
J Sched (2014) 17:471–487
DOI 10.1007/s10951-013-0315-3

A simultaneous and iterative approach for parallel machine
scheduling with sequence-dependent family setups

Liji Shen · Lars Mönch · Udo Buscher

Received: 10 December 2011 / Accepted: 16 January 2013 / Published online: 2 March 2013
© Springer Science+Business Media New York 2013

Abstract In this paper, we address a parallel machine
scheduling problem to minimize the total weighted com-
pletion time, where product families are involved. Major
setups occur when processing jobs of different families, and
sequence dependencies are also taken into account. Consid-
ering its high practical relevance, we focus on the special case
where all jobs of the same family have identical processing
times. In order to avoid redundant setups, batching jobs of
the same family can be performed. We first develop a vari-
able neighborhood search algorithm (VNS) to solve the inter-
related subproblems in a simultaneous manner. To further
reduce computing time, we also propose an iterative scheme
which alternates between a specific heuristic to form batches
and a VNS scheme to schedule entire batches. Computa-
tional experiments are conducted which confirm the benefits
of batching. Test results also show that both simultaneous
and iterative approach outperform heuristics based on a fixed
batch size and list scheduling. Furthermore, the iterative pro-
cedure succeeds in balancing solution quality and computing
time.

Keywords Scheduling · Batching · Parallel machines ·
Family setups · VNS

L. Shen (B) · U. Buscher
Department of Business and Economics, Technische Universitaet
Dresden, 01069 Dresden, Germany
e-mail: liji.shen@tu-dresden.de

L. Mönch
Department of Mathematics and Computer Science, University
of Hagen, 58097 Hagen, Germany

1 Introduction

1.1 Problem description

In this study, we address an identical parallel machine
scheduling problem where product families are involved.
The objective is to minimize the total weighted completion
time (TWC). Each product family contains jobs with sim-
ilar requirements in tooling and operation sequences. As a
result, major setup times are inevitable whenever a machine
switches from processing jobs in one family to those in
another family.

Furthermore, we take into account sequence dependen-
cies, which are commonly deemed as one of the most diffi-
cult aspects in scheduling (Laguna 1999). The length of setup
times depends on the similarity in technological requirements
for the two consecutive families. Typically, the greater the
dissimilarities, the larger is the setup time required. Appli-
cations are frequently encountered, especially in printing,
food processing, textile industries, as well as in container
manufacturing (Barnes and Vanston 1981; White and Wil-
son 1977). It is generally assumed that sequence-dependent
setup times are subject to the triangular inequality:

s f g ≤ s f f ′ + s f ′g ∀ f �= g, (1)

where s f g denotes the sequence-dependent family setup time
between jobs of families f and g. This condition indicates
that a switch of processing from jobs in family f through f ′
to jobs in another family g causes longer delay than a direct
changeover between families f and g.

In order to balance setup times and completion times, it
is beneficial to divide a product family into separate batches.
Jobs belonging to the same batch are then processed in a con-
secutive manner. Here we assume batch availability requiring
that a job is not available until the entire batch to which it

123

472 J Sched (2014) 17:471–487

belongs is completed. Therefore, all jobs of the same batch
have the same completion time, and the processing time of a
batch is equal to the sum of the processing times of its jobs.
Practical applications arise when, for example, the jobs in a
batch are placed on pallets, containers, or boxes which can
only be removed upon the completion of the last job (Potts
and Kovalyov 2000).

In addition, we focus on the special case of identical jobs,
i.e., jobs of the same family have identical processing times.
Moreover, a distinct weight is assigned to each job in a family.
From a practical point of view, this is a reasonable assump-
tion. Since product families are formed based on technologi-
cal similarities, the difference in the processing times of jobs
belonging to the same family is negligible. In fact, this case
is known to be highly relevant in manufacturing industries
(Mosheiov et al. 2004), such as repetitive production of simi-
lar items and heating process of chemical purification. On the
other hand, priorities differ among jobs of the same family. In
this context, customized components and models produced
according to specific customer requirements represent typi-
cal examples.

We have proved in Shen et al. (2012) that the specific par-
allel machine problem outlined here is NP-hard even in the
unweighted case. To solve this scheduling problem, three
subproblems—batch sizing, batch assignment, and batch
sequencing—are to be synchronized. On the other hand, an
iterative procedure is also desirable with respect to comput-
ing time.

1.2 Literature review

A comprehensive survey of scheduling research involving
setup times can be found in Allahverdi et al. (1999); Cheng
et al. (2000), and Allahverdi et al. (2008). While sequence
independent setup times are widely studied, problems involv-
ing sequence-dependent setup times received compara-
tively less attention. (cf. Aldowaisan and Allahverdi (1998);
Allahverdi (2000); Allahverdi and Aldowaisan (1998); Gupta
and Tunc (1994) for two-machine flow-shop scheduling
with sequence independent setup times, and Han and Dejax
(1994); Rajendran and Ziegler (1997) for a flow-shop with
m stages.) By considering sequence-dependent setup times
in scheduling problems, one of the objectives must attempt,
either implicitly or explicitly, to minimize the total setup
time. This makes these scheduling problems resemble the
classical traveling salesman problems to varying extents.
There is extensive literature on TSPs and their extensions.
These methodologies are directly applicable to the single-
stage problems by suitably modifying them to process a
dummy job at the start and at the end of the sequence (Srikar
and Ghosh 1986).

Regarding the scheduling problem with batch availabil-
ity assumption, a significant body of existing literature in
this area focuses on single-machine problems. Coffman et al.
(1990) prove that for the problem with one family and the
total completion time objective, an optimal schedule exists
where jobs are sequenced in SPT order. The authors also show
that the problem is solvable in O(n log n) time. Alternatively,
van Hoesel et al. (1994) provide the complexity of O(n) by
using geometric techniques. For a given job sequence, Albers
and Brucker (1993) show that a dynamic program solves the
problem with the TWC objective in O(n) time. Cheng et al.
(1994) address the problem with an arbitrary number of fam-
ilies and the total completion time (TC) objective. They show
that there is an optimal schedule in which the jobs within each
family are sequenced in SPT order. Based on the studies of
Monma and Potts (1989) and Coffman et al. (1990); Cheng
et al. (1994) also propose a backward dynamic program-
ming algorithm with batch insertion that requires O

(
nF

)

time, where F denotes the number of families. Hurink (1998)
compares various tabu search algorithms for the problem
with alternative objective TWC. Whereas two adjacent jobs
are interchanged for the transpose neighborhood, a job is
reinserted into a distant new position in the restricted insert
neighborhood. Computational results for instances with up
to 200 jobs show that these two methods perform similarly
well. Moreover, the best quality solutions are obtained with
a combined approach iterating between the two neighbor-
hoods.

Another stream of research concerns family scheduling in
manufacturing cells. However, these studies are exclusively
subject to job availability (cf. Reddy and Narendran 2003;
Franca et al. 2005; Logendran et al. 2006; Hendizadeh et al.
2008). In order to reduce the scheduling difficulty, the group
technology assumption is also imposed, where a batch must
contain an entire family.

Concerning solution methods, metaheuristics have been
widely applied to various scheduling problems. Among them
variable neighborhood search (VNS) approaches belong to
the most promising ones (cf. Almeder and Mönch 2011;
Wang and Tang 2009; Rocha et al. 2007; Driessel and Mönch
2011). Therefore, we develop our algorithm using the struc-
ture of VNS.

To the best of our knowledge, the problem researched in
this paper has not been discussed in the literature. In Shen
et al. (2012), we only addressed the unweighted case. This
paper is an extended version of Shen et al. (2011). It contains a
new VNS scheme and extensive computational experiments.

The remainder of the paper is organized as follows: We
describe the problem settings in the next section, where a
MIP formulation is also presented. Section 3 proposes a vari-
able neighborhood search algorithm to solve the problem
simultaneously. In order to save computing time, we develop
an iterative procedure consisting of a specific heuristic for

123

J Sched (2014) 17:471–487 473

batch formation and a VNS for scheduling batches in Sect. 4.
Detailed computational results are reported in Sect. 5. This
paper concludes with Sect. 6.

2 Problem formulation

2.1 Problem setting

Indices

i, j = 1, . . . , n Job indices
b, b′, c, d = 1, . . . , B Batch indices
f, g, h = 1, . . . , F Family indices
k, k′, l = 1, . . . , m Machine indices

Parameters

Bbk The bth batch on machine k
F f Family f
n f Total number of jobs in family f
M Sufficient large number
p f Processing times of jobs in family f

s0 f Initial setup of family f
s f g Sequence-dependent family setup time
w j Weight of job j

Wbk Aggregate weight of all jobs included in batch b on
machine k

Bk Total number of batches assigned to machine k
β j f Parameter, equals 1 if job j belongs to family f and 0

otherwise

Decision variables

C j Completion time of job j
tbk Start time of the bth batch on machine k

x jbk Binary variable, equals 1 if job j is assigned to batch
b on machine k

Assume that a set of n jobs and a set of m identical parallel
machines are given. All jobs are simultaneously available.
The jobs are partitioned into F families according to their
similarities. The processing times of all jobs of the same fam-
ily f are identical and denoted by p f . There are sequence-
dependent family setup times s f g > 0, when a job of fam-
ily g is immediately preceded by a job of family f with
f �= g. Furthermore, we assume that s f f takes a small
positive value instead of being 0, if two consecutive jobs
of the same family are grouped into different batches. Oth-
erwise, batch availability becomes a restrictive assumption,
and item availability is desirable for any batch size greater
than 1. This setting is also motivated by practical applica-
tions since a moderate time is often inevitable for preparing

batch processing. In this context, rearranging tools, reposi-
tioning work-in-process material, or restocking component
inventories, for instance, becomes necessary regardless of
the family of batches. When a job of family f is the first one
processed on a certain machine, then the family setup time is
denoted by s0 f . Pre-emption of the processing of batches is
not allowed, i.e., once one job of a batch is started on a certain
machine then all jobs of this batch have to be processed on
this machine without interruption.

The problem can be represented using the α|β|γ notation
from scheduling theory (cf. Graham et al. 1979) as follows:

P|s − batch, F, s f g|TWC, (2)

where P refers to identical parallel machines and s−batch to
serial batching with batch availability. Under the β-field, we
also have product families denoted by F , and the setup times
s f g . Finally, the performance measure is the total weighted
completion time TWC :=∑n

j=1 w j C j .

2.2 MIP formulation

The specific scheduling problem (2) can be formulated as
follows:

Objective:

min
n∑

j=1

w j C j (3)

Subject to:

B∑

b=1

m∑

k=1

x jbk = 1 ∀ j (4)

xibk ≤ βi f − β j f − x jbk + 2 ∀i < j, b, k, f (5)

tbk ≥ s0 f ∀b ⊆ F f , k (6)

tck ≥ tbk + s f gx jbk +
n∑

j=1

x jbk p f

∀b ⊆ F f , c ⊆ Fg, b < c, j, k (7)

C j ≥ tbk +
n∑

i=1

xibk p f − (1− x jbk)M ∀b ⊆ F f , j, k.

(8)

The objective is to minimize the total weighted comple-
tion time (3). Constraints (4) require that each job is grouped
into one and only one batch. Note that B defines the maxi-
mum number of batches. This parameter does not restrict the
formulation when we set B = n.

Constraints (5) ensure that a batch contains only jobs of
the same family. For illustrating these constraints, concrete

123

474 J Sched (2014) 17:471–487

Table 1 Sequence of neighborhood structures used for BVNS

Number of the neighborhood structure Neighborhood structure

a = 1 MoveBatch(1)

a = 2 SwapBatch(1)

a = 3, . . . , 5 SwapSeq(2a − 4)

a = 6, . . . , 11 MoveBatch(3a − 15)

a = 12, . . . , 16 MoveJob1(a − 11)

a = 17, 18 MoveJob2(a − 16)

a = 19, . . . , 24 SwapJob(a − 18)

a = 25, 26 MoveJob2(a − 22)

a = 27, . . . , 29 MoveJob3(a − 26)

cases are given as follows:

βi f −β j f −x jbk+2=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for i, j ∈ F f , j ∈ Bbk

2 for i, j ∈ F f , j �∈ Bbk

2 for i ∈ F f , j �∈ F f , j ∈ Bbk

3 for i ∈ F f , j �∈ F f , j �∈ Bbk

0 for i �∈ F f , j ∈ F f , j ∈ Bbk

1 for i �∈ F f , j ∈ F f , j �∈ Bbk

1 for i, j �∈ F f , j ∈ Bbk

2 for i, j �∈ F f , j �∈ Bbk .

Obviously, these constraints are only relevant to the case
where jobs i and j belong to different families and j is
grouped into batch b (that is, βi f − β j f − x jbk + 2 = 0). As
a result, job i must not be assigned to the same batch as j
(that is, xibk = 0). In all other cases, the value of xibk is not
decidable and constraints (5) are not violated.

Constraints (6) indicate that an initial setup time is
incurred before processing the first batch on each machine.
If b = 1 holds, inequality tbk ≥ s0 f for b ∈ F f must
be satisfied. For the case with b �= 1, we assume that the
batches processed before b on machine k belong to families
g, g′, . . . , f ′ in that order. Thus,

tbk ≥ s0g + sgg′ + · · · + s f ′ f ,

where only setup times are considered, and processing times
of batches are not included. According to the triangular
inequality, it follows

tbk ≥ s0g′ + · · · + s f ′ f .

Applying the triangular inequalities repeatedly leads to

tbk ≥ s0 f .

Therefore, the constraints concerning initial setup times
can be generalized as written in expression (6).

Constraints (7) are then incorporated to determine batch
sequences regarding setup times. It should be pointed out
that batches are ordered according to their indices. Since
batch compositions can be inconsistent on machines (x jbk �=

Fig. 1 Illustration of Theorem 1

x jbk′), a batch here is merely a symbol containing certain
jobs. Thus, the predetermination of batch sequences does
not limit the flexibility of the formulation.

Furthermore, batch completion time is determined by
batch start time (tbk) and the aggregate processing time of
jobs. According to the expression

∑n
j=1 x jbk p f , only the

processing times of the jobs grouped into the corresponding
batch are taken into account, since x jbk is equal to 0 other-
wise. We note that an empty batch does not affect the start
time of other batches since neither setup time nor processing
time of empty batches is considered (x jbk = 0 for all j).

According to constraints (8), the completion time of each
job is determined by the start time and the processing time
of the batch to which it belongs.

We implement this MIP formulation using Lingo 10.0 to
solve small-sized problem instances, which is elaborated in
Sect. 5.

3 Simultaneous approach

In this section, we start by describing a simple list schedul-
ing approach that provides reference schedules. A VNS algo-
rithm is then presented which solves the batch sizing, batch
assignment, and batch sequencing problem simultaneously.

3.1 List scheduling approach

Our list scheduling heuristic is motivated by the fact that the
SWPT dispatching rule is widely applied and provides fair
performance for P||TWC. We first assume that all batches
have the same maximum batch size Bmax and that all batches
consist of Bmax jobs, except that the last batch of each family

123

J Sched (2014) 17:471–487 475

may contain a smaller number of jobs. We call the resulting
procedure SWPT for abbreviation. Note that SWPT does not
make any decisions with respect to the number of jobs within
a batch. Furthermore, setup aspects are not taken into account
either. The heuristic can be described as follows.

SWPT Algorithm

(1) Sort all jobs with respect to non-decreasing values of the index
I 0

j :=p f /w j , j ∈F f .
(2) Select an unscheduled job j with smallest I 0

j value for the
machine with the smallest availability time.

(3) Form the batch by adding the next min(Bmax , ñ f) jobs of family
f from the list obtained in Step (1), where ñ f denotes the num-
ber of jobs of family f that are unscheduled. Update machine
availability.

(4) Start with Step (2) as long as there are jobs left unscheduled.

In order to integrate family setup times, we present three
additional variants for calculating the index I j . Except for
the determination of I j , the modified list scheduling follows
the same procedure as the original SWPT.

1. In the first modification, the index is determined by

I 1
j =

s̄ f + p f

w j
, j ∈ F f , (9)

where s̄ f , also known as effective family setup time, can
be written as:

s̄ f = 1

F

F∑

g=1

sg f . (10)

We refer to this modified list scheduling as LS-M1.
2. For the second variant (LS-M2), the index is calculated

as

I 2
j =

sg f + p f

w j
, j ∈ F f , (11)

where the batch scheduled directly before job j belongs
to family g. The corresponding setup time sg f is thus
included in the calculation. For this variant, the index
I 2

j is to be adjusted after sequencing each new batch, and
calculated again according to the current partial schedule.

3. The third variant (LS-M3) combines the previous two
methods, where the index can be expressed as

I 3
j =

(
p f

w j

)
exp

(
sg f

s̄ f

)
j ∈ F f (12)

Table 2 Design of experiments

Factor Level Count

F {3, 6, 9, 12} 4

m {2, 3, 6, 8} 4

μ {10, 20, 30} 3

Processing time ∼ DU [10, 100] 1

Weight ∼ DU [1, 10] 1

Family setup time s f g

Small ∼ DU [10, 20] 3

Medium ∼ DU [50, 100]
Large ∼ DU [100, 200]
Family setup time s f f ∼ DU [10, 20] 1

Initial setup time ∼ DU [10, 30] 1

Factor combination 144

Number of problem instances per factor combination 10

Total number of problem instances 1440

with sg f and s̄ f similarly defined as in LS-M1 and LS-
M2.

4. Furthermore, we apply another modified list scheduling
(LS-M4) to dynamically determine batch sizes, instead
of using Bmax. Jobs are first sorted according to index
I 0

j as in SWPT. We then select an unscheduled job with
smallest index and form a new batch B. Afterwards, the
next job of the same family in the list is added to the batch
as long as the parameter T does not exceed a prescribed
value Tmax. In this context, T is determined by

T =
sg f + ∑

j∈B
p j

∑

j∈B
w j

, j ∈ F f . (13)

It is obvious that the T value is to be updated according to
the current batch composition. We repeat this procedure
until no job is left unscheduled. Due to the different values
of p f and w j , the resulting batch sizes can vary widely.

3.2 Variable neighborhood search algorithm

VNS is a local-search-based metaheuristic (cf. Mladenovic
and Hansen 1997; Hansen and Mladenovic 2001). The basic
idea is to enrich a simple local-search method to enable it
escaping from local optima. This is done by restarting the
local search from a randomly chosen neighbor of the incum-
bent solution. This restarting step, so-called shaking, is per-
formed using different neighborhoods of increasing sizes.
There are many different variations of that VNS idea, such
as variable neighborhood descent (VND) or reduced VNS
(RVNS). In this paper, we will apply basic VNS (BVNS).

123

476 J Sched (2014) 17:471–487

The VNS algorithm designed for scheduling problem (2)
operates on the final solution representation, i.e., each job
is assigned to a batch and each batch is assigned to a cer-
tain position on a machine. Batches are formed according
to simple heuristics or the scheme described in the previous
section.

The proposed local-search method used for BVNS con-
sists of two different steps. The first step is balancing the
workload of the machines. If the last batch of the machine
with the maximum completion time starts later than the com-
pletion time of the machine with the smallest workload, the
batch is moved to that machine. This step is repeated until
no batch can be moved. We will call this improvement step
balancing.

The second step is the application of a single-machine
decomposition heuristic of Mehta and Uzsoy (1998). Since
job sequences of each batch are not relevant, we focus only
on batch sequences. From an initial sequence of batches for
each machine, a sub-sequence of size λ is solved to an opti-
mal sequence using complete enumeration. We consider all
the λ! different subsequences. The first α batches of the opti-
mal sub-sequence are fixed into the final sequence, and the
next λ unscheduled batches are considered. This process is
repeated until all batches are scheduled and no improvement
is made in the TWC value of the final sequence. A maximum
number of i ter iterations are allowed. The larger the value
of λ, the higher is the computation time and the better the
solution quality. We call the local-search procedure based on
the decomposition heuristic DH(λ, α, i ter).

Next, we define seven classes of neighborhood structures
Na , which concern individual jobs as well as entire batches:

1. MoveBatch(n): Randomly select a batch from a machine
and remove it. Insert it in a random position on another
randomly selected machine. Repeat this step n times.

2. SwapBatch(n): Randomly select two batches from dif-
ferent machines and exchange their positions. Repeat this
step n times.

3. SwapSeq(n): Randomly select two positions on differ-
ent machines and exchange the batch sequences starting
from that position of at most length n (n or all remaining
batches).

4. MoveJob1(n): Randomly select a job of a batch and
remove it. Insert it in a randomly selected batch of the
same family. Repeat this step n times.

5. MoveJob2(n): For batches with more than one job, ran-
domly select two jobs of the same batch and remove them.
Insert them in two randomly selected batches of the same
family. Repeat this step n times.

6. MoveJob3(n): For batches with more than two jobs,
randomly select three jobs of the same batch and remove
them. Insert them in three randomly selected batches of
the same family. Repeat this step n times.

7. Swap Job(n): Randomly select two jobs from different
batches of the same family and exchange their positions.
Repeat this step n times.

Note that to obtain a new solution/neighbor, the move defined
for each neighborhood is implemented n times. The search
then proceeds with a neighbor randomly selected from an
entire neighborhood. Whereas the first three neighborhood
functions consider batch sequences, the last four functions
focus on varying batch sizes and batch compositions. More
specifically, neighborhoods 1–3 also change the current
assignment of batches. Neighborhoods 4–6, in principle,
define the same type of moves. Since batches of the same
family can be processed on different machines, such moves
are also able to re-allocate jobs besides varying batch sizes.
Therefore, we allow a simultaneous removal of up to three
jobs in the same batch, each of them is then inserted in an
individual position.

Finally, we select the sequence in which the neighborhood
structures are applied. We determine the sequence as shown
in Table 1 based on several pilot runs. Note that move and
swap operations are different and one is not a special case
of the other. Combined neighborhood structures containing
move and swap operations are thus not nested.

The tailored BVNS (TBVNS) approach used in this
research can be summarized as follows:

TBVNS Algorithm

Initialization:

(1) Define the neighborhood structures Na, a = 1, . . . , 29.

(2) Generate an initial solution y using SWPT.

(3) Set a = 1.

(4) Repeat until stopping criterion is met:

Loop:

(a) Shaking: Select randomly y′ ∈ Na(y).

(b) Local search: Improve y′ by balancing and DH(5, 2, 10).

(c) Accept? If y′ is better than y, then y ← y′ and a← 1. Otherwise
set a← (a mod 29)+ 1.

4 Iterative approach

Note that the VNS algorithm activates the embedded local
search repeatedly which can be computationally expensive.
In order to solve larger instances within less computing time,
we also develop an iterative procedure for the same problem.
A so-called batch variation procedure (BVP) is proposed to
form batches for each product family. Afterwards, we adjust
our VNS approach to sequence batches on machines. Finally,
the two procedures are combined within an iterative scheme.

123

J Sched (2014) 17:471–487 477

Table 3 The model size with increasing problem sizes

F · n · m Number of
variables

Integer
variables

Constraints Non-zeros

2 · 5 · 2 95 75 1910 13305

3 · 7 · 3 175 147 10801 96936

4 · 10 · 3 340 300 53830 639120

5 · 20 · 4 1700 1600 878020 18590800

6 · 30 · 5 4680 4500 5256930 161316900

4.1 Batch variation procedure

4.1.1 Variation on a single machine

In order to justify the batch variation procedure, we first
present some properties and observations regarding batch
variation and objective value. Let Wbk and Cbk be the aggre-
gate weight of all jobs included in Bbk and the completion
time of Bbk , respectively.

Theorem 1 Moving a job i from Bck ∈ F f to a batch Bdk

of the same family improves the current total weighted com-
pletion time if �C > 0 holds, where

�C =

⎧
⎪⎪⎨

⎪⎪⎩

d−1∑

b=c
Wbk p f − wi (Cdk − Cck + p f) for c < d,

wi (Cck − Cdk − p f)−
c−1∑

b=d
Wbk p f for c > d.

Proof First of all, it is obvious that the schedules on machines
l �= k remain unchanged. Two-related cases are illustrated in
Figure 1.

Case 1. By removing job i from batch Bck , the completion
time of the batches Bck, B(c+1)k, . . . , B(d−1)k is
improved by p f . Note that if i is a single job in
the batch, then Bck does not exist after the removal.
Assume that the batches preceding and following
Bck belong to families g and g′, respectively. The
variation of setup time can be expressed as sg f +
s f g′ − sgg′ , which is not negative due to the triangu-
lar inequality. In case there are no preceding or/and
following batches, this result holds as well. There-
fore, the completion time can be further reduced by
the difference of family setup times if i is the only
job in batch Bck . Thus, the reduction of TWC must
not be smaller than

d−1∑

b=c+1

Wbk p f + (Wck − wi)p f + wi Cck

=
d−1∑

b=c

Wbk p f − wi (−Cck + p f).

Concerning job i , its new weighted completion time
is not greater than wi Cdk . Combining both derived
terms, the total weighted completion time improves
if

�C =
d−1∑

b=c

Wbk p f − wi (Cdk − Cck + p f) > 0

holds.
Case 2. Similarly, moving job i in this case indicates that

all jobs in batches Bdk, B(d+1)k, . . . , B(c−1)k are
delayed by p f . If Bck does not exist after removing
i , then the completion time of all the following jobs
on the same machine can be improved due to the
reduced family setup time. Therefore, the decrease
in the total weighted completion time is greater than

�C = wi (Cck − Cdk − p f)−
c−1∑

b=d

Wbk p f .

��
Lemma 1 Moving a job i ∈ Bck ∈ F f to any batch Bdk of
the same family can be beneficial.

According to Theorem 1, the variation of the total
weighted completion time is actually a trade-off between
the current completion times of the two-related batches
(Cck, Cdk) and the aggregate weight of all affected batches.
The latter increases with the distance between batches c and
d. For instance, the further they are apart in the case with
c < d, the larger is the increase in the completion time for
i . On the other hand, the number of as well as the aggregate
weight of jobs/batches scheduled in between grow accord-
ingly. Therefore, moving a job to another batch of the same
family can be beneficial in general.

Lemma 2 Moving a job in Bck to Bdk of the same family with
c < d cannot improve the current total weighted completion
time if moving the job with smallest weight in Bck leads to
�C ≤ 0.

Given that batches c and d are scheduled on the same
machine k, then the completion times Cck , Cdk and the aggre-
gate weight of associated jobs are known as well. According
to the expression−wi (Cdk−Cck+ p f) stated in Theorem 1,
the remaining jobs need not be examined since moving the

123

478 J Sched (2014) 17:471–487

job with smallest weight imposes least negative effect on the
objective value. Similarly, we have the next lemma.

Lemma 3 Moving a job in Bck to Bdk of the same family with
c > d cannot improve the current total weighted completion
time if moving the job with largest weight in Bck leads to
�C ≤ 0.

To summarize, Lemma 1 indicates that each and every
batch of the same family deserves examination after remov-
ing a job from its original batch. Lemmas 2 and 3 imply
that the most promising candidates are jobs with smallest
and largest weights, respectively. Accordingly, we define the
following moves for batch variation on a single machine.

Move 1a. For a given batch Bbk ∈ F f , remove the job with
smallest weight and add it at the end of each fol-
lowing batch of the same family f on the same
machine k.

Move 1b. For a given batch Bbk ∈ F f , remove the job with
largest weight and add it at the end of each pre-
vious batch of the same family f on the same
machine k.

Move 1c. For a given batch Bbk ∈ F f , remove the job
with smallest weight and add it at the end of
machine k.

According to Lemmas 2 and 3, jobs to be considered first are
the ones with extreme weights in the corresponding batch.
The placements are also divided into two groups (Move 1a
and Move 1b). If moving these jobs does not improve TWC,
the remaining jobs need not be examined. Furthermore, note
that the job sequence inside a batch is irrelevant. Conse-
quently, the removed jobs are then added at the end of a
batch of the same family.

In addition, jobs with smallest weight are also placed at
the end of each machine (Move 1c). This advances certain
batches at the costs of delaying a single job. It also changes the
total number of batches since the current number of batches
may not be optimal and further splitting of batches can be
advantageous.

In Shen et al. (2012), we used a separate splitting approach
for solving a similar scheduling problem to minimze total
completion time. However, in the presence of different
weights, a general splitting strategy does not work. There-
fore, we emphasize weights here and implement Move 1c.

Each type of move is performed repeatedly as long
as an improvement occurs during the process. A detailed
description of the procedure on a single machine is given
below.

BVP on a single machine

Initialization:

(1) Sort jobs j in each batch according to non-increasing value of
w j .

(2) Set b = 1, f = 1, and k = 1.

(3) If the number of batches of family f on machine k is greater than
1, repeat for all batches b:
Loop:

(a) Perform Move 1a and calculate �C .

(b) Perform Move 1b and calculate �C .

(c) Perform Move 1c and calculate �C .

(d) Accept? If �C > 0, then save the current TWC value and batch
variation. Consider the next job with extreme weight in batch b
(job with smallest weight for Moves 1a and 1c, job with largest
weight for Move 1b). Otherwise, perform the move with greatest
improvement, and consider the next batch b + 1.

(4) Set f ← f + 1 and repeat.

(5) Set k ← k + 1 and repeat.

4.1.2 Variation concerning two machines

In addition, we can derive the following property in a similar
manner if batches c and d of the same family are scheduled
on different machines. Let Bk be the total number of batches
assigned to machine k.

Theorem 2 Moving a job i ∈ Bck ∈ F f to a batch Bdl of the
same family with l �= k improves the current total weighted
completion time if �C > 0 holds, where

�C =
⎛

⎝
Bk∑

b=c

Wbk−
Bl∑

b=d

Wbl

⎞

⎠ p f + wi
(
Cck − Cdl − 2p f

)
.

Similarly, a reduction of the total weighted completion
time again depends on the current completion times of the
two-related batches (Cck, Cdl) and the aggregate weight of all
affected batches. Therefore, possible variations concerning
all batches of the same family can be examined for improve-
ment. Based on Theorem 2 and previous calculations, the
following lemma is straightforward.

Lemma 4 Moving a job in Bck to Bdl of the same family
cannot improve the current total weighted completion time,

1. if moving the job with smallest weight in Bck leads to
�C ≤ 0 for Cck ≤ Cdl .

2. if moving the job with largest weight in Bck leads to
�C ≤ 0 for Cck > Cdl .

123

J Sched (2014) 17:471–487 479

Table 4 Comparison of various list scheduling approaches

n SWPT LS-M1 LS-M2 LS-M3 LS-M4

20 5.95 9.55 20.83 7.99 7.64

30 3.38 10.53 30.95 6.26 10.49

40 1.16 9.33 35.40 4.37 15.31

60 4.31 9.59 33.36 6.27 17.14

80 4.66 6.77 29.39 6.20 21.17

90 1.52 5.23 36.07 3.15 106.22

120 0.33 6.54 40.60 2.65 185.77

160 6.15 6.66 32.74 7.72 45.35

180 1.39 5.17 37.56 3.45 212.87

240 0.23 7.19 40.89 2.40 265.23

Mean 2.91 7.65 33.78 5.05 88.72

The procedure concerning two machines includes the fol-
lowing moves.

Move 2a. For a given batch Bbk ∈ F f , remove the job with
the smallest weight and add it at the end of each
batch of the same family f on machine l.

Move 2b. For a given batch Bbk ∈ F f , remove the job with
the largest weight and add it at the end of each
batch of the same family f on machine l.

Move 2c. For a given batch Bbk ∈ F f , remove the job
with the smallest weight and add it at the end of
machine l.

Regarding batches on different machines, jobs with either
the smallest or largest weight are identified and moved
into an arbitrary batch of the same family on another
machine. Note that such moves concern not only batch
sizing but also the assignment problem, and have higher
improvement potential. Therefore, the completion times Cck

and Cdl are not explicitly considered here. More impor-
tantly, a greater number of moves are applied accord-
ingly.

In addition to a process similar to that for single machines,
we apply a procedure to balance machine load. There is
a trivial property in this context: Moving the last jobs of
a heavily loaded machine to another machine improves
the completion time, as long as the removed jobs are not
further delayed afterwards. Therefore, machines are to be
sorted in a non-ascending order of the completion times
of the last jobs processed on them. Batches on bottle-
neck machines thus have higher priority and are examined
first to relieve bottlenecks. Removed jobs are then to be
re-allocated on machines with smaller completion times. The
entire procedure concerning two machines is summarized as
follows.

BVP on two machines

Initialization:

(1) Sort jobs j in each batch according to non-increasing value of
w j .

(2) Sort machines according to non-increasing completion times.
(Machine k = 1 is thus the bottleneck machine and Machine
k = m has the smallest completion time.)

(3) Set b = 1, f = 1, k = 1, and l = m.

(4) If the number of batches of family f is greater than 1, repeat for
all batches b:
Loop:

(a) Perform Move 2a and calculate �C .

(b) Perform Move 2b and calculate �C .

(c) Perform Move 2c and calculate �C .

(d) Accept? If �C > 0, then save the current TWC value and batch
variation. Consider the next job with extreme weight in batch b
(job with smallest weight for Moves 2a and 2c, job with largest
weight for Move 2b). Otherwise, perform the move with greatest
improvement, and consider the next batch b + 1.

(5) Set l ← l − 1 and repeat.

(6) Set f ← f + 1 and repeat.

(7) Set k ← k + 1 and repeat.

4.2 Scheduling batches based on VNS

Since the BVP performs a systematic and detailed variation
on batch sizes, we adjust our VNS algorithm to focus solely
on sequencing batches. As described in Sect. 3.2, neighbor-
hood functions 1–3 are responsible for batch sequencing and
batch assignment, which are then utilized in the iterative pro-
cedure. We sequence the reduced neighborhoods 1–11 as
specified in Table 1.

4.3 Overall scheme

Starting with a solution determined by SWPT, VNS is first
activated to improve the initial schedule by altering batch
sequences. The current solution is then transferred to BVP
once the stopping criterion of VNS is met. Based on the
resulting batch sequence, BVP conducts a thorough batch
size variation. Afterwards, batch formation is updated and
VNS starts again with improved batch sizes. The entire iter-
ative procedure is repeated until a prescribed maximum num-
ber of iterations (Max I tr) are reached. The overall proce-
dure is called BVP–VNS for abbreviation.

5 Computational experiments

In this section, we first describe the design of our computa-
tional experiments. Then, we present the test results based
on randomly generated problem instances. To the best of
our knowledge, this specific parallel machine scheduling

123

480 J Sched (2014) 17:471–487

Table 5 Comparison of TWC improvement (%) for TBVNS and BVP–VNS regarding SWPT with 20/40 s

F n Bmax = 1 Bmax = 2 Bmax = 4

BVP–VNS TBVNS BVP–VNS TBVNS BVP–VNS TBVNS

3 20 11.68 0.04 10.97 0.81 10.78 10.89

30 15.49 0.22 15.54 0.52 14.81 8.72

40 9.23 0.18 9.84 0.16 8.76 3.06

60 9.61 2.40 10.36 0.45 9.50 1.55

80 11.66 2.20 12.99 0.58 12.35 5.60

90 5.07 5.40 7.17 0.57 7.19 0.77

120 5.48 5.40 6.99 0.13 7.14 2.30

160 6.59 7.16 8.96 0.58 8.17 2.50

180 2.73 7.86 5.66 0.79 6.31 0.45

240 3.94 10.49 5.96 1.61 6.15 0.59

6 20 13.03 0.09 12.54 0.32 11.96 9.10

30 14.67 0.21 14.75 0.21 13.62 3.98

40 11.98 0.22 13.17 0.06 12.21 1.70

60 8.99 3.58 10.70 0.37 10.21 1.58

80 16.28 1.74 15.67 1.04 15.03 9.87

90 7.07 12.62 8.83 1.39 10.40 0.95

120 5.84 12.03 8.63 1.97 9.92 1.47

160 8.60 13.34 12.11 2.29 12.12 2.67

180 9.05 12.68 12.44 1.30 13.84 1.38

240 3.73 18.97 7.47 3.09 9.96 0.75

9 20 16.27 0.00 15.75 2.18 14.21 9.67

30 14.64 0.35 14.28 0.34 12.59 4.93

40 11.33 0.80 12.01 −0.04 10.95 2.40

60 9.86 4.16 11.36 0.35 11.15 1.49

80 19.40 1.22 20.05 1.15 19.76 9.32

90 9.10 8.97 10.36 1.21 11.14 1.15

120 9.41 11.30 13.97 1.43 14.20 1.55

160 4.84 15.95 7.65 1.30 9.77 1.85

180 5.82 22.49 8.54 2.60 12.07 0.60

240 4.42 21.76 8.51 2.71 12.07 1.64

12 20 8.24 0.00 6.73 0.00 3.40 2.39

30 12.69 0.13 11.70 0.31 9.53 8.97

40 13.49 0.99 14.16 0.15 9.73 0.52

60 10.20 4.01 11.78 0.06 10.78 1.32

80 14.22 2.96 16.07 1.38 14.93 5.97

90 14.79 15.79 16.35 2.87 17.66 0.74

120 9.36 14.19 12.16 1.88 13.17 2.37

160 6.51 20.23 9.86 1.63 12.25 1.58

180 3.85 18.18 7.50 3.15 10.94 0.87

240 5.24 23.95 8.71 4.03 12.13 1.42

Average 9.61 7.61 11.21 1.17 11.32 3.27

123

J Sched (2014) 17:471–487 481

BVP–VNS Algorithm

Initialization:

(1) Generate an initial solution using SWPT.

(2) Set I tr = 1.

(3) Repeat until I tr = Max I tr .

Loop:

(a) Run VNS until stopping criterion is met and update current
batch sequence.

(b) Run BVP until stopping criterion is met and update current
batch size.

(c) Set I tr ← I tr + 1.

problem has not been addressed so far. Although similar
problems can be found in Yalaoui and Chu (2003) and
Tahar et al. (2006), both papers allow non-integer batch/lot-
sizes to minimize makespan. Therefore, test results are not
comparable. Considering the frequent application,
especially the fair performance of list scheduling with
SWPT rule, we use the best results provided by SWPT for
comparison.

5.1 Design of experiments

The problem instances generated contain a varying number
of families, and are tested on different number m of parallel
machines. A family is assigned to each job randomly. Hence,
each family is allowed to contain a different number of jobs.
An additional parameter μ is used here to regulate the total
number of jobs n with n = μm. The design of experiments
is summarized in Table 2. Regarding setup times, we specify
their values as given in Table 2 which also ensure that the
triangular inequality is satisfied. Based on the defined inter-
vals, s f f can sometimes be greater than small family setup
times.

5.2 Results of the computational experiments

5.2.1 MIP formulation for small instances

First, we implement the MIP formulation in Lingo 10.0.
However, only instances containing fewer than 10 jobs can
be solved optimally within reasonable computing time (less
than 20 s). When the problem size is slightly increased, such
instances cannot be solved within 4 hours. Table 3 describes
the resulting model size for increasing problem sizes, in terms
of the number of variables, integer variables, constraints, and
non-zeros.

Therefore, we use the MIP model to verify solutions
obtained with our heuristics. For such very small-sized prob-
lem instances, both the simultaneous procedure TBVNS and
the iterative approach BVP–VNS were able to reach optima.

5.2.2 Comparison of list scheduling procedures

The proposed list scheduling procedures SWPT, LS-M1, LS-
M2, LS-M3, and LS-M4, as well as TBVNS and BVP–VNS
are implemented using the C++ programming language. All
the computational experiments are performed on an Intel
Pentium 4, 3.40 GHz computer with 2 GB RAM.

To determine the value for Bmax, we ran some preliminary
tests and decided on the values of 1, 2, and 4. The performance
of the list scheduling heuristics strongly depends on the Bmax

value. Hence, Bmax is a parameter of the heuristics. In gen-
eral, the quality of the solutions for large instances improves
with a slightly increased value for Bmax. Using Bmax = 4
yields the best solutions on average. A further increase of
Bmax, however, does not provide better TWC values. For
SWPT, LS-M1, LS-M2, and LS-M3, we thus set Bmax = 1, 2
and 4. The best solutions of each approach are then chosen
for comparison.

As for the selection of Tmax in LS-M4, we have also run
several tests which basically allow a batch size to range from
1 to n f . Based on these tests, we set the maximum value as
Tmax = n · δ with δ ∈ {1, 3, 5, 7}. Again, the best solutions
obtained from the four different Tmax values are used as the
results of LS-M4. The experiment is conducted on all 1440
instances.

Table 4 reports the performance of the list scheduling
approaches in terms of relative percentage error which is
determined by

TWCLS − TWCmin

TWCmin
× 100, (14)

where TWCLS denotes the best solution obtained using a
specific approach and TWCmin the minimum value of all
five applied list scheduling variants, respectively.

Obviously, the basic list scheduling approach SWPT out-
performs the other variants. It implies that focusing on just
processing time and weights (p f /w j) can still yield satisfy-
ing solutions. This can be due to the fact that only one setup
occurs for several jobs after forming batches. Moreover, con-
sidering sequence dependencies, the actual values of setup
times are unpredictable. In comparison, specifying the setup
times according to a concrete partial sequence, as in LS-M2,
overly stresses the role of setup times. This may explain the
difference in the performance of SWPT and LS-M2. Using
the effective setup time s̄ f in LS-M1, on the other hand,
provides better results than LS-M2. LS-M3 adopts both cur-
rent setup sg f and the effective setup s̄ f , and thus performs
slightly better than LS-M1. As for LS-M4, a single Tmax may
be suitable for a given combination of p f and w j , it can also
lead to unfavorable large batches which then cause delays
for the jobs included. The performance of LS-M4 is rather
unstable and very poor on average.

123

482 J Sched (2014) 17:471–487

Table 6 Comparison of TWC improvement (%) for TBVNS and BVP–VNS regarding SWPT with 40/80 s

n Bmax = 1 Bmax = 2 Bmax = 4

BVP–VNS TBVNS BVP–VNS TBVNS BVP–VNS TBVNS

20 12.34 0.00 11.58 0.86 10.13 8.05

30 14.35 0.03 13.98 0.15 12.84 6.86

40 11.82 0.08 12.37 0.00 10.54 1.94

60 10.29 2.07 11.27 0.03 10.55 1.45

80 15.98 1.41 16.61 0.89 15.89 7.89

90 9.60 6.40 11.34 0.42 11.96 0.91

120 8.89 7.19 11.28 0.61 11.67 1.91

160 8.25 10.87 10.85 0.80 11.25 2.18

180 6.17 10.82 9.42 0.88 11.45 0.79

240 5.35 14.64 8.81 1.85 10.52 0.54

Average 10.30 5.35 11.75 0.65 11.68 3.25

Table 7 Comparison of TWC improvement (%) for TBVNS and BVP–VNS with further increased computing time

n Bmax = 1 Bmax = 2 Bmax = 4

BVP–VNS TBVNS TBVNS BVP–VNS TBVNS TBVNS BVP–VNS TBVNS TBVNS

(120/240 s) (120/240 s) (240/480 s) (120/240 s) (120/240 s) (240s/480 s) (120/240 s) (120/240 s) (240/480 s)

20 12.44 0.08 0.00 11.65 0.94 0.94 10.28 8.21 8.21

30 14.61 0.09 0.03 14.24 0.31 0.27 13.10 7.12 7.11

40 12.28 0.12 −0.07 12.52 0.08 0.06 10.78 2.06 2.05

60 11.12 1.00 0.18 11.75 0.11 0.02 11.03 1.80 1.70

80 17.50 1.07 0.42 17.24 0.96 0.68 16.83 8.62 8.49

90 11.71 3.54 1.56 12.65 0.44 0.03 12.44 1.02 0.88

120 12.08 4.00 1.69 13.21 0.86 0.09 12.96 2.51 2.29

160 11.71 6.13 2.73 13.18 1.16 0.22 13.15 3.02 2.62

180 10.30 6.59 2.97 12.25 1.44 0.33 12.68 1.27 0.93

240 9.59 10.46 5.37 12.06 2.13 0.68 12.70 1.55 1.08

Average 12.33 3.31 1.49 13.07 0.84 0.33 12.59 3.72 3.54

Table 8 Comparison of overall
best solutions of TBVNS and
BVP–VNS

n TWC improvement Standard deviation

BVP–VNS TBVNS BVP–VNS TBVNS

20 10.44 10.37 48.98 242.21

30 11.79 11.72 50.31 265.13

40 10.83 10.76 141.70 299.77

60 11.99 11.80 102.86 457.07

80 14.53 13.88 64.26 633.46

90 12.18 11.70 236.40 891.36

120 11.77 10.90 230.46 877.90

160 12.29 10.99 503.39 1843.78

180 12.32 11.38 961.73 3123.49

240 11.87 10.54 1724.30 6772.99

Average 12.00 11.41 406.44 1540.72

123

J Sched (2014) 17:471–487 483

0 %

5 %

10 %

15 %

20 %

20 30 40 60 80 90 120 160 180 240

Im
pr

ov
em

en
t

Number of jobs

TBVNS 20/40s
TBVNS 40/80s

TBVNS 120/240s
TBVNS 240/480s

0 %

5 %

10 %

15 %

20 %

20 30 40 60 80 90 120 160 180 240

Im
pr

ov
em

en
t

Number of jobs

BVP−VNS 20/40s
BVP−VNS 40/80s

BVP−VNS 120/240s

Fig. 2 Performance of TBVNS and BVP–VNS regarding computing
time

Based on the overall good performance of SWPT, we use
its solutions as references for comparison.

5.2.3 Comparison of TBVNS and BVP–VNS

Next, we compare the performance of the simultaneous
approach (TBVNS) to the iterative procedure (BVP–VNS).

Each problem instance is solved three times with different
seeds and the average TWC values are taken.

As pointed out earlier, computing time plays a crucial
role in this context, different amounts of computing time are
therefore given for both TBVNS and BVP–VNS. We select
one problem instance for each factor combination, and the
algorithms are tested on 144 instances.

Compared to list scheduling approaches, BVP–VNS and
TBVNS are relatively insensitive to a prescribed Bmax value.
Preliminary tests show that Bmax = 1 is suitable for problem
sizes of up to 60 jobs. For problem instances with 180 and
240 jobs, the best solutions are almost always found when
using Bmax = 4. Also note that, given the same amount
of computing time, the TWC values for Bmax > 4 cannot
compete with the solutions from a smaller Bmax value. Here,
we again set Bmax = 1, 2 and 4.

Initially, experiments are performed when a small amount
of computing time is given for TBVNS and BVP–VNS.
More specifically, for instances with fewer than 60 jobs,
20 s are given for TBVNS while four iterations for BVP–
VNS with 5 s per iteration are performed. For the larger
problem instances, 40 s are given for TBVNS and 4 ·10 s for
BVP–VNS. In the next step, we doubled the computing time
to 40 and 80 s, respectively. Whereas Table 5 shows detailed
test results with 20/40 s, results with 40/80 s are summarized
according to n in Table 6. The columns with Bmax = 1, 2
and 4 indicate that the improvement is achieved using an
initial solution with the parameter Bmax = 1, 2 and 4,
respectively.

The TWC improvement in percent is calculated regard-
ing the best reference solution obtained with SWPT. In the
column for BVP–VNS, we determine the improvement as
follows:

Table 9 Improvement grouped
according to different factor
levels

Improvement n Improvement
Bmax Bmax

1 2 4 1 2 4

F 3 8.68 8.96 8.39 20 12.64 10.78 6.47

6 10.90 11.66 11.43 30 15.61 13.99 9.33

9 11.22 12.07 11.95 40 10.75 9.71 7.92

12 11.13 12.17 12.28 60 12.09 11.31 9.82

m 2 10.56 9.61 8.64 80 17.88 17.02 13.22

3 10.92 10.50 9.75 90 9.69 9.57 9.95

6 10.89 11.54 11.27 120 11.67 12.28 10.97

8 10.46 11.79 11.81 160 10.94 12.18 11.15

Setup Small 4.34 4.19 2.93 180 9.36 10.34 11.16

Times Medium 8.81 9.48 9.42 240 9.07 10.81 11.90

Large 16.67 17.74 17.87

123

484 J Sched (2014) 17:471–487

Table 10 Improvement of TWC for an initial solution found by Bmax = 2

F n BVP VNS Iteration 1 Iteration 2 Iteration 3 Iteration 4/Final solution

3 20 1.75 8.84 10.08 10.15 10.15 10.15

30 1.30 10.91 11.75 11.81 11.83 11.83

40 −0.61 6.25 7.64 7.70 7.70 7.71

60 0.21 8.61 10.08 10.18 10.21 10.22

80 1.14 11.82 12.88 12.97 13.01 13.01

90 −0.73 5.10 7.13 7.33 7.43 7.46

120 −1.02 8.37 9.95 10.21 10.27 10.30

160 −1.99 7.59 9.57 9.84 9.96 9.99

180 −1.33 4.57 7.39 7.69 7.86 7.91

240 −2.38 3.50 6.77 7.19 7.45 7.53

6 20 1.77 10.16 11.53 11.57 11.57 11.57

30 2.56 14.58 16.07 16.27 16.30 16.30

40 −1.58 8.30 9.65 9.82 9.83 9.83

60 −1.74 9.77 11.76 12.02 12.13 12.16

80 1.89 15.44 16.61 16.72 16.78 16.79

90 −4.88 6.66 9.86 10.39 10.53 10.60

120 −4.87 9.27 10.99 11.33 11.47 11.51

160 −5.91 10.67 12.93 13.51 13.74 13.80

180 −5.39 7.38 9.75 10.36 10.73 10.82

240 −5.44 5.99 9.37 10.12 10.55 10.66

9 20 2.69 10.98 11.97 11.98 11.98 11.98

30 2.41 11.66 12.93 13.03 13.05 13.05

40 0.71 9.27 10.63 10.67 10.69 10.69

60 −2.82 9.46 11.11 11.42 11.50 11.52

80 2.93 16.31 17.83 17.99 18.08 18.10

90 −4.73 5.98 8.91 9.42 9.62 9.66

120 −5.99 10.46 12.67 13.15 13.35 13.41

160 −5.39 8.34 11.11 11.88 12.20 12.28

180 −6.33 6.30 9.57 10.36 10.76 10.86

240 −5.32 6.60 11.01 11.96 12.45 12.61

12 20 −1.49 8.77 9.45 9.45 9.45 9.45

30 3.26 11.54 12.91 12.99 12.99 12.99

40 −1.17 8.79 10.20 10.36 10.37 10.37

60 −1.56 9.38 11.00 11.30 11.36 11.37

80 0.07 15.10 16.31 16.49 16.57 16.60

90 −4.75 7.08 9.57 10.23 10.51 10.56

120 −5.96 10.27 12.89 13.46 13.75 13.82

160 −5.76 8.80 11.48 12.22 12.55 12.65

180 −6.80 7.23 10.32 11.24 11.59 11.67

240 −6.00 6.04 10.11 11.40 11.96 12.11

TWCSWPT − TWCBVP−VNS

TWCSWPT
× 100,

where TWCSWPT denotes the best results obtained with
SWPT by using Bmax = 1, 2 and 4, and TWCBVP−VNS is
the average objective value of BVP–VNS after three runs.

Column TBVNS is given for comparing the performance
of TBVNS and BVP–VNS. The improvement in percent is
calculated by

TWCTBVNS − TWCBVP−VNS

TWCSWPT
× 100.

123

J Sched (2014) 17:471–487 485

Table 11 Reduction of other objectives

n Reduction of setup time Decrease in number of batches
Bmax Bmax

1 2 4 1 2 4

20 44.43 23.94 4.84 24.75 −2.47 −20.82

30 55.35 32.02 4.06 27.46 −5.24 −34.60

40 59.53 35.37 16.19 40.44 1.67 −15.34

60 64.73 41.23 18.95 39.86 −0.79 −27.71

80 61.48 37.30 2.74 31.40 −10.27 −54.23

90 70.18 45.97 27.58 51.20 7.00 −14.45

120 70.22 47.81 27.71 45.28 0.74 −27.82

160 70.27 47.15 26.90 45.88 0.45 −31.94

180 72.38 49.37 32.49 51.74 5.81 −19.99

240 71.62 48.21 30.56 52.98 7.74 −22.48

It is clear that both BVP–VNS and TBVNS perform remark-
ably better than SWPT. Moreover, BVP–VNS outperforms
TBVNS for different settings (see the positive values in the
columns of TBVNS). These results confirm that the iterative
procedure is able to reach better solutions using a smaller
amount of computing time. This fact is especially obvious
when the problem size increases.

To thoroughly examine the effect of computing time, we
conduct the same tests with further increased computing
time. For TBVNS, 120 s are allowed for instances with fewer
than 60 jobs and 240 s for the remaining instances. For BVP–
VNS, four iterations are performed and each iteration uses 30
(resp. 60) s. Finally, we also allow doubled time for TBVNS,
that is, 240 and 480 s, respectively.

Table 7 summarizes the results with respect to the num-
ber of jobs. Both BVP–VNS and TBVNS perform similarly
well. Starting from the same initial solution with Bmax = 1, 2
and 4, the iterative procedure BVP–VNS generally finds bet-
ter solutions than the simultaneous approach TBVNS (again,
see the positive values in the columns of TBVNS). Note that
TBVNS cannot effectively change the number of batches
due to the random selection of neighbors. The results thus
strongly depend on the quality of initial solutions. It is also
noteworthy (columns TBVNS 240/480 s) that doubled com-
puting time achieved only marginal improvement. The neg-
ative entry indicates that TBVNS outperforms BVP–VNS in
this case.

In addition, we compare the overall best solutions obtained
by SWPT, TBVNS, and BVP–VNS using 120/240 s. In
Table 8, the TWC improvement is similarly determined
except that we use the best solution of each heuristic for the
calculation, which is chosen among solutions with Bmax =
1, 2 and 4. Standard deviations (σ) of the solutions with the
three different settings Bmax = 1, 2, and 4 of TBVNS (resp.

BVP–VNS) are given as well, which are calculated according
to:

σ =
√√
√√

1

2

∑

Bmax∈{1,2,4}

(
TWCBmax − μ

)2

with μ = 1

3

∑

Bmax∈{1,2,4}
TWCBmax . (15)

From Table 8, we see that BVP–VNS provides slightly
better solutions (less than 0.6 % on average). Moreover, the
larger value of standard deviation for TBVNS also implies
that its performance depends on the initial solutions used.

To summarize, Fig. 2 depicts the performance of TBVNS
and BVP–VNS regarding different computing time.

We can see that the solution quality of TBVNS gradually
improves with the amount of computing time given. How-
ever, good solutions can only be expected when sufficient
computing time is available.

Particular attention should be paid to the performance
of BVP–VNS. When solving smaller instances, BVP–VNS
with less computing time actually performs similarly well.
We conjecture that the heuristic BVP plays an important role
here. With limited computing time, VNS generates a com-
paratively poor solution. This, on the other hand, can provide
more possibilities for BVP to improve the current solution.
Meanwhile, BVP requires far less computing time due to the
integrated structural properties. Therefore, major improve-
ment can be quickly achieved after a few iterations.

In comparison to TBVNS, BVP–VNS is less dependent
on computing time. Additional computing time contributes
to a further reduction of TWC. No significant improve-
ment can be observed using excessive computing time.
As a result, we can benefit from the iterative procedure

123

486 J Sched (2014) 17:471–487

BVP–VNS to gain good solutions with limited computational
resources.

5.2.4 Results of BVP–VNS

As mentioned earlier, in comparison to TBVNS, BVP–VNS
performs well and stably. Therefore, we focus on BVP–VNS
in the following experiments.

Concerning computing time, 60 s are allowed for each sin-
gle VNS step within BVP–VNS for n > 60, while 30 s are
considered for smaller values of n. Executing BVP requires
only fractions of a second. We use Max I tr = 4 for all prob-
lem instances. In fact, most improvement is achieved after
two iterations. In order to exploit the improvement potential,
we allow two additional iterations. For Max I tr > 4 further
improvement is hardly observed.

Table 9 summarizes the computational results according
to the number of families, machines, jobs as well as setup
values. The improvement in percent is again compared to the
best solutions of SWPT.

In general, BVP–VNS performs stably regarding differ-
ent factor combinations. These results also suggest a slight
upward tendency with growing number of F, m, and n. On
the other hand, improvement clearly increases with the value
of setup times. Remarkable reduction of TWC is achieved for
problem instances with large setup times. Nevertheless, bene-
fits of batching are still obvious even in the presence of small
family setups. Regarding the total number of jobs, signifi-
cant improvement is observed especially for large problem
instances.

To examine the iterative procedure more closely, Table 10
shows the improvement while using Bmax = 2. Detailed
results after the first, second, third, and finally fourth iteration
are given in this table. Note that the improvement in percent
is calculated according to the best solution of SWPT instead
of the initial solution with Bmax = 2. Even by running VNS
in an isolated manner, noticeable improvement has already
been achieved. The BVP, on the other hand, often fails to
improve the best results of SWPT. Nevertheless, the itera-
tive procedure outperforms SWPT and offers considerable
reduction in TWC values. Note that the major improvement
is already obtained after two iterations. More iterations can
then exhaust the improvement potential.

In order to evaluate the overall performance of BVP–VNS,
we consider total setup times, and the total number of batches
in addition to the TWC value. Table 11 reports the reduction
of total setup times as well as the variation of total number of
batches. Note that the value of Bmax relates to the resulting
total setup times and the number of batches in the start solu-
tion. The larger the value of Bmax, fewer batches are formed
initially, which in turn leads to fewer setups. With Bmax = 1
indicating a large number of batches, BVP–VNS achieves
about 60% reduction in setup times, the number of batches

in the final solution is also reduced accordingly. In contrast,
the reduction of setup times is smaller for Bmax = 4, and
the number of batches is increased by around 30 %. These
observations suggest that BVP–VNS is able to reach a similar
solution quality regardless of the initial solution.

6 Conclusions and future research

In this paper, we discussed a scheduling problem for identi-
cal parallel machines and identical jobs in product families.
Due to sequence-dependent setup times incurred among jobs
of different families, forming serial batches can effectively
reduce TWC. Subject to the batch availability assumption, we
first derived a MIP that allowed us to solve small-sized prob-
lem instances optimally. A VNS algorithm is then proposed
for solving the three interrelated subproblems—batch sizing,
batch assignment, and batch sequencing—in a simultaneous
manner. To further reduce computing time, we develop a
specific batch variation procedure to determine batch sizes
while a VNS algorithm alters batch sequences for improve-
ment. We also combine the heuristics by iterating the two
phases. No major changes were observed after only a few
iterations. Computational results show that our simultaneous
and iterative approach outperform a list scheduling approach
with fixed batch sizes. Furthermore, the iterative procedure
succeeds in balancing solution quality and computing time.

For future research, we are interested in considering ready
times of the jobs. This condition is often found in real-world
settings. Alternative objectives, such as tardiness and late-
ness, can be taken into consideration. It seems also fruitful
to study corresponding problems with non-identical jobs, as
well as for unrelated parallel machines.

Acknowledgments The authors would like to thank the anonymous
referees for their constructive comments and valuable suggestions.

References

Albers, S., & Brucker, P. (1993). The complexity of one-machine batch-
ing problems. Discrete Applied Mathematics, 47, 87–107.

Aldowaisan, T., & Allahverdi, A. (1998). Total flowtime in no-wait
flowshops with separated setup times. Computers and Operations
Research, 25(9), 757–765.

Allahverdi, A. (2000). Minimizing mean flowtime in a two machine
flowshop with sequence independent setup times separated. Com-
puters and Operations Research, 27, 111–127.

Allahverdi, A., & Aldowaisan, T. (1998). Job lateness in flowshops
with setup and removal times separated. Journal of the Operational
Research Society, 49(9), 1001–1006.

Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of
scheduling research involving setup considerations. Omega Interna-
tional Journal of Management Science, 27, 219–239.

Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, Y. (2008). A
survey of scheduling problems with setup times or costs. European
Journal of Operational Research, 187, 985–1032.

123

J Sched (2014) 17:471–487 487

Almeder, C., & Mönch, L. (2011). Scheduling jobs with incompati-
ble families on parallel batch machines. Journal of the Operational
Resarch Society, 62, 2083–2096.

Barnes, J. W., & Vanston, L. K. (1981). Scheduling jobs with linear delay
penalties and sequence dependent setup costs. Operations Research,
29, 146.

Cheng, T. C. E., Chen, Y. L., & Oguz, C. (1994). One-machine batching
and sequencing of multiple-type items. Computers and Operations
Research, 21, 717–721.

Cheng, T. C. E., Gupta, J. N. D., & Wang, G. (2000). A review of flow-
shop scheduling research with setup times. Production and Opera-
tions Management, 9, 262–282.

Coffman, E. G., Yannakakis, M., Magazine, M. J., & Santos, C. A.
(1990). Batch sizing and job sequencing on a single machine. Annals
of Operations Research, 26, 135–147.

Driessel, R., & Mönch, L. (2011). Variable neighborhood search
approaches for scheduling jobs on parallel machines with sequence-
dependent setup times, precedence constraints, and ready times.
Computers and Industrial Engineering, 61(2), 336–345.

Franca, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P., & Veltink, K.
J. (2005). Evolutionary algorithms for scheduling a flowshop man-
ufacturing cell with sequence dependent family setups. Computers
and Industrial Engineering, 48, 491–506.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. Rinnooy.
(1979). Optimization and approximation in deterministic sequencing
and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–
326.

Gupta, J. N. D., & Tunc, E. A. (1994). Scheduling a two-stage hybrid
flowshop with separable setup and removal times. European Journal
of Operational Research, 77(3), 415–428.

Han, W., & Dejax, P. (1994). An efficient heuristic based on machine
workload for the flow shop scheduling problem with setup and
removal times. Annals of Operations Research, 50, 263–279.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search:
principles and applications. European Journal of Operational
Research, 130, 449–467.

Hendizadeh, S. H., Faramarzi, H., Mansouri, S. A., Gupta, J. N. D.,
& Elmekkawy, T. Y. (2008). Meta-heuristics for scheduling a flow-
line manufacturing cell with sequence dependent family setup times.
International Journal of Production Economics, 111, 593–605.

Hurink, J. (1998). A tabu search approach for a single-machine batch-
ing problem using an efficient method to calculate a best neighbor.
Journal of Scheduling, 1, 127–148.

Laguna, M. (1999). A heuristic for production scheduling and inven-
tory control in the presence of sequence-dependent setup times. IIE
Transactions, 31, 125–134.

Logendran, R., de Szoeke, P., & Barnard, F. (2006). Sequence-
dependent group scheduling problems in flexible flow shops. Inter-
national Journal of Production Economics, 102, 66–86.

Mehta, S. V., & Uzsoy, R. (1998). Minimizing total tardiness on a batch
processing machine with incompatible job families. IIE Transac-
tions, 30, 165–178.

Mladenovic, N., & Hansen, P. (1997). Variable neighborhood search.
Computers and Operations Research, 24, 1097–1100.

Monma, C. L., & Potts, C. N. (1989). On the complexity of scheduling
with batch setups. Operations Research, 37, 798–804.

Mosheiov, G., Oron, D., & Ritov, Y. (2004). Flow-shop batching
scheduling with identical processing-time jobs. Naval Research
Logistics, 51, 783–799.

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A
review. European Journal of Operational Research, 120, 228–249.

Rajendran, C., & Ziegler, H. (1997). Heuristics for scheduling in a flow-
shop with setup, processing and removal times separated. Production
Planning and Control, 8, 568–576.

Reddy, V., & Narendran, T. T. (2003). Heuristics for scheduling
sequence-dependent set-up jobs in flow line cells. International Jour-
nal of Production Research, 41, 193–206.

Rocha, M. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2007).
Solving parallel machines scheduling problems with sequence-
dependent setup times using variable neighbourhood search. IMA
Journal of Management Mathematics, 18, 101–115.

Shen, L., Mönch, L., & Buscher, U. (2011). An iterative scheme for
parallel machine scheduling with sequence dependent family setups.
In Proceedings MISTA, 2011, 519–522.

Shen, L., Mönch, L., & Buscher, U. (2012). An iterative approach for
the serial batching problem with parallel machines and job fami-
lies. Working paper, Nr. 164/12, Technische Universitaet Dresden
(in press).

Srikar, B. N., & Ghosh, S. (1986). A MILP model for the n-job, m-
stage flowshop with sequence dependent set-up times. International
Journal of Production Research, 24, 1459–1474.

Tahar, D. N., Yalaoui, F., Chu, C., & Amodeo, L. (2006). A linear
programming approach for identical parallel machine scheduling
with job splitting and sequence-dependent setup times. International
Journal of Production Economics, 99, 63–73.

van Hoesel, S., Wagelmans, A., & Moerman, B. (1994). Using geomet-
ric techniques to improve dynamic programming algorithms for the
economic lot-sizing problems and extensions. European Journal of
Operational Research, 75, 312–331.

Wang, X., & Tang, L. (2009). A population-based variable neighbor-
hood search for the single machine total weighted tardiness problem.
Computers and Operations Research, 68, 2105–2110.

White, C. H., & Wilson, R. C. (1977). Sequence dependent set-up times
and job sequencing. International Journal of Production Research,
16, 191.

Yalaoui, F., & Chu, C. (2003). An efficient heuristic approach for parallel
machine scheduling with job splitting and sequence-dependent setup
times. IIE Transactions, 35, 183–190.

123

	A simultaneous and iterative approach for parallel machine scheduling with sequence-dependent family setups
	Abstract
	1 Introduction
	1.1 Problem description
	1.2 Literature review

	2 Problem formulation
	2.1 Problem setting
	2.2 MIP formulation

	3 Simultaneous approach
	3.1 List scheduling approach
	3.2 Variable neighborhood search algorithm

	4 Iterative approach
	4.1 Batch variation procedure
	4.1.1 Variation on a single machine
	4.1.2 Variation concerning two machines

	4.2 Scheduling batches based on VNS
	4.3 Overall scheme

	5 Computational experiments
	5.1 Design of experiments
	5.2 Results of the computational experiments
	5.2.1 MIP formulation for small instances
	5.2.2 Comparison of list scheduling procedures
	5.2.3 Comparison of TBVNS and BVP--VNS
	5.2.4 Results of BVP--VNS

	6 Conclusions and future research
	Acknowledgments
	References

