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Abstract In classical deterministic scheduling problems,
it is assumed that all jobs have to be processed. However, in
many practical cases, mostly in highly loaded make-to-order
production systems, accepting all jobs may cause a delay in
the completion of orders which in turn may lead to high inven-
tory and tardiness costs. Thus, in such systems, the firm may
wish to reject the processing of some jobs by either outsourc-
ing them or rejecting them altogether. The field of scheduling
with rejection provides schemes for coordinated sales and
production decisions by grouping them into a single model.
Since scheduling problems with rejection are very interest-
ing both from a practical and a theoretical point of view, they
have received a great deal of attention from researchers over
the last decade. The purpose of this survey is to offer a unified
framework for offline scheduling with rejection by present-
ing an up-to-date survey of the results in this field. Moreover,
we highlight the close connection between scheduling with
rejection and other fields of research such as scheduling with
controllable processing times and scheduling with due date
assignment, and include some new results which we obtained
for open problems.
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1 Introduction

Scheduling problems have been extensively studied in the
literature under the assumption that all jobs have to be
processed. However, in many practical cases, the manufac-
turer does not have to process all the jobs and thus a higher
level decision of partitioning the set of jobs into a set of
accepted and a set of rejected jobs has to be made prior to
the scheduling decision. Then, the set of accepted jobs has to
be efficiently scheduled on the machines so as to minimize a
given predefined scheduling criterion. According to Cesaret
et al. (2012), an important application of scheduling with
rejection arises in make-to-order production systems with
limited production capacity and tight delivery requirements,
where simultaneous job rejection and scheduling decisions
have to be made for maximizing the total revenue. In such
systems, accepting orders without considering their impact
on production capacity may cause overload in some peri-
ods, which in turn may delay some of the orders beyond
their due dates. To be able to use production capacity more
efficiently and preserve high quality of service (QoS) to cus-
tomers of accepted jobs, the manufacturer has to determine
which orders to accept and how to schedule them to maximize
total revenue. Guerrero and Kern (1988) claim that accept-
ing orders without considering their possible costly impact
on capacity can mean that the firm is actually paying for the
privilege of accepting an order. To make the right decision
of whether to accept or reject a job, the firm has to take into
account the trade-off between the revenue brought in by the
order and the amount of resources that should be diverted to
its processing.

Another important application of scheduling with rejec-
tion occurs in scheduling with an outsourcing option. Out-
sourcing has become a megatrend in many industries, most
particularly in logistics and supply chain management.
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Managers are increasingly under pressure to make the right
sourcing decision, as business consequences can be signif-
icant, resulting in, for example increased costs, disrupted
service, and even business failure (McGovern and Quelch
2005). According to the Outsourcing Institute, outsourcing
can reduce and control operating costs, free internal resources
for other purposes, gain access to world-class capabilities
and encourage the sharing of risks (http://www.outsourcing.
com).

Firms tend to consider sales/sourcing decisions to be at
a higher hierarchal decision level than the actual schedul-
ing decisions themselves. Although higher and lower level
decision-making processes are tightly connected, traditional
scheduling problems have been extensively studied under the
assumption that any higher level decision has already been
made and that the set of jobs to be processed in the shop is pre-
defined to the scheduler. The field of scheduling with rejec-
tion provides tools for efficiently coordinating sales/sourcing
and production scheduling decisions by combining them in
a single model.

The aim of this study is to offer a unified framework for
offline scheduling with rejection by providing an up-to-date
survey of the results in this field. In addition, we highlight
the close connection between scheduling with rejection and
other fields of research such as scheduling with controllable
processing times and scheduling with due date assignment,
and present new results that we have obtained for some open
problems.

A general definition of an offline scheduling problem
with rejection may be stated as follows: n-independent,
non-preemptive jobs, J = {J1, J2, . . . , Jn}, are available
for processing at time zero on a set of m machines M =
{M1, M2, . . . , Mm} arranged according to a specific and pre-
defined machine environment (such as identical, uniform,
or unrelated machines in parallel, flow-shop, job-shop, or
open-shop environments), where Oi j is the operation of job
J j on machine Mi . The input for a problem of scheduling
with rejection includes the following two parameters: pi j ,
which is the processing time of job J j on machine Mi for
i = 1, . . . , m and j = 1, . . . , n (in a single machine envi-
ronment the subscript i is omitted so that p j is the processing
time of job J j ), and e j which is the rejection cost of job J j .

Additional parameters, depending on the specific objective
function, include d j , the due date of job J j ; r j , the release
date or the time in which job J j arrives in the system; and
w j , a weight or significance attributed to job J j (note that all
parameters are assumed to be positive integers).

A solution S of a scheduling problem with rejection is
defined by a partition of set J into two subsets—set A, which
refers to the set of accepted jobs, and set A, which refers to
the set of rejected jobs—as well as by a schedule of set A
on the m machines. The quality of a solution is measured by
two criteria: F1, a scheduling criterion that depends on the

jobs’ completion times, and,

F2 = RC =
∑

J j ∈A

e j , (1)

which is the total rejection cost. Some possible F1 cri-
teria include

∑
J j ∈A C j ,

∑
J j ∈A W j ,

∑
J j ∈A E j ,

∑
J j ∈A Tj ,∑

J j ∈A U j and fmax(A), where C j is the completion time
of job J j ; W j = C j − p j is the waiting time of job
J j ; L j = C j −d j is the lateness of job J j ; Tj = max{0, L j }
is the tardiness of job J j ; E j = max{0,−L j } is the earli-
ness of job J j ; U j is the tardiness indicator variable for job
J j , i.e., U j = 1 if C j > d j and U j = 0 if C j ≤ d j , and
fmax(A) = max

J j ∈A
{ f j (C j )} with a non-decreasing function f j

for j = 1, . . . , n.

Throughout this survey we use the standard three-field
notation X |Y |Z introduced by Graham et al. (1979) to
describe scheduling problems with rejection. The X field
describes the machine environment, the Y field defines the
job processing characteristics and constraints (when referring
to a scheduling problem with rejection, a rej entry in the Y
field is included) and the Z field contains the optimization
criteria.

Since scheduling with rejection is essentially a prob-
lem with two criteria, concepts from the theory of bicrite-
ria scheduling are commonly used when dealing with such
problems. Moreover, since most problems in this field are
NP-hard the use of approximation algorithms is common
as well. Thus, in Sect. 1.1 we review the main concepts used
in bicriteria scheduling [we refer the reader to T’kindt and
Billaut (2006) and to Hoogeveen (2005) for a more detailed
discussion], and in Sect. 1.2 we present the definitions of
those approximation algorithms that are commonly used to
solve NP-hard scheduling problems.

1.1 Basic concepts of bicriteria scheduling

Let us consider the case where one criterion, say F1, is far
more important than the other criterion. In such a case one
may consider using the lexicographical approach for opti-
mization. According to this approach, among all solutions
which minimize F1, the one that minimizes F2 is chosen.
For scheduling with rejection, if F1 is indeed the dominant
criterion then using the lexicographical approach will yield a
non-balanced solution for which A = ∅ and A = J. In con-
trast, if F2 is the dominant criterion then this approach will
yield the opposite non-balanced solution in which all jobs
are accepted. Thus, in most cases this approach is not use-
ful for solving scheduling problems with rejection. However,
no matter what method is used for selecting the most appro-
priate solution, onlyPareto-optimal solutions are of interest.
The definition of a Pareto-optimal solution is as follows (see,
e.g., Hoogeveen 2005):
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Definition 1 A solution S is called Pareto-optimal (or non-
dominated) with respect to criteria F1 and F2 if there does
not exist another solution S′ such that F1(S′) ≤ F1(S) and
F2(S′) ≤ F2(S), with at least one of these inequalities being
strict.

One commonly used approach to select the most appro-
priate Pareto-optimal solution is the a priori optimization
approach where the two criteria are aggregated into a given
composite objective function G(F1, F2) so that the objec-
tive is to find a solution S which minimizes G(F1, F2). In
scheduling with rejection, researchers mainly use the linear
function for which G(F1, F2) = Gl(F1, F2) = F1 + F2.

However, other types of non-decreasing functions can be
used as well. There is a close relation between the optimal
solutions which minimizes G(F1, F2) and the set of Pareto-
optimal solutions as given by the following theorem:

Theorem 1 If G(F1, F2) is a non-decreasing function of
both F1 and F2 then there exists a Pareto-optimal solution
which minimizes G(F1, F2).

Moreover, if G(F1, F2) is a linear function, then the optimum
is attained at an extreme point which we define below. The
corresponding schedule is referred to as an extreme schedule.

Theorem 2 An extreme point is a vertex of the efficient fron-
tier, which is defined as the lower envelope of the convex hull
of the set of Pareto-optimal points.

We note that the efficient frontier is a piecewise-linear con-
vex function, where each breakpoint is Pareto-optimal and
each Pareto-optimal point is located either on or above this
function.

In many real-life problems, there is a constraint on the
value of one out of the two criteria. For example, the firm may
want to provide high QoS to customers of accepted jobs by
meeting their due dates. This may result in the need to solve
the problem of minimizing RC subject to F1 = Lmax(A) ≤
K = 0. Another example arises when there is a capacity
limitation and the machines are available only for K units
of time. Then the firm may consider solving the problem of
minimizing RC subject to F1 = Cmax(A) ≤ K . These types
of problems may include more than a single optimal solution,
some of which may be weak Pareto-optimal solutions.

Definition 2 A solution S is called a weak Pareto-optimal
solution if it is not a Pareto-optimal solution and if there does
not exist another schedule S′ such that both F1(S′) < F1(S)

and F2(S′) < F2(S).

Although additional problems can be defined (see, e.g.,
T’kindt and Billaut 2006, pp. 121–122), the literature on
scheduling with rejection focuses on the following four prob-
lems.

• The first problem, which we denote by P1, uses the spe-
cial case of the a priori optimization approach for which
the aggregated function is linear and the objective is to
find a solution which minimizes the total integrated cost,
Gl(F1, F2) = F1 + F2. Using the scheduling notation
introduced in T’kindt and Billaut (2006), this problem is
referred to as X |rej |F1 + F2.

• The second problem, which we denote by P2, is to min-
imize F1 subject to F2 ≤ R, where R is a given upper
bound on the total rejection cost. Using the schedul-
ing notation introduced in T’kindt and Billaut (2006),
this problem can also be referred to as X |rej |ε(F1/F2).

According to T’kindt and Billaut (2006), problem P2 is
also called the ε-constraint problem with respect to the
total rejection cost (F2).

• The third problem, which we denote by P3, is to minimize
F2 subject to F1 ≤ K , where K is a given upper bound on
the value of the scheduling criterion. Using the schedul-
ing notation introduced in T’kindt and Billaut (2006),
this problem can also be referred to as X |rej |ε(F2/F1).

According to T’kindt and Billaut (2006), problem P3 is
also called the ε-constraint problem with respect to the
scheduling criterion (F1).

• The fourth problem, which we denote by P4, is to identify
a Pareto-optimal solution for each Pareto-optimal point.
Using the scheduling notation introduced in T’kindt and
Billaut (2006), this problem can also be referred to as
X |rej |#(F1/F2).

It should be noted that solving problem P4 also solves prob-
lems P1–P3 as a by-product. Note also that the decision ver-
sion (DV) of problem P2 is identical to that of problem P3,
and is defined below.

Definition 3 DV: Given parameters K and R, is there a solu-
tion with F1 ≤ K and F2 ≤ R?

The fact that both the P2 and the P3 problems share the same
DV implies that either both or none of them is NP-hard.

One method to solve the P4 problem is either to solve the
corresponding P2 problem for any possible integer value of
R ∈ [0,

∑n
j=1 e j ] or to solve the corresponding P3 problem

for any possible integer value of K (i.e., to solve a series of
ε-constraint problems). Using this approach yields a set of
Pareto and weak Pareto-optimal points, and by eliminating
the weak Pareto points we end up with the entire set of Pareto-
optimal points.

Most scheduling problems with rejection are NP-hard.
However, even NP-hard problems are usually classified
into two major subsets based on the existence of a pseudo-
polynomial algorithm, which is defined below.

Definition 4 A pseudo-polynomial time algorithm is an
algorithm for which running time is bounded by a polyno-
mial of the size of the input, given that the input is written in
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unary notation, i.e., if its running time is polynomial in the
numeric value of the input.

An NP-hard problem is considered NP-hard in the ordinary
sense (and not in the strong sense) if there exists a pseudo-
polynomial time algorithm for its solution.

We note here that in most cases problems P2–P4 are NP-
hard. Moreover, the number of Pareto-optimal solutions is
usually exponential in the number of jobs. For example, even
for the simple case of a single machine with F1 = Cmax and
p j = e j = j for j = 1, . . . , n, any partition of set J into
A and A yields a Pareto-optimal solution and thus there are
2n Pareto-optimal solutions. However, one can easily group
up a set of Pareto-optimal solutions which corresponds to
the same specific Pareto-optimal point. For example, for the
problem mentioned above the three different solutions with
A = {J1, J4}, A = {J2, J3}, or A = {J5} (and A = J�A
for each of these solutions) are all Pareto-optimal solutions.
However, a single Pareto-optimal point of F1 = n(n+1)

2 − 5
and F2 = 5 corresponds to each of these Pareto-optimal solu-
tions. Thus, it is unlikely that there is a pseudo-polynomial
time algorithm that can determine the entire set of Pareto-
optimal solutions. As a result, the literature on scheduling
with rejection is restricted to the definition of problem P4
where only a single Pareto-optimal solution is required for
each Pareto-optimal point. As an outcome of this definition,
the 1|rej |#(Cmax(A), RC) problem, for example, is solvable
in pseudo-polynomial time, although there are an exponen-
tial number of Pareto-optimal solutions. Theorem 3 below
shows that there is a strong connection between problems
P2–P4 in terms of the existence of a pseudo-polynomial time
algorithm. This theorem is derived by a slight modification
of Property 6 in T’kindt and Billaut (2006) with regard to the
number of non-dominated solutions for a bicriteria schedul-
ing problem.

Theorem 3 If either problem P2 or P3 is ordinaryNP-hard,
then the entire set of problems P2–P4 is ordinary NP-hard.

Proof Let us assume that there exists a pseudo-polynomial
time algorithm for problem P2 with a running time of
O( f (n)). The fact that the value of F2 is upper bounded by∑n

j=1 e j , which is a numeric value of the input, implies that
one can use the ε-constraint method to solve the P4 problem
in O( f (n)

∑n
j=1 e j ) time which is also a pseudo-polynomial

time. This pseudo-polynomial time algorithm can then be
used to solve problems P1 and P3 in pseudo-polynomial time
as well. Since for the entire set of problems we survey here
the F1 value is also upper bounded by a numeric value of
the input, we can say that if DV is an NP-complete problem
and if there exists a pseudo-polynomial time algorithm for at
least one of the problems P2, P3, or P4, then problems P2–P4
are all ordinary NP-hard. ��

1.2 Approximation algorithms

Since large instances of NP-hard problems cannot be opti-
mally solved in reasonable time, a good heuristic algorithm
that provides a feasible (but not necessarily optimal) solu-
tion in polynomial time is required. An important subclass
of heuristic algorithms are approximation algorithms. The
definition of an approximation algorithm for solving a prob-
lem which includes a single objective function (which may
also be an aggregated function similar to our P1 problem) is
presented below (the definition is restricted to minimization
problems).

Definition 5 Let A be a heuristic algorithm with a solution
value of FA(I) to a minimization problem with instance I,

and let F∗(I) be the value of the optimal solution. Algorithm
A is a ρ-approximation algorithm if for any instance I of the
problem we have

FA(I)

F∗(I)
≤ ρ. (2)

Definition 5 indicates that the uniqueness of an approx-
imation algorithm is that it guarantees that the solution
value it generates is at most ρ times the value of the opti-
mal solution. Two common and important types of approx-
imation algorithms are the polynomial time approximation
scheme (PTAS), and the fully polynomial time approxima-
tion scheme (FPTAS), as defined below.

Definition 6 An approximation Aε is said to be a polyno-
mial time approximation scheme if the running time of the
approximation is polynomial for n but not for ε, and the fol-
lowing ratio exists for every instance I of the problem:

FAε (I)

F∗(I)
≤ 1 + ε, (3)

where FAε (I) denotes the approximation solution value for
a given instance I and an ε value.

Definition 7 An approximation Aε is said to be a fully poly-
nomial time approximation scheme if the running time of the
approximation is polynomial for both n and ε, and the ratio
presented in Eq. (3) exists for any instance I of the problem.

Papadimitriou and Yannakakis (2000) consider an approx-
imate version of the Pareto curve, the so-called ε-approximate
Pareto curve, which is defined below.

Definition 8 Given ε > 0 and an instance I, the Pareto
ε-approximation set Pε(I) is a set in which for any Pareto-
optimal solution S ∈ P(I), there is a solution Sε ∈ Pε(I)

satisfying

F1(Sε)

F1(S)
≤ 1 + ε and

F2(Sε)

F2(S)
≤ 1 + ε, (4)

where P(I) is the entire set of Pareto-optimal solutions for
instance I.
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Now we can easily convert Definitions 6 and 7 to
define a PTAS and an FPTAS for obtaining the Pareto
ε-approximation set Pε (or a single solution Sε within this
set) by replacing the ratio in (3) by (4).

1.3 Organization of the paper

In several cases, we can directly derive results for schedul-
ing problems with rejection from the analysis of equivalent
scheduling problems from other fields in scheduling. Thus, in
Sect. 2 we describe three such fields in scheduling: schedul-
ing with controllable processing times, scheduling parallel
machines with costs, and scheduling with due date assign-
ment, all of which are highly connected to the field of schedul-
ing with rejection. In Sect. 3, we present a survey of results
for single machine problems, which is divided into subsec-
tions, based on the scheduling criterion used for F1. Sec-
tion 4 surveys multiple-machine scheduling problems with
rejection. Section 4 is divided into subsections according to
different machine configurations. Concluding remarks along
with suggestions for future research are presented in the last
section.

2 The connection between scheduling with rejection
and other classes of scheduling problems

This section discusses scheduling with controllable process-
ing times, scheduling parallel machines with costs, and
scheduling with due date assignment, all of which, as men-
tioned, are highly connected to the field of scheduling with
rejection. Below, we show how scheduling problems with
rejection can be viewed either as equivalent to or as special
cases of problems from each of these fields. Then, using these
connections, we show throughout the survey how we can
derive results for scheduling problems with rejection based
on known results for scheduling problems from these closely
related fields.

2.1 Scheduling with controllable processing times

When scheduling with controllable processing times (see
Shabtay and Steiner 2007, for a survey paper in this field)
the scheduler has to decide whether to divert more resources
(such as manpower, heating, etc.) into a certain job in order
to shorten (compress) its processing time. More formally, the
processing time of job J j on machine Mi is assumed to be a
non-increasing function of the amount of resource, ui j , allo-
cated to the processing of operation Oi j for i = 1, . . . , m and
j = 1, . . . , n. The resource may be used in either continuous
or discrete quantities. For the first case, the processing time
is determined by the amount of a divisible resource, such as
gas or electricity, that is allocated and therefore can vary

continuously. For the second case, the amount of a divisi-
ble resource is indivisible, such as manpower and supporting
equipment, and therefore the processing time has only a finite
number of possible values. We include dscr in the Y field of
the three-field notation to indicate that the resource is used
in discrete quantities. Otherwise, the resource is assumed to
be divisible. In most studies on scheduling with controllable
processing times, researchers assume that the job processing
time is a bounded linear function of the amount of resource
allocated to the processing of the job, i.e., the resource con-
sumption function is of the form

pi j (ui j ) = pi j − ai j ui j , 0 ≤ ui j ≤ ui j ≤ pi j/ai j , (5)

where pi j is the non-compressed processing time for job J j

on machine Mi , ui j is the upper bound on the amount of
resource that can be allocated to perform job J j on machine
Mi , and ai j is the positive compression rate of job J j on
machine Mi for i = 1, . . . , m and j = 1, . . . , n. In addition,
a resource allocation cost function ci j (ui j ) for i = 1, . . . , m
and j = 1, . . . , n is associated with the allocation of ui j units
of resource to operation Oi j .

Similarly to scheduling with rejection, scheduling with
controllable processing times can be viewed as a bicriteria
problem in which the first criterion, F1, is a scheduling cri-
terion that depends on the jobs’ completion times while the
second criterion,

F2 =
m∑

i=1

n∑

j=1

ci j (ui j ),

is the total resource allocation cost function. The most com-
monly used function is the linear one for which

F2 = TRAC =
m∑

i=1

n∑

j=1

vi j ui j , (6)

where vi j is the cost of one unit of resource allocated to
operation Oi j . We include a lin entry in the Y field of the
three-field notation to indicate that we are dealing with a
scheduling problem with controllable processing times that
has a linear type of resource consumption function (as given
by (5)) and a linear resource allocation cost function (as given
by (6)).

Theorem 4 The DV of the Rm|rej |#(F1, RC) problem poly-
nomially reduces to the DV of the Rm|lin, dscr |#(F1, TRAC)

problem, subject to the condition that the contribution of any
job with zero processing time to the value of the scheduling
criterion, F1, equals zero.

Proof Given an instanceI = {p, e}of the Rm|rej |#(F1,RC)

problem where p = (pi j ) for i = 1, . . . , m and j = 1, . . . , n
and e = (e1, . . . , en), we construct an instance Ĩ for the
Rm|lin, dscr |# (F1, TRAC) problem with ai j = pi j , ui j =
1 and vi j = e j for i = 1, . . . , m and j = 1, . . . , n.
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First, we show that if there exists a solution, S, for the
Rm|rej |# (F1, RC) problem with F1 ≤ K and RC ≤ R,

then there exists a schedule for the corresponding instance of
the Rm|lin, dscr |# (F1, TRAC) problem with F1 ≤ K and
TRAC ≤ R. Let A and A be the set of accepted and rejected
jobs in S, respectively. Moreover, let Ji,[ j] ∈ A be the job
in the j th position in the processing sequence on machine
Mi for i = 1, . . . , m and j = 1, . . . , ni , where ni is the
number of jobs assigned to machine Mi in S and

∑m
i=1 ni =

|A| ≤ n. We construct the following solution, S̃, for the
Rm|lin, dscr |# (F1, TRAC) problem from S: If J j ∈ A, we
set u j = 0 and schedule job Ji,[ j] in the j th position in the
processing sequence on machine Mi . Moreover, if J j ∈ A in
S, we set u j = 1, and all the jobs belonging to set A in S are
scheduled in S̃ in any arbitrary sequence on any machine after
the jobs from A have been completed. The fact that u j = 1
for any J j ∈ A and that u j = 0 for any J j ∈ A implies that∑m

i=1
∑n

j=1 vi j ui j (S̃) = ∑
J j ∈A vi j (S̃) = ∑

J j ∈A e j (S) ≤
R. Moreover, the fact that the completion time of any job
Ji,[ j] with ui[ j] = 0 in S̃ equals the completion time of the
same job in S implies that if the contribution of any job with
zero processing time to the scheduling criterion, F1, equals
zero, then F1(S̃) = F1(S) ≤ K .

Next, we show that if there exists a schedule, S̃, for the
corresponding instance of the Rm|lin, dscr |# (F1, TRAC)

problem with F1 ≤ K and TRAC ≤ R, then a solution S for
the Rm|rej |# (F1, RC) problem with F1 ≤ K and RC ≤ R
can be found. Let Ji,[ j] be the job in the j th position in
the processing sequence on machine Mi for i = 1, . . . , m
and j = 1, . . . , ni and ni be the number of jobs assigned
to machine Mi in S̃ with

∑m
i=1 ni = n. We construct the

following solution, S, for the Rm|rej |# (F1, RC) problem
from S̃ : we set A = {Ji,[ j] ∈ J |ui[ j] = 0} and A = {Ji,[ j] ∈
J |ui[ j] = 1}. Moreover, we set the processing sequence on
each of the m machines in S to be the same as in S̃ despite the
fact that rejected jobs are not scheduled at all. The fact that
in S̃ for any Ji,[ j] with ui[ j] = 1 we have that vi j ui j = e j

and for any Ji,[ j] with ui[ j] = 0 we have that vi j ui j = 0
implies that

∑
J j ∈A e j (S) = ∑m

i=1
∑n

j=1 vi j ui j (S̃) ≤ R. In
addition, the fact that for any Ji,[ j] with ui[ j] = 1 we have
that pi j = pi j − pi j ui j = 0 in S̃ implies that although this
job is scheduled in S̃ and not in S, the completion time of any
Ji,[ j] with ui[ j] = 0 in S̃ equals the completion time of the
same job in S. This further implies that if the contribution of
any job with zero processing time to the scheduling criterion,
F1, equals zero, then F1(S̃) = F1(S) ≤ K . ��

Since for F1 = ∑
J j ∈A C j the contribution of a job

with zero processing time to the scheduling criterion, F1,

equals zero we can conclude from Theorem 4 that the
Rm|rej |#(

∑
J j ∈A C j , RC) problem polynomially reduces

to the Rm|lin, dscr |#(
∑n

j=1 C j , TRAC) problem. How-
ever, since for F1 = Lmax(A), the contribution of a

job with zero processing time to the scheduling crite-
rion, F1, may not be zero, we can conclude that the
Rm|rej |#(Lmax(A), RC) problem does not polynomially
reduce to the Rm|lin, dscr |# (Lmax(A), TRAC) problem.

The following all-or-none property is common for many
Rm|lin|F1 + TRAC problems with controllable processing
times and a continuous type of linear resource consumption
function as given by (5).

Definition 9 A scheduling problem with controllable
processing times follows the all-or-none property if there
exists an optimal solution for this problem in which each
processing operation is either fully compressed (that is,
ui j = ui j and thus pi j (ui j ) = pi j − ai j ui j ), or not com-
pressed at all (that is, ui j = 0 and thus pi j (ui j ) = pi j ).

The following theorem shows that under some restricted
conditions the DV of the Rm|rej |F1 + RC problem polyno-
mially reduces to the DV of the Rm|lin|F1+TRAC problem.
The proof is omitted as it is similar to that of Theorem 4.

Theorem 5 The DV of the Rm|rej |F1+RC problem polyno-
mially reduces to the DV of the Rm|lin|F1 +TRAC problem,
subject to the conditions that the Rm|lin|F1+TRAC problem
satisfies the above all-or-none property and that the contri-
bution of any job with zero processing time to the value of
the scheduling criterion, F1, equals zero.

The two conditions in Theorem 5 hold, for example, for
the Rm|lin|∑n

j=1 C j + ∑n
j=1 v j u j problem and thus the

Rm|rej | ∑J j ∈A C j + RC problem polynomially reduces to
this problem.

2.2 Scheduling parallel machines with costs

When scheduling parallel machines with costs, the process-
ing of job J j on machine Mi incurs a cost ci j for i = 1, . . . , m
and j = 1, . . . , n. Thus, similar to scheduling with rejection,
the quality of a solution is measured by two criteria: F1 is
the scheduling criterion and F2 is the total processing cost.
It is easy to see that a scheduling problem with rejection on
a set of m parallel machines is a special case of scheduling
parallel machines with costs on m + 1 machines in which
ci j = 0 for any i = 1, . . . , m and j = 1, . . . , n and ci j = e j

for i = m + 1 and j = 1, . . . , n.

2.3 Scheduling with due date assignment

Meeting due dates has always been one of the most important
objectives in scheduling. While traditional scheduling mod-
els consider due dates as given by exogenous decisions, in a
more flexible and integrated system they are determined by
taking into account the system’s ability to meet the quoted
delivery dates. For this reason, numerous studies have viewed
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due date assignment as part of the scheduling process and
show how the ability to control due dates can be a major
factor for improving system performance. A diversity of due
date assignment methods have been studied in the literature
(see Gordon et al. 2002a,b, 2004; Kaminsky and Hochbaum
2004, for extensive surveys). We briefly present two of the
more frequently used ones below.

• The common due date assignment method (referred to
as CON), in which all jobs are assigned the same due
date; that is d j = d for j = 1, . . . , n, and d ≥ 0 is an
unrestricted decision variable.

• The unconstraint due date assignment method (usually
referred to as DIF), in which each job can be assigned a
different due date and there are no constraints on the due
date values.

When studying a scheduling problem with assignable due
dates, researchers have usually restricted their analysis to the
objective of minimizing an integrated objective function of
the following type:

F1 + γ

n∑

j=1

d j ,

where F1 is the scheduling (due date related) criterion and
γ

∑n
j=1 d j is the due date assignment cost.

Let us first consider the single machine scheduling prob-
lem where the due dates are assignable according to the CON
method and F1 = ∑n

j=1 w jU j . De et al. (1991) present the
following lemma.

Lemma 1 The optimal common due date for any job
sequence is given by d = C[l] = ∑l

j=1 p[ j], where C[l] is the
completion time of a job in some position l(l ∈ {0, 1, . . . , n})
in the sequence where C[0]

def= 0.

Based on Lemma 1, we can derive the following theorem.

Theorem 6 The 1|rej |Cmax(A)+RC problem is equivalent
to the 1|CON|∑n

j=1 w jU j + γ
∑n

j=1 d j problem.

Proof Let us first show that the DV of the 1|rej |Cmax(A) +
RC problem polynomially reduces to the DV of the
1|CON| ∑n

j=1 w jU j + γ
∑n

j=1 d j problem. To do so, given
an instance I = {p, e} for the 1|rej |Cmax(A) + RC prob-
lem, where p = (p1, . . . , pn) and e = (e1, . . . , en), we
construct an instance Ĩ = {p, w} for the 1|CON|∑n

j=1 w j

U j +γ
∑n

j=1 d j problem with w j = γ ne j for j = 1, . . . , n.

We now show that if there exists a solution, S, for
the 1|rej |Cmax(A) + RC problem with Cmax(A) + RC =∑

J j ∈A p j + ∑
J j ∈A e j ≤ K , then there exists a solution, S̃,

for the corresponding instance of the 1|CON|∑n
j=1 w jU j +

γ
∑n

j=1 d j problem with
∑n

j=1 w jU j +γ
∑n

j=1 d j ≤ γ nK .

Let A and A be the set of accepted and rejected jobs in S,

respectively. We define solution S̃ as follows. We schedule
the jobs in A before the jobs in A on the single machine.
Moreover, we set d = ∑

J j ∈A p j and schedule the jobs in A

and A in any arbitrary sequence. It follows that the jobs in A
are tardy while all the jobs in A are completed no later than
the common due date, d. Thus, we have that

∑n
j=1 w jU j +

γ
∑n

j=1 d j = ∑
J j ∈A w j +γ n

∑
J j ∈A p j = γ n

∑
J j ∈A e j +

γ n
∑

J j ∈A p j = γ n(
∑

J j ∈A e j + ∑
J j ∈A p j ) ≤ γ nK .

Next, we show that if there exists a schedule, S̃, for
the corresponding instance of the 1|CON|∑n

j=1 w jU j +
γ

∑n
j=1 d j problem with

∑n
j=1 w jU j +γ

∑n
j=1 d j ≤ γ nK ,

then a solution S for the 1|rej |Cmax(A) + RC problem with
Cmax(A)+ RC = ∑

J j ∈A p j + RC ≤ K can be constructed.
Due to Lemma 1, we may assume, without loss of generality,
that the common due date coincides with the completion of
some job in solution S̃ (or is set to be equal to zero). Let A be
the set of jobs which are completed no later than the common
due date, d, in solution S̃, and let A = J�A. We define solu-
tion S by accepting the jobs in A and rejecting the jobs in A.

The fact that for S̃ we have that
∑n

j=1 w jU j +γ
∑n

j=1 d j =∑
J j ∈A w j +γ n

∑
J j ∈A p j = γ n(

∑
J j ∈A e j +∑

J j ∈A p j ) ≤
γ nK implies that

∑
J j ∈A e j + ∑

J j ∈A p j ≤ K .

In a similar way, we can easily prove that the DV of
the 1|CON|∑n

j=1 w jU j + γ
∑n

j=1 d j problem polynomi-
ally reduces to the DV of the 1|rej |Cmax(A)+RC problem by
constructing an instance Ĩ = {p, e} for the 1|rej |Cmax(A)+
RC problem where e j = w j

γ n , given an instance I = {p, w}
for the 1|CON|∑n

j=1 w jU j + γ
∑n

j=1 d j problem. ��
Let us next consider the 1|CON|∑n

j=1 w j Tj +γ
∑n

j=1 d j

problem. It is easy to prove that there exists an optimal sched-
ule for the 1|CON|∑n

j=1 w j Tj +γ
∑n

j=1 d j problem which
satisfies the property in Lemma 1. Based on this property, we
derive the following theorem.

Theorem 7 The 1|CON|∑n
j=1 w j Tj +γ

∑n
j=1 d j problem

polynomially reduces to the 1|rej |∑J j ∈A w j C j +RC prob-
lem.

Proof Given an instanceI ={p, w} for the 1|CON|∑n
j=1 w j

Tj + γ
∑n

j=1 d j problem, where p = (p1, . . . , pn) and

w = (w1, . . . , wn), we construct an instance Ĩ = {p, w, e}
for the 1|rej |∑J j ∈A w j C j +RC problem where e j = γ np j

for j = 1, . . . , n.

We now show that if there exists a solution, S, for the
1|CON| ∑n

j=1 w j Tj + γ
∑n

j=1 d j problem with
∑n

j=1 w j

Tj + γ
∑n

j=1 d j ≤ K , then there exists a solution, S̃, for
the corresponding instance of the 1|rej |∑J j ∈A w j C j + RC
problem with

∑
J j ∈A w j C j + ∑

J j ∈A e j ≤ K . Due to
Lemma 1, we may assume, without loss of generality, that
the common due date coincides with the completion of
some job in solution S. Let A be the set of jobs that are
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scheduled no later than the common due date d in solution
S, and let A = J�A. We define solution S̃ by accept-
ing the jobs in A and rejecting the jobs in A. Moreover,
we sequence the jobs in A in the same order as they are
scheduled in solution S. Thus, for schedule S̃ we have
that

∑
J j ∈A w j C j + ∑

J j ∈A e j = ∑l
j=1 w[ j]

∑ j
i=1 p[i] +

γ n
∑

J j ∈A p j , where l = |A| and [ j] is the index of the j th
job to be processed tardy by the single machine in solution S.

The fact that for S̃ we have that
∑n

j=1 w j Tj +γ
∑n

j=1 d j ≤
K implies that

∑n
j=1 w j Tj + γ

∑n
j=1 d j = ∑

J j ∈A w j

Tj + γ n
∑

J j ∈A p j = ∑l
j=1 w[ j](C[ j] − ∑

J j ∈A p j ) +
γ n

∑
J j ∈A p j = ∑l

j=1 w[ j]
∑ j

i=1 p[i] + γ n
∑

J j ∈A p j =∑
J j ∈A w j C j + ∑

J j ∈A e j ≤ K .

Next, we show that if there exists a schedule, S̃, for the cor-
responding instance of the 1|rej |∑J j ∈A w j C j + RC prob-

lem with
∑

J j ∈A w j C j + RC = ∑l
j=1 w[ j]

∑ j
i=1 p[i] +∑

J j ∈A e j ≤ K , where l = |A| and [ j] is the index of the j th
job to be processed by the single machine in solution S, then
a solution S for the 1|CON|∑n

j=1 w j Tj + γ
∑n

j=1 d j prob-
lem with

∑n
j=1 w j Tj +γ

∑n
j=1 d j ≤ K can be constructed.

Let A and A be the set of accepted and rejected jobs in S̃,

respectively. We define solution S as follows: we schedule the
jobs in A before the jobs in A on the single machine. More-
over, we set d = ∑

J j ∈A p j and schedule the jobs in A in

the same order as in schedule S̃. The jobs in set A are sched-
uled in any arbitrary sequence. The fact that for schedule S̃
we have that

∑n
j=1 w j Tj + γ

∑n
j=1 d j = ∑

J j ∈A w j Tj +
γ n

∑
J j ∈A p j = ∑

J j ∈A w j Tj + ∑
J j ∈A e j = ∑l

j=1 w[ j]
(C[ j] − ∑

J j ∈A p j ) + ∑
J j ∈A e j = ∑l

j=1 w[ j]
∑ j

i=1 p[i] +∑
J j ∈A e j = ∑

J j ∈A w j C j + ∑
J j ∈A e j ≤ K completes our

proof. ��
Finally, we consider the 1|DIF|∑n

j=1 w jU j +γ
∑n

j=1 d j

problem for which Shabtay and Steiner (2006) presented the
following result.

Lemma 2 There exists an optimal solution in which the jobs
are partitioned into a set of early jobs (A) which are sched-
uled first in a non-decreasing order of p j , i.e., in an SPT
order, and a set of tardy jobs (A) which are scheduled in
any arbitrary sequence. Moreover, in this optimal solution,
d j = C j for any J j ∈ A and d j = 0 for any J j ∈ A.

Based on Lemma 2, the following theorem can be derived.

Theorem 8 The 1|DIF|∑n
j=1 w jU j + γ

∑n
j=1 d j problem

is equivalent to the 1|rej |∑J j ∈A C j + RC problem.

Proof Let us first show that the DV of the 1|rej |∑J j ∈A C j +
RC problem polynomially reduces to the DV of the 1|DIF|∑n

j=1 w jU j + γ
∑n

j=1 d j problem. To do so, given an

instance I = {p, e} for the 1|rej |∑J j ∈A C j + RC prob-
lem where p = (p1, . . . , pn) and e = (e1, . . . , en), we con-
struct an instance Ĩ = {p, w} for the 1|CON|∑n

j=1 w jU j +
γ

∑n
j=1 d j problem with w j = γ e j for j = 1, . . . , n.

We now show that if there exists a solution, S, for
the 1|rej |∑J j ∈A C j + RC problem with

∑
J j ∈A C j +

∑
J j ∈A e j ≤ K , then there exists a solution, S̃, for the cor-

responding instance of the 1|DIF|∑n
j=1 w jU j +γ

∑n
j=1 d j

problem with
∑n

j=1 w jU j + γ
∑n

j=1 d j ≤ γ K . Let A and

A be the set of accepted and rejected jobs in S, respectively.
We define solution S̃ as follows: we schedule the jobs in
A first according to their processing order in S. Then, we
schedule the jobs in A in any arbitrary order. Moreover, we
set d j = C j for any J j ∈ A and d j = 0 for any J j ∈ A.

Thus, under S̃ we have that
∑n

j=1 w jU j + γ
∑n

j=1 d j =
γ (

∑
J j ∈A e j + ∑

J j ∈A C j ) ≤ γ K .

Next, we show that if there exists a solution, S̃, for the cor-
responding instance of the 1|DIF|∑n

j=1 w jU j +γ
∑n

j=1 d j

problem with
∑n

j=1 w jU j + γ
∑n

j=1 d j ≤ γ K , then a
solution S for the 1|rej |∑J j ∈A C j + RC problem with∑

J j ∈A C j + RC ≤ K can be constructed. Without loss

of generality, we may assume that S̃ has the properties of
Lemma 2, i.e., the jobs are partitioned into a set of early jobs
(A) which are scheduled first according to the SPT order, fol-
lowed by a set of tardy jobs (A) which are scheduled in any
arbitrary sequence. Moreover, we have that d j = C j for any
J j ∈ A and d j = 0 for any J j ∈ A in solution S̃. Given S̃,

we define solution S for the 1|rej |∑J j ∈A C j + RC problem

as follows: we accept the jobs in A and reject the jobs in A.

Moreover, we schedule the jobs in A according to the SPT
rule on the single machine. The fact that for S̃ we have that∑n

j=1 w jU j + γ
∑n

j=1 d j = ∑
J j ∈A w j + γ

∑
J j ∈A C j =

γ (
∑

J j ∈A e j + ∑
J j ∈A C j ) ≤ γ K implies that

∑
J j ∈A e j +∑

J j ∈A C j ≤ K in S and completes our proof that the
DV of the 1|rej |∑J j ∈A C j + RC problem polynomially

reduces to the DV of the 1|DIF|∑n
j=1 w jU j + γ

∑n
j=1 d j

problem.
In a similar way, we can easily prove that the DV of

the 1|DIF|∑n
j=1 w jU j + γ

∑n
j=1 d j problem polynomi-

ally reduces to the DV of the 1|rej |∑J j ∈A C j + ∑
j∈A e j

problem by constructing an instance Ĩ = {p, e} for the
1|rej | ∑J j ∈A C j+∑

j∈A e j problem with e j = w j
γ

,given an

instance I = {p, w} for the 1|DIF|∑n
j=1 w jU j +γ

∑n
j=1 d j

problem. ��

To conclude this subsection, we wish to emphasize that the
set of connections presented here is only a subset of a wider
set of connections that can be demonstrated between schedul-
ing problems with rejection and scheduling problems with
due date assignment. We believe that analyzing these connec-
tions could be the subject of a more extensive research study.
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3 Single machine scheduling with rejection

This section is divided into subsections based on the schedul-
ing criterion used for F1. In Sect. 3.1, we review the results
for problems with F1 = fmax while problems with F1 =∑

J j ∈A w j C j are reviewed in Sect. 3.2. Section 3.3 is devoted
to a wide class of problems in which the scheduling criterion,
F1, can be represented by (or reduced to) a special unified
formulation that includes positional penalties. In the last sub-
section, we review the results for all other scheduling criteria.

3.1 The maximum penalty criterion (F1 = fmax)

3.1.1 The makespan criterion (F1 = Cmax)

De et al. (1991) present an O(n) time procedure to solve
the 1|CON|∑n

j=1 w jU j + γ
∑n

j=1 d j problem. The fact
that the 1|rej |Cmax(A) + RC problem is equivalent to the
1|CON| ∑n

j=1 w jU j + γ
∑n

j=1 d j problem (see Theorem
6) implies that the 1|rej |Cmax(A) + RC problem is solvable
in O(n) time as well. Cao et al. (2006), Zhang et al. (2009c),
and Zhang et al. (2010) show that the 1|rej |ε(Cmax(A)/RC)

problem is equivalent to the 0–1 knapsack problem (or other
equivalent problems). Using this equivalence, various well-
known algorithms such as pseudo-polynomial time algo-
rithms and FPTASs for obtaining optimal and approximate
solutions for the 0–1 knapsack problem can be used for solv-
ing the P2 problem as well (for an elaboration of various
methods for solving the knapsack problem, see, e.g., Kellerer
et al. 2004). Moreover, any pseudo-polynomial time algo-
rithm that solves the 0–1 knapsack problem problem can be
used as a subroutine for solving the 1|rej |# (Cmax(A), RC)

problem in pseudo-polynomial time. This results in the fol-
lowing proposition.

Proposition 1 The P2–P4 problems with F1 = Cmax(A) on
a single machine are all ordinary NP-hard.

Cao and Zhang (2007) study the P1 problem with release
dates, i.e., the 1|rej, r j |Cmax(A)+ RC problem. They prove
that it is NP-hard and design a PTAS for its solution but
leave open the question of whether this problem is strongly
or ordinary NP-hard. Zhang et al. (2009b) solve this open
question by providing two different pseudo-polynomial time
algorithms to solve the 1|rej, r j |Cmax(A) + RC problem.
The first algorithm requires O(n

∑n
j=1 e j ) time while the

second requires O(n(rmax + ∑n
j=1 p j )) time, where rmax =

max
j=1,...,n

{r j }. Based on these two algorithms, they show that

the 1|rej, r j , e j = e|Cmax(A) + RC and the 1|rej, r j , p j =
p|Cmax(A)+ RC problems are solvable in polynomial times
of O(n2) and O(n3), respectively. Finally, they provide a
2-approximation algorithm and an FPTAS with a running

time of O(n3/ε) for the solution of the 1|rej, r j |Cmax(A) +
RC problem.

In another study, Zhang et al. (2009c) analyze the P2 prob-
lem with release dates, i.e., the 1|rej, r j |ε(Cmax(A)/RC)

problem. They directly derive its NP-hardness from the
result in Proposition 1. In addition, they provide a dynamic
programming (DP) procedure and an FPTAS for its solu-
tion, with running times of O(n(

∑n
j=1 p j + rmax)) and

O(lognpmaxrmax
1+ε ), respectively. In a different works, Zhang

et al. (2010) remark that the above DP can solve the
1|rej, r j , p j = p|ε(Cmax(A)/RC) problem in O(n3) time.
They also mention that finding a dual DP procedure for the
P2 problem type would not be difficult, and that its running
time would be O(n

∑n
j=1 e j ). Furthermore, they note that

this dual procedure can serve as an O(n2) time optimization
algorithm for the special case of identical rejection penalties.

Cheng and Sun (2007) study two scheduling problems
in which the job processing time is linearly deteriorating,
i.e., the job processing time is a linear function of its start-
ing time. The problems differ from each other by their lin-
ear deterioration function. In the first problem, there is a
unified release date of r j = t0 for j = 1, . . . , n and
the job processing time is given by p j = b j t, where
b j is the deteriorating rate of the processing time for
job J j and t is the starting time of job J j . In the sec-
ond problem, however, the job processing time is given
by p j = a j + b j t, where a j is the basic processing
rate. They show that even though the problems without
rejection are polynomially solvable, adding the option of
rejection makes them NP-hard. The proof is done by a
reduction from the subset product problem. Moreover, they
prove that the problems are only ordinary NP-hard by pro-
viding O(n

∑n
j=1 e j ) time pseudo-polynomial time algo-

rithms for their solution. These algorithms can also serve
as a O(n2) time optimization algorithm to solve the special
case of identical rejection costs. Then, they use the pseudo-
polynomial time algorithm to generate an FPTAS for the first
problem with a running time of O( n2

ε

∑n
j=1 log(1 + b j )).

Moreover, they show that the special case of the first prob-
lem in which b j = b for j = 1, . . . , n is solvable in O(n2)

time.
Lu et al. (2009) study the 1|rej, r j , p-batch, l ≤ b|Cmax

(A)+RC problem, i.e., the bounded single machine parallel-
batch scheduling problem with release dates, where p-batch
refers to parallel-batch processing, and l ≤ b implies that
the number of jobs to be processed in a single batch, l, is
upper bounded by a fixed integer, b, with b < n. Under
the p-batch assumption, the processing time of each batch
is derived from the processing time of the longest job within
the batch. They show that this problem is strongly NP-hard
and provide a 2-approximation algorithm for its solution.
They also present an O(nlbl pl−1

max(
∑n

j=1 e j )(
∑n

j=1 p j )
l)
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Table 1 Summary of complexity results for the makespan criterion

Global notation P1 P2–P4 References

1|rej |Cmax, RC O(n) ONPH De et al. (1991) and Cao et al. (2006)

1|rej, r j |Cmax, RC ONPH Cao and Zhang (2007), Zhang et al. (2009b,c)

1|rej, r j , e j = e|Cmax, RC O(n2) Zhang et al. (2009b, 2010)

1|rej, r j , p j = p|Cmax, RC O(n3) Zhang et al. (2009b, 2010)

1|rej, r j = t0, p j = b j t |Cmax, RC ONPH Cheng and Sun (2007)

1|rej, r j = t0, p j = b j t, e j = e|Cmax, RC O(n2) Cheng and Sun (2007)

1|rej, p j = a j + b j t |Cmax, RC ONPH Cheng and Sun (2007)

1|rej, p j = a j + bt |Cmax, RC O(n2) Cheng and Sun (2007)

1|rej, p j = a j + b j t, e j = e|Cmax, RC O(n2) Cheng and Sun (2007)

1|rej, r j , p-batch, l ≤ b|Cmax, RC SNPH Lu et al. (2009)

1|rej, r j = r, p-batch, l ≤ b|Cmax, RC O(n2) Lu et al. (2009)

1|rej, r j , p-batch|Cmax, RC ONPH Lu et al. (2008)

1|rej, r j , p-batch, e j = e|Cmax, RC O(n3) Lu et al. (2008)

time algorithm to solve this problem which is then con-
verted to a PTAS which runs in O(nlbl (2n2/ε)2l) time, where
pmax = max

j=1,...,n
{p j } and l are the number of different release

dates. They further point out that for a constant number of
different release dates the first algorithm can be considered
as a pseudo-polynomial time algorithm and the second as
an FPTAS. A polynomial time algorithm of O(n2) time for
solving the case of identical release dates is also presented.
Lu et al. (2008) study the unbounded version of the problem
and show that it is NP-hard. They also provide a pseudo-
polynomial time algorithm which runs in O(n2 ∑n

j=1 e j )

time, a 2-approximation algorithm, and an FPTAS with a
running time of O(n4/ε). Moreover, they show that the spe-
cial case in which jobs have the same rejection penalty can
be solved in polynomial time of O(n3).

The complexity results that we survey in this subsection
are summarized in Table 1. Note that ONPH and SNPH are
used to indicate that a problem is ordinary or strongly NP-
hard, respectively.

3.1.2 The maximal lateness and maximal tardiness criteria
(F1 = Lmax(A) and F1 = Tmax(A))

Sengupta (2003) was the first to address scheduling prob-
lems with rejection and either the maximal lateness or max-
imal tardiness criteria. Using a reduction from the Partition
Problem, he shows that the 1|rej |Lmax(A) + RC and the
1|rej |Tmax(A) + RC problems are both ordinary NP-hard.
In addition, he provides two alternative pseudo-polynomial
time algorithms for solving both problems with a running
time of O(n

∑n
j=1 e j ) and O(n

∑n
j=1 p j ). This directly

implies that both problems are solvable in polynomial time
of O(n2) if either p j = p or e j = e for j = 1, . . . , n.

An FPTAS for solving the 1|rej |Tmax(A) + RC problem is
also provided. The following proposition immediately fol-
lows from the fact that the DV problem (see Definition 3)
with F1 = Cmax(A) is known to be an NP-complete prob-
lem (see Cao et al. 2006; Zhang et al. 2009c, 2010) and is a
special case of the DV problem with F1 = Lmax(A) or with
F1 = Tmax(A).

Proposition 2 Zhang et al. (2010) Problem DV with F1 =
Lmax(A) or with F1 = Tmax(A) is NP-complete.

We note here that the first pseudo-polynomial time algo-
rithm provided by Sengupta (2003), which was designed
to solve the P1 problem, can easily be used to solve the
P2 problem as well, as it finds the value of the optimal
scheduling criterion for a given total rejection cost value.
Moreover, the second pseudo-polynomial algorithm pro-
vided by Sengupta (2003) can be used to solve the P3
problem type since it finds an optimal total rejection cost
under an upper bound on the maximal lateness value. Thus,
the P1–P3 problems are all solvable in O(n2) time while
problem P4 is solvable in O(n3) time if either p j = p
or e j = e for j = 1, . . . , n. Khuller and Mestre (2008)
present a faster O(n log n) time optimization algorithm for
the solution of the 1|rej, e j = e|ε(Lmax(A)/RC) and the
1|rej, e j = e|ε(Tmax(A)/RC) problems. We mention here
that, although not explicitly stated, the algorithm by Khuller
and Mestre can be used to solve the related P4 problems in
O(n2 log n) time.

The classical definition of an approximation algorithm
is that of a worst case relative error (see Definitions 5–7)
which is a worst case factor by which the objective func-
tion value of the output solution differs from the optimal
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Table 2 Summary of complexity results for the maximal lateness and maximal tardiness criteria

Global notation P1 P2 P3 P4 References

1|rej |Lmax, RC ONPH Proposition 2, Theorem 3, and Sengupta (2003)

1|rej |Tmax, RC ONPH Proposition 2, Theorem 3, and Sengupta (2003)

1|rej, e j = e|Lmax, RC O(n2) O(n log n) O(n2) O(n2 log n) Sengupta (2003) and Khuller and Mestre (2008)

1|rej, e j = e|Tmax, RC O(n2) O(n log n) O(n2) O(n2 log n) Sengupta (2003) and Khuller and Mestre (2008)

1|rej, p j = p|Lmax, RC O(n2) O(n3) Sengupta (2003)

1|rej, p j = p|Tmax, RC O(n2) O(n3) Sengupta (2003)

1|r j , rej |Lmax, RC SNPH Zhang et al. (2010) and Theorem 3

1|rej, r j = t0, p j = b j t |Lmax, RC ONPH Cheng and Sun (2007)

1|rej, r j = t0, p j = b j t |Tmax, RC ONPH Cheng and Sun (2007)

objective value. However, it seems that this way of mea-
suring the quality of a heuristic algorithm is inappropri-
ate for problems in which the optimal objective function
value may be negative as in the case of the maximal late-
ness criterion. Thus, Sengupta suggests using an alternative
notion of approximation, called ε-optimization approxima-
tion, which can accommodate such problems into an approx-
imation framework. According to Sengupta (2003) and Orlin
et al. (2000), a feasible solution S∗ for a problem with input
parameters e j is said to be ε-optimal if S∗ is optimal for a
problem with ε-perturbed costs e′

j , i.e., costs e′
j satisfying

the conditions (1 − ε)e j ≤ e′
j ≤ (1 + ε)e j for all e j ≥ 0

and (1 + ε)e j ≤ e′
j ≤ (1 − ε)e j for all e j < 0. An ε-

optimization approximation scheme provides an ε-optimal
feasible solution for any ε > 0. An algorithm that produces
an ε-optimization approximation is referred to as a polyno-
mial time ε-optimization approximation scheme (PTEOS) if
its running time is polynomial in the size of the instance.
If, in addition, the running time is also polynomial in 1/ε,

the algorithm is called a fully polynomial time ε-optimization
approximation scheme (FPTEOS). Sengupta (2003) presents
an PTEOS for solving the 1|rej |Lmax(A) + RC problem
in O(nO(log emax/ε)) time and an FPTEOS for solving the
1|rej |Lmax(A) +

∏
J j ∈A

e j problem with a running time

of O( n
ε

∑n
j=1 log e j ).

Zhang et al. (2010) study the 1|rej |ε(Lmax(A)/RC) prob-
lem and provide a DP procedure with a running time of
O(n R

∑n
j=1 p j ) for its solution. In addition, they note that

when adding release dates, the resulting 1|r j , rej |ε(Lmax(A)

/RC) problem becomes strongly NP-hard.
Cheng and Sun (2007) study the 1|rej, r j = t0, p j =

b j t |Lmax(A)+RC and the 1|rej, r j = t0, p j = b j t |Tmax(A)

+ RC problems. They note that both problems are NP-
hard due to the NP-hardness of the same problem with
F1 = Cmax(A), and provide a DP algorithm to solve the prob-
lems in O(n

∏n
j=1(1+b j )

∑n
j=1 e j ) time. Then, they design

an FPTAS for the 1|rej, r j = t0, p j = b j t |Tmax(A) + RC

problem with a running time of O
(

n4

ε3

∑n
j=1 log(1 + b j ) log2

(
∑n

j=1 e j )
)

.

The complexity results presented in this subsection are
summarized in Table 2.

3.2 Total-weighted completion time and total-weighted
lateness criteria (F1 = ∑

J j ∈A w j C j and
F1 = ∑

J j ∈A w j L j )

The fact that
∑n

j=1 w j L j = ∑n
j=1 w j C j −∑n

j=1 w j d j , and
that WD = ∑n

j=1 w j d j is a constant independent of the job
schedule implies that the two problems, 1 || ∑n

j=1 w j C j and
1 || ∑n

j=1 w j L j , are equivalent. However, with job rejection
the problems are equivalent only when we consider the P1
problem variation. For this variation, we have that

Gl(F1, F2) = F1 + F2

=
∑

J j ∈A

w j L j +
∑

J j ∈A

e j

=
∑

J j ∈A

w j C j −
∑

J j ∈A

w j d j +
∑

J j ∈A

e j

=
∑

J j ∈A

w j C j − W D +
∑

J j ∈A

(e j + w j d j ),

which implies that the 1|rej |∑J j ∈A w j L j + RC problem is
equivalent to the 1|rej |∑J j ∈A w j C j + RC problem with a
rejection cost of ẽ j = e j + w j d j for j = 1, . . . , n.

It is well known that the 1 || ∑n
j=1 w j C j and the 1 || ∑n

j=1
w j L j problems are solvable in O(n log n) time by sorting the
jobs in a non-decreasing order of p j/w j , i.e., according to the
WSPT order (see Smith (1956)). However, these problems
become harder to solve with job rejection. Ghosh (1997) and
Engels et al. (2003) study the equivalent P1 problem varia-
tions 1|rej |∑J j ∈A w j L j + RC and 1|rej |∑J j ∈A w j C j +
RC, respectively. Due to the equivalence between the prob-
lems, it is not surprising that in both cases similar complexity
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Table 3 Summary of relevant complexity results for the total-weighted completion time objective

Global notation P1 P2–P4 References

1|rej | ∑ w j C j , RC ONPHa ONPH Ghosh (1997), Engels et al. (2003), Cao et al. (2006), and Theorem 3

1|rej, p j = p| ∑ w j C j , RC O(n2)a Ghosh (1997) and Engels et al. (2003)

1|rej | ∑ C j , RC O(n2)a ONPH Ghosh (1997), Engels et al. (2003), Zhang et al. (2010), and Shabtay et al. (2012)

1|rej, r j = t0, p j = b j t | ∑w j C j , RC ONPH Cheng and Sun (2007)

1|rej, p j = a j + bt | ∑ C j , RC O(n2) Cheng and Sun (2007)

1|rej, p-batch, l > n| ∑ C j , RC O(n3 log n) Li and Feng (2010)

aThis result is applicable for F1 = ∑
w j L j as well

Table 4 A list of scheduling criteria that fit the unified model

Scheduling criteria (F1) Positional penalty function

Cmax ξ j (k) = 1a

∑
C j ξ j (k) = jb

δ1
∑ ∑ ∣∣Ci − C j

∣∣ + δ2
∑

C j ξ j (k) = δ1 j (k − j) + δ2 jc

δ1
∑ ∑ ∣∣Wi − W j

∣∣ + δ2
∑

W j ξ j (k) = ( j − 1)(k − j + 1)c

α
∑

E j + β
∑

Tj + γ d |A|d ξ j (k) =
{

β j for j ≤ k − l
α(k − j) + kγ for j > k − l

c

α
∑

E j + β
∑

Tj + γ1d |A| + γ2 D |A|e ξ j (k) =
⎧
⎨

⎩

β j for j ≤ k − l2
γ2k for k − l2 + 1 ≤ j ≤ k − l1
γ1k + α(k − j) for j > k − l1.

c

α
∑

E j + β
∑

Tj + γ
∑

df
j ξ j (k) =

{
β( j − 1) + γ for j ≤ k − l + 1
α(k − j + 1) + γ (k + 1) for j > k − l + 1.

c

α
∑

E j + β
∑

Tj + γ
∑

dg
j ξ j (k) = ξ j = j min(β, γ ) for j = 1, . . . , kb

aξ j (k) is both position and k-independent
bξ j (k) is k-independent and a monotonous function of j
cThere exists a special case in which ξ j (k) is k-independent and is a monotonous function of j. l, l1, and l2 are constant values that can be
obtained in constant time
dThe due date (d) is assignable
eThe scheduler has to assign a single time window [d, d + D] for the completion time of each job
f All jobs are given equal slacks; that is, d j = p j + s, where s ≥ 0 is a decision variable
gEach job can be assigned a different due date with no restrictions

results are obtained. They both provide an NP-hard proof;
a pseudo-polynomial time algorithm for solving these prob-
lems in O(n

∑n
j=1 w j ) time, which can serve as an O(n2)

time algorithm for the case of equal weights; an addi-
tional pseudo-polynomial time algorithm that can solve both
problems in O(n

∑n
j=1 p j ) time, which can also serve as

an O(n2) time algorithm for the case of equal processing
times; and an FPTAS with a running time of O(n2/ε). In
addition to the above results, Engels et al. (2003) provide
general techniques for designing approximation algorithms
for scheduling with rejection based on reducing a prob-
lem with rejection to a potentially more complex schedul-
ing problem without rejection. For example, they show how
they can reduce an instance I of the 1|rej |∑J j ∈A w j C j +
RC problem in an approximation-preserving manner to an
instance of the R||∑J j ∈A w j C j problem with n + 1 unre-
lated machines working in parallel. Then, based on known

approximation results for the R||∑J j ∈A w j C j problem
given by Chudak (1999) and Schulz and Skutella (1997), they
conclude that the 1|rej |∑J j ∈A w j C j + RC problem has a
3/2-approximation algorithm. Using the same technique, and
based on the approximation results by Schulz and Skutella
(1997) for the R|r j | ∑J j ∈A w j C j problem, they further con-
clude that the 1|rej, r j | ∑J j ∈A w j C j + RC problem has a
2-approximation algorithm. Another general technique that
Engels et al. (2003) provide to obtain approximation results
for scheduling problems with rejection based on the same
problem without rejection is derived by exploiting the sim-
ilarity between the LP relaxations of these problems. By
applying this technique, they design a 4.5-approximation
algorithm for the 1|rej, prec, r j | ∑J j ∈A w j C j + RC prob-
lem which runs in pseudo-polynomial time, where prec in
the Y field implies that there are arbitrary precedence con-
straints between jobs. Moreover, they provide a polynomial
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time (4.5+ε)-approximation algorithm for the same problem
for any ε > 0.

We point out that the 1|DIF|∑n
j=1 w jU j + γ

∑n
j=1 d j

problem is equivalent to the 1|rej |∑J j ∈A C j + RC prob-

lem (see Theorem 8) and thus is solvable in O(n2) time
as well (see also Koulamas 2010). Moreover, the algo-
rithms designed by Engels et al. (2003) to solve the
1|rej | ∑J j ∈A w j C j + RC problem can also be used to

solve the 1|CON|∑n
j=1 w j Tj + γ

∑n
j=1 d j problem, since

it forms a special case of the 1|rej |∑J j ∈A w j C j + RC
problem (see Theorem 7). The complexity status of the
1|CON| ∑n

j=1 w j Tj +γ
∑n

j=1 d j problem is, however, still
an open question.

Slotnick and Morton (1996) provide an exact branch-
and-bound (B&B) optimization algorithm to solve the
1|rej | ∑J j ∈A w j L j + RC problem which they then convert
into a heuristic algorithm by applying a beam search to elim-
inate nodes in the search tree. This heuristic runs in O(n4)

time. They also present an additional myopic heuristic which
runs in O(n4) time and evaluate its performance by perform-
ing a large scale computational study.

Cheng and Sun (2007) show that the 1|rej, r j = t0, p j =
b j t | ∑J j ∈A w j C j + RC problem is ordinary NP-hard by
providing a pseudo-polynomial time algorithm for its solu-
tion which runs in O(n

∑n
j=1 e j ) time. Then, they use this

algorithm to generate an FPTAS with a running time of
O( n2

ε2 log2 ∑n
j=1 e j ). Cheng and Sun (2007) derive the NP-

hardness of the 1|rej, p j = a j + b j t | ∑J j ∈A w j C j + RC
problem from the NP-hardness of the same problem where
rejection is not allowed (see Bachman et al. 2002) and show
that for the special case in which b j = b and w j =
1 for j = 1, . . . , n, the problem is solvable in O(n2)

time.
Cao et al. (2006) show that problem DV with F1 =∑
J j ∈A w j C j is NP-complete on a single machine. They

also provide a pseudo-polynomial time algorithm with a
running time of O(n3 p2

maxwmax) and an FPTAS with a
running time of O((1 + ε)2n log pmax log(n2 pmaxwmax))

for the solution of the 1|rej |ε(∑J j ∈A w j C j/RC) problem
where wmax = max

j=1,...,n
{w j }. Both Zhang et al. (2010) and

Shabtay et al. (2012) independently prove that a less gen-
eral DV problem with F1 = ∑

J j ∈A C j is NP-complete as
well. Shabtay et al. (2012) also design a pseudo-polynomial
time algorithm and an FPTAS for the solution of the
1|rej |#(

∑
J j ∈A C j ,

∑
J j ∈A e j ) problem.

Moghaddam et al. (2010) present and test a multi-
objective simulated annealing algorithm to solve the 1|rej |#
(
∑

j∈A w j C j ,
∑

j∈A e j ) problem. By comparing the results
obtained by their algorithm with the set of exact Pareto-
optimal solutions obtained from a complete enumeration,
they conclude that the algorithm is reasonably
good.

Li and Feng (2010) study the P1 version of the unbounded
single machine parallel-batch processing scheduling prob-
lem with F1 = ∑

J j ∈A C j and provide a DP procedure that

solves the problem in O(n3 log n) time.
Phillips et al. (2000) study the 1|rej, r j , e j = e|ε(∑J j ∈A

Fj/RC) problem, where Fj = C j − r j is the flow time of
job J j , and via linear programming (LP) relaxation and a
rounding procedure obtain a polynomial time approximation
algorithm that for any α (0 ≤ α ≤ 1) produces a sched-
ule for which at least nα/(1 + α) jobs are accepted and the
value of F1 is upper bounded by (1/(1 − α) + o(1))OPT,
where OPT is the minimal value of F1 when all jobs are
accepted. They also show how this result can be extended
to obtain similar approximation algorithms for any F1 =∑

J j ∈A f j (C j ) where f j is a non-negative non-decreasing
function of C j for j = 1, . . . , n. However, in contrast to
the algorithm for F1 = ∑

J j ∈A Fj which runs in polyno-
mial time, the algorithm for the more general scheduling
criterion of F1 = ∑

J j ∈A f j (C j ) runs in pseudo-polynomial
time.

The complexity results presented in this subsection are
summarized in Table 3.

3.3 A set of scheduling criteria that includes positional
penalties (F1 = ∑k

j=1 ξ j (k)p[ j])

Shabtay et al. (2012) provide a unified bicriteria analysis
for a large set of single machine scheduling problems with
job rejection whose scheduling criterion, F1, can be either
represented by or reduced to a special case of the following
unified model:

F1 =
k∑

j=1

ξ j (k)p[ j], (7)

where k = |A| and ξ j (k) is a positional, k-dependent, and
job-independent penalty for any job scheduled in the j th
position from the end in π, where π represents the permu-
tation in which the jobs in set A are scheduled on the single
machine. Here [ j] represents the job that is in the jth position
from the end in π for j = 1, 2, . . . , k = |A| . Table 4 below
presents a subset of single machine scheduling problems of
which scheduling criterion can be either represented by or
reduced to the unified format in (7) with their specific ξ j (k)

value.
Shabtay et al. (2012) provide an O(n3) time optimiza-

tion algorithm for the unified 1|rej |∑k
j=1 ξ j (k)p[ j] + RC

problem which is based on a DP procedure. Thereby they
both extend and improve the results of Mosheiov and Sarig
in (2009) who present an O(n4) time algorithms for solv-
ing two special cases of the unified model. The first is when
F1 = ∑

J j ∈A E j + β
∑

J j ∈A Tj + γ d |A| + ∑
J j ∈A e j and

the common due date (d) is a decision variable, and the
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Table 5 Summary of
complexity results for the set of
objectives which include
positional penalties

aξ j is a monotonous function
of j
bFor any pair of jobs Jl and Jm :
if pl ≤ pm then el ≥ em

Global notation P1 P2–P4

1|rej | ∑k
j=1 ξ j (k)p[ j], RC O(n3) ONPH

1|rej | ∑k
j=1 ξ j p[ j], RCa O(n2) ONPH

1|rej |ξ ∑k
j=1 p[ j], RC O(n) ONPH

1|rej, agreeableb| ∑k
j=1 ξ j (k)p[ j], RC O(n2 log n)

1|rej, agreeableb| ∑k
j=1 ξ j p[ j], RCa O(n log n)

second is when F1 = α
∑

J j ∈A E j +β
∑

J j ∈A Tj +γ1d |A|+
γ2 D |A| + ∑

J j ∈A e j and the scheduler has to assign a sin-
gle desired time window, [d, d + D], for the completion
time of each job (lines 5–6 of Table 4 show how these two
problems can be viewed as special cases of the unified
model). Shabtay et al. (2012) also show that the complex-
ity of the DP can be reduced to O(n2) time if ξ j (k) = ξ j ,

i.e., ξ j (k) is k-independent. This result subsumes the result
by Engels et al. (2003) who suggest an O(n2) time opti-
mization algorithm for the 1|rej |∑J j ∈A C j + RC problem
(see line 3 in Table 3). Moreover, Shabtay et al. show that
if ξ j (k) = ξ for k = 1, . . . , n and j = 1, . . . , k, i.e.,
ξ j (k) is both position and k-independent, then the result-
ing 1|rej |ξ ∑k

j=1 p[ j] + RC problem can be solved in linear
time. This result subsumes the result by De et al. (1991)
who provide an O(n) time optimization algorithm for the
1|rej |Cmax(A) + RC problem (see line 1 in Table 1).

Additional results obtained by Shabtay et al. (2012) for
the unified model include a proof that problem DV is NP-
complete for any F1 = ∑k

j=1 ξ j p[ j], a pseudo-polynomial
time optimization algorithm and an FPTAS for the solution of
the general 1|rej |#(

∑k
j=1 ξ j (k)p[ j], RC) problem, and two

polynomial time optimization algorithms for the case where
the following condition (which they refer to as an agreeable
condition) holds, namely, for any l and m, the fact that pl ≤
pm implies also that el ≥ em . Note that the conditions that
e j = e and/or p j = p are special cases of this agreeable
condition.

Table 5 summarizes the complexity results in this section
which were obtained by Shabtay et al. (2012).

3.4 Other scheduling criteria

Zhang et al. (2010) derive the NP-hardness of the 1|rej |ε
(
∑

J j ∈A U j/RC) problem directly from the NP-hardness of
the 1|rej |ε(Cmax(A)/RC) problem and provide a DP algo-
rithm for solving the more general 1|rej |ε(∑J j ∈A w jU j

/RC) problem which runs in O(n R
∑n

j=1 p j ) time. Accord-
ing to Theorem 3, by applying the ε- constraint method,
this algorithm can be used to solve the more general
1|rej |#(

∑
J j ∈A w jU j , RC) problem in pseudo-polynomial

time as well. This together with the fact that the 1||∑J j ∈A

w jU problem is known to be NP-hard (see Karp 1972;
Sahni 1976) implies that the entire set of P1–P4 problems
with F1 = ∑

J j ∈A w jU j are ordinary NP-hard.
Steiner and Zhang (2011) study a scheduling problem

where due dates are assignable according to the DIF method
and the objective is to minimize a cost function which
includes penalties due to tardy jobs and due date assign-
ment. Moreover, for each job J j , there is a lead time, A j ,

which the customer considers to be acceptable and thus there
is no penalty for assigning the due date to be no greater than
A j . However, if d j > A j the due date assignment cost is
α max{0, d j − A j }, where α is a positive integer that reflects
the per unit of time cost of exceeding the acceptable lead
time. The problem studied by Steiner and Zhang is referred
to as the 1|DIF|∑n

j=1 w jU j + α
∑n

j=1 max{0, d j − A j }
problem. They show that this problem is equivalent to
the 1|rej |∑J j ∈A Tj + RC problem, and then provide a
pseudo-polynomial time optimization algorithm to solve the
1|rej | ∑J j ∈A Tj + RC problem in O(n4(

∑n
j=1 p j )

3) time.
It is pointed out that this algorithm can solve the special case
in which p j = p for j = 1, . . . , n in O(n7) time. Moreover,
they provide an FPTAS for solving the 1|rej |∑J j ∈A Tj +RC

problem in O
(
n10 log n + n10/ε + n2 log n log emax

)
time,

where emax = max
j=1,...,n

{e j }.
Slotnick and Morton (2007) study the 1|rej |∑J j ∈A w j

Tj + RC problem and provide several heuristics and an
exact B&B optimization algorithm that is based on linear
(integer) relaxation. By performing a large scale compu-
tational experiment, the results obtained by each heuristic
are compared to the results obtained by the B&B algorithm
for small and medium size instances. For larger instances,
where the exact B&B algorithm is not practical, they com-
pare the results obtained by each heuristic to those obtained
by a beam search heuristic. Rom and Slotnick (2009) use
a genetic algorithm to solve the same problem. They con-
duct a computational study and show that for the entire set
of tested instances the genetic algorithm performs better
than an alternative myopic heuristic in terms of the objec-
tive function value, but at a cost of increased computational
time. Nobibon and Leus (2011) study a different variants of
the 1|rej |∑J j ∈A w j Tj + RC problem for which the set of
jobs, J, is partitioned into two disjoint subsets. The first, F,
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consists of the firm’s planned orders which must be accepted,
while its complement F contains the optional jobs which may
be either accepted or rejected. Following the scheduling nota-
tion introduced in T’kindt and Billaut (2006), we refer to this
problem by 1|rej, F ⊆ J |∑J j ∈A w j Tj + RC. Note that the

1|rej, F ⊆ J |∑J j ∈A w j Tj + RC problem may be viewed
as a special case of the 1|rej |∑J j ∈A w j Tj +RC problem for
which the jobs in set F have an infinite rejection cost. More-
over, the 1|rej |∑J j ∈A w j Tj +RC problem may be viewed as

a special case of the 1|rej, F ⊆ J |∑J j ∈A w j Tj +RC prob-

lem for which J = F . Thus, the two problems are in fact
equivalent. Nobibon and Leus prove that unless P = NP,

there is no constant-factor approximation algorithm for the
1|rej | ∑J j ∈A w j Tj + RC problem. Moreover, they provide
two mixed integer linear programming (MILP) formulations
and design two exact B&B optimization algorithms for the
1|rej | ∑J j ∈A w j Tj +RC problem. By conducting a compu-
tational study, they compare the efficiency and quality of the
results obtained using the four different approaches where
a commercial integer programming (IP) solver is used dur-
ing the computational study to solve the two MILP formu-
lations. Yang and Geunes (2007) study an extended version
of the 1|rej |∑J j ∈A w j Tj + RC problem for which the job
processing times are controllable by a special case of the
linear model in Eq. (5) and the objective function includes a
resource allocation cost in addition to tardiness and rejection
costs. They provide two heuristic algorithms and apply a set
of computational experiments demonstrating the effective-
ness of the proposed heuristics.

Bilgintürk et al. (2007) study a scheduling problem for
which each accepted order has a gain of e j for being accepted
(which is equivalent to having a penalty of e j for being
rejected). In addition to the gain, the instance for their prob-
lem includes the job release dates, due dates and deadlines,
and a matrix S = (si j ) of sequence-dependent set-up times,
where si j is the set-up time required before starting the
processing of job (order) J j , given that it is processed right
after order Ji . According to their problem definition, the
manufacturer may complete each accepted order J j until
its deadline, d j , where d j ≥ d j . If job J j ∈ A, its rev-
enue R j is calculated as R j = max{0, e j − w j Tj } where
w j = e j/(d j − d j ) such that the revenue decreases down to

zero if job J j is completed at its deadline. The objective is to
partition set J into A ∪ A such that

∑
J j ∈A R j is maximized.

We refer to this problem as 1|rej, si j , r j , d j | ∑J j ∈A R j

(note that here the objective has to be maximized). The
1|rej, si j , r j , d j | ∑J j ∈A R j problem is an extension of the
1|si j |w j Tj problem which is known to be strongly NP-hard
(see Lawler et al. 1982). Bilgintürk et al. (2007) provide an
MILP formulation for the 1|rej, si j , r j , d j | ∑J j ∈A R j prob-
lem. Moreover, they suggest using a simulated annealing
procedure to heuristically solve larger instances. Other alter-
native heuristics for the same problem appear in Oğuz et al.
(2010) and Cesaret et al. (2012).

The complexity results presented in this subsection are
listed in Table 6.

4 Multiple-machine problems with rejection

This section is devoted to multiple-machine environments.
The division into subsections is based on the machine con-
figuration.

4.1 Parallel machines

In a parallel machine environment, job J j requires a single
operation and may be processed on any of the m machines.
Three different systems of parallel machines are considered
in the literature.

• Identical machines (X = Pm), where the job processing
time is machine-independent; that is pi j = p j for i =
1, . . . , m and j = 1, . . . , n.

• Uniform machines (X = Qm), where machine Mi has
a speed of si , i.e., the processing time pi j of job J j on
machine Mi is equal to p j/si .

• Unrelated machines (X = Rm), where the job process-
ing time is machine dependent.

The rest of this subsection is organized as follows. In
Sects. 4.1.1 and 4.1.2, we survey the results for schedul-
ing parallel machines with rejection with F1 = fmax and
F1 = ∑

J j ∈A w j C j , respectively, while in Sect. 4.1.3 we

Table 6 Summary of relevant
complexity results for other
scheduling criteria

Global notation P1 P2–P4 References

1|rej | ∑ U j , RC ONPH Zhang et al. (2010) and Theorem 3

1|rej | ∑ w j U j , RC ONPH Zhang et al. (2010) and Theorem 3

1|rej | ∑ Tj , RC ONPH Steiner and Zhang (2011)

1|rej, p j = p| ∑ Tj , RC O(n7) Steiner and Zhang (2011)
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provide an original contribution which proposes general
schemes for scheduling unrelated machines with rejection.

4.1.1 Maximum penalty criterion (F1 = fmax)

Bartal et al. (2000) study the problem of minimizing the
makespan on a set of identical machines in parallel and
provide an FPTAS for solving the Pm|rej |Cmax(A) + RC
problem for any fixed m. Moreover, they provide an (2-1/m)-
approximation algorithm for an arbitrary m value with a
running time of O(n log n). Zhang et al. (2009c) study the
Pm|rej, r j |ε (Cmax(A)/RC) problem and design a pseudo-
polynomial time algorithm and an FPTAS for its solution.

Li and Yuan (2010) study the Pm|rej, p j = a j +
b j t |Cmax(A) + RC problem whose NP-hardness is directly
derived from the NP-hardness of the single machine ver-
sion of this problem (see line 7 in Table 1). They construct an
FPTAS with a running time of O(n2m+2 logm+2(max{n, 1\ε,
amax, 1 + bmax, emax})/εm+1) to solve this problem.

Hoogeveen et al. (2003) examine preemptive scheduling
on parallel, related and unrelated machines. They show that
the problems Pm|rej, pmtn|Cmax(A)+RC,Qm|rej, pmtn|
Cmax(A)+RC and Rm|rej, pmtn|Cmax(A)+RC are all ordi-
nary NP-hard for m ≥ 2. However, when m (the number of
machines) is variable, the R|rej, pmtn|Cmax(A)+RC prob-
lem becomes strongly NP-hard while the other problems
remain ordinary NP-hard. In addition, they design FPTASs
for several problems and a 1.58-approximation algorithm for
the R|rej, pmtn|Cmax(A) + RC problem.

Cao and Yang (2009) study the bounded parallel-batch
scheduling problem with release dates on a set of m identical
machines in parallel and generate a PTAS for solving this
strongly NP-hard Pm|rej, r j , p-batch, k ≤ b|Cmax(A) +
RC problem with a running time of O((4b)1/εn3/ε+4

(1/ε)2/ε+2), where b < n is the maximal batch size. They
also show that the special case where jobs arrive simultane-
ously, i.e., r j = r for j = 1, . . . , n, is solvable in O(n2 log n)

time. Miao et al. (2010) study the unbounded parallel-
batch scheduling problem on a set of m unrelated machines
under the assumption that the job processing times are job-
independent, that is, pi j = pi for i = 1, . . . , m and j =
1, . . . , n and give a pseudo-polynomial time algorithm for
the solution of the Rm|rej, pi j = pi , p-batch|Cmax(A)+RC

problem in O
(

mn2 ∑n
j=1 e j

)
time. Note that this algorithm

can solve the Rm|rej, pi j = pi , p-batch, e j = e|Cmax(A)+
RC problem in polynomial time.

Next, we present some known results for problems of
scheduling parallel machines with costs. Since scheduling
with rejection on a set of m parallel machines is a special case
of scheduling parallel machines with costs (see Sect. 2.2),
these results can be adopted for scheduling with rejection as
well. Lin and Vitter (1992) study the P4 problem variation of

scheduling unrelated parallel machines with costs and con-
struct an ε-approximation algorithm that, given a cost C and
a makespan T, finds in polynomial time a solution with a
cost of at most (1 + ε)C and a makespan with a value of
at most (2 + 1/ε)T (but only if there is a schedule with a
cost of at most C and a makespan of at most T ). Improved ε-
approximation algorithms were later presented by Jansen and
Porkolab (1999) and Angel et al. (2001). The latter algorithm
is based on the well-known rounding method for convert-
ing a pseudo-polynomial time DP algorithm into an FPTAS.
Trick (1994) studies an extension of the P1 problem varia-
tion of scheduling unrelated parallel machines with costs and
presents a 2.618-approximation algorithm for F1 = Cmax.

Shmoys and Tardos (1993) improve this result by providing
a 2-approximation algorithm for the same problem. More-
over, they provide an O(mn2 log n) time algorithm for the
P4 problem variation that finds a solution with a cost of at
most C and a makespan of a cost of at most 2T .

To the best of our knowledge, only Sengupta (2003)
considers a scheduling problem with rejection in order
to minimize the maximal lateness and the maximal tar-
diness criteria on a set of parallel machines. He presents
an O(nm2m ∏m

i=1(
∑n

j=1 pi j )) time algorithm to solve the
Rm||Lmax(A) + RC and Rm||Tmax(A) + RC problems.

The complexity results presented in this subsection are
summarized in Table 7.

4.1.2 Total-weighted completion times criterion
(F1 = ∑

J j ∈A w j C j )

The Pm|rej |ε(∑J j ∈A w j C j/RC) problem is NP-hard due
to the NP-hardness of the same problem on a single machine
(Cao et al. 2006). Zhang et al. (2009a) study this prob-
lem and provide a pseudo-polynomial and an FPTAS for its
solution.

Next, we show that several new results can be obtained for
scheduling problems on a set of m identical machines with
F1 = ∑

J j ∈A C j as a direct outcome of the results obtained
in Shabtay et al. (2012). For a set of m identical machines
in parallel, the sum of completion time under an optimal
schedule can be represented by (see, e.g., Gurel and Akturk
(2007))

F1 =
∑

J j ∈A

C j =
k∑

j=1

⌈
j

m

⌉
p j . (8)

The scheduling criterion in (8) has the same unified format

that appears in (7) with ξ j (k) =
⌈

j
m

⌉
for j = 1, . . . , k.

Moreover, since for this case ξ j (k) is k-independent and is
a monotonous function of j, the following results can be
directly obtained from the analysis in Shabtay et al. (2012)
(see Table 5 lines 2 and 5): the Pm|rej |∑J j ∈A C j + RC
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Table 7 Summary of relevent
complexity results for the
maximal penalty criterion on
parallel machines

Global notation P1 P2–P4 References

Pm|rej |Cmax, RC ONPH Bartal et al. (2000)

Pm|rej, r j |Cmax, RC ONPH Zhang et al. (2009c) and Theorem 3

Pm|rej, r j = r, p-batch, k ≤ b|Cmax, RC O(n2 log n) Cao and Yang (2009)

Pm|rej, p j = a j + b j t |Cmax, RC ONPH Li and Yuan (2010)

Rm|rej, pmtn|Cmax, RC ONPH Hoogeveen et al. (2003)

R|rej, pmtn|Cmax, RC SNPH Hoogeveen et al. (2003)

Rm|rej, pi j = pi , p-batch|Cmax, RC ONPH Miao et al. (2010)

Rm|rej, pi j = pi , p-batch, e j = e|Cmax, RC O(mn3) Miao et al. (2010)

Rm|rej |Cmax, RC ONPH Angel et al. (2001)

Rm||Lmax, RC ONPH Sengupta (2003)

Rm||Tmax, RC ONPH Sengupta (2003)

problem is solvable in O(n2) time, the Pm|rej |#(
∑

J j ∈A C j ,

RC) is ordinary NP-hard and the Pm|rej, agreeable|#(∑
J j ∈A C j , RC

)
is solvable in O(n log n) time (agreeable

in the Y field of the three-field notation implies that for any
l, m ∈ {1, . . . n} if pl ≤ pm, the condition that el ≥ em holds
as well).

Li and Yuan (2010) study the Pm|rej, p j = b j t, r j =
t0| ∑J j ∈A w j C j + RC problem whose NP-hardness is
directly implied from the NP-hardness of the single machine
version of the problem (see line 4 in Table 3). For this
problem, they provide an FPTAS with a running time
of O(n2m+1 logm(1 + bmax)/ε

m). In addition, they pro-
vide a polynomial time solution algorithm for solving the
Pm|rej, p j = a j + bt | ∑J j ∈A C j + RC problem in O(n2)

time.
Engels et al. (2003) provide a 3/2-approximation algo-

rithm for the R|rej |∑J j ∈A w j C j + RC problem and a
2-approximation algorithm for the R|rej, r j | ∑J j ∈A w j C j +
RC problem. Miao et al. (2010) study the unbounded
parallel-batch scheduling problem on a set of m unre-
lated machines under the assumption that the job process-
ing times are job-independent; that is, pi j = pi for
i = 1, . . . , m and j = 1, . . . , n. They also provide a
pseudo-polynomial time algorithm for the solution of the
Rm|rej, pi j = pi , p-batch|∑J j ∈A w j C j + RC problem in

O(mn3 pm
∑n

j=1 e j ) time.
Alidaee and Ahmadian (1993) study the scheduling prob-

lem of minimizing the total completion time plus the
total-weighted resource consumption, where the resource
consumption function is given by the linear model in (5), and
show that the resulting Rm |lin| ∑n

j=1 C j + TRAC problem

is solvable in O(n3m + n2m log(nm)) time by reducing it to
an assignment problem. They also show that the same method
can be used to solve the Rm |lin, CON| α ∑n

j=1 E j +
β

∑n
j=1 Tj + TRAC problem in O(n3m + n2m log(nm))

time. Although not specifically stated, their results are

applicable when the resource can be used in either discrete or
continuous quantities. Since, for both problems, the contribu-
tion of a job with a zero processing time to the objective func-
tion value in an optimal schedule is zero, we can conclude
from Theorem 5 that the Rm |rej | ∑J j ∈A C j + RC problem

is a special case of the Rm |lin| ∑n
j=1 C j + TRAC problem

and that the Rm |rej, CON| α ∑
J j ∈A E j +β

∑
J j ∈A Tj +RC

problem is a special case of the Rm |lin, CON| α ∑n
j=1 E j +

β
∑n

j=1 Tj + TRAC problem. This implies that these two

problems are solvable in O(n3m + n2m log(nm)) time as
well.

The complexity results presented in this subsection are
presented in Table 8.

4.1.3 General optimization schemes for scheduling
unrelated machines with rejection

In this subsection, we present new results by providing gen-
eral schemes for solving scheduling problems on unrelated
parallel machines with rejection. These schemes offer uni-
fied pseudo-polynomial time solution methods for many
NP-hard scheduling problems that share two common prop-
erties: their scheduling criterion is regular, i.e., it is a non-
decreasing function of the job completion times, and it is
possible to index the jobs such that in an optimal schedule the
jobs assigned to a given machine are scheduled in the order
of their indices. These general schemes not only subsume
several results that appear in the literature but also provide a
solution method for problems that have not yet been studied.

Table 9 summarizes complexity results from the literature.
Each of these results can be obtained by applying the unified
optimization schemes presented in this subsection.

Rothkopf (1966) and Lawler and Moore (1969) suggest
a general DP optimization algorithm for a fixed number of
machines that can solve special cases of Rm || ∑n

j=1 f j ,

for which f j is a regular (non-decreasing) criterion for
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Table 8 Summary of relevant complexity results for the total- weighted completion times objective on parallel machines

Global notation P1 P2–P4 References

Pm|rej | ∑ w j C j , RC ONPH Zhang et al. (2009a)

Pm|rej, pi j = pi , p-batch| ∑ w j C j , RC ONPH Miao et al. (2010)

Pm|rej, p j = b j t, r j = t0| ∑ w j C j , RC ONPH Li and Yuan (2010)

Pm|rej, p j = a j + bt | ∑ C j , RC O(n2) Li and Yuan (2010)

Pm|rej | ∑ C j , RC O(n2) ONPH Shabtay et al. (2012)

Pm|rej, agreeablea| ∑ C j , RC O(n log n) Shabtay et al. (2012)

Rm|rej | ∑ C j , RC O(n3m + n2m log(nm)) Alidaee and Ahmadian (1993)

Rm |rej, CON| α ∑
J j ∈A E j + β

∑
J j ∈A Tj + ∑

J j ∈A e j , RC O(n3m + n2m log(nm)) Alidaee and Ahmadian (1993)

aThe conditions that pl ≤ pm and el ≥ em are agreeable

j = 1, . . . , n and when it is possible to index the jobs
such that in an optimal schedule the jobs assigned to a given
machine are scheduled in the order of their indices. The algo-
rithm is described as follows.

Given an appropriate indexing j = 1, . . . , n of the jobs,
define Fj (t1, . . . , tm) as the minimum cost of a schedule for
jobs J1, . . . , J j subject to the constraint that the last job on
machine Mi is completed at time ti for i = 1, . . . , m. Then,
for the

∑n
j=1 f j criterion we have that

Fj (t1, . . . , tm) = max
i=1,...,m

{
Fj−1(t1, . . . , ti − pi j , . . . , tm)

+ f j (ti )
}
. (9)

The initial conditions are

F0(t1, . . . , tm) =
{

0 if ti = 0 for i = 1, . . . , m
∞ otherwise

(10)

and the optimal solution value is given by

F∗
n = min(Fn(t1, . . . , tm) | 0 ≤ ti ≤ C), (11)

where C = max
i=1,...,m

(
∑n

j=1 pi j ) is an upper bound on the

completion time of any job in an optimal schedule. In general,
these equations can be solved in O(mnCm) time. However,
if the machines are uniform only m − 1 of the t1, . . . , tm
values are independent which means that for m ≥ 2 uni-
form machines, the time complexity reduces to O(mnCm−1).
In both cases, however, the time complexity is pseudo-
polynomial for a constant number of machines.

Below we show that three variants of the above opti-
mization algorithm can solve the Rm |rej | ∑J j ∈A f j + RC,

the Rm |rej | #(
∑

J j ∈A f j , RC) and the Rm |rej | #( fmax(A),

RC) problems in pseudo-polynomial time. All of these algo-
rithms are applicable for the case where f j is a regular (non-
decreasing) criterion for j = 1, . . . , n and for when it is
possible to index the jobs such that in an optimal schedule
the jobs assigned to a given machine are scheduled in the
order of their indices.

The Rm |rej | ∑J j ∈A f j + RC problem The Rm |rej |∑
J j ∈A f j + RC problem on m machines can be mod-

eled as an Rm || ∑n
j=1 f j problem on m + 1 machines

where machine Mm+1 is a dummy machine and all jobs
that are assigned to this machine are rejected. Thus, by
defining pm+1, j = 0 and f j (tm+1 = 0) = e j for j =
1, . . . , n, only states with tm+1 = 0 have to be considered
while implementing the recursion in (9). Therefore, the time
complexity remains O(mnCm) for unrelated machines and
O(mnCm−1) for a uniform machines, and the following the-
orem holds.

Theorem 9 The Rm |rej |∑J j ∈A f j + RC problem is solv-

able in O(mnCm) time and the Qm |rej | ∑J j ∈A f j + RC

problem is solvable in O(mnCm−1) time for any f j which is
a regular criterion for j = 1, . . . , n and when it is possible
to index the jobs such that in an optimal schedule the jobs
assigned to a given machine are scheduled in the order of
their indices.

Below, we present three different applications of Theorem
9. The first is for solving the Qm |rej | ∑J j ∈A w j C j + RC
problem, which is known to be NP-hard (see line 1 in
Table 3). It should be noted that

∑
J j ∈A w j C j is a regular

criterion. In addition, it is known that in an optimal sched-
ule the jobs on each machine are scheduled according to the
WSPT order (see Smith 1956). It is easy to see that for identi-
cal or uniform parallel machines, the WSPT order of the jobs
is the same no matter which machine is considered. There-
fore, the WSPT order can be used as the common indexing
of the jobs required by the DP algorithm defined by Eqs.
(9–11). Moreover, this set of equations can be applied with
m + 1 machines and
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Table 9 Related results from the literature that include pseudo-polynomial time algorithms for scheduling with rejection

Problem Complexity References Indexing rule

1|rej, r j |Cmax + RC O
(

n(rmax + ∑n
j=1 p j )

)
Zhang et al. (2009b) Earliest release date (ERD)

1|rej, r j |ε(Cmax/RC) O
(

n(rmax + ∑n
j=1 p j )

)
Zhang et al. (2010) ERD

Pm|rej |ε(Cmax/RC) O
(

n(
∑n

j=1 p j )
m
)

Zhang et al. (2009c) Arbitrary

Rm|rej |Lmax + RC O
(

nm2m∏m
i=1(

∑n
j=1 p j )

)
Sengupta (2003) Earliest due date (EDD)

Rm|rej |Tmax + RC O
(

nm2m∏m
i=1(

∑n
j=1 p j )

)
Sengupta (2003) EDD

1|rej |ε (Lmax/RC ) O
(

n R
∑n

j=1 p j

)
Zhang et al. (2010) EDD

1|rej |ε(∑ w j U j /RC) O
(

n R
∑n

j=1 p j

)
Zhang et al. (2010) EDD

1|rej | ∑J j ∈A w j C j + RC O
(

n
∑n

j=1 p j

)
Engels et al. (2003) WSPT

f j (ti ) =
{
w j ti for i = 1, . . . , m
e j for i = m + 1

for i = 1, . . . , n and j = 1, . . . , m (12)

to solve the Qm |rej | ∑J j ∈A w j C j +RC problem. It is clear

that C = max
i=1,...,m

{
1
si

× ∑n
j=1 p j

}
is an upper bound on the

completion time of any job in the case of uniform machines
and thus we have the following proposition.

Proposition 3 The Qm |rej | ∑J j ∈A w j C j +RC is solvable

in O(mnCm−1) time for m ≥ 2 and in O(nC) time for m =
1, where C = max

i=1,...,m

{
1
si

× ∑n
j=1 p j

}
.

Note that the result obtained by Zhang et al. (2010) (see the
last row of Table 9) can be directly derived as a special case
of the result in Proposition 3.

The second application of Theorem 9 arises from the
Qm

∣∣rej, d j = d
∣∣ ∑

J j ∈A Tj + RC problem. Here again, the
scheduling criterion,

∑
J j ∈A Tj , is regular. Moreover, since it

is well known that there exists an optimal schedule for which
the jobs on each machine are scheduled according to the SPT
order, this order can be used as the common indexing of the
jobs required by the DP algorithm defined by Eqs. (9–11).
In addition, this set of equations can be applied with m + 1
machines and

f j (ti ) =
{

max {0, ti − d} for i = 1, . . . , m
e j for i = m + 1

for i = 1, . . . , n and j = 1, . . . , m (13)

to solve the Qm
∣∣rej, d j = d

∣∣ ∑
J j ∈A Tj + RC problem.

Thus, we have the following proposition as well.

Proposition 4 The Qm
∣∣rej, d j = d

∣∣ ∑
J j ∈A Tj +RC prob-

lem is solvable in O(mnCm−1) time for m ≥ 2 and in O(nC)

time for m = 1, where C = max
i=1,...,m

{
1
si

× ∑n
j=1 p j

}
.

Note that the Pm
∣∣d j = d

∣∣ ∑n
i=1 Ti problem, which is a

special case of the Qm
∣∣rej, d j = d

∣∣ ∑
J j ∈A Tj + RC prob-

lem, is known to be NP-hard for m = 2, since the problem of
finding a schedule with value

∑n
i=1 Ti = 0 for the instance

where A = 1/2 × ∑n
i=1 pi is equivalent to the NP-hard

multiprocessor scheduling problem (see Garey and Johnson
1979). Therefore, the result in Proposition 4 implies that the
Qm

∣∣rej, d j = d
∣∣∑

J j ∈A Tj +RC problem is ordinary NP-
hard.

A third application of Theorem 9 arises from the Rm |rej |∑
J j ∈A w jU j + RC problem whose scheduling criterion is

regular. Moreover, it is well known that there exists an
optimal schedule for which the set of non-tardy jobs on
each machine are ordered in a non-decreasing order of d j ,

i.e., according to the EDD rule. Therefore, the DP algo-
rithm defined by Eqs. (9–11) can be applied for solving the
Rm |rej | ∑J j ∈A w jU j + RC problem. This can be done by
assigning the early jobs to machines M1, . . . , Mm accord-
ing to the EDD rule and all rejected and late jobs to machine
Mm+1 in any arbitrary sequence. For this case, the set of equa-
tions defined by (9–11) can be applied with m + 1 machines,

f j (ti ) =
{

0 if t j ≤ d j

∞ if t j > d j

for i = 1, . . . , m and j = 1, . . . , n (14)

and

f j (ti ) = min(w j , e j ) for i = m + 1 and j = 1, . . . , n (15)

to solve the Rm |rej | ∑J j ∈A w jU j +RC problem. Thus, the
following proposition holds.

Proposition 5 The Rm |rej | ∑J j ∈A w jU j + RC problem is

solvable in O(mnCm) time. Moreover, the Qm |rej | ∑J j ∈A

w jU j + RC problem is solvable in O(mnCm−1) time for
m ≥ 2.
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Note that the 1 || ∑n
j=1 w jU j problem, which is a spe-

cial case of the Rm |rej |∑J j ∈A w jU j + RC problem,
is known to be NP-hard (see Karp 1972; Sahni 1976).
Therefore, the result in Proposition 5 implies that the
Rm |rej | ∑J j ∈A w jU j +RC problem is ordinary NP-hard.

The Rm |rej | #(
∑

J j ∈A f j , RC)problem Given an
appropriate indexing j = 1, . . . , n of jobs, let us define
Fj (t1, . . . , tm, E) as the minimum scheduling cost for a par-
tial solution that includes jobs J1, . . . , J j subject to the con-
straint that the last job on Mi is completed at time ti for
i = 1, . . . , m and the total rejection cost is E . Then, all
possible states can be calculated by the recursion in (16) as
follows:

Fj (t1, . . . , tm , E) =
min

{
mini=1,...,m

{
Fj−1(t1, . . . , ti − pi j , . . . , tm , E) + f j (ti )

}

Fj−1(t1, . . . , tm , E − e j ).

(16)

The initial conditions are

F0(t1, . . . , tm, E) ={
0 if ti = 0 for i = 1, . . . , m and E = 0
∞ otherwise

(17)

and for any 0 ≤ E ≤ ∑n
j=1 e j , the minimal scheduling cost

is given by

F∗
n (E)=min(Fn(t1, . . . , tm, Ẽ) | Ẽ ≤ E and 0 ≤ ti ≤ C),

(18)

where C is an upper bound on the completion time of any
job in an optimal schedule. Note that by applying Eqs.
(16–18) the entire set of weak Pareto-optimal and Pareto-
optimal points are determined, which implies that for solving
the Rm |rej | #(

∑
J j ∈A f j , RC) problem, the weak Pareto-

optimal solutions have to be eliminated. In general, Eqs. (16–
18) can be solved in O(mnCm E) time where E = ∑n

j=1 e j .

However, if the machines are uniform only m − 1 of the
t1, . . . , tm values are independent which means that for
m ≥ 2 uniform machines, the time complexity reduces to
O(mnCm−1 E). In both cases, however, the time complexity
is pseudo-polynomial for a constant number of machines and
the following theorem holds.

Theorem 10 The Rm |rej | #(
∑

J j ∈A f j , RC) problem is

solvable in O(mnCm E) time and the Qm |rej | #(
∑

J j ∈A f j ,

RC) problem is solvable in O(mnCm−1 E) time for any f j

which is a regular criterion for j = 1, . . . , n and when it is
possible to index the jobs such that in an optimal schedule
the jobs assigned to a given machine are scheduled in the
order of their indices.

The Qm |rej | #(
∑

J j ∈A w j C j , RC), the Qm|rej, d j =
d|#(

∑
J j ∈A Tj , RC), and the Rm |rej | #(

∑
J j ∈A w jU j , RC)

problems can be used as examples for an application
of Theorem 10. For the first problem, the WSPT order
can serve as the common indexing of the jobs and thus
we can solve the Qm |rej | #(

∑
J j ∈A w j C j , RC) problem

by applying Eqs. (16–18) with the f j (ti ) values in (12).
For the second problem, the SPT order can serve as the
common indexing of the jobs and thus we can solve
the Qm

∣∣rej, d j = d
∣∣ #(

∑
J j ∈A Tj ,

∑
J j ∈A e j ) problem by

applying Eqs. (16–18) with the f j (ti ) values in (13). For
the last problem, the EDD order can serve as the common
indexing of the jobs and thus the problem can be solved by
applying Eqs. (16–18) with the values in (14) and (15). The
following proposition now holds.

Proposition 6 The Qm |rej | #(
∑

J j ∈A w j C j , RC) and the

Qm
∣∣rej, d j = d

∣∣ #(
∑

J j ∈A Tj , RC) problems are solvable

in O(mnCm−1 E) time for m ≥ 2 and in O(nC E) time for
m = 1. Moreover, the Rm |rej | #(

∑
J j ∈A w jU j , RC) prob-

lem is solvable in O(mnCm E) time.

Note that the result obtained by Zhang et al. (2010) (which
appears in the seventh row of Table 9) can be directly derived
as a special case of the result in Proposition 6.

The Rm |rej | #( fmax(A),
∑

J j ∈A e j )problem Given an
appropriate indexing j = 1, . . . , n of jobs, let us define
Fj (t1, . . . , tm, l) as the total rejection cost for jobs J1, . . . , J j

subject to the constraint that the last job on Mi is completed
at time ti for i = 1, . . . , m and the value of the maximal
scheduling criterion is at most l. Then, the following recur-
sion holds:

Fj (t1, . . . , tm , l)

= min

⎧
⎪⎨

⎪⎩

{
min

i=1,...,m
Fj−1(t1, . . . , ti − pi j , . . . , tm , l) if f j (ti ) ≤ l

∞ otherwise
Fj−1(t1, . . . , tm , l) + e j

,(19)

where f j (ti ) is the scheduling criterion value for job J j if
completed on machine Mi at time ti . The initial conditions
are

F1(0, 0, . . . , 0, . . . , 0, l) = e1 and (20)

F1(t1, . . . , tm, l) ={
0 if ti = pi1, fi (pi1) ≤ l and t−i = 0 for i = 1, . . . , m
∞ otherwise ; (21)

for any lmin ≤ l ≤ lmax, where lmin and lmax are lower
and upper bounds on the value of the maximal scheduling
criterion, respectively. Then, for any lmin ≤ l ≤ lmax the
minimal total rejection cost can be given by

F∗
n = min(Fn(t1, . . . , tm, l̃) | l̃ ≤ l and 0 ≤ ti ≤ C). (22)

By applying Eqs. (19–22) for any lmin ≤ l ≤ lmax, the entire
set of weak Pareto-optimal and Pareto-optimal points can be
determined. Then, for solving the Rm |rej | # ( fmax(A), RC)
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problem, the weak Pareto-optimal solutions have to be elim-
inated. Since the solution of the Rm |rej | #( fmax(A), RC)

problem requires calculating Fj (t1, . . . , tm, l) for any j =
1, . . . n, lmin ≤ l ≤ lmax, and 0 ≤ ti ≤ C for i = 1, . . . , m,

each of which requires O(m) time, the following theorem
holds.

Theorem 11 The Rm |rej | #( fmax(A), RC) problem is solv-
able in O(mn(lmax −lmin)Cm) time and the Qm |rej | #( fmax

(A), RC) problem is solvable in O(mn(lmax − lmin)Cm−1)

time, for any f j which is a regular criterion for j = 1, . . . , n
and when it is possible to index the jobs such that in an
optimal schedule the jobs assigned to a given machine are
scheduled in the order of their indices.

Below, we present three different applications of
Theorem 11. First, the Rm |rej | # (Lmax(A), RC) and the
Rm |rej | # (Tmax(A), RC) problems are considered. For
these problems, the EDD order can be used as the com-
mon indexing for the jobs and thus these problems can be
solved by applying Eqs. (19–22) with f j (ti ) = ti − d j for
the Rm |rej | #(Lmax(A), RC) problem and with f j (ti ) =
max{ti − d j , 0} for the Rm |rej | #(Tmax(A), RC) problem.
Moreover, if d j ≤ C for j = 1, . . . , n, the condition that
lmax − lmin = O(C) holds for both problems and the follow-
ing proposition holds as well.

Proposition 7 The P1–P4 problems with either F1 = Lmax

or with F1 = Tmax are all solvable in O(mnCm+1) time on
unrelated machines. This time complexity can be reduced to
O(mnCm) if the scheduling system includes m ≥ 2 uniform
machines.

Note that the results obtained by Sengupta (2003) (which
appears in the fourth and the fifth rows of Table 9) can be
directly derived as special cases of the result in Proposition 7.

Next, the Rm
∣∣rej, r j

∣∣ #(Cmax(A), RC) problem is con-
sidered. For this problem, it is known that there exists an
optimal schedule for which the jobs on each machine are
scheduled in a non-decreasing order of r j , i.e., according
to the ERD order. Therefore, the ERD order can serve as
the common indexing of jobs required by the DP algorithm
defined by Eqs. (19–22) with f j (ti ) = ti . The condition that
r j ≤ ti −pi j has to be added to the condition that f j (ti ) ≤ l in
(19) and in the initialization in (21) the condition that ti = pi1

has to be replaced with the condition that ti1 = pi1 + r1.

Moreover, for the Rm|rej, r j |# (Cmax(A), RC) problem the

upper bound is C = rmax + max
i=1,...,m

{∑n
j=1 pi j

}
, lmin = 0

and lmax ≤ C. Thus, the following proposition holds.

Proposition 8 The Rm|rej, r j |#(Cmax(A), RC) problem is
solvable in O(mnCm+1) time. This time complexity can be
reduced to O(mnCm) if the scheduling system includes m ≥
2 uniform machines.

Table 10 Summary of additional results for parallel machine systems

Global notation P1–P4 References

Qm |rej | ∑ w j C j , RC ONPH Propositions 3 and 6

Qm
∣∣rej, d j = d

∣∣ ∑ Tj , RC ONPH Propositions 4 and 6

Rm |rej | ∑J j ∈A w j U j , RC ONPH Propositions 5 and 6

Rm |rej | Lmax, RC ONPH Proposition 7

Rm |rej | Tmax, RC ONPH Proposition 7

Rm
∣∣rej, r j

∣∣ Cmax, RC ONPH Proposition 8

Note that the results obtained by Zhang et al. (2009c) and
Zhang et al. (2010) (which appears in the first two rows of
Table 9) can be directly derived as special cases of the result
in Proposition 8.

The complexity results presented in this subsection are
presented in Table 10.

4.2 The flow-shop, job-shop, and open-shop scheduling
systems

In a flow-shop system, the machines are linearly ordered and
the jobs have to follow the same route from the first to the
last machine. In a job-shop scheduling system each job has
a predefined route to follow through the machines. However,
different jobs may have different routes. In an open-shop sys-
tem, each job needs to be processed exactly once on each of
the machines, where the route of each job is up to the sched-
uler’s decision. We include an Fm, Jm, or Om entry in the X
field when referring to a scheduling problem in a flow-shop,
job-shop, or open-shop scheduling system, respectively.

The two-machine flow-shop problem with rejection has
been studied by Shabtay and Gaspar (2012) and Choi and
Chung (2011). While Shabtay and Gaspar (2012) study
the entire set of P1–P4 problems, Choi and Chung focus
on the P1 problem. Both works include a proof that the
F2 |rej | Cmax(A) + RC problem is NP-hard and provide a
pseudo-polynomial time algorithm for its solution. However,
it seems that the algorithm by Shabtay and Gaspar (2012) is
more efficient as it runs in O(n

∑n
j=1 p2 j ) time while that of

Choi and Chung (2011) requires O(n�2
i=1

∑n
j=1 pi j ) time.

Shabtay and Gaspar also convert their pseudo-polynomial
time algorithm into an FPTAS with a running time of
O(n3/ε) time. Additional results for the P1 problem on two
machines include 2-approximation algorithms with a running
time of O(n log n) (Shabtay and Gaspar 2012) and an O(n4)

time algorithm for solving the special case for which pi j =
p j +vi for i = 1, 2 and j = 1, . . . , n (Choi and Chung 2011).
With regard to the P4 problem, Shabtay and Gaspar provide
an O(n P2 E) time pseudo-polynomial time algorithm for
the solution of the NP-hard F2 |rej | # (Cmax(A), RC) prob-
lem, where P2 = ∑n

j=1 p2 j and E = ∑n
j=1 e j . They also
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provide an ε-approximation algorithm that, given the exis-
tence of a schedule with a total rejection cost of at most R and
a makespan of at most K , finds in O(n5/ε2) time a solution
with a total rejection cost of at most (1+ε)R and a makespan
value of at most (1 + ε)K . Note that according to Definition
8, this ε-approximation algorithm finds a single solution Sε

within the Pareto ε-approximation set Pε only if (K , R) is a
Pareto-optimal solution.

It should be noted that Shabtay and Gaspar (2012) failed to
observe that some earlier results concerning problems P2–P4
can be derived from earlier results obtained by Jozefowska et

al. (1994) who studied the X
∣∣d j = d

∣∣
∑n

j=1
w jU j problem

and which are based on the following easy-to-prove theorem

Theorem 12 The X
∣∣d j = d

∣∣
∑n

j=1
w jU j problem is equiv-

alent to the X |rej | ε(RC/Cmax(A)) problem.

These authors prove that the X
∣∣d j = d

∣∣
n∑

j=1

U j problem

is NP-hard for X ∈ {F2, J2, O2} and propose pseudo-

polynomial time algorithms to solve the F2
∣∣d j = d

∣∣
∑n

j=1

w jU j problem, the O2
∣∣d j = d

∣∣
∑n

j=1
w jU j problem in

O(nd2) time, and the J2
∣∣d j = d

∣∣
∑n

j=1
w jU j problem

in O(nd3) time. T’kindt et al. (2007) showed that the

F2 |CON| ε
(∑n

j=1
U j/d

)
problem is equivalent to the

F2
∣∣d j = d

∣∣
∑n

j=1
U j problem and extended the the pseudo-

polynomial time algorithm by Jozefowska et al. (1994) to

solve the F2 |CON| #
(∑n

j=1
U j , d

)
problem (and there-

fore also the F2 |rej | # (Cmax(A), RC) problem) in O(nD2)

time, where D is an upper bound on the makespan value.
Note that this time complexity is neither dominated by
nor dominate the time complexity of the algorithm pro-
posed by Shabtay and Gaspar (2012) for the equivalent
F2 |rej | #(Cmax(A), RC) problem. However, we note that
when e j = 1, the algorithm by Shabtay and Gaspar (2012)
runs faster than the one by T’kindt et al. (2007). T’kindt
et al. (2007) present several B&B algorithms for solving

the F2 |CON| ε
(

d/
∑n

j=1
U j

)
problem which are based on

problem-dependent cuts and covering inequalities, as well
as on an initial preprocessing phase that enables a drastic
reduction in the problem size. They perform an experimental
study and show that the preprocessing phase enables them to
fix at least 76 % of the problem variable. Moreover, they show
that the best B&B algorithm is capable of solving instances

of the F2 |CON| ε
(

d/
∑n

j=1
U j

)
problem with up to the

huge amount of 3,000 jobs in less than 180 s on average and

instances of the F2 |CON| #
(∑n

j=1
U j , d

)
problem with

up to 500 jobs in less than 750 s on average.

Gaspar and Shabtay (2010) study two different special
cases of the flow-shop problem on m machines with rejec-
tion. The first is where the processing times are machine-
independent, i.e., pi j = p j for i = 1, . . . , m and j =
1, . . . , n, which is commonly known as the proportionate
flow-shop problem. This model of processing times has been
well studied in the literature (see, e.g., Pinedo 2008; Shakhle-
vich et al. 1998; Choi et al. 2007) and is supported by vari-
ous practical applications in industry (see, e.g., Panwalker et
al. 1973). The second is where the shop produces identical
jobs; that is pi j = pi for i = 1, . . . , m and j = 1, . . . , n
(see, e.g., Mosheiov 2003; Mosheiov and Oron 2005 for
other studies on flow-shop scheduling problems with identi-
cal jobs). The results obtained by Gaspar and Shabtay (2010)
for m proportionate machines include an O(n log n) time
optimization algorithm for the Fm|rej, pi j = p j |Cmax(A)+
RC problem, a proof that the DV problem with F1 =
Cmax(A) is NP-complete, a pseudo-polynomial time algo-
rithm, and an ε-approximation algorithm for the solution of
the Fm

∣∣rej, pi j = p j
∣∣ # (Cmax(A), RC) problem. In addi-

tion, for the case of identical jobs, Gaspar and Shab-
tay present an O(n) time optimization algorithm for the
Fm

∣∣rej, pi j = pi
∣∣ Cmax(A) + RC problem, as well as an

O(n log n) time optimization algorithm for the solution of
the Fm

∣∣rej, pi j = pi
∣∣ # (Cmax(A), RC) problem.

Hoogeveen et al. (2003) study the problem of schedul-
ing preemptive jobs in open-shop scheduling systems. They
show that the Om|rej, pmtn|Cmax(A) + RC problem is
ordinary NP-hard for a fixed m value (m ≥ 2). How-
ever, when m (the number of machines) is unknown, the
O|rej, pmtn|Cmax(A) + RC problem becomes strongly
NP-hard. In addition, they design a 1.58-approximation
algorithm for the O|rej, pmtn|Cmax(A) + RC problem.

The complexity results presented in this subsection are
summarized in Table 11.

5 Concluding remarks and future research

We presented a survey of results for scheduling problems
with rejection. In addition to known results from the litera-
ture, we included an original contribution by suggesting gen-
eral schemes for solving scheduling problems on unrelated
parallel machines with rejection in pseudo-polynomial time.
Although the field of scheduling with rejection has attracted
much attention in the last decade, there are still many chal-
lenges for future research some of which we list below.

• In Sect. 2, we highlight the close connections between
scheduling with rejection and other fields of research,
particularly the field of scheduling with due date assign-
ment for which we show that the 1|CON|∑n

j=1 w j Tj +
γ

∑n
j=1 d j problem polynomially reduces to the 1|rej |
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Table 11 Summary of
complexity results for
flow-shop, job-shop, and
open-shop systems

Global notation P1 P2–P4 References

F2 |rej | Cmax, RC ONPH
Jozefowska et al. (1994),

Shabtay and Gaspar (2012),
and Choi and Chung (2011)

F2
∣∣rej, pi j = p j + vi

∣∣ Cmax, RC O(n4)
Choi and Chung (2011)

Fm
∣∣rej, pi j = p j

∣∣ Cmax, RC O(n log n) ONPH
Gaspar and Shabtay (2010)

Fm
∣∣rej, pi j = pi

∣∣ Cmax, RC O(n) O(n log n)
Gaspar and Shabtay (2010)

X |rej | Cmax, RC(X ∈ {J2, O2}) ONPH
Jozefowska et al. (1994)

Om|rej, pmtn|Cmax, RC ONPH
Hoogeveen et al. (2003)

O|rej, pmtn|Cmax, RC SNPH
Hoogeveen et al. (2003)

∑
J j ∈A w j C j + RC problem, that the 1|rej |Cmax(A)

+RC problem is equivalent to the 1|CON|∑n
j=1 w jU j +

γ
∑n

j=1 d j problem, and that the 1|DIF|∑n
j=1 w jU j +

γ
∑n

j=1 d j problem is equivalent to the 1|rej |∑J j ∈A
C j + RC problem. Other connections between these two
closely related fields can be a subject for an extensive
research study.

• In Sect. 4.1.3, we present general optimization schemes
for solving scheduling problems with rejection on a set
of unrelated machines in pseudo-polynomial time. An
interesting question for future research is whether they
can be converted into FPTASs.

• Lawler (1973) designed a very powerful polynomial time
algorithm that solves the 1|prec| fmax problem in O(n2)

time where fmax = max j=1,...,n{ f j } can be any regu-
lar criterion. However, it seems that all four variants of
the more general 1|rej | fmax(A), RC problem are NP-
hard even for the special cases of fmax(A) = Lmax(A)

and fmax(A) = Lmax(A) (Sengupta 2003). An important
objective for future research might be to see if the pseudo-
polynomial time algorithms designed by Sengupta (2003)
to solve all four variants of the 1|rej |Lmax(A), RC and
the 1|rej |Tmax(A), RC problems can be extended to solve
the more general 1|rej | fmax(A), RC problem mentioned
above in pseudo-polynomial time.

• A significant question for future research is whether the
techniques provided by Engels et al. (2003) for design-
ing approximation algorithms for scheduling with rejec-
tion, based on reducing a problem with rejection to a
scheduling problem without rejection, can be used or
extended to provide additional approximation results
for scheduling problems with rejection. Another similar
question is whether the pseudo-polynomial time approxi-

mation algorithm designed by Phillips et al. (2000) for the
|rej, r j , e j = e|ε(∑J j ∈A f j (C j )/RC) problem (where
f j can be any regular criterion) can be extended to pro-
vide similar approximation algorithms for problems on
parallel machines.

• T’kindt et al. (2007) presented a B&B algorithm for

solving the F2 |CON| ε
(

d/
∑n

j=1
U j

)
problem (which

in equivalent to the F2 |rej | ε (Cmax(A)/RC) problem).
They perform an experimental study and show that the
algorithm is capable of solving instances with up to the
huge amount of 3,000 jobs in less than 180 s on average. It
is worthwhile to study if this approach can be adopted to
design similar algorithms for other scheduling problems
with rejection.

• There are many problems (mainly single machine prob-
lems) for which the P1 variation is solvable in polyno-
mial time while variations P2–P4 are NP-hard (e.g.,
the 1|rej |Cmax(A), RC and 1|rej |∑k

j=1 ξ j (k)p[ j], RC
problems). We are currently working on designing a gen-
eral approach to heuristically solve problem variations
P2–P4 based on solving a series of P1 problem varia-
tions.

• By taking a closer look at Tables 1–11, which summa-
rize the complexity results appear in the literature, one
can easily observe that in many cases, the complexity
of either the P1 problem variation or the P2–P4 prob-
lem variations is still an open question. For example,
the P1 problem variation of the 1|rej |∑J j ∈A Tj , RC
problem is known to be ordinary NP-hard (Steiner and
Zhang 2011). However, the question of whether the P2–
P4 variations are ordinary or strongly NP-hard is still an
open question. Another interesting example arises from
the O2 |rej | Cmax(A), RC problem which is solvable in
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O(n log n) time (see Gonzalez and Sahni 1976) if all
jobs have to be processed and is known to be ordinary
NP-hard for the P2–P4 problem variations (Jozefowska
et al. 1994). Thus, it is worth investigating whether the
O2 |rej | Cmax(A) + RC problem is solvable in polyno-
mial time or not.

• There are many problems in the literature that have been
extensively studied when rejection is not allowed, but
yet have not been studied for the extended case where
rejection is a valid option. One example is scheduling
problems on a set of multipurpose machines (see Leung
and Li 2008 for a survey paper). The two-machine flow-
shop scheduling problem with a no-wait restriction and
rejection also merits further analysis as do problems with
batching options, precedence constraints and preemp-
tions.

We hope that this survey will inspire new research on these
open questions and will lead to further progress in the area
of scheduling with rejection.
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