• start/end event-based (EB) formulation:
(A-RL-II), (9)–(24), (42),

• start-based (SB) formulation:
(A-RL-III), (25)–(40), (43),

we solved small- and medium-scale problem instances to
optimality using the branch-and-cut procedure provided by
CPLEX 12.4 and ILOG’s Concert interface for communi-
cation purposes. Results obtained by the three models are
compared to the solutions of an adapted version of the tree-
based branch-and-bound method developed by Gather et
al. (2011) for the classical RLP. In the adapted version of
the approach, lower bounds are determined in a problem-
specific way. Moreover, all structural properties used within
the branch-and-bound method are based on the locally con-
cave characteristic of function (C-RL). Since function (A-
RL) is locally concave as well, the algorithm is also suitable
for the total adjustment cost problem. The MIP-formulations
as well as the branch-and-bound method received the same
initial solution or upper bound, respectively, at the begin-
ning of the procedure. The tests were performed on an Intel
Core i7 CPU 990X with 3.47 GHz and 24GB RAM under
Windows 7.

The problem instances used for testing the models are
introduced by Rieck et al. (2012) and contain 10, 15, 20,
30, and 50 real activities as well as 1, 3, and 5 renewable
resources. The test sets are generated using control para-
meters that influence the behavior of solution procedures
(e.g., number of maximum time lags, resource factor, and
restrictiveness of Thesen; Schwindt 1998). In particular, the
restrictiveness of Thesen (RT) affects the run time of MIP-
formulations; therefore, it should be investigated in more
detail. RT ∈ [0, 1] measures the degree to which tempo-
ral constraints restrict the total number of feasible activity
sequences, i.e., RT = 0 indicates a parallel network and
RT = 1 a series network. For each combination (number
|V r | of real activities/number |R| of renewable resources),
40 instances are considered, where the restrictiveness of The-
sen is set to 0.3 and to 0.6 in equal parts. In order to deter-
mine the impact of expanding time-windows [E Si , L Si ] for
activities i ∈ V (i.e., the project slack), we tested each

instance using different maximum project completion dead-
lines d := αE Sn+1, where α ∈ {1.0, 1.5, 2.0}. In the fol-
lowing computational study, the different test sets are given
by the names |V r | − |R| − RT − α.

For every instance, an initial solution is generated (cf.
Sect. 7.2) and posted to the solver. Moreover, under prelim-
inary tests, we have investigated the effectiveness of general
CPLEX-cuts during optimization. The solution process with-
out default CPLEX-cuts performs well for the TB-model and
the SB-model. For the EB-model, clique and cover cuts are
added. Since the total adjustment cost problem is NP-hard,
we cannot expect that a branch-and-cut approach will termi-
nate within a reasonable time limitation, which is why we
allow maximum computation times between 3 and 6 h.

Table 1 lists the results of all MIP-formulations and the
tree-based branch-and-bound method for instances with 10
real activities. Column “tcpu” designates the average com-
putation times (in seconds) and column “Inst<βh” displays
the number of instances solved to proven optimality within
a time limit of β hours. If the optimality of an instance is
not proven, then a computation time of β hours is taken into
account while calculating tcpu. Line “# Opt” indicates the
total numbers of instances solved to proven optimality within
β hours.

Regarding the average computation times, the TB-model,
the SB-model, as well as the tree-based branch-and-bound
method are efficient. All average run times are lower than 15
seconds. In contrast, the results of the EB-model are sobering.
Only 46 out of 120 problem instances with α = 1.5 are solved
to optimality. We therefore skip pursuing further details for
larger instances with more than 10 activities. The difficul-
ties of the model result from placing the events over the time
axis. For each event, uncountable possible points in time may
have to be determined. Notice that the EB-formulation can be
improved by setting the number of events to the project com-
pletion deadline, i.e., E = d. Then, the solver develops pre-
cise combinations and assigns one integer-valued start time
to each event. In that case, the formulation is converging to
the TB-model, but it needs more decision variables.

In order to consider larger instances with 15 and 20
real activities, Table 2 summarizes the results for the TB-
formulation, the SB-formulation, and the tree-based branch-
and-bound method. We concentrate on problems with three
renewable resources and varying project completion dead-
lines. To get an impression on the quality of the linear pro-
gramming relaxation, we investigate the average gap (column
“gapØ”) and maximal gap (column “gapmax”) in percentage
for instances for which the optimality was not proven.

For instances with RT = 0.3 (i.e., rather parallel net-
works) and tight project completion deadlines (α = 1.0),
the TB-model performs well. However, if the value α is
increased, the average run times are significantly longer. In
contrast, the SB-model turns out to be much more robust in
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Table 1 Computation times and numbers of instances solved (n = 10)

Instances TB-model EB-model SB-model Tree-based B&B

tcpu Inst<3h tcpu Inst<3h tcpu Inst<3h tcpu Inst<3h

10-1-0.3-1.0 0.02 20 152.14 20 0.10 20 0.06 20

10-3-0.3-1.0 0.03 20 531.36 20 0.05 20 0.12 20

10-5-0.3-1.0 0.04 20 463.98 20 0.12 20 0.52 20

10-1-0.3-1.5 0.43 20 5,696.74 11 0.20 20 1.15 20

10-3-0.3-1.5 7.89 20 7,864.63 8 0.24 20 3.52 20

10-5-0.3-1.5 5.44 20 10,152.37 5 0.65 20 14.21 20

10-1-0.6-1.0 0.02 20 119.50 20 0.03 20 0.01 20

10-3-0.6-1.0 0.01 20 214.32 20 0.03 20 0.02 20

10-5-0.6-1.0 0.02 20 631.61 20 0.06 20 0.02 20

10-1-0.6-1.5 0.53 20 5,951.83 15 0.09 20 0.34 20

10-3-0.6-1.5 2.96 20 9,846.03 4 0.05 20 0.57 20

10-5-0.6-1.5 12.01 20 9,405.33 3 0.13 20 1.80 20

# Opt 240 166 240 240

Table 2 Computation times and the numbers of instances solved (n = 15, 20)

Instances TB-model SB-model Tree-based B&B

tcpu Inst<3h gapØ gapmax tcpu Inst<3h gapØ gapmax tcpu Inst<3h

15-3-0.3-1.0 0.21 20 0 0 1.63 20 0 0 109.29 20

15-3-0.3-1.5 794.18 19 11 11 37.36 20 0 0 7,982.33 9

20-3-0.3-1.0 8.13 20 0 0 80.81 20 0 0 6,413.25 9

20-3-0.3-1.5 5,061.66 13 44 66 2,311.72 19 45 45 10,800.00 0

15-3-0.6-1.0 0.05 20 0 0 0.17 20 0 0 8.85 20

15-3-0.6-1.5 1,358.29 19 53 53 1.09 20 0 0 727.47 20

20-3-0.6-1.0 0.08 20 0 0 0.62 20 0 0 644.59 20

20-3-0.6-1.5 5,494.30 11 37 75 8.67 20 0 0 9,878.78 2

# Opt 142 159 100

relation to the deadlines for project completion. All instances
with 15, and nearly all instances with 20 real activities
are solved to optimality within 3 h. Furthermore, the tree-
based branch-and-bound method is not able to stick with
the branch-and-cut procedures provided by CPLEX. Less
than 50 % of the problem instances are optimally solved.
Considering a rather series network with RT = 0.6, the SB-
formulation is able to strengthen its success, and all instances
are solved in less than 30 seconds. In addition, the perfor-
mance of the tree-based branch-and-bound method is bet-
ter than that for instances with RT = 0.3. However, the
average run times are much higher than those of the two
models. In order to arrive at fair comparisons, the tree-based
method might have run longer than 3 h (the program uses
just one processor core). Nevertheless, if we consider the
instances solved to proven optimality, the run times of the
SB-model and the tree-based method differ by a factor of
more than 60, which is above a computation time reduction

that a multicore processor running CPLEX can induce. For
the TB-model, the restrictiveness of Thesen has no obvious
impact on the run times and the number of instances solved.
The procedure obtains similar results for both RT-values.
As expected, the restrictiveness of Thesen influences the run
times of procedures that take advantage of problem struc-
tures during the solution process (i.e., the SB-model as well
as the tree-based method). As a rule, a lower value for the
restrictiveness of Thesen complicates the problem of finding
and proving an optimal schedule. Rather parallel networks
involving RT = 0.3 induce a large number of feasible activ-
ity sequences, whereas in rather series networks, many (indi-
rect) precedence constraints lead to a reduction of feasible
activity sequences. For instances not optimally solved, the
average and maximal gaps are worse, i.e., gapØ ≥ 11 % and
gapmax ≥ 11 %.

We investigate the robustness of the TB-model and the
SB-model in relation to varying RT-values and expanded
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Table 3 Computation times and the numbers of instances solved (n = 15, 20 and α = 2.0)

Instances TB-model SB-model

tcpu Inst<3h gapØ gapmax tcpu Inst<3h gapØ gapmax

15-3-0.3-2.0 4,413.34 13 30 48 85.71 20 0 0

20-3-0.3-2.0 9,296.03 5 58 89 4,294.86 16 49 52

15-3-0.6-2.0 5,396.44 14 41 77 1.32 20 0 0

20-3-0.6-2.0 8,998.53 4 64 90 11.65 20 0 0

# Opt 36 76

Table 4 Computation times and the numbers of instances solved (n = 30, 50)

Instances TB-model SB-model

tcpu inst<6h gapØ gapmax tcpu inst<6h gapØ gapmax

30-3-0.3-1.0 120.04 20 0 0 12,470.24 12 44 65

30-3-0.3-1.5 21,600.00 0 58 82 17,040.97 1 76 98

50-3-0.3-1.0 7,304.88 7 16 37 21,600.00 0 78 99

30-3-0.6-1.0 2.04 20 0 0 419.92 20 0 0

30-3-0.6-1.5 21,600.00 0 52 88 6,901.77 16 29 40

50-3-0.6-1.0 2,931.97 16 12 26 14,900.54 7 40 81

# Opt 63 56

project completion deadlines by setting α := 2.0 for
instances involving 15 or 20 real activities. Table 3 depicts the
results.

The SB-formulation indeed works very well. Only four
instances with RT = 0.3 are not proven optimally solved;
for these instances, the average and maximum gap are larger
than 49 %. Particularly, the run times for instances with RT =
0.6 are shorter than expected. As opposed to this, the TB-
model is only able to solve less than 50 % of all problem
instances to optimality within 3 h. Thus, the model, due to its
nonpolynomial characteristic (cf. Sect. 6.1), is not suitable
for instances involving large project completion deadlines.

Table 4 shows the results for medium-scale instances with
a maximum of 50 real activities and project deadlines d =
αESn+1, α = {1.0, 1.5}. Here, the boundaries of an exact
solution methodology become apparent.

Within a time limit of 6 h, about half of all instances
are optimally solved. Moreover, the strength of the TB-
formulation appears by regarding the results for instances
with tight project completion deadlines. In contrast, for
projects with α = 1.5, the SB-model produces significantly
better results than the TB-model.

In what follows, we perform some computational stud-
ies on instances with 15 and 20 real activities to generate
additional insights into the behavior of MIP-formulations.
First, to evaluate the quality of heuristic solutions that are
used as start solutions, we measure the objective function
value differences of start and optimal solutions or best solu-
tions found. The results show that the optimal solutions (or

best solutions found) are on average less than 1 % better
than the start solutions. Therefore, the formulations usually
spend the whole time on the verification of the optimality of
a solution. For the TB-model, an average run time improve-
ment of 20 % is obtained if a start solution is posted to the
solver. Thus, a “warm” start helps the formulation to find and
prove more optimal solutions within the time limitation. For
the SB-model and a start solution, no significant run time
improvement can be detected.

In order to examine the impact of large activity resource
requirements, we solved instances with 15 and 20 real activ-
ities, three renewable resources, α ∈ {1.0, 1.5}, and rik :=
γ rik with γ ∈ {5, 10}. As the resource requirements only
affect the Mk or Mkt values, as well as the domains of aux-
iliary variables in the models, no explicit differences con-
cerning performance may be determined by analyzing the
results.

The previous tables demonstrate that the average run
times increase and the numbers of optimal solutions found
decrease for the SB-model, when varying the RT-factor from
0.6 to 0.3. However, RT = 0.3 does not correspond to a
“significant” parallel network. To determine the impact of
smaller RT-values, we generated instances with 15 and 20
real activities, three renewable resources, α ∈ {1.0, 1.5, 2.0},
and RT ∈ {0.1, 0.2}. Table 5 shows the computation times
and the numbers of instances solved for the TB-model and
the SB-model.

As could be supposed from Table 2, the TB-model does
not depend on the RT-factor. For the SB-model and RT = 0.2,
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Table 5 Computation times and the numbers of instances solved (n = 15, 20 and RT = 0.1, 0.2)

Instances TB-model SB-model

tcpu Inst<3h gapØ gapmax tcpu Inst<3h gapØ gapmax

15-3-0.1-1.0 1.26 20 0 0 173.98 20 0 0

15-3-0.1-1.5 90.19 20 0 0 3,213.22 19 89 89

15-3-0.1-2.0 1,507.30 20 0 0 6,581.81 13 93 97

20-3-0.1-1.0 43.23 20 0 0 8,523.92 6 36 75

20-3-0.1-1.5 4,796.01 14 19 31 10,800.00 0 83 98

20-3-0.1-2.0 9,583.19 3 28 55 10,800.00 0 94 99

15-3-0.2-1.0 0.31 20 0 0 16.78 20 0 0

15-3-0.2-1.5 168.73 20 0 0 524.14 20 0 0

15-3-0.2-2.0 3,358.14 18 19 32 1,141.57 20 0 0

20-3-0.2-1.0 9.96 20 0 0 2,468.39 18 16 18

20-3-0.2-1.5 5,539.11 12 39 64 10,096.54 2 50 79

20-3-0.2-2.0 9,411.47 4 45 79 10,599.25 1 63 82
# Opt 191 139

all instances with 15 activities and some instances with 20
activities are solved to optimality. In the event of RT = 0.1,
the SB-model is not able to terminate the enumeration for
all instances with 15 activities. Moreover, it collapses for
instances with 20 activities. Considering both models, the
average (maximum) gap for instances for which the opti-
mality was not proven is always larger than 16 % (18 %).
Furthermore, the gaps increase significantly for large project
completion deadlines. Thus, the linear programming relax-
ation is the main drawback in the solution process. If better
lower bounds could be generated during the optimization,
then the computation times would certainly be improved.

9 Conclusions

The paper presented above considers the total adjustment
cost problem which has received little attention in the lit-
erature pertaining to resource leveling. The problem and its
objective function have nice structural properties that could
be exploited successfully to obtain a feasible or optimal
solution. Particularly, the total adjustment cost function is
locally quasiconcave and may be determined by consider-
ing the start and end times of activities. Furthermore, we
presented some interesting practical applications that can be
usefully employed in the construction industry. In addition,
a discrete time-based model and two polynomial model for-
mulations, an event-based model and a start-based model, are
introduced. The main advantage of the polynomial models is
that they are independent of a scaling of the time axis. Small-
scale and medium-scale instances are solved to optimality
using CPLEX. In order to facilitate the solution process, pre-

processing techniques are used, and a start solution is trans-
ferred to the solver.

The results of a comprehensive performance analysis
show that the discrete time-based formulation is efficient for
instances with tight project completion deadlines. The corre-
sponding branch-and-cut procedure is able to solve instances
with up to 50 real activities. Even in cases, where the project
deadlines are increased, the start-based model performs well.
There are even many instances with 30 real activities and
α = 1.5 that are solved to optimality. The two other exact
methods are found to be of little value as alternative solution
approaches.

Future research will include the consideration of the total
adjustment cost problem in combination with further real-
life conditions. In that context, it should be included that
activity durations may be stochastic or that activities may
be carried out in many alternative execution modes which
differ in processing time, time lags, and resource require-
ments (see, e.g., Hartmann and Briskorn 2010). Furthermore,
a simultaneously consideration of (A-RL), (C-RL), and (O-
RL) in a multi-criteria approach could be interesting. Since
all objective functions are locally quasiconcave, there always
exists a quasistable schedule that will be optimal for a result-
ing weighted objective function (cf. Sect. 4). Therefore, the
heuristic algorithm (cf. Sect. 7.2), the tree-based branch-and-
bound method, and the TB-model can be extended to a multi-
criteria approach. In addition, the study of a quadratic variant
of the total adjustment cost objective function, which is no
longer locally concave, is an interesting topic.
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problem presented herein and the results obtained (i.e., upper and lower
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